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Laplacians on infinite graphs:
Dirichlet and Neumann boundary conditions
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Abstract. We study Laplacians associated to a graph and single out a class of such operators
with special regularity properties. In the case of locally finite graphs, this class consists of all
selfadjoint, non-negative restrictions of the standard formal Laplacian and we can characterize
the Dirichlet and Neumann Laplacians as the largest and smallest Markovian restrictions of the
standard formal Laplacian. In the case of general graphs, this class contains the Dirichlet and
Neumann Laplacians and we describe how these may differ from each other, characterize when
they agree, and study connections to essential selfadjointness and stochastic completeness.

Finally, we study basic common features of all Laplacians associated to a graph. In
particular, we characterize when the associated semigroup is positivity improving and present
some basic estimates on its long term behavior. We also discuss some situations in which the
Laplacian associated to a graph is unique and, in this context, characterize its boundedness.
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1. Introduction

Laplacians on graphs have been studied for a long time; see, e.g., the monographs [3],
[5], and references therein. Much of the research has been devoted to finite graphs
and bounded Laplacians.

After sporadic earlier investigations, notably by Dodziuk [9] and Mohar [33],
certain properties related to unboundedness of the associated Laplacians on infinite
graphs have become a focus of attention in recent years. This concerns, in particular,
essential selfadjointness [6], [10], [17], [18], [23], [24], [26], [32], [37], [38], and
[39], stochastic (in)completeness [10], [12], [19], [22], [26], [27], [38], [39], [40],
and [41], and suitable isoperimetric inequalities [4], [10], [16], [25], [27], [29], [39],
and [40]; see references in the cited works for further literature as well.

It turns out that all of these works deal with what could be called the “Dirichlet
Laplacian” on a graph. In the essentially selfadjoint case, of course, this is the only
Laplacian. In general, however, further selfadjoint Laplacians exist. In particular,
there exists a “Neumann Laplacian”. It is not clear when the two Laplacians agree
and which properties they share (if they do not agree). This is the starting point of this
paper. More generally, our aim is to investigate the following three related questions:

(Q-1) Which operators can be considered to be Laplacians associated to a graph?

(Q-2) How are these operators related and what are the differences between them?

(Q-3) What are the basic properties common to all of them?

We now provide a general overview of the paper and our results on these questions.
For precise statements and definitions of the quantities involved we refer to later
sections.

In Section 2, we give an exposition of basic notation and concepts. In particular,
we introduce graphs, the standard formal Laplacian associated to a graph, and the
forms Q.D/ and Q.N / giving the Dirichlet and Neumann Laplacians, respectively.
We also prove a result showing that the “weak domain” of definition of the formal
Laplacian actually agrees with its domain (Theorem 2.2). This result is important for
our further considerations and may also be of independent interest.

As for (Q-1), which is studied in Section 3, we note that any graph comes with
both a standard formal operator zL and a closed form Q.D/. In some sense, zL is the
“maximal” Laplacian associated to the graph and Q.D/ is the “largest” closed form
associated to zL. This leads us to single out Laplacians and forms associated to a
graph which satisfy a regularity-type condition, called (C ), implying that the form
lies between Q.D/ and zL. A precise concept is given in Definition 3.1.

In the case of locally finite graphs, the corresponding Laplacians turn out to be
exactly the selfadjoint restrictions of zL which are bounded below (Theorem 3.10).
In the case of general graphs, we do not have an explicit description of all Laplacians
satisfying (C) in terms of zL. However, we can show that the Dirichlet operator and
the Neumann operator (and all operators between them in the sense of forms) satisfy
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this condition (Proposition 3.8). In this sense, our framework seems to be sufficient
to address questions (Q-2) and (Q-3) and, in particular, to study the Dirichlet and
Neumann Laplacians.

As for (Q-2), our framework allows us to obtain, in an easy way, a general de-
scription of how a form satisfying (C ) can be seen as an extension of Q.D/. This is
given in Theorem 3.6 of Section 3. This theorem can be seen as a form-type analogue
of some basic results in von Neumann extension theory. On a technical level, the
main topic is the description of 1-harmonic functions u in the domain of the form Q

associated to the graph, i.e. u with

.zL C 1/u D 0

belonging to the space D.Q/.
In Sections 4 and 5, we then have a closer look at (Q-2) for Dirichlet and Neumann

Laplacians. In Section 4, we describe the “difference” between Dirichlet and Neu-
mann Laplacians if they do not agree (Theorem 4.2) and give a characterization of
when the Dirichlet and Neumann Laplacians agree (Corollary 4.3). We also discuss
how our results are related to recent work of Colin de Verdière, Torki-Hamza and
Truc; see [6], and [37]. In fact, while somewhat different in spirit, our description of
the difference between Neumann and Dirichlet Laplacians in Theorem 4.2 is certainly
inspired by [6].

We then turn to characterizing Dirichlet and Neumann Laplacians in the frame-
work of Laplacians associated to a graph in Section 5. Our approach gives immedi-
ately that the Dirichlet Laplacian is, in a precise sense, the largest Laplacian associated
to a graph. The main thrust of Section 5 is to show that the Neumann Laplacian is the
smallest Laplacian associated to a graph within the class of Markovian operators (i.e.
operators associated to a Dirichlet form). For our results to work, we have to make
the additional assumption of local finiteness of the graph. For locally finite graphs,
Theorem 5.2 then gives that, among the Markovian restrictions of zL, the Dirichlet
Laplacian is the biggest and the Neumann Laplacian is the smallest. While similar
results are known for the usual Laplacians on subsets of Euclidean space [15], we are
not aware of any earlier result of this type for graphs.

It is remarkable that the agreement of Q.D/ and Q.N / is equivalent to the triv-
iality of solutions to .zL C 1/u D 0 in D.Q.N //, as the solvability of this equation
in other spaces is known to be related to stochastic completeness and to essential
selfadjointness. In this way, essential selfadjointness, stochastic completeness, and
uniqueness of the operator are related. Details are discussed in Section 6. In particu-
lar, by examples we show that, apart from the “obvious” implications, no implications
between these concepts hold in general. More specifically, we show that stochastic
completeness and essential selfadjointness are not related in general.

We finally turn to question (Q-3) and discuss basics of a theory valid for both
Neumann and Dirichlet Laplacians (and many others) in Sections 7 and 8. There, we
are mostly concerned with the semigroup associated to these operators.
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First, we present a maximum principle for solutions of .zLC 1/u D 0 and use it to
characterize when the semigroup is positivity improving in Section 7. This generalizes
the corresponding considerations for the Dirichlet Laplacian in [26]; see [38], [39],
and [8] for earlier treatment of special Dirichlet Laplacians as well.

We then discuss an analogue to a result of Li on Laplacians on manifolds in our
context in Section 8. This result has already been obtained recently in a rather general
context [28]. Here, we present a different proof which is adapted to the graph case.

In Section 9, we conclude the paper with a study of situations in which there is only
one selfadjoint restriction of zL. This complements and completes the considerations
of the earlier sections which deal with the differences and common features of all
selfadjoint restrictions.

In some sense, this paper can be seen as a complement to [26]. There, basic
features of the Dirichlet Laplacian were discussed. Here, we focus on the general
case.

Acknowledgements. Part of this work was done while the authors were visiting
the workshop Analysis on Graphs and its Applications Follow-up Meeting at the
Isaac Newton Institute. The authors would like to thank the organizers for the invi-
tation and gratefully acknowledge the stimulating atmosphere of the workshop. In
this context D. Lenz, S. Haeseler, and M. Keller also gratefully acknowledge par-
tial support by the German Science Foundation (DFG). R. Wojciechowski acknowl-
edges the financial support of FCT grant SFRH/BPD/45419/2008 and FCT project
PTDC/MAT/101007/2008.

2. Framework and basic results

Throughout the paper, let V be a finite or countably infinite set and m a measure on V

with full support (i.e. m is a map on V taking values in .0; 1/). We then call .V; m/

a discrete measure space. The set of all function from V to C is denoted by C.V /.
We will introduce operators on `2.V; m/ using Dirichlet forms. To do so, we

first briefly recall a few standard facts on forms; see, e.g., [8] and [15]. Some of the
standard literature on Dirichlet forms only deals with real Hilbert spaces. However,
this can easily be extended to complex Hilbert spaces. Some details are discussed
in Appendix B. A form Q on a (complex) Hilbert space with domain of definition
given by a dense subspace D.Q/ is a sesquilinear map Q W D.Q/ � D.Q/ ! C.
The form Q is called non-negative if Q.u; u/ � 0 for all u 2 D.Q/ and symmetric
if Q.u; v/ D Q.v; u/ for all u; v 2 D.Q/. A non-negative symmetric form Q is
called closed if D.Q/ with the inner product

hu; viQ
defD Q.u; v/ C hu; vi

is complete, i.e. a Hilbert space. To each such form there exists a unique selfadjoint
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operator L with
D.Q/ D Domain of definition of L1=2

and
Q.u; v/ D hL1=2u; L1=2vi:

A map C W C ! C with C.0/ D 0 and jC.x/ � C.y/j � jx � yj is called a normal
contraction. A closed form Q on a Hilbert space of square integrable functions is
called a Dirichlet form if

Q.C u; C u/ � Q.u; u/

for all u 2 D.Q/ and all normal contractions C . The relevance of Dirichlet forms
comes from the fact that the associated semigroups .e�tL/t�0 and resolvents ˛.L C
˛/�1, ˛ > 0, are positivity preserving, i.e. map non-negative functions to non-negative
functions and provide contractions on the space of bounded functions; see, e.g., [1]
and [7].

