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Spectral properties of the discrete random displacement model

Roger Nichols and Günter Stolz1

Abstract. We investigate spectral properties of a discrete random displacement model, a
Schrödinger operator on `2.Zd / with potential generated by randomly displacing finitely
supported single-site terms from the points of a sublattice of Zd . In particular, we characterize
the upper and lower edges of the almost sure spectrum. For a one-dimensional model with
Bernoulli distributed displacements, we can show that the integrated density of states has a
1= log2-singularity at external as well as internal band edges.
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1. Introduction

While the Anderson model is by far the most studied model of a random Schrödinger
operator and still poses open problems, recent years have seen an increased interest in
other types of random operators such as the Poisson model, the random displacement
model, or Schrödinger operators involving random magnetic fields. Some recent
references are [10], [11], [2], [3], [4]. While there are good physical reasons to look
at these models, an equally strong mathematical motivation for their investigation
stems from challenges arising due to the lack of monotonicity properties in these
models. Such properties have been heavily used in the theory of Anderson-type
models. However, even in the Anderson model, non-monotonicity issues arise if one
considers single-site terms which are not sign-definite, see, e.g. [16], [17], [21].

Absence of monotonicity requires new ideas, which, besides posing a mathemati-
cal challenge, often require a better understanding of physical mechanisms, typically
in the form of a more subtle interplay between kinetic and potential energy. In par-
ticular, this has become apparent in the recent works [2], [3], [15] on the continuum
random displacement model (RDM), a random Schrödinger operator of the form

H! D ��C
X
n2Zd

q.x � n � !n/
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in L2.Rd / with single-site terms q displaced randomly by vectors ! D .!n/n2Zd

from the sites n of the lattice Zd . It was found that the lack of monotonicity can be
widely remedied by symmetry considerations as long as one assumes corresponding
symmetry properties of the single-site potential. This has led to key insights for the
RDM, such as a characterization of the spectral minimum, properties of the integrated
density of states and a Wegner estimate at low energy, ultimately leading to a proof
of localization near the bottom of the spectrum for the continuum RDM in [15].

Our main goal here is to provide analogues of the results in [2] and [3] for a
discrete version of the RDM. While we largely succeed in this attempt, in some
instances we fall short of carrying over results from the continuum, which is mostly
due to a well known problem for lattice operators, the lack of unique continuation
properties which are frequently used in [2], [3]. In particular, this is the reason why a
proof of localization for models like the one considered here, just as for the discrete
Anderson model with singularly distributed coupling constants, is still out of reach,
see the remarks in Section 6.

However, this shortcoming does not affect the 1D case, where we recover all
the results from the continuum. In fact, for d D 1 we find new phenomena, not
yet encountered in the continuum. In particular, for a one-dimensional RDM with
Bernoulli distributed random displacements we find a gap in the almost sure spectrum
and, in the case of symmetric distribution, are able to investigate the behavior of the
integrated density of states (IDS) at the spectral minimum and maximum as well as
at the edges of this gap. At all these edges the IDS has a 1= log2-singularity and, in
particular, is not Hölder continuous.

We mention that localization at all energies for the one-dimensional discrete RDM
has been proven in [7], where the more general setting of random word models was
considered. This is based on showing that the Lyapunov exponent is positive at all
but an at most finite set of critical energies, which may give rise to quantum transport
for wave packets with energy support close to the critical energies, while it does not
inhibit spectral localization and also leads to dynamical localization away from the
critical energies.

The remaining sections of this paper are structured as follows. In Section 2 we
introduce the discrete displacement model and state all our results. Here we also
formulate a discrete version of the fact that “bubbles tend to the corners”, a result
originally proven in [2] for the continuum RDM which provides a central tool for
our work. Sections 3, 4 and 5 contain all proofs, with Section 3 giving results which
hold in arbitrary dimension and Sections 4 and 5 presenting proofs of results for
the one-dimensional model. In particular, we discuss the one-dimensional Bernoulli
RDM in Section 5. Section 6 contains concluding remarks including several open
conjectures, partly based on numerical observations presented there.
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2. Model and results

2.1. Basics. We will construct a random potential on Zd , d � 1, by randomly
placing single-site terms supported in a rectangular box into translates of a larger
box. The two basic boxes are

ƒ D
dY

iD1

Œ1;Mi � � Zd and B D
dY

iD1

Œ1; bi � � Zd

where 1 � bi � Mi and bi ;Mi 2 N are fixed for each i 2 f1; : : : ; dg. As single
site potential we choose a function q W Zd ! R which is supported in B . We shall
always assume the hypothesis:

(H1) the single-site potential q is reflection symmetric in each variable in the sense
that

q.x1; : : : ; xi�1; xi ; xiC1; : : : ; xd / D q.x1; : : : ; xi�1; bi�xiC1; xiC1; : : : ; xd /

for each x D .xj /
d
j D1 and all i 2 f1; : : : ; dg.

We denote the translate of q by a 2 Zd as qa, that is qa.n/ D q.n� a/, n 2 Zd .
We will generally require that the support of qa remains in ƒ, meaning

a 2 � D
dY

iD1

Œ0;Mi � bi �:

As kinetic energy operator we choose the (negative) discrete Laplacian h0 on
`2.Zd /, that is, for u 2 `2.Zd /,

.h0u/.n/ D �
X
m2Zd

jm�njD1

u.m/;

where jkj denotes the 1-norm of a vector k 2 Zd .

2.2. Bubbles tend to the corners. As in [2], a key ingredient into our investigations
of the RDM will be given by a property of the single-site operators hN

0;ƒ C qa on

`2.ƒ/, where hN
0;ƒ denotes the (discrete) Neumann Laplacian on ƒ (see Section 3.1

below for a precise definition of the Neumann Laplacian). Define

E0.a/ D min �.hN
0;ƒ C qa/; a 2 �: (1)

Hypothesis (H1) implies that E0.�/ is reflection symmetric on �, i.e.

E0.a1; : : : ; ai�1; ai ; aiC1; : : : ; ad /

D E0.a1; : : : ; ai�1;Mi � bi � ai ; aiC1; : : : ; ad /
(2)
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for all i 2 f1; : : : ; dg and a D .ai /
d
iD1 2 �. Thus, E0.�/ is determined by a 2Qd

iD1Œri ;Mi � bi �, where ri is the least integer greater than or equal to .Mi � bi /=2.

Theorem 2.1. Fix i 2 f1; : : : ; dg and aj 2 Œrj ;Mj � bj �, j 2 f1; : : : ; dg n fig and
suppose (H1) holds. If either

(i) q ¤ 0 is sign-definite, or

(ii) d D 1 and E0.a/ ¤ �2 for at least one a 2 �,

then E0.a/ is strictly decreasing as a function of ai on Œri ;Mi � bi �.

This holds in each variable, meaning, in particular, thatE0.�/ attains strict minima
in the 2d corners of �. The number �2 appears in (ii) as the spectral minimum of
hN

0;ƒ in d D 1. See Section 6 for a discussion of the relevance of assumptions (i), (ii)
as well as for a comparison with the corresponding result in the continuum proven
in [2].

2.3. The discrete displacement model. We now construct potentials on Zd by tiling
Zd with translates of ƒ and placing one copy of q into each tile. More precisely, if

� D �Zd

is the set of all possible displacement configurations and ! D .!k/k2Zd � �, then
V! W Zd ! R is defined by

V! D
X

k2Zd

qkMC!k
; (3)

where kM D .kiMi /
d
iD1 for k D .ki /

d
iD1 and M D .Mi /

d
iD1. For each ! 2 �,

h! D h0 C V! (4)

defines a bounded self-adjoint operator on `2.Zd /.
The main challenge in understanding the displacement model lies in its non-

monotonicity (in form sense) in the displacement parameters !n. For example, it is
not immediately clear which configurations minimize (or maximize) the spectrum of
h! . It is our first goal to answer this question.

The family h! is uniformly bounded in ! 2 �, kh!k � 2d C supn2B jq.n/j.
Therefore,

Emin D inf
!2�

min �.h!/ > �1; Emax D sup
!2�

max �.h!/ < 1:

We are concerned with the existence of displacement configurations ! which are
spectrally minimizing in the sense that

min �.h!/ D Emin
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or spectrally maximizing,
max �.h!/ D Emax:

Under suitable additional assumptions, the answer to both questions will be given
by the configuration !� D .!�

k
/k2Zd 2 � defined by

.!�
k /i D

´
0 if ki is even,

Mi � bi if ki is odd,

for i 2 f1; : : : ; dg. This is the periodic configuration in which clusters of 2d single-
site terms are placed into adjacent corners of their supporting tiles, see Figure 1.

Figure 1. The potentialV!� corresponding to the extremal configuration!� ind D 2 depicting
the clustering of neighboring single-site potentials. Shaded areas represent the support of copies
of the single-site potential q.

Theorem 2.2. Suppose (H1) holds.
(a) If either,

(i) d � 2 and q is sign-definite, or

(ii) d D 1 and E0.a/ 6D �2 for at least one a 2 �,

then the displacement configuration !� is spectrally minimizing.
(b) Let zE0.a/ D min �.hN

0;ƒ � qa/. If either

(i) d � 2 and q is sign-definite, or

(ii) d D 1 and zE0.a/ 6D �2 for at least one a 2 �,

then !� is spectrally maximizing.

2.4. The random displacement model. The displacement model is called random
if ! D .!k/k2Zd 2 � is a collection of i.i.d. �-valued random variables. That is,
the !k , k 2 Zd , are independent, and

P.!k D n/ D �.fng/;
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for a given (fixed) distribution � on �, meaning �.fng/ � 0 for all n 2 � andP
n2� �.fng/ D 1. P is realized as the infinite product measure, indexed by k 2 Zd ,

of the measures � on �. By E we denote the expectation with respect to P .
In this case, the random displacement model is ergodic with respect to shifts

.Tj!/n D !nCj on� and therefore, in particular, has deterministic spectrum. Thus,
there exists a closed set † � R such that �.h!/ D † almost surely. In fact, we
can characterize † in terms of the following “periodic support theorem”. This is
essentially a special case of results presented in [13], needing only slight adaptations
due to the fact that our model is ergodic with respect to a sublattice of Zd .

Theorem 2.3. For the random displacement model, one may take

† D
[

!2Cper

�.h!/; (5)

where
Cper D f! 2 � W ! is periodic; �.!k/ > 0 8k 2 Zd g:

Here we call a displacement configuration ! periodic if !nCjK D !n for all
n; j 2 Zd and a fixed vector K D .Ki /

d
iD1 with positive integer components Ki .

A vector n 2 � is called a corner of� if ni 2 f0;Mi � bi g for all i 2 f1; : : : ; dg.
Throughout this paper, we make the following assumption on the distribution �:

(H2) the distribution � satisfies �.n/ > 0 for all corners n 2 �.

Applying (5), an easy consequence of Theorem 2.2 is the following characteriza-
tion of inf† and sup†.