After this summary on forms, we now come to a discussion of graphs over .V; m/

and the associated operators. To a large extent we follow [26] and [21] to which we
refer for further details and proofs not given below. (Note that our notation deviates
from the notations of [26] and [21] – which are only concerned with the Dirichlet
Laplacian – in the following way: We denote by Q.N / the form denoted by Qmax

in [26] and by Q.D/ the form denoted by Q in [26].)
By a symmetric weighted graph over V we mean a pair .b; c/ consisting of a map

c W V ! Œ0; 1/ and a map b W V � V ! Œ0; 1/ satisfying the following properties:
� b.x; x/ D 0 for all x 2 V ;
� b.x; y/ D b.y; x/ for all x; y 2 V ;
� P

y2V b.x; y/ < 1 for all x 2 V .

Then, x; y 2 V with b.x; y/ > 0 are called neighbors and thought to be connected
by an edge with weight b.x; y/. More generally, x; y 2 V are called connected
by the path .x0; x1; : : : ; xnC1/ if x0; x1; : : : ; xnC1 2 V satisfy b.xi ; xiC1/ > 0,
i D 0; : : : ; n, with x0 D x and xnC1 D y. A connected component of the graph is a
maximal subset of V such that all elements in this set are connected. If V has only one
connected component, i.e., if any two x; y 2 V are connected, then .b; c/ is called
connected. Symmetric weighted graphs over .V; m/ are also known as symmetric
Markov chains over .V; m/.

We are now going to associate forms and operators to each graph .b; c/ over
.V; m/. These forms and operators will, of course, depend on the choice of .b; c; m/.
We will mostly omit this dependence on .b; c; m/ in our notation and only add the
corresponding subscripts when necessary to avoid confusion.

To the graph .b; c/ over .V; m/ we associate the form Q.N / on the Hilbert space
`2.V; m/ with domain of definition D.Q.N // given by the subspace

D.Q.N //
defD

n
u 2 `2.V; m/ W 1

2

X
x;y2V

b.x; y/ju.x/�u.y/j2C
X
x2V

c.x/ju.x/j2 < 1
o
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and the map
Q.N / W D.Q.N // � D.Q.N // �! C

by

Q.N /.u; v/
defD 1

2

X
x;y2V

b.x; y/.u.x/ � u.y//.v.x/ � v.y// C
X
x2V

c.x/u.x/v.x/:

Then, Q.N / is symmetric, non-negative and closed. The associated operator will be
denoted by L.N /. We can think of L.N / as a Laplacian with Neumann-type boundary
conditions.

We will be concerned not only with Q.N / but with further forms as well. In this
context, we use the notation Q1 � Q2 to mean that

D.Q1/ � D.Q2/ and Q1.u; v/ D Q2.u; v/

for all u; v 2 D.Q1/: Similarly, for non-negative forms Q1 and Q2, we use the
notation Q1 � Q2 to mean that

D.Q2/ � D.Q1/ and Q1.u; u/ � Q2.u; u/

for all u 2 D.Q2/.
Obviously, the set Cc.V / of functions from C.V / with finite support belongs to

D.Q.N //. Thus, we can restrict Q.N / to this set to obtain the form Qcomp

Qcomp W Cc.V / � Cc.V / �! C; Qcomp.u; v/
defD Q.N /.u; v/:

The form Qcomp is not closed but possesses a unique smallest closed extension called
the closure and denoted by Q.D/. The associated selfadjoint operator is denoted by
L.D/. We can think of L.D/ as a Laplacian with Dirichlet-type boundary conditions.

Note that Q.N / and Q.D/ are Dirichlet forms. This is rather straightforward to
show for Q.N / and follows for Q.D/ by general principles. By construction, the form
Q.D/ is a regular Dirichlet form, viz, Cc.V / is dense in the form domain with respect
to the form norm induced by h�; �iQ.D/ . In fact, all regular Dirichlet forms on .V; m/

are of the form Q.D/ D Q
.D/

.b;c/
for suitable graphs .b; c/; see, e.g., [26].

While the domains of definition of L.D/ and L.N / can, in general, not be described
explicitly, the action of these operators is easily described. To do so, we introduce
the standard formal Laplacian zL associated to the graph .b; c/ over .V; m/. This
operator will be of fundamental importance in all of our considerations. It is defined
on the space

zF defD
n
u 2 C.V / W

X
y2V

jb.x; y/u.y/j < 1 for all x 2 V
o
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by

zLu.x/
defD 1

m.x/

X
y2V

b.x; y/.u.x/ � u.y// C c.x/

m.x/
u.x/:

Note that, for each x 2 V , the sum exists by the assumption that u belongs to zF .
It turns out that zL has a certain regularity property, viz, functions which are weakly

in its domain are actually in its domain. The crucial identity connecting zL and the
forms we have in mind is then given by a certain integration by parts. This is discussed
next. We start by introducing the functions which are weakly in the domain of zL; see
[14] as well.

Definition 2.1. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Then, zF �, the weak domain of the formal Laplacian, is defined by

zF � defD fu 2 C.V / W
X
x2V

ju.x/zLv.x/jm.x/ < 1 for all v 2 Cc.V /g:

Here, comes the first part of the necessary “integration by parts” as shown in [21]
(see [26] for related results as well). For u 2 zF and v 2 Cc.V /, the sum

zQ.u; v/
defD 1

2

X
x;y2V

b.x; y/.u.x/ � u.y//.v.x/ � v.y// C
X
x2V

c.x/u.x/v.x/

converges absolutely and the equality

zQ.u; v/ D
X
x2V

zLu.x/v.x/m.x/ D
X
x2V

u.x/zLv.x/m.x/ (1)

holds (where all sums are converging absolutely).
After these preparations we can now state a regularity property of zL.

Theorem 2.2. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Then, zF D zF �.

Proof. The inclusion zF � zF � follows from (1). It remains to show the other inclusion
zF � � zF . Let u 2 zF � be given. We have to show the absolute convergence ofP

z2V b.x; z/u.z/ for any x 2 V . Let ıx be the characteristic function of fxg. For
each z 2 V , we set

Bz
defD

X
y2V

b.z; y/ C c.z/:

Then, a direct calculation shows that

zLıx.z/ D 1

m.z/
.Bzıx.z/ � b.x; z//: (*)

As ıx belongs to Cc.V /, the absolute convergence of
P

u.z/zLıx.z/m.z/ for each
x 2 V follows by the assumption on u. Now, (*) easily gives the statement.
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Remark. The previous theorem seems particularly remarkable to us as it does not
seem to have a direct counterpart in the case of the usual Laplace–Beltrami �M on
a Riemannian manifold M . Certainly, the existence of hu; �vi for all v 2 C 1

c .M/

does not imply any differentiability properties of u (as it will hold, in particular, for
any measurable bounded function with compact support).

As a consequence of the previous theorem we obtain that weak generalized eigen-
functions are generalized eigenfunctions.

Corollary 2.3. Let .V; m/ be a discrete measure space, .b; c/ a graph over .V; m/;

u 2 C.V / and � 2 R. Then, the following assertions are equivalent:

(i) the function u belongs to zF and .zL � �/u D 0, i.e. u is a generalized eigenfunc-
tion of zL to the eigenvalue �.

(ii) the function u belongs to zF � and
P

x2V u.x/.zL � �/v.x/m.x/ D 0 for all
v 2 Cc.V /, i.e. u is a weak generalized eigenfunction of zL.

3. Laplacians associated to a graph

In this section, we introduce a special class of operators and forms associated to a
graph. As will become clear in the paper, these forms and operators can be considered
as particularly regular Laplacians on a graph. In this section, we develop some basics
of their theory. In particular, Theorem 3.6 gives a form-type analogue of what might be
seen as a basic ingredient of von Neumann extension theory for symmetric operators.
Moreover, we show that all the “usual” Laplacians fall into our framework. More
precisely, we show in Theorem 3.10 that, in the locally finite case (and even a bit
more generally), our class consists of the non-negative selfadjoint restrictions of zL.
In the case of general graphs, we show that the Dirichlet and Neumann operators (and
all operators between them in the sense of forms) belong to the class.

Whenever we are given a graph with an associated standard formal Laplacian
zL we call a selfadjoint restriction of zL a Laplacian associated to the graph. If this
restriction is bounded below, we call the induced form a form associated to the graph.
We are going to single out a special class of operators associated to a graph and study
some of their properties. We start with the definition of the class.

Definition 3.1 (Forms satisfying (C )). Let .V; m/ be a discrete measure space, .b; c/

a graph over .V; m/ and zL D zL.b;c;m/. A symmetric form Q on `2.V; m/ with domain
D is said to satisfy condition (C ) with respect to .b; c/ if

(C0) Q is non-negative and closed,

(C1) Cc.V / � D,
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(C2) For any u 2 D and any v 2 Cc.V / the sum
P

x2V u.x/zLv.x/m.x/ converges
absolutely and the equality

Q.u; v/ D
X
x2V

u.x/zLv.x/m.x/

holds.

The selfadjoint operator L induced by the form is then also said to satisfy (C ).

Remark. The requirement in (C0) that Q is non-negative could be replaced by the
assumption that Q is bounded below (with appropriate changes). We assume that
Q � 0 in order to simplify the notation later and not have to worry about some
constants.

Theorem 2.2 combined with (1) allows us to restate condition (C2) as follows.

Corollary 3.2. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Let the form Q with domain D satisfy (C ) with respect to .b; c/. Then, D � zF and

Q.u; v/ D
X
x2V

zLu.x/v.x/m.x/

holds for all u 2 D and v 2 Cc.V /.

The next proposition gathers some basic properties of forms and operators satis-
fying (C ) (and gives, in particular, that they are associated to a graph). Recall from
Section 2 the definition of h�; �iQ via

hu; viQ D Q.u; v/ C hu; vi:

Proposition 3.3. Let .V; m/ be a discrete measure space, .b; c/ a graph over .V; m/

and Q a form with domain D satisfying (C ) with respect to .b; c/. Then, the following
properties hold:

(a) D.Q.D// is a closed subspace of the Hilbert space .D; h�; �iQ/ and Q.D/ and Q

agree on D.Q.D//;

(b) the selfadjoint operator L associated to Q is a restriction of zL and is non-
negative.

Proof. (a) Note that Q agrees with Q.D/ on Cc.V / by the assumptions on Q. Thus,
the closure of Cc.V / with respect to h�; �iQ is exactly D.Q.D// and D.Q.D// is a
closed subspace of the Hilbert space .D; h�; �iQ/.

(b) This is immediate from Corollary 3.2.
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A direct consequence of the previous proposition is the following maximality
property of Q.D/.

Corollary 3.4. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Then, Q.D/ � Q and, in particular, Q � Q.D/ holds for any form Q satisfying (C )
with respect to .b; c/.

In order to state our main abstract result on the description of forms satisfying (C )
we need one further piece of notation.

Definition 3.5 (Harmonic function). Let .V; m/ be a discrete measure space and
.b; c/ a graph over .V; m/. For a form Q with domain D satisfying (C ) with respect
to .b; c/, the space of 1-Q-harmonic functions H .Q/ is defined by

H .Q/ defD fu 2 D W .zL C 1/u D 0g:
Remark. By Corollary 2.3, the space H .Q/ could also be defined via “weak solu-
tions”, i.e.

H .Q/ D
n
u 2 D W

X
x2V

u.x/.zL C 1/v.x/m.x/ D 0 for all v 2 Cc.V /
o
:

Here is the main result of this section.

Theorem 3.6. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Let the form Q with domain D satisfy (C ) with respect to .b; c/. Then, for u 2 D,
the following assertions are equivalent:

(i) .zL C 1/u D 0;

(ii) u is orthogonal to D.Q.D// with respect to the inner product h�; �iQ.

Therefore, the Hilbert space .D; h�; �iQ/ can be decomposed as an orthogonal
sum

D D D.Q.D// ˚ H .Q/:

Proof. It suffices to show the equivalence of (i) and (ii). The remaining statement is
then immediate. Now, obviously, .zL C 1/u D 0 is equivalent to

X
x2V

.zL C 1/u.x/v.x/m.x/ D 0

for any v 2 Cc.V /. By Corollary 3.2, this is equivalent to

0 D Q.u; v/ C hu; vi D hu; viQ

for all v 2 Cc.V /. As D.Q.D// is the closure of Cc.V / in D with respect to h�; �iQ,
we obtain the desired equivalence.



Laplacians on infinite graphs 407

Corollary 3.7. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Let the form Q with domain D satisfy (C ) with respect to .b; c/. Define B

defD B.Q/
defD

D=D.Q.D//. Then, for each v 2 B there exists a unique w D wv 2 D with

� .zL C 1/w D 0

� Œw� D v

and the map
B �! H .Q/; v 7�! wv;

is a bijection and even a unitary (if both vector spaces are equipped with the induced
Hilbert space structure).

Remark. One can think of B.Q/ as a general type of boundary value of the elements
of D. Accordingly, the corollary gives the existence and uniqueness of a solution to
a boundary value problem.

After this discussion of general features of the class of operators and forms satis-
fying (C ), we now discuss important examples of such operators. First, we show that
the forms Q.N / and Q.D/, and all closed forms between them, belong to this class.

Proposition 3.8. Let .V; m/ be a discrete measure space and .b; c/ a graph over
.V; m/. Then, any closed form Q with Q.D/ � Q � Q.N / satisfies (C ) with respect
to .b; c/. In particular, the selfadjoint operator L associated to such a form Q is a
restriction of zL.

Proof. It suffices to show that Q.N / satisfies (C ). By (1), it suffices to show that
D.Q.N // � zF . To see this, we let w 2 D.Q.N // and Bx

defD P
y b.x; y/ < 1 for

each x 2 V and calculateX
y2V

b.x; y/jw.y/j �
X
y2V

b.x; y/jw.x/ � w.y/j C
X
y2V

b.x; y/jw.x/j

�
� X

y2V

b.x; y/
� 1

2
� X

y2V

b.x; y/jw.x/ � w.y/j2
� 1

2 C Bxjw.x/j

� B1=2
x Q.N /1=2

.w; w/ C Bxjw.x/j:
This gives the desired finiteness.

We now turn to a situation in which we can explicitly describe all Laplacians
satisfying (C ).

Recall from [26] that for graphs .b; c/ over .V; m/ the following two conditions
are equivalent:

� zLCc.V / � `2.V; m/;

� b.x; �/=m.�/ 2 `2.V; m/ for all x 2 V .
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A graph satisfying one (and then both) of these conditions will be said to satisfy the
finiteness condition (FC).

For such graphs, we can define the minimal operator Lc to be the restriction of
zL to Cc.V / and the maximal operator LM to be restriction of zL to

D.LM /
defD fu 2 `2.V; m/ W zLu 2 `2.V; m/g:

In this situation, the following consequence of (1) holds (see [26] for details).

Proposition 3.9. Let .V; m/ be a discrete measure space and .b; c/ a graph over
.V; m/ satisfying (FC). Then, LM is the adjoint of Lc and, in particular, the set of
selfadjoint restrictions of zL is exactly the set of selfadjoint extensions of Lc .

A special instance of graphs satisfying (FC) are locally finite graphs. Here, a
graph .b; c/ over .V; m/ is called locally finite if, for any x 2 V , the set

fy 2 V W b.x; y/ > 0g
is finite. In this case, the previous proposition can be strengthened and it follows that
zF is equal to C.V /, zL maps Cc.V / into itself and, by (1), zL can easily be seen to be

the adjoint of the restriction Lc with respect to the dual pairing C.V /�Cc.V / ! C,
.u; v/ 7! P

x u.x/v.x/m.x/:

Our characterization of all Laplacians satisfying (C) on graphs for which (FC)
holds now follows.

Theorem 3.10. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/

satisfying (FC). Let L be a non-negative selfadjoint operator on `2.V; m/. Then, the
following assertions are equivalent:

(i) L and its associated form Q satisfy (C );

(ii) L is a restriction of zL.

Proof. The implication (i) H) (ii) follows from Proposition 3.3 (and does not re-
quire (FC)). It remains to show the implication (ii) H) (i). This is a simple conse-
quence of Proposition 3.9 and (1).

4. The forms Q.D/ and Q.N /

In this section we study how Q.D/ and Q.N / differ from each other. The difference
will turn out to be essentially given by solutions of

.zL C 1/u D 0

belonging to D.Q.N //. This will allow us to abstractly characterize when Q.D/ and
Q.N / agree. We then turn to a more geometric description of this difference suggested
by recent results of [37] and [6].
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Lemma 4.1. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/. If
Q.N / ¤ Q.D/, then there exists a non-trivial, non-negative solution to .zLC1/u D 0

in D.Q.N // \ `1.V /.

Proof. By Q.N / ¤ Q.D/ we must have L.N / ¤ L.D/ and then .L.N / C 1/�1 ¤
.L.D/ C 1/�1. As the vectors ıx; x 2 V , are total in `2.V; m/, there then exists an
x 2 V such that

u
defD ..L.N / C 1/�1 � .L.D/ C 1/�1/ıx ¤ 0;

where ıx is the function in `2.V; m/ which vanishes everywhere except at x where
it is 1. As Q.N / and Q.D/ are Dirichlet forms, both resolvents are contractions on
`1.V / and the boundedness of u follows. Thus, u belongs to `2.V; m/ \ `1.V /.
Moreover, u belongs to D.Q.N // as .L.N / C 1/�1 maps into D.L.N // � D.Q.N //

and .L.D/ C 1/�1 maps into D.L.D// � D.Q.D// � D.Q.N //. As both L.N / and
L.D/ are restrictions of zL, we obtain that u solves

.zL C 1/u D 0:

Non-negativity of u follows as .L.D/ C 1/�1ıx is the smallest non-negative solution
of .zL C 1/v D ıx by Theorem 11 of [26].