Corollary 2.4. If (H2) and the assumptions of Theorem 2.2 (a) and (b), respectively,
hold, then the upper and lower edges of the almost-sure spectrum† are characterized
in terms of !� by

inf† D min �.h!�/;

sup† D max �.h!�/:

2.5. A uniqueness result. While !� is clearly not the unique spectral minimizer
within all ! 2 � (in fact, we have inf�.h!/ D inf † for almost every ! 2 �), it
makes sense to ask if !� is the unique periodic minimizer. In dimension one this has
a negative answer, but we are able to characterize all periodic minimizers. This will
be used in the proof of our results on the integrated density of states described in the
next subsection.

Let d D 1 and L 2 N, and SL denote the set of all L-periodic displacement
configurations, i.e.

SL D f! 2 Œ0;M1 � b1�
Z W !kCL D !k 8k 2 Zg:
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For a displacement configuration ! 2 Œ0;M1 � b1�
Z define the numbers

n0.!/ D #fk W k 2 f1; : : : ; Lg and !k D 0g;
n1.!/ D #fk W k 2 f1; : : : ; Lg and !k D M1 � b1g:

Theorem 2.5. Assume that min �.hN
0;ƒ Cqa/ ¤ �2 for some a 2 Œ0;M1 �b1�. Then

! 2 SL is spectrally minimizing if and only if L is even and n0.!/ D n1.!/ D L=2.
If, on the other hand, min �.hN

0;ƒ � qa/ ¤ �2 for some a 2 Œ0;M1 � b1�, then
the same set of configurations characterizes all periodic spectral maximizers.

We discuss our expectation for uniqueness results in d � 2 in Section 6.

2.6. The Bernoulli displacement model. We conclude with a more detailed inves-
tigation of a one-dimensional special case of the displacement model, which exhibits
some unexpected phenomena. Here we divide Z into neighboring pairs and, for each
pair, randomly place a single site term into one of the two points of the pair. With
our notation from above this corresponds to d D 1, M1 D 2, b1 D 1, q D �ı1,
where � 2 R n f0g is a fixed coupling constant, P.!k D 0/ D p 2 .0; 1/, and
P.!k D 1/ D 1 � p. We will refer to this as the Bernoulli displacement model
(BDM) and denote it by h!;�, keeping track of the dependence on the coupling
constant.

2.6.1. Almost sure spectrum. We denote by †� the almost-sure spectrum of h!;�.
Theorem 2.2 applies and thus the upper and lower edges E˙.�/ of †� are given
by max �.h!�;�/ and min �.h!�;�/, respectively, where !� corresponds to the 4-
periodic potential with values .0; �; �; 0/ in each period. By Floquet theory

�.h!�;�/ D fE 2 R W jD.E/j � 2g;
where the discriminant D.E/, i.e. the trace of the monodromy operator, may be
explicitly calculated as

D.E/ D E4 � 2�E3 C .�2 � 4/E2 C 4�E C 2 � �2:

The observation that �.h!�;�/ is symmetric to E D �=2 suggests to substitute E D
x C �=2, after which D.�/ becomes bi-quadratic in x, which allows to explicitly
determine the four bands of �.h!�;�/. In particular, we find that

E˙.�/ D �

2
˙

r
2C �2

4
C

p
4C �2:

Moreover, the central gap .G�.�/; GC.�// of �.h!�;�/ is given by

G˙.�/ D �

2
˙

r
2C �2

4
�

p
4C �2:
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A deeper fact is that .G�.�/; GC.�// is a gap of �.h!;�/ for every configuration
!, and thus also of the almost sure spectrum †�.

Theorem 2.6. For every � 2 R n f0g and every ! 2 �,

.G�.�/; GC.�// \ �.h!;�/ D ;:

The 4-periodic operator h!�;� has two additional non-trivial gaps, located sym-
metrically to the left and right of .G�.�/; GC.�//. However, at least for j�j � 2,
these gaps are filled in entirely by spectra from other configurations. In fact, consider
�.h!1;�/ for the constant configuration !1 D .: : : ; 1; 1; : : :/ giving the 2-periodic
potential .: : : ; 0; �; 0; �; : : :/. As it turns out, for details see [18], for j�j � 2 the two
bands of �.h!1;�/ fully cover the left and right gaps of �.h!�;�/. Thus, combining
Theorems 2.3, 2.6 and Corollary 2.4, we get

Corollary 2.7. If j�j � 2, then

†� D ŒE�.�/; EC.�/� n .G�.�/; GC.�//:

If j�j > 2, then the bands of �.h!1;�/ cover the left and right gaps of �.h!�;�/

only partially. In Section 6 we state a conjecture on the structure of †� for j�j > 2.

2.6.2. Integrated density of states. For the one-dimensional symmetric BDM (i.e.
the case p D 1=2), the integrated density of states (IDS) shows surprising behavior
near band edges. A similar result, meaning in particular that the IDS is not Hölder
continuous at certain energies, was first shown in an analogous setting for the con-
tinuum displacement model at the bottom of the spectrum in [3]. For the discrete
case considered here we get that the same phenomenon appears not only at the lower
and upper edges of the almost sure spectrum, but also at the edges of the central gap
identified above.

To define the IDS, let L 2 N. For k 2 Z, we set ƒk D Œ2k � 1; 2k� and define
ƒ.L/ D [L

iD1ƒi D Œ1; 2L�. Let hL
!;�

denote a restriction of h!;� to ƒ.L/ with
arbitrary boundary condition (i.e. choice of the diagonal matrix elements at �L and
L). Set

E1.h
L
!;�/ � E2.h

L
!;�/ � : : : ;

the eigenvalues of hL
!;�

counted with multiplicity. The IDS of h!;� at E 2 R is

N�.E/ D lim
L!1

1

jƒ.L/jE.#fk 2 N W Ek.h
L
!;�/ � Eg/;

which exists due to ergodicity of our model, e.g. [12], and is independent of the
boundary condition.