By Proposition 3.8, the form Q.N / satisfies (C ). Thus, we can now specialize
Corollary 3.7 to obtain the following theorem on solving .zL C 1/u D 0 in D.Q.N //.

Theorem 4.2. Let .V; m/ be a discrete measure space, .b; c/ a graph over .V; m/

and B.N / defD D.Q.N //=D.Q.D//. Then, for each v 2 B.N / there exists a unique
w D wv 2 D.Q.N // with

� .zL C 1/w D 0,
� Œw� D v.

As a corollary we obtain the following characterization of Q.N / ¤ Q.D/.

Corollary 4.3 (Characterization of Q.N / ¤ Q.D/). Let .V; m/ be a discrete measure
space, .b; c/ a graph over .V; m/ and B.N / D D.Q.N //=D.Q.D//. Then, the
following assertions are equivalent:

(i) B.N / ¤ f0g, i.e. Q.N / ¤ Q.D/;

(ii) there exists a non-trivial solution of .zL C 1/u D 0 in D.Q.N //;

(iii) there exists a non-trivial solution of .zL C 1/u D 0 in D.Q.N // \ `1.V /.

Proof. The implication (iii) H) (ii) is clear. The implication (ii) H) (i) (as well
as the reverse direction) follows from the previous result. Note that the nontriviality
of the solution u in (ii) gives Œu� ¤ 0 by the uniqueness part of Theorem 4.2. The
implication (i) H) (iii) follows from Lemma 4.1.
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A different angle to nontrivial solvability of .zL C 1/u D 0 is provided by the
geometric context developed in [37] and [6] which we now recall. The setting of [37]
and [6] is concerned with locally finite graphs only. However, the part that we need
here works in our situation with essentially the same proofs. For the convenience of
the reader, we shortly indicate the corresponding proofs. For further discussion we
refer to the cited works.

Assume that .b; c/ over .V; m/ is connected. The length of a path � D .x1; : : : ; xn/

is defined by

L.�/
defD

n�1X
j D1

1

b.xj ; xj C1/1=2
:

Then, d W V � V ! Œ0; 1/ given by

d.x; y/ D inffL.�/ W � is a path connecting x and yg
provides a metric on V . Let yV be the metric completion of V with respect to d and
let Od be the extension of d to yV . Note that the completion yV may or may not agree
with V.

The relevance of this metric comes from the fact that

ju.x/ � u.y/j � Q.N /.u/1=2d.x; y/ (2)

for any u 2 D.Q.N // where Q.N /.u/
defD Q.N /.u; u/. Indeed, for any path � D

.x1; : : : ; xn/ connecting x and y, one easily sees by the Cauchy–Schwarz inequality
and the subadditivity of the square root that ju.x/ � u.y/j � Q.N /.u/1=2L.�/. This
gives the desired result.

Equation (2) allows one to extend any u 2 D.Q.N // to a Lipschitz function yu
on yV . We define u1 to be the restriction of yu to V1

defD yV n V if yV n V ¤ ; and we
define u1 by 0, otherwise. From the construction and some simple arguments we
obtain a continuity property of the map u 7! u1. As this is not included in [6] we
discuss it explicitly as follows.

Lemma 4.4. Let C.V1/ be the space of continuous functions on the metric space yV .
Then, the map

D.Q.N // �! C.V1/; u 7�! u1;

is continuous when the set on the right hand side is given the topology of locally
uniform convergence.

Proof. Let .un/ be a sequence in D.Q.N // converging to u 2 D.Q.N // with respect
to h�; �iQ.N/ . Assume, without loss of generality, that there exists an o 2 V with
un.o/ D u.o/ for all n 2 N. Then, from (2) we obtain

j.u � un/.p/j D j.u � un/.p/ � .u � un/.o/j � Q.N /.u � un/1=2 Od.p; o/:

This gives the desired statement.



Laplacians on infinite graphs 411

Now, here comes the connection between non-trivial solutions to .zL C 1/u D 0

and the boundary values u1 of the functions u in Q.N /. This is our version of
Theorem 2.1 of [6].

Theorem 4.5. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
Let B.N / D D.Q.N //=D.Q.D//. Then, the map

P W B.N / �! fu1 W u 2 D.Q.N //g; Œu� 7�! u1;

is well-defined, linear, continuous and onto. In particular, to each f 2 D.Q.N //

there exists w 2 D.Q.N // with .zL C 1/w D 0 and w1 D f1. Furthermore, if yV is
compact, then P is injective.

Proof. The second statement on the existence of w follows from the first statement
and Theorem 4.2. The last statement follows from a maximum principle as in [6].
Thus, it suffices to show the first statement. It is clear that P is linear and onto (if
it is well-defined). Also, from the previous lemma, it is clear that it is continuous
(if it is well-defined). Thus, it remains to show that P is well-defined. Obviously,
u1 D 0 for all u 2 Cc.V /. Thus, by Lemma 4.4, we obtain that u1 D 0 for all
u 2 D.Q.D//. Hence, P is well-defined.

From this proposition, Corollary 4.3, and Proposition 9.1 we immediately infer
the following corollary.

Corollary 4.6. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.
If there exists f 2 D.Q.N // with f1 ¤ 0, then Q.N / ¤ Q.D/. If, furthermore, (FC)
holds, i.e. zLCc.V / � `2.V; m/, then the restriction of zL to Cc.V / is not essentially
selfadjoint.

Remarks. (a) The statement on failure of essential selfadjointness in the corollary
is a generalization of Theorem 3.1 of [6]. There, the statement is shown for locally
finite graphs and c � 0. Our proof provides a further piece of information in that it
shows that the existence of f 2 D.Q.N // with f1 ¤ 0 implies that Q.N / ¤ Q.D/.

(b) One may wonder whether Q.N / ¤ Q.D/ is, in fact, equivalent to existence
of f with f1 ¤ 0. This, however, is not the case as can be seen by the example in
AppendixA. In that situation, we have completeness of the graph (as this completeness
does not depend on m) and Q.N / ¤ Q.D/.

5. Characterizing Neumann and Dirichlet Laplacians

In our setting, it follows from Corollary 3.4, that the Dirichlet Laplacian is the largest
operator satisfying (C ). This naturally raises the question whether a corresponding
characterization can be given for the Neumann Laplacian. In this section, we show
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that this holds true in the case of locally finite graphs. More precisely, we study the
set of all Markovian restrictions of zL and show that the Dirichlet Laplacian is the
largest one and the Neumann Laplacian is the smallest one (Theorem 5.2). These
results (and their proofs) can be seen as analogues to results for the “usual” Laplacians
(and diffusion-type operators) on sufficiently smooth subsets of Euclidean space as
discussed in Section 3.3 of [15]. As a corollary, we obtain a characterization of the
agreement of Q.D/ and Q.N / in terms of uniqueness of symmetric Markov processes
associated to zL (Corollary 5.6).

We start with a definition.

Definition 5.1. Let .V; m/ be a discrete measure space and .b; c/ a locally finite graph
over .V; m/. Then, a non-negative selfadjoint restriction of zL is called Markovian if
its associated form is a Dirichlet form. The set of all Markovian restrictions of zL is
denoted by E D E.b; c; m/.

Remark. If .b; c/ is locally finite, then, by Proposition 3.9, it follows that LM is the
adjoint operator of Lc . Therefore, any selfadjoint L is a restriction of zL if and only
if it is an extension of Lc and, in this case,

Lc � L � LM

holds. We can therefore think of restrictions of zL as extensions of Lc and this explains
our notation E for a set of restrictions.

Theorem 5.2. Let .V; m/ be a discrete measure space and .b; c/ a locally finite graph
over .V; m/. Then,

Q.N / � Q � Q.D/

holds for any form Q associated to a Markovian restriction L of zL.

The proof of this theorem is given after a series of intermediate claims. We
will assume that we are given a locally finite graph .b; c/ over .V; m/ throughout.
Moreover, by a slight abuse of notation, we will write

hu; vi defD
X
x2V

u.x/v.x/m.x/

for all u 2 C.V / and v 2 Cc.V /.
By definition, the form associated to L 2 E is a Dirichlet form. This has the

following consequences which will be repeatedly used in the sequel; see [15] and [7]
for proofs. For any ˇ > 0, the resolvent

Gˇ
defD .L C ˇ/�1
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is positivity preserving, i.e. maps non-negative functions to non-negative functions.
Moreover, for all 1 � p � 1, the map Gˇ extends uniquely to a map on `p.V; m/,
again denoted by Gˇ , with norm not exceeding 1

ˇ
and satisfying

Gˇ u D lim
n!1 Gˇ un

whenever un; u � 0 with un ! u monotonously increasing. The Gˇ are obviously
selfadjoint on `2.V; m/ and their extensions have the following symmetry property

hGˇ u; vi D hu; Gˇ vi
for any u 2 `p.V; m/, p � 1, and v 2 Cc.V /.

Proposition 5.3. Let L 2 E and Gˇ D .L C ˇ/�1 for ˇ > 0. For any u 2 `p.V; m/

and v 2 Cc.V / the equation

lim
ˇ!1

ˇhu � ˇGˇ u; vi D hzLu; vi

holds.

Proof. It suffices to show

lim
ˇ!1

ˇhu � ˇGˇ u; vi D hu; zLvi:

Then, the claim follows from (1) as zF D C.V / due to local finiteness. We calculate

ˇhu � ˇGˇ u; vi D ˇ.hu; vi � ˇhGˇ u; vi/
(!)D ˇhGˇ u; Lvi
D hu; ˇGˇ Lvi (!!)���! hu; Lvi:

As L � LM (see above), this shows the desired statement.
Here, (!!) follows from the spectral theorem. The statement (!) follows as,

obviously,
hGˇ u; .L C ˇ/vi D hu; vi

and hence
hGˇ u; Lvi D hu; vi � ˇhGˇ u; vi:

This finishes the proof.

Proposition 5.4. Let L 2 E and Gˇ D .L C ˇ/�1 for ˇ > 0. Then, for any
real-valued u 2 D.Q/

ˇhu � ˇGˇ u; ui D 1

2
hfˇ ; 1i
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where the non-negative function fˇ W V ! R belonging to `1.V; m/ is given by

fˇ .x/ D ˇ2Gˇ .u.x/1 � u/2.x/ C 2ˇu.x/2.1 � ˇGˇ 1.x//

D �ˇ
�
u2.x/ � ˇ.Gˇ u2/.x/

� C 2ˇu.x/.u.x/ � ˇGˇ u.x//

C ˇu2.x/.1 � ˇGˇ 1.x//:

Here, u.x/1 denotes the constant function with value u.x/ on V .

Proof. We start by discussing the definition of fˇ . We first note that both expres-
sions for fˇ make sense as Gˇ is applied to (sums of) elements from `p.V; m/ for
1 � p � 1. Note that the first representation gives that fˇ is non-negative and the
second representation gives that fˇ belongs to `1.V; m/.

Finally, the claimed equalities follow by direct computations. These use

m.x/Gˇ w.x/ D hGˇ w; ıxi D hw; Gˇ ıxi
for any w which is a sum of functions in `p.V; m/ and for ıx , the characteristic
function of fxg.

Proposition 5.5. For any L 2 E with associated form Q the Hilbert space D.Q/

with inner product Q.�; �/ C h�; �i is the orthogonal sum

D.Q/ D D.Q.D// ˚ H .Q/;

where H .Q/ D fu 2 D.Q/ W .zL C 1/u D 0g. In particular, any u 2 D.Q/ can be
decomposed uniquely as u D u0 C h with u0 2 D.Q.D// and h 2 H .Q/ and

Q.u; u/ C hu; ui D Q.D/.u0; u0/ C Q.h; h/ C hu0; u0i C hh; hi:

Proof. The first statement is an immediate consequence of Theorem 3.6; see [15],
Lemma 3.3.2(ii), as well. The second statement is an immediate consequence of the
first statement.

After these preparations, we are now ready to give a proof of the main result of
this section.

Proof of Theorem 5.2. To avoid tedious but non-essential terms we assume that c � 0.
The statement on the Dirichlet operator L.D/ is clear and has already been discussed
in the introduction to this section. We show the statement on the Neumann operator.
Thus, let L 2 E be given and Q be the associated Dirichlet form. By Proposition 5.5
(applied to both Q and Q.N /) it suffices to show that

Q.u; u/ � Q.N /.u; u/ (3)
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for all real-valued u 2 D.Q/ with .zL C 1/u D 0. We will investigate the left hand
side and the right hand side of (3) separately. To do so we define T W V ! R by

T .x/
defD �

X
y2V

b.x; y/.u.x/ � u.y//u.y/:

Note that T .x/ is well-defined as .b; c/ is locally finite.

Right hand side of (3). As we do not even know that u 2 D.Q.N // we have to
exercise some care. However, by Fubini’s theorem and the local finiteness of b, the
expression

Q.N /.u; u/ D 1

2

X
x;y2V

b.x; y/.u.x/ � u.y//.u.x/ � u.y//

D 1

2

X
x2V

� X
y2V

b.x; y/.u.x/ � u.y//u.x/

�
X
y2V

b.x; y/.u.x/ � u.y//u.y/
�

is well-defined (i.e. either converges absolutely or diverges to 1) and all inner sums
converge. Now, using .zLC1/u D 0 and the absolute convergence of

P
x u.x/2m.x/,

we obtain

0 � Q.N /.u; u/ D 1

2

X
x2V

.�u.x/2m.x/ C T .x//; (4)

where the sum is well-defined, i.e. either converges absolutely or diverges to 1.

Left hand side of (3). By the spectral theorem and Proposition 5.4 we have that

Q.u; u/ � ˇhu � ˇGˇ u; ui � 1

2
hfˇ ; vi � 0

for any v 2 Cc.V / with 0 � v � 1 and any ˇ > 0. Here, we use that fˇ � 0. Hence,
taking ˇ ! 1, by Fatou’s lemma, Proposition 5.3 and the second expression for fˇ

in Proposition 5.4, we obtain that

Q.u; u/ �
X
x2V

v.x/
�

� 1

2
.zLu2/.x/ C uzLu.x/

�
m.x/ � 0:

Now, a direct computation using .zL C 1/u D 0 shows that

.zLu2/.x/ D �u2.x/ � 1

m.x/
T .x/

and
u.x/zLu.x/ D �u2.x/:
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Putting this together, we find that

Q.u; u/ � 1

2

X
x2V

v.x/.�u2.x/m.x/ C T .x// � 0:

As v 2 Cc.V / with 0 � v � 1 was arbitrary, we obtain, in particular, that

.�u2.x/m.x/ C T .x// � 0

for all x 2 V . This shows that we can take a limit over v with 0 � v � 1 and v ! 1

pointwise to obtain

Q.u; u/ � 1

2

X
x2V

.�u2.x/m.x/ C T .x//:

Comparing this with (4) we obtain that

Q.u; u/ � Q.N /.u; u/

and the desired statement follows. This finishes the proof.

Remarks. (a) Note that great care has to be exercised when plugging u with .zL C 1/u

D 0 into Q.N / as, formally,

0 � Q.N /.u; u/ D hzLu; ui D �hu; ui � 0

giving Q.N /.u; u/ D 0 for all such u (which would imply that u D 0 whenever the
graph is connected and m.V / D 1).

(b) In general, there will exist Dirichlet forms between Q.D/ and Q.N /. One way
to generate such a form is given as follows. Choose an arbitrary subset A � V . Then,
define

D
0

A

defD fu 2 D.Q.N // W ]fx 2 A W u.x/ ¤ 0g < 1g
and let DA be the closure of D

0

A in the Hilbert space .D.Q.N //; h�; �iQ.N//. Then,
the restriction of Q.N / to DA will be a Dirichlet form by Theorem 3.1.1 of [15]. In
general, it will differ from both Q.N / and Q.D/.

(c) The previous remark shows that there exist Dirichlet forms between Q.D/ and
Q.N /. Based on the considerations of this paper one might try and characterize all of
these forms (via boundary conditions). We consider this an interesting open problem.

(d) The considerations above use the local finiteness of the graph in various places.
It should be interesting to find out whether a similar result holds in the general case
as well.

Our considerations give another characterization of Q.D/ D Q.N / in the case of
locally finite graphs. To state the characterization we introduce one more piece of



Laplacians on infinite graphs 417

(standard) notation. A map P from Œ0; 1/ into the set of selfadjoint bounded operators
on `2.V; m/ is called a strongly continuous symmetric semigroup if it has the form
Pt D e�tL for a selfadjoint L which is bounded below. Here, e�tL is understood in
the sense of the spectral calculus for selfadjoint operators. The operator L is called
the generator of the semigroup. If the form associated to L is a Dirichlet form, the
semigroup is called Markovian.

Corollary 5.6. Let .V; m/ be a discrete measure space and .b; c/ a locally finite
graph over .V; m/. Then, the following assertions are equivalent:

(i) Q.D/ D Q.N /;

(ii) there exists only one strongly continuous symmetric Markovian semigroup with
generator contained in zL.

Remark. It should be interesting to find out to what extent a similar result may hold
for more general Dirichlet forms.

6. The equation . zL C 1/u D 0

In Section 4 we have seen that the set of solutions of .zL C 1/u D 0 in D.Q.N //

describes the difference between Q.N / and Q.D/. In particular, the disagreement of
Q.N / and Q.D/ was characterized in terms of nontrivial solvability of .zL C 1/u D 0

in D.Q.N //. In this section we put these results in perspective by discussing the
nontrivial solvability of .zL C 1/u D 0 in the spaces `2.V; m/ and `1.V /. This turns
out to be related to essential selfadjointness and stochastic completeness, respectively.
As a consequence, we obtain some immediate connections between the agreement of
Q.N / and Q.D/, essential selfadjointness and stochastic completeness. By examples,
we show that no further implications hold in general.