First, we note the following symmetry property which simplifies matters.
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Theorem 2.8. IfE˙.�/denote the upper and lower edges of the almost-sure spectrum
†� of the symmetric BDM (i.e. p D 1=2) and N� denotes the IDS, then

N�.E�.�/C t/ D 1 �N�.EC.�/ � t/ (6)

for every t 2 R.

We want to describe the asymptotics of the IDS near the four band edges E˙.�/
andG˙.�/. Due to symmetry we only need to consider the lower band edges E�.�/
and GC.�/.

Theorem 2.9. Fix � > 0 and let E0 D E�.�/ or E0 D GC.�/. Then there exist
constants C; � > 0 such that

N�.E/ �N�.E0/ � C

log2.E �E0/
for all E 2 .E0; E0 C �/:

A corresponding result, for energies E to the left of E0, holds at the upper edges
EC.�/ and G�.�/.

For more discussion, including a conjecture on the asymptotics of the IDS at
possible additional band edges for the case j�j > 2, see Section 6.

3. Bubbles tend to the corners and consequences

Our first goal in this section is to prove Theorem 2.1, i.e. that “bubbles tend to
the corners”. This will be done in Section 3.2 after Section 3.1 will introduce the
discrete Neumann Laplacian and list its relevant properties. The characterization of
the spectral minimum of the displacement model, i.e. Theorem 2.2 and Corollary 2.4
are consequences of Theorem 2.1 and will be proven in Section 3.3.

3.1. The Neumann Laplacian and basic properties. Letƒ � Zd . The truncation
operator h0;ƒ on ƒ is the operator on `2.ƒ/ with matrix elements

h0;ƒ.i; j / D
´

�1 i; j 2 ƒ; ki � j k
1

D 1;

0 otherwise.

The edge counting function on ƒ is the function nƒ W ƒ ! N [ f0g given by

nƒ.i/ D #fj 2 Zd nƒ W .i; j / 2 @ƒg:
Here @ƒ is the boundary of ƒ, i.e.

@ƒ D f.i; j / 2 Zd � Zd W i 2 ƒ; j … ƒ; ki � j k
1

D 1 or

i … ƒ; j 2 ƒ; ki � j k
1

D 1g:
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Associated to the edge counting function is the edge counting operator Nƒ spec-
ified by the matrix elements

Nƒ.i; j / D
´
nƒ.i/; i D j; i 2 ƒ;
0; otherwise.

(7)

Definition 3.1. If ƒ � Zd , then the d -dimensional discrete Neumann Laplacian on
ƒ is the operator hN

0;ƒ defined on `2.ƒ/ and given by the operator sum

hN
0;ƒ D h0;ƒ �Nƒ:

The matrix elements ofhN
0;ƒ are given by summing the corresponding matrix elements

of h0;ƒ and Nƒ.

We now summarize some basic properties of the Neumann Laplacian. The above
definition and most of these properties (in fact, probably all) can be found in various
references, e.g. [20], [14], [12]. Detailed proofs of all of them can be found in [18].

The first property is a “reflection principle” for the Neumann Laplacian, meaning
that a solution u to the equation .hN

0;ƒ C q/u D Eu can, by reflection, be used to

construct a solution on a larger set ƒ0. More precisely, let ƒ D Qd
iD1Œai ; bi � and

q; u W ƒ ! R with
.hN

0;ƒ C q/u D Eu (8)

for some E 2 R. Let k 2 f1; : : : ; dg be fixed and uk;ref (respectively, qk;ref) be the
extension of u (respectively, q) to the set

ƒ0 D
k�1Y
iD1

Œai ; bi � � Œak; 2bk � ak C 1� �
dY

iDkC1

Œai ; bi �

obtained by reflecting u (respectively, q) about bk C 1=2 in the kth component. It is
not too hard to show that .h0;ƒ0 C qk;ref/uk;ref D Euk;ref. We summarize this result,
along with three others, in

Proposition 3.2 (Properties of the Neumann Laplacian).

(i) (Reflection property) If u satisfies (8), then

.h0;ƒ0 C qk;ref/uk;ref D Euk;ref:

(ii) (Neumann splitting formula) If ƒ1 � ƒ � Zd , then

hN
0;ƒ � hN

0;ƒ1
˚ hN

0;ƒnƒ1
;

in the quadratic form sense.
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(iii) (Simplicity and positivity of ground state) If ƒ � Zd is connected and we
have q W ƒ ! R, then the ground state eigenvalue of hN

0;ƒ C q is simple and the
corresponding eigenfunction may be taken strictly positive.

(iv) (Ground state energy of hN
0;ƒ) If ƒ � Zd , then min �.hN

0;ƒ/ D �2d .

These properties will be used frequently in the proofs of our results.

3.2. Proof of Theorem 2.1. Theorem 2.1 is a statement about E0.a1; : : : ; ad / as
a function of the i th component ai with all other components held fixed. Without
loss of generality, we may assume i D 1. Then since a2; : : : ; ad are held fixed, to
simplify notation, we write

Oqa1
D q.a1;:::;ad /;

H.a1/ D hN
0;ƒ C Oqa1

:

For a1 2 Œr1;M1 � b1� \ Z, let ua1
denote the (up to a constant multiple) unique

positive ground state corresponding to E0.a1; a2; : : : ; ad / known to exist by Propo-
sition 3.2,

H.a1/ua1
D E0.a1; a2; : : : ; ad /ua1

: (9)

Let u�
a1

and Oq�
a1

denote the extensions of ua1
and Oqa1

to

ƒ� D Œ1; 2M1� � Œ1;M2� � � � � � Œ1;Md �

which are symmetric about the axis x1 D M1 C 1
2

. Let ua1;ext (respectively, Oqa1;ext)
denote the extension of u�

a1
(respectively, Oq�

a1
) to the strip

Z � Œ1;M2� � � � � � Œ1;Md �

which is 2M1-periodic in the first component.
That ua1

satisfies the ground state equation (9) implies

.hN
0;ƒ� C Oq�

a1
jƒ�/u�

a1
D E0.a1; : : : ; ad /u

�
a1
: (10)

Now we turn to the proof of the theorem. Our goal is to show

E0.a1 C 1; a2; : : : ; ad / < E0.a1; a2; : : : ; ad /

for all a1 2 Œr1;M1 � b1 � 1�. Let a1 2 Œr1;M1 � b1 � 1�, note that the former
implies that Oqa1

.1; x2; : : : ; xd / D 0 for all xi 2 Œ1;Mi � and i 2 f2; : : : ; dg which
guarantees that

0 D Oq�
a1
.1; x2; : : : ; xd / D Oq�

a1
.2M1; x2; : : : ; xd /: (11)

If R is the right shift in the first coordinate, .R /.n1; n2; : : : ; nd / D  .n1 � 1;
n2; : : : ; nd /, and

fa1;R D Rfa1;extjƒ� ;
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for f 2 fu; Oqg, then

h.hN
0;ƒ� C Oqa1;R/ua1;R; ua1;Ri � h.hN

0;ƒ� C Oq�
a1

jƒ�/u�
a1
; u�

a1
i

D �
X

.x2;:::;xd /2 yƒ
.u�

a1
.1; x2; : : : ; xd / � u�

a1
.2; x2; : : : ; xd //

2

D �
X

.x2;:::;xd /2 yƒ
.ua1

.1; x2; : : : ; xd / � ua1
.2; x2; : : : ; xd //

2;

(12)

where
yƒ D Œ1;M2� � � � � � Œ1;Md �:

We encourage the reader to check the above calculation of (12) (at least in the simplest
case d D 1) using the definition of the Neumann Laplacian, reflection symmetry of
Oq�
a1

jƒ� in the first coordinate, and (11).
Obviously, the quantity (12) is non-positive. If (12) vanishes, then the restriction

of ua1
to the “slab” K D f1g � Œ1;M2� � � � � � Œ1;Md � turns out to be the ground

state of the Neumann Laplacian onK, for details see [18]. Thus, by Proposition 3.2,
E0.a1; : : : ; ad / D �2d . In other words, if E0.a1; a2; : : : ; ad / ¤ �2d , then the
quantity in (12) is strictly negative.

The assumptions of Theorem 2.1, in either case (i) or (ii), are enough to guarantee
that E0.a1; a2; : : : ; ad / ¤ �2d . In case (i), this can be seen by noting that the
ground state eigenvalue of hN

0;ƒ is �2d , and that a sign-definite perturbation strictly
increases (q > 0) or decreases (q < 0) the ground state eigenvalue. In case (ii), we
make use of the following fact.

If min �.hN
0;ƒCqa/ D �2 for somea 2 Œ0;M1�b1�, then min �.hN

0;ƒCqa/ D �2
for all a 2 Œ0;M1 � b1�. To see this, note that min �.hN

0;ƒ C qa/ D �2 implies that
the ground state is constant outside the support of qa. Thus the ground state can be
shifted together with the potential to produce the ground state for other values of a,
leaving the ground state energy unaffected.

Thus, under the assumptions of Theorem 2.1, the quantity (12) is strictly negative,
meaning that

h.hN
0;ƒ� C Oqa1;R/ua1;R; ua1;Ri < h.hN

0;ƒ� C Oq�
a1

jƒ�/u�
a1
; u�

a1
i

D E0.a1; a2; : : : ; ad /ku�
a1

k2;
(13)

where the equality follows from (10).
By definition, ku�

a1
k D kua1;Rk; applying the variational principle and using the

splitting formula from Proposition 3.2 along with (13) gives

E0.a1; a2; : : : ; ad /

> inf�.hN
0;ƒ� C Oqa1;R/ (14)
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� inf�.H.a1 � 1/˚H.a1 C 1//

D minfE0.a1 � 1; a2; : : : ; ad /; E0.a1 C 1; a2; : : : ; ad /g: (15)

We prove the theorem by induction on a1 using (14) and (15). The first step is to
show

E0.r1; a2; : : : ; ad / > E0.r1 C 1; a2; : : : ; ad /:

We make use of (15) above with a1 D r1. If M1 � b1 is even then by reflection
symmetry of E0.�/ in the first coordinate on �,

E0.r1 � 1; a2; : : : ; ad / D E0.r1 C 1; a2; : : : ; ad /;

thus the minimum in (15) is certainlyE0.r1 C1; a2; : : : ; ad /. IfM1 �b1 is odd, then

E0.r1 � 1; a2; : : : ; ad / D E0.r1; a2; : : : ; ad /;

and, because we have the strict inequality (14), the minimum in (15) is E0.r1 C 1;

a2; : : : ; ad /.
For the induction step, suppose a1 � 1; a1; a1 C 1 2 Œr1;M1 � b1� and

E0.a1 � 1; a2; : : : ; ad / � E0.a1; a2; : : : ; ad /: (16)

Using (15), we have

E0.a1; a2; : : : ; ad / > minfE0.a1 � 1; a2; : : : ; ad /; E0.a1 C 1; a2; : : : ; ad /g: (17)

With the induction hypothesis (16), the minimum in (17) must beE0.a1 C1; a2; : : : ;

ad /.