Before we start the discussion let us note that the number one in the equation
.zL C 1/u D 0 does not play any special role. It could be replaced by any positive
number ˛. Then, virtually the same arguments apply to solutions of .zL C ˛/u D 0.
In fact, the arguments apply to any number ˛ with �˛ smaller than the infimum of
the spectrum of L.N /. We stick to the case ˛ D 1 for convenience only.

We now turn to the concept of stochastic completeness. Recall that .V; b; c; m/

with c � 0 is called stochastically complete if

Mt
defD e�tL.D/

1 � 1

for all t � 0. This can be shown to be equivalent to .zL C 1/u D 0 not having
a non-trivial solution in `1.V / (and to various further statements); see [40], [26],
and [22]. It turns out that this type of characterization can be extended to the case
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c 6� 0 if one is willing to modify M . More precisely, in the general case (with not
necessarily vanishing c), one defines, for each t � 0, the function Mt on V by

Mt
defD e�tL.D/

1 C
Z t

0

e�sL.D/ c

m
ds:

Here, for the non-negative c=m, the function e�tL.D/
c=m is defined as a limit by

approximating c=m from below by non-negative functions in Cc.V /; see [26]. The
function Mt turns out to be finite with values between 0 and 1. Note that the function
agrees with our earlier definition of Mt if c � 0. We then say that .V; b; c; m/ satisfies
.SC1/ if Mt � 1 and speak of .SC1/ as stochastic completeness at infinity. As
shown in [26] and [27], the following holds.

Theorem 6.1 (Characterization of stochastic completeness). Let .V; m/ be a discrete
measure space and .b; c/ a graph over .V; m/. Then, the following assertions are
equivalent:

(i) .V; b; c; m/ is stochastically complete at infinity, i.e. Mt � 1 for all t � 0;

(ii) There does not exist a non-trivial solution of .zL C 1/u D 0 in `1.V /.

Remark. Note that M is defined using the Dirichlet operator L.D/. Analogously,
one might define

M
.N /
t

defD e�tL.N/

1 C
Z t

0

e�sL.N/ c

m
ds:

We then infer that M � 1 H) M .N / � 1 (as M � 1 implies Q.N / D Q.D/

by Lemma 4.1 and the previous theorem). However, the reverse implication that
M .N / � 1 H) M � 1 does not hold. To see this, we can consider the example
of Appendix A (see [26] as well) with c � 0, m.V / < 1 and Q.N / ¤ Q.D/.
By Q.N / ¤ Q.D/, Lemma 4.1 and the preceding theorem, we infer the failure of
M � 1. On the other hand, by m.V / < 1 we obtain that 1 is eigenfunction
of L.N /. Thus, M .N / D e�tL.N/

1 � 1. This shows that, in terms of processes,
stochastic completeness cannot be defined with the “Neumann-process”. This seems
worth noting as the characterization of stochastic completeness via (un)boundedness
of solutions of .zL C 1/u D 0 does not refer to any specific selfadjoint realization
of zL.

We now turn to essential selfadjointness. The following result essentially deals
with the deficiency index being zero. In the context of graph Laplacians it could be
derived from the considerations of [26]. We include a proof for completeness.

Theorem 6.2 (Characterization of essential selfadjointness). Let .V; m/ be a discrete
measure space and .b; c/ a graph over .V; m/. Assume (FC), i.e. zLCc.V / � `2.V; m/.
Then, the following assertions are equivalent:
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(i) the restriction of zL to Cc.V / is essentially selfadjoint;

(ii) there does not exist a non-trivial solution of .zL C 1/u D 0 in `2.V; m/.

Proof. Recall, from Section 3, the definition of the operator Lc as the restriction of
zL to Cc.V / and the maximal operator LM as the restriction of zL to the set of all
u 2 `2.V; m/ with zLu 2 `2.V; m/. Then, by Proposition 3.9, Lc is a symmetric non-
negative operator with adjoint LM . As Lc is non-negative, essential selfadjointness
is then equivalent to triviality of the kernel of LM C 1 by standard theory.

We note the following consequence of Lemma 4.1 and the considerations above.

Corollary 6.3. Let .V; m/ be a discrete measure space and .b; c/ a graph over .V; m/.

(a) If the graph is stochastically complete at infinity, then Q.N / D Q.D/.

(b) If zL maps Cc.V / to `2.V; m/ and Lc is essentially selfadjoint, then Q.N / D
Q.D/.

Abbreviating stochastic completeness at infinity by S.C. and essential selfadjoint-
ness by E.S. we can summarize the preceding considerations as follows:

S.C.

E.S.

Q.N / D Q.D/

9>>=
>>;

No nontrivial solution
to .zL C 1/u D 0 in

8̂
<̂
ˆ̂:

`1.V /

`2.V; m/ and (FC)

D.Q.N // \ `1.V /

In particular: E:S: H) Q.N / D Q.D/ (H S:C:

This shows some connections between stochastic completeness, essential self-
adjointness and Q.N / D Q.D/. It turns out that no further implications hold, i.e.
stochastic completeness at infinity and essential selfadjointness are independent. In
particular, neither in (a) nor in (b) of Corollary 6.3 does the reverse implication hold.
This is now shown by a series of examples.

Example 1 and Example 2 (Graphs satisfying E.S. and S.C. and graphs satisfying
E.S. without S.C., respectively). We consider graphs with m � 1, c � 0 and b taking
values in f0; 1g only. Then, as shown in [26] and [39], essential selfadjointness holds
due to the assumption that m � 1.

More specifically, we will now even further restrict attention to radially symmetric
rooted trees. Thus, we are given a tree with a root o and all vertices with distance n to
the root have the same degree dn. Then, as shown in [39], the corresponding models
will satisfy S:C: if and only if

X
n

1

dn

D 1:

Thus, within the class of radially symmetric rooted trees, we can easily find examples
satisfying E.S. together with S.C. and examples satisfying E.S. without S.C.
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Example 3 (Graphs satisfying neither S.C. nor E. S.). The example in Appendix A
(see Section 4 of [26] as well) gives a situation with m.V / < 1, c � 0, and
1 62 D.Q.D// implying, in particular, that Q.N / ¤ Q.D/. Thus, in this example, we
have neither essential selfadjointness nor stochastic completeness.

Example 4 (Graphs satisfying S.C. without E.S.). Based on the first example of
Section 4 of [26] we may give such a graph as follows. Let V D Z and b.x; y/ D 1

if jx � yj D 1 and zero otherwise. The weighted graph .b; 0/ over .V; 1/ gives rise
to the bounded operator � W `2.Z/ ! `2.Z/ which is the restriction of the formal
operator

. z�w/.x/ D �w.x � 1/ C 2w.x/ � w.x C 1/

to `2.Z/
defD `2.Z; 1/. As � is bounded (see, e.g., Theorem 9.3 in Section 9 below), it

is essentially selfadjoint. Moreover, it is well-known that .Z; b; 0; 1/ is stochastically
complete (see Examples 1 and 2 and compare, for instance, [12], Theorem 2.10) and,
therefore, there is no solution to . z� C 1/w D 0 in `1.Z/.

Let �
defD arccosh.3=2/. As e� C e�� � 2 D 1, one checks that

u W Z �! Œ0; 1/; x 7�! e�x

is a solution to . z� C 1/u D 0. Choose ' 2 `1.Z/ with '.x/ > 0 for all x 2 Z. Let
the measure m on Z be given by

m.x/ D min
°
1;

'.x/

u2.x/

±

and the map c W Z ! Œ0; 1/ via

c.x/
defD max

n
0;

u2.x/

'.x/
� 1

o
m.x/:

Then,
1 � c C m

by construction. The graph .Z; b; c; m/ induces the formal operator

.zLw/.x/ D 1

m.x/
.�w.x � 1/ C 2w.x/ � w.x C 1// C c.x/

m.x/
w.x/;

or, formally, zL D 1
m

. z� C c/. As 1 � c C m, one directly checks that w W Z ! R
solves

.zL C 1/w D 0 if and only if . z� C 1/w D 0.

We conclude the following. The function u W x 7! e�x belongs to `2.Z; m/ by
the choice of m and .zL C 1/u D 0 since . z� C 1/u D 0. Therefore, the restriction of
zL to Cc.Z/ is not essentially selfadjoint. On the other hand, there is no solution to
.zL C 1/w D 0 in `1.Z/ since there is no solution to . z� C 1/w D 0 in `1.Z/ (see
above). Hence, .Z; b; c; m/ is stochastically complete.



Laplacians on infinite graphs 421

7. Maximum principle and characterization of positivity improvement

In this section we present a maximum principle and use it to characterize positivity
improvement of a positivity preserving semigroup of the form .e�tL/t�0 with L � zL.
For the Dirichlet Laplacian this has already been done in [26].

Theorem 7.1 (Maximum principle). Let .V; m/ be a discrete measure space, .b; c/

a connected graph over .V; m/ and zL D zL.b;c;m/. Let w be a real-valued solution
of zLw � 0. If w attains its maximum and this maximum is non-negative, then w is
constant and even w � 0 if c 6� 0.