3.3. Proof of Theorem 2.2 and Corollary 2.4. In addition to Theorem 2.1, the
proof of Theorem 2.2 relies on the following two facts, which are discrete versions
of results known as Allegretto–Piepenbrink Theorem and Shnol’s Theorem in the
continuum, e.g. [19].

Theorem 3.3 (Allegretto–Piepenbrink). LetE 2 R and V W Zd ! R be bounded. If
there exists a non-trivial u � 0 satisfying the difference equation .h0 C V /u D Eu,
then E � inf�.h0 C V /.

Theorem 3.4 (Schnol). If u is a polynomially bounded generalized eigenfunction of
h0 C V corresponding to E 2 R, then E 2 �.h0 C V /.

Proofs of these facts, most likely also well known, are provided in [18].

Proof of Theorem 2.2. (a) Note thath! restricted toƒCkM with Neumann boundary
condition is unitarily equivalent (via translation) to hN

0;ƒ C q!k
. Thus, the splitting
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formula for the Neumann Laplacian from Proposition 3.2 gives

inf�.h!/ � inf�

� M
k2Zd

.hN
ƒ C q!k

/

�

� inf
k2Zd

min �.hN
ƒ C q!k

/

� minfE0.a/ W a 2 �g
D E0.amin/;

(18)

with the corner position amin D .Mi � bi /
d
iD1: Thus, E0.amin/ is a lower bound on

the infimum of the spectrum of any operator h! with ! 2 �.
In view of (18), !� is spectrally minimizing if inf�.h!�/ D E0.amin/. Applying

the Allegretto–Piepenbrink and Schnol Theorems, it is enough to show the existence
of a strictly positive bounded function  , which satisfies h!� D E0.amin/ in the
sense of a solution of a finite difference equation.

Let u denote the strictly positive ground state of hN
0;ƒ C qamin , so that

.hN
0;ƒ C qamin/u D E0.amin/u: (19)

Let U and Q denote the extensions of u and qamin to

ƒ2 D
dY

iD1

Œ1; 2Mi �;

which are reflection symmetric onƒ2 in each of the d coordinates. Looking at (19),
we immediately have

.hN
0;ƒ2

CQ/U D E0.amin/U: (20)

If  is the extension of U to all of Zd which is 2Mi -periodic in the i th coordinate,
then reflection symmetry of U on ƒ2 and (20) give

h!� D E0.amin/ :

(b) To show that !� is spectrally maximizing for the displacement model defined
with single-site potential q, it suffices to show !� is spectrally minimizing for the
model with single-site potential �q. In fact, applying spectral mapping and the
unitary involution

.U'/.n/ D .�1/
Pd

iD1 jni j'.n/; n 2 Zd ; ' 2 `2.Zd /; (21)

we have Uh0U D �h0, and thus, for any ! 2 �,

max �.h0 C V!/ D �min �.�.h0 C V!//

D �min �.U.�h0 � V!/U /

D �min �.h0 � V!/:

(22)
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If !� is spectrally minimizing for �q, then (22) gives

max �.h0 C V!/ � �min �.h0 � V!�/

D max �.�h0 C V!�/

D max �.h0 C V!�/;

for any ! 2 �. Therefore, !� is spectrally maximizing for q.
That !� is spectrally minimizing for �q follows immediately from (a): if d � 2,

sign-definiteness of q implies sign-definiteness of �q. By (a), sign-definiteness of
�q guarantees that !� is spectrally minimizing for �q. If d D 1, the assumption
min �.hN

0;ƒ � qQa/ ¤ �2 together with (a) implies !� is spectrally minimizing for
�q.

Proof of Corollary 2.4. Under the assumptions of Theorem 2.2(a) we have

min �.h!�/ � min �.h!/

for every ! 2 �. Thus min �.H!�/ � inf†. Since !� 2 Cper, we have by
Theorem 2.3 that �.h!�/ � † and, in particular, min �.h!�/ � inf†. We conclude
inf† D min �.h!�/.

Similar, under the assumptions of Theorem 2.2(b), it follows that

sup† D max �.h!�/:

4. Non-uniqueness of the one-dimensional minimizer

4.1. The discrete periodic Laplacian. Suppose S � Zd has the form

S D
dY

iD1

Œai ; bi � (23)

for ai ; bi 2 Z, with ai � bi for all 1 � i � d . For u W S ! C, define the function
uT W Zd ! C by

uT .n/ D
X

k2Zd

u.n � kL/:

Here L D .Li /
d
iD1 with Li D bi � ai C 1 and kL D .kiLi /

d
iD1. Thus, uT is

the L-periodic extension of u to all of Zd . One may view uT as u defined on a
d -dimensional torus.

The discrete Laplacian on S with periodic boundary condition, or the periodic
Laplacian, denoted hP

0;S , has domain `2.S/ and acts on a function u 2 `2.S/ by

.hP
0;Su/.n/ D .h0uT /.n/ for all n 2 S:
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Thus, ifuT is viewed asuon ad -dimensional torus, thenhP
0;S is simply the discrete

Laplacian on the torus. We summarize some properties of the periodic Laplacian for
which proofs can be found in [18].

Proposition 4.1 (Properties of the periodic Laplacian).

(i) If V W S ! R, then the ground state of hP
0;S CV is simple and the corresponding

eigenspace is spanned by a strictly positive eigenfunction.

(ii) hP
0;S � hN

0;S in the form sense.

(iii) If V W Zd ! R is L-periodic, then inf�.h0 C V / D inf�.hP
0;C C V jC /, where

C is any period cell of V .

(iv) Let u and V be functions from Œa; b� (as an interval in Z) into R and E 2 R. If
u.a/ D u.b/, then .hN

0;Œa;b�
C V /u D Eu if and only if .hP

0;Œa;b�
C V /u D Eu.