Proof. Let x 2 V be given such that w attains its non-negative maximum at x. From

0 � zLw.x/ D 1

m.x/

X
y2V

b.x; y/.w.x/ � w.y// C c.x/

m.x/
w.x/

we then infer that all y 2 V with b.x; y/ > 0 must have w.x/ D w.y/. Inductively,
we obtain the constancy of w. Now, a second look at zLw � 0 shows the last part of
the statement.

Corollary 7.2. Let .V; m/ and .b; c/ be as in the previous theorem. Let u be a
non-negative solution to .zL C 1/u � 0. Then, either u is strictly positive or u � 0.

Proof. This is a direct consequence of the previous theorem applied with w D �u

and zL replaced by zL C 1.

Recall that a bounded operator A on `2.V; m/ is positivity preserving if it maps
non-negative functions to non-negative functions. It is called positivity improving
if it maps non-negative functions which do not vanish identically to strictly positive
functions. A semigroup .e�tL/t�0 is said to be positivity preserving and positivity
improving, respectively, if, for every t > 0, e�tL has the corresponding property.

Theorem 7.3 (Characterization of positivity improvement). Let .V; m/ be a discrete
measure space and .b; c/ a graph over .V; m/. Let L be a selfadjoint non-negative
restriction of zL such that the associated semigroup .e�tL/t�0 is positivity preserving.
Then, the semigroup .e�tL/t�0 is positivity improving if and only if .b; c/ is connected.

Proof. It is clear that the semigroup cannot be positivity improving if the graph is not
connected.

Let us now turn to the other implication. Thus, we assume that the graph .b; c/

is connected. By general principles, it suffices to show that the resolvent .L C 1/�1

is positivity improving. So, let u � 0 with u 6� 0 be given and consider the function
v

defD .L C 1/�1u. Then, v is non-negative as e�tL, and thus .L C 1/�1, is positivity
preserving and satisfies .zLC1/v D u � 0 as L is a restriction of zL. Now, the desired
positivity follows from the previous corollary.
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8. An analogue to a theorem of Li

Whenever L is a non-negative selfadjoint operator on `2.V; m/ we can form the
associated semigroup e�tL. By the discreteness of V these operators have a kernel,
i.e. there exists a map

p W Œ0; 1/ � V � V �! C

with
e�tLf .x/ D

X
y2V

pt .x; y/f .y/m.y/

for all f 2 `2.V; m/. Thus, with the characteristic function ıx of x 2 V we obtain

hıx ; e�tLıyi D m.x/m.y/pt .x; y/

for all x; y 2 V . If L arises from a Dirichlet form, then p must be non-negative
with

P
y pt .x; y/m.y/ � 1. In this case, estimates of this kernel are of particular

interest. Some basic estimates are discussed in the main result of this section. The
result is taken from [28], following [2] and [36]. We present an alternative proof
of Theorem 8.1(b), which is known as Theorem of Li in the context of manifolds
(after [31]).

Theorem 8.1. Let .V; m/ be a discrete measure space and .b; c/ a connected graph
over .V; m/. Let L be a selfadjoint non-negative restriction of zL such that the as-
sociated semigroup .e�tL/t�0 is positivity preserving. Furthermore, let E0 be the
infimum of the spectrum of L.

(a) There exists a unique non-negative ˆ on V such that

etE0pt .x; y/ �! ˆ.x/ˆ.y/; t ! 1
for all x; y 2 V . Here, ˆ � 0 if E0 is not an eigenvalue and ˆ is the unique
normalized positive eigenfunction to E0, otherwise.

(b) The kernel p of e�tL satisfies

log pt .x; y/

t
�! �E0; t ! 1

for all x; y 2 V .

Proof. Part (a) can be obtained as a simple consequence of the spectral theorem
(see [36] and [28]) as follows. Let P be the projection onto the eigenspace of E0,
i.e. P D 0 if E0 is not an eigenvalue and P D hˆ; �iˆ otherwise.

Then, the spectral theorem gives

m.x/m.y/jetE0pt .x; y/ � ˆ.x/ˆ.y/j
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D jhıx ; .etE0e�tL � P /ıyij

D
ˇ̌
ˇ̌Z

ŒE0;1/

.e�t.s�E0/ � 1fE0g.s//d�.s/

ˇ̌
ˇ̌ �! 0:

Here, � is the spectral measure of L associated to ıx and ıy characterized by

hıx ; f .L/ıyi D
Z

f .s/d�.s/

for all continuous bounded real valued f on R.

(b) Let Qıx with

Qıx.y/ D 1p
m.x/

ıx.y/

be given, where ıx is the characteristic function of fxg. Obviously, f Qıxgx2V forms
an orthonormal basis of `2.V; m/ consisting of non-negative functions which do not
vanish identically. As .b; c/ is connected, we infer, from Theorem 7.3, that the
semigroup .e�tL/t�0 is positivity improving. Thus, for all t > 0 and x; y 2 V , the
numbers

at .x; y/
defD hQıx ; e�tL Qıyi; at .x/

defD at .x; x/

are positive and satisfy

atCs.x/ D he�tL Qıx; e�sL Qıxi D
X
y2V

he�tL Qıx; Qıyih Qıy ; e�sL Qıxi � at .x/as.x/:

By a similar reasoning,

at�1.x/a1.x; y/ � at .x; y/ � 1

a1.y; x/
atC1.y/

for all x; y 2 V and t > 1. The first inequality gives the existence of

lim
t!1

log at .x/

t

for each x 2 V by standard subadditive reasoning. The second line of inequalities
then gives that this limit does not depend on x and, in fact,

lim
t!1

log at .x; y/

t
D E

holds with some real E for all x; y 2 V . As
p

m.x/m.y/pt .x; y/ D at .x; y/, we

obtain the convergence of log pt .x;y/
t

to E for t ! 1 as well. As this holds for all
x; y 2 V , we obtain E D �E0.
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Corollary 8.2. Let .V; m/ be a discrete measure space and .b; c/ a connected graph
over .V; m/. Let L be a selfadjoint non-negative restriction of zL such that the asso-
ciated semigroup .e�tL/t�0 is positivity preserving. Assume that m.V / D 1. Then,
the heat kernel associated to L satisfies

pt .x; y/ �! 0; t ! 1:

Proof. Since m.V / D 1 we have that 1 62 `2.V; m/ and, in particular, that 1 62 D.Q/

and 0 is not an eigenvalue. Now, if E0 > 0, then, by the previous theorem, we get
that pt .x; y/ ! 0 as t ! 1. Otherwise, if E0 D 0, then the theorem gives that
pt .x; y/ ! ˆ.x/ˆ.y/ as t ! 1. But ˆ � 0 since 0 is not an eigenvalue.

Remark. Let us emphasize that the assumptions in the preceding results do not entail
any form of compact resolvent or spectral gap. Accordingly, one can also not expect
any form of exponential rate of convergence in the statements. For situations in which
such assumptions and consequences hold we refer to the monograph [13].

9. Uniqueness of selfadjoint restrictions of zL

This section is concerned with two situations in which there is only one selfadjoint
restriction of zL. This complements the material of the previous sections whose main
thrust is the study of situations in which there are several selfadjoint restrictions of zL.

We start with the following direct consequence of Proposition 3.9.

Proposition 9.1. Let .b; c/ be a graph over the discrete measure space .V; m/ and
zL D zL.b;c;m/. If (FC) holds and the restriction Lc of zL to Cc.V / is essentially
selfadjoint with selfadjoint extension L, then L is the only Laplacian associated
to .b; c/.

Now, we discuss two cases in which the proposition can be applied. One case
will involve an assumption on m only and the other case will involve combined
assumptions on m and .b; c/.

Corollary 9.2. Let .V; m/ be a discrete measure space with infx2V m.x/ > 0.
Then, (FC) holds for any graph .b; c/ over .V; m/ and the restriction Lc of zL to
Cc.V / is essentially selfadjoint with selfadjoint extension L.

Proof. This follows from the previous proposition by Theorem 6 of [26] and its
subsequent remark. Namely, as shown there, zL maps Cc.V / to `2.V; m/ and the
restriction of zL to Cc.V / is essentially selfadjoint whenever infx2V m.x/ > 0.

Remark. As a consequence of the corollary the main focus of the previous sections
concerns the case when infx2V m.x/ D 0.
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Another instance of uniqueness of selfadjoint restrictions of zL is given if zL is a
bounded operator. In this context we first discuss an interesting feature of zL as an
operator on `p.V; m/. It is either bounded for all p � 1 or for no such p.

Theorem 9.3. Let .V; m/ be a discrete measure space, .b; c/ a graph over .V; m/

and zL D zL.b;c;m/. Then, the following are equivalent:

(i) there exists a C � 0 with 1
m.x/

� P
y b.x; y/ C c.x/

� � C for all x 2 V ;

(ii) zL gives a bounded operator on `p.V; m/ for some p 2 Œ1; 1�;

(iii) zL gives a bounded operator on `p.V; m/ for all p 2 Œ1; 1�.

We begin the proof with an auxiliary claim.

Claim. If `p.V; m/ is a subset of zF and the restriction of zL to `p.V; m/ is a bounded
operator on `p.V; m/ for some p with 1 � p � 1 and q satisfies 1 D 1=p C 1=q,
then `q.V; m/ also belongs to zF and the restriction of zL to `q.V; m/ is a bounded
operator as well.

Proof of the claim. This is essentially a consequence of (1) and duality. We consider
the cases p D 1 and p > 1 separately.

To treat the case p D 1 we note that `1.V / belongs to zF anyway. From (1) we
then infer for u 2 `1.V / and v 2 Cc.V / the estimate

ˇ̌
ˇ X

x

.zLu/.x/v.x/m.x/
ˇ̌
ˇ D

ˇ̌
ˇ X

x

u.x/zLv.x/m.x/
ˇ̌
ˇ � C kuk1kvk1;

where k � ks denotes the s-norm on `s.V; m/ and C is a bound for the norm of zL as
an operator from `1.V; m/ to `1.V; m/. As Cc.V / is dense in `1.V; m/ we infer that
zL is a bounded operator on `1.V / (with norm bounded by C as well).

To treat the case p > 1 we chose u 2 Cc.V / 	 `q.V; m/ and v 2 `p.V; m/.
Then, (1) gives the estimate

ˇ̌
ˇ X

x

.zLu/.x/v.x/m.x/
ˇ̌
ˇ D

ˇ̌
ˇ X

x

u.x/zLv.x/m.x/
ˇ̌
ˇ � C kukqkvkp;

where C is a bound for the norm of zL as an operator from `p.V; m/ to `p.V; m/.
This shows that zLu belongs to `q.V; m/ and satisfies kzLukq � C kukq . Hence, the
restriction of zL to Cc.V / is a bounded operator (with respect to k � kq). It can then be
(uniquely) extended to a bounded operator on `q.V; m/ and this extension can easily
be seen to be a restriction of zL. This finishes the proof of the claim.

Let us now turn to the actual proof.
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Proof of Theorem 9.3. Assume that (i) is satisfied. Then, we see that zL is a bounded
operator on `1 which gives (ii). The auxiliary claim now gives that zL is bounded
on `1. Applying the Riesz–Thorin interpolation theorem, we get (iii).

Assume, conversely, that (ii) is fulfilled. Again by the auxiliary claim, zL is also a
bounded operator on `q , where 1 D 1

p
C 1

q
. As 2 must belong to the interval between

p and q we can use interpolation once more, to get that zL is bounded on `2. Hence,
for each x 2 V , we have the existence of C > 0 such that

hzLıx ; ıxi � C m.x/;

which gives (i).

Remark. The equivalence of (i) and boundedness of zL on `2.V; m/ has been shown
in [27]. There it has also been shown that this implies boundedness of zL on all`p.V; m/.

Corollary 9.4. Let .V; m/ be a discrete measure space, .b; c/ a graph over .V; m/

and zL D zL.b;c;m/. If there exists a C � 0 with

1

m.x/

� X
y2V

b.x; y/ C c.x/
�

� C

for all x 2 V , then there exists only one selfadjoint Laplacian associated to .b; c/.
This Laplacian is the restriction of zL to `2.V; m/.

Proof. By definition, any Laplacian associated to the graph is a restriction of zL.
As the restriction of zL to `2.V; m/ is bounded by the assumption and the previous
theorem, the statement follows.

Remark. Let us point out that the corollary gives examples with uniqueness of the
selfadjoint operator associated to zL even if infx2V m.x/ D 0.

Appendix A. A (counter)example

In this section we briefly recall an example from Section 4 of [26]. This serves as a
(counter)example in various situations discussed in the article.

We consider connected graphs .b; c/ over .V; m/ with c � 0 and b.x; y/ 2 f0; 1g
for all x; y 2 V . The Cheeger constant ˛ D ˛.V; b; c/ of such a graph is defined by

˛
defD inf

K�V W ]K<1
Q.D/.1K ; 1K/

]K
;

where ]K denotes the cardinality of K. The degree D W V �! Œ0; 1/ is defined
by D.x/ D P

y2V b.x; y/. Then, as discussed by Dodziuk–Kendall [11] (see [10],
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[25], and [27] as well) in the context of isoperimetric inequalities, the inequality

1

2

X
x;y2V

b.x; y/.'.x/ � '.y//2 � ˛2

2

X
x2V

D.x/'.x/2

holds for all real-valued ' 2 Cc.V /. Now, take an arbitrary graph with ˛ > 0 and
D.x/ � C for all x 2 V . To be specific, one may take the regular tree with degree
k � 3. Choose a measure m on V with m.V / D 1. Then, the graph .V; b; 0; m/ has
the following features.

(1) The graph .V; b; 0; m/ is complete with respect to the metric d defined in Sec-
tion 4.

(2) The constant function 1 belongs to D.Q.N // but not to D.Q.D//.

Here, claim (1) is clear as D is uniformly bounded. Claim (2) is shown in [26]. We
include a short proof. Let 1 be the constant function with value one. As m.V / < 1,
the function 1 belongs to `2.V; m/. Obviously, Q.N /.1/

defD Q.N /.1; 1/ D 0 < 1.
Thus, 1 2 D.Q.N //. Now, fix x0 2 V and let 'n be any sequence in Cc.V /

converging to 1 in `2.V; m/. Then, 'n.x0/ converges to 1. In particular,

Q.N /.'n/ � ˛2

2
D.x0/'n.x0/2 �! ˛2

2
D.x0/ > 0; n ! 1:

Thus, Q.N /.'n/ does not converge to 0 D Q.N /.1/ and 1 does not belong to
D.Q.D//.

Appendix B. Dirichlet forms on real and complex Hilbert spaces

In this appendix we shortly discuss some basic and very well-known characterizations
of Dirichlet forms. Such forms can be considered on both real and complex Hilbert
spaces. Here, we show, in particular, how to go from one situation to the other. We
refer to [1], [15], and [34] for further details.

Let .X; m/ be a � -finite measure space. Let L2.X; m/ be the Hilbert space of
square integrable function on X with inner product

hf; gi D
Z

X

f .x/g.x/dm.x/:

As discussed in the main text, a non-negative closed symmetric form Q on L2.X; m/

with domain D.Q/ is called a Dirichlet form (on L2.X; m/) if

Q.C u; C u/ � Q.u; u/

for all u 2 L2.X; m/ and every normal contraction C on C. Here, we set Q.v; v/ D
1 if v does not belong to the form domain.
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In order to state the next theorem, we need some further notation. For a real
valued u we set

uC
defD maxf0; ug and u ^ 1

defD minf1; ug:
Then, the following theorem holds.

Theorem B.5. Let Q be a non-negative closed symmetric form on L2.X; m/. Then,
the following assertions are equivalent:

(i) Q is a Dirichlet form;

(ii) the semigroup e�tL is positivity preserving and contracting on Lp.X; m/ for all
1 � p � 1;

(iii) D.Q/ is invariant under complex conjugation with Q.u; v/ real valued for all
real valued u; v in the domain of Q and it holds that Q.uC; uC/ � Q.u; u/ for
all real valued u 2 L2.X; m/ as well as Q.u ^ 1; u ^ 1/ � Q.u; u/ for all real
valued u 2 L2.X; m/ with u � 0.

Proof. The equivalence of (i) and (ii) follows directly from Theorem XIII.50 and
Theorem XIII.51 in Appendix 1 to Section XIII.12 of [35].

Also, it is not hard to see that D.Q/ is invariant under complex conjugation with
Q.u; v/ real valued for all real valued u; v 2 D.Q/ if and only if e�tL maps real
valued functions to real valued functions. Given this, the equivalence between (ii)
and (iii) follows again directly from Theorems XIII.50 and XIII.51 in Appendix 1 to
Section XIII.12 of [35].

Let L2
R.X; m/ be the subspace of L2.X; m/ consisting of real-valued functions.

We then call a non-negative closed symmetric form Q on L2
R.X; m/ a Dirichlet form

(on L2
R.X; m/) if

Q.C u; C u/ � Q.u; u/

for all u 2 L2
R.X; m/ and every normal contraction C on R. (Here, we again set

Q.v; v/ D 1 if v does not belong to the form domain.) Essentially from (iii) of the
previous theorem we obtain the following corollary.

Corollary B.6. (a) Let Q be a Dirichlet form on L2.X; m/. Then, the restriction of
Q to L2

R.X; m/ is a Dirichlet form as well.

(b) Let Qr be a Dirichlet form on L2
R.X; m/. Then, the form Q with domain

D.Q/
defD fu C iv W u; v 2 D.Qr/g

and

Q.u1 C iv1; u2 C iv2/
defD Qr.u1; u2/ C Qr.v1; v2/ C i.Qr.v1; u2/ � Qr.u1; v2//

is a Dirichlet form on L2.X; m/.
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Proof. (a) By (iii) of the previous theorem, Q.u; v/ is real valued for all real valued
u; v 2 D.Q/. Now, (i) of the previous theorem, shows that the restriction of Q to
real valued functions is compatible with taking normal contractions on R.

(b) It is not hard to see that Q is a symmetric closed non-negative form. Moreover,
as Qr is compatible with contractions on R it is easy to see that (iii) of the previous
theorem holds for Q. Thus, the previous theorem shows that Q is a Dirichlet form.
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