In particular, if V is reflection symmetric, then the ground states of hN
0;Œa;b�

and

hP
0;Œa;b�

coincide.

4.2. A preliminary result. We begin with a result that provides a necessary criterion
for a periodic configuration ! to be spectrally minimizing for h! . This result holds
for arbitrary dimension d � 1.

Suppose ! 2 � is an L-periodic configuration so that

!iC.n1L1;n2L2;:::;nd Ld / D !iCnL D !i

for every i 2 Zd and every n D .n1; n2; : : : ; nd / 2 Zd . It follows that the potential
V! given by (3) is yL-periodic, where yL D LM D .LiMi /

d
iD1 and a period cell for

V! is

ƒ D
dY

iD1

Œ1; LiMi �: (24)

The cell ƒ can be written as a disjoint union of translates of the basic cell ƒ DQd
iD1Œ1;Mi �, by setting K D Qd

iD1Œ1; Li � and defining ƒk D ƒ C .k � 1/M for
k 2 K . Here k � 1 is the vector with i th component ki � 1.

Before proceeding with our preliminary result, we fix the following notations. For
� 2 fN;P g, let h�

!;S denote the Neumann (� D N ) or periodic (� D P ) restriction

of h! to the set S � Zd and let E0.h
�
!;S / denote the corresponding ground state

eigenvalue. For!i 2 �, letE0.!i / denote the ground state eigenvalue of hN
0;ƒ Cq!i

.
Lastly, set as before Emin D inf!2� min �.h!/.

The following result shows that in a spectrally minimizing periodic configuration
!, every !i is a corner of �, i.e. it lies in

C D f.a1; : : : ; ad / 2 � W ai 2 f0;Mi � bi g for all i D 1; : : : ; dg:
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Lemma 4.2. If ! 2 � is a periodic configuration with min �.h!/ D Emin, then
!k 2 C for every k 2 Zd . Moreover, in this case, Emin D E0.h

N
!;ƒ/ D E0.h

P
!;ƒ/,

where ƒ is the period cell for V! given by (24). If  ! is the positive ground state
for hN

!;ƒ with ground state eigenvalue Emin, then, for every k 2 K ,  ! jƒk
is (up

to normalization) the positive ground state for hN
!;ƒk

with ground state eigenvalue
E0.!k/ D Emin.

Proof. By part (iii) of Proposition 4.1, Emin D min �.h!/ D min �.hP
!;ƒ/. Part (ii)

of the same proposition along with the variational principle gives E0.h
P
!;ƒ/ �

E0.h
N
!;ƒ/. Moreover, since  ! minimizes the the quadratic form for hN

!;ƒ,

E0.h
N
!;ƒ/ D . ! ; h

N
!;ƒ !/

. ! ;  !/

� . ! ; .
L

k2K hN
!;ƒk

/ !/

. ! ;  !/

D
P

k2K. 
k
! ; h

N
!;ƒk

 k
!/

. ! ;  !/

D
X
k2K

. k
! ; h

N
!;ƒk

 k
!/

. k
! ;  

k
!/

� . 
k
! ;  

k
!/

. ! ;  !/

�
X
k2K

E0.!k/
. k

! ;  
k
!/

. ! ;  !/
(25)

�
X
k2K

Emin
. k

! ;  
k
!/

. ! ;  !/
D Emin (26)

where  k
! D  ! jƒk

. The second to last inequality follows from the variational
principle and the fact thatE0.!k/ is by definition the lowest eigenvalue of hN

!;ƒk
. The

last inequality follows from the fact thatE0.!k/ � Emin asE0.!k/ � E0.c/ D Emin

by Theorem 2.1 for any c 2 C . Division by the quantity . k
! ;  

k
!/ is permitted since

strict positivity of  ! implies strict positivity of  k
! and thus, . k

! ;  
k
!/ > 0.

We conclude that for a periodic minimizing configuration ! all inequalities in the
above chain are actually identities.

If at least one !k does not belong to C , then the last inequality, (26), is strict in
light of Theorem 2.1. Thus, !k 2 C for all k 2 K . The fact that

. k
! ; h

N
!;ƒk

 k
!/

. k
! ;  

k
!/

� E0.!k/ for all k 2 K (27)

was used to obtain (25), and if at least one of the inequalities (27) is strict, then
(25) is strict. Thus, there must be equality in (27) for every k 2 K . Therefore,
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 k
! is the ground state for hN

!;ƒk
and E0.!k/ D Emin is the corresponding lowest

eigenvalue.

4.3. Characterization of one-dimensional spectrally minimizing configurations.
Now, we specialize to the one-dimensional setting. The proof of Theorem 2.5 relies
on the following basic fact about the “shape” of a one-dimensional ground state
eigenfunction.

Lemma 4.3. Suppose a 2 Œ0;M1 � b1�\ Z and a ¤ .M � b/=2. If  is the strictly
positive ground state corresponding to hN

0;Œ1;M1�
C qa with ground state eigenvalue

E and E ¤ �2, then  .1/ ¤  .M/.

Proof. By symmetry of the potential q in Œ1; b1� and uniqueness of the ground state,
it is enough to consider a 2 Œr;M1 � b1�, where r is the least integer strictly greater
than .M1 � b1/=2. We may take  to be normalized.

Let qa;ref denote the reflection of qa at the center of Œ1;M1�, i.e.

qa;ref.n/ D qa.M1 C 1 � n/; n 2 Œ1;M1�:

By symmetry of q on Œ1; b1�, the normalized strictly positive ground state eigenfunc-
tion of hN

0;Œ1;M1�
C qa;ref is  ref, the reflection of  on Œ1;M1�, and the corresponding

ground state eigenvalue is E.
If .1/ D  .M1/, then it follows from part (iv) of Proposition 4.1 that the ground

state eigenvalue of hP
0;Œ1;M1�

C qa is E and  is the corresponding eigenfunction

.hP
0;Œ1;M1� C qa/ D E : (28)

Let Q and ‰ denote the M1-periodic extensions of qa and  , respectively, to all of
Z. Using the definition of the periodic Laplacian and (28) gives

.h0 CQ/‰ D E‰

which implies by Theorems 3.3 and 3.4 that Emin D inf�.h0 C Q/, since ‰ is
strictly positive and bounded (thus, polynomially bounded). Therefore, by part (iii)
of Proposition 4.1,E is the lowest eigenvalue of the periodic restriction of h0 CQ to
any period cell, and ‰ restricted to the same period cell is the corresponding ground
state eigenfunction.

The trick is to choose a period cellC for whichQjC is, up to translation, identical
to qa;ref. The appropriate period cell is

C D Œb1 C 2aC 1 �M1; b1 C 2a�:

Note that the assumption a � r implies that M1 C 1 2 C . We have

.hP
0;C CQjC /‰jC D E‰jC ;
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‰jC .M1/ D  .M1/ D  .1/ D ‰jC .M1 C 1/:

Since C is a period cell for ‰, we also have k‰jC k D k k D k refk.
By construction, ‰jC must be a constant multiple of the translate of  ref to C .

Normalization requires this constant multiple to be one, thus

‰jC .n/ D  ref.n � .b1 C 2a �M1//; n 2 C:
Therefore, we have that

‰jC .M1/ D  ref.2M1 � b1 � 2a/;
‰jC .M1 C 1/ D  ref.2M1 � b1 � 2aC 1/;

and it follows that

 .b1 C 2a �M1 C 1/ D  .b1 C 2a �M1/: (29)

Note that b1 C 2a � M1 < 1 C a and 1 C a is the minimum of the support of qa.
Therefore, (29) is a contradiction to the basic fact that the ground state  is either
strictly increasing (if E < �2) or strictly decreasing (if E > �2) below the support
of qa, see Lemma 3.9 in [18].

Now we have everything we need for our proof of Theorem 2.5.

Proof of Theorem 2.5. It follows from (22) that ! is spectrally maximizing for h0 C
V! if and only if it is spectrally minimizing for h0 � V! . Thus the claim made
in Theorem 2.5 for spectral maximizers follows from the result on minimizers. It
therefore remains to prove the latter.

Let ! be an L-periodic minimizing configuration, so thatEmin D min �.h!/. By
Lemma 4.2, it must be that !i 2 f0;M1 � b1g for all i 2 Z and that

Emin D min �.hP
!;ƒ/ D min �.hN

!;ƒ/; (30)

where ƒ is the period cell Œ1; LM1�. Therefore, ! 2 SL and n0.!/C n1.!/ D L.
Let  denote the strictly positive ground state of the periodic operator hP

!;ƒ

corresponding toEmin. Applying part (ii) of Proposition 4.1, along with the variational
principle and (30), gives

Emin D . ; hP
!;ƒ /

. ; /
� . ; hN

!;ƒ /

. ; /
� inf

'¤0

.'; hN
!;ƒ'/

.'; '/
D Emin:

Thus, both inequalities above are actually equalities and  is the ground state of
hN

!;ƒ corresponding to Emin. From the ground state equations h�
!;ƒ D Emin for

� 2 fN;P g, one gets

� .1/ �  .2/C V!.1/ .1/ D Emin .1/;
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� .LM1/ �  .2/C V!.1/ .1/ D Emin .1/:

The two together imply
 .1/ D  .LM1/: (31)

Setƒk D ƒC.k�1/M1 with k 2 f0; : : : ; Lg. Let '1 denote the positive ground
state of hN

0;ƒ CqM1�b1
normalized so that '1.1/ D 1, and let '�1 denote the positive

ground state of hN
0;ƒ C q normalized so that '�1.1/ D 1.

Since the potential q is reflection symmetric, ' given by '.1Cn/ D '1.M1 �n/
for n 2 Œ0;M1 � 1� is also a positive ground state for hN

0;ƒ C q. Uniqueness of the
positive ground state provides that ' D '1.M1/'�1. Thus,

1 D '1.1/ D '.M1/ D '1.M1/'�1.M1/:

Therefore, if ˛i .!/ D 1 (respectively, ˛i .!/ D �1) when !i D M1 � b1 (re-
spectively, !i D 0), then '˛i .!/.M1/ D '1.M1/

˛i .!/. Lemma 4.3 guarantees that
'1.M1/ ¤ 1. For simplicity of notation, set 	 D '1.M1/.

Using the reflection property of the Neumann Laplacian, the function ‰! , con-
structed by concatenating rescaled copies of '˙1, and defined piecewise on eachƒk ,
k 2 f1; : : : ; Lg by

‰!.n/ D 	
P

i<k ˛i .!/'˛k.!/.n � kM1/; n 2 ƒk

(with the convention that an empty sum is zero) satisfies hN
!;ƒ‰! D Emin‰! . There-

fore, we have recovered, up to a constant multiple, the ground state  . Moreover,

‰!.kM1/ D 	
Pk

iD1 ˛i .!/:

This is seen as follows:

‰!.kM1/ D 	
P

i<k ˛i .!/'˛k.!/.M1/ D 	
P

i<k ˛i .!/	˛k.!/ D 	
Pk

iD1 ˛i .!/:

Since  coincides at the endpoints of Œ1; LM1�, (31), it must be that

1 D ‰!.1/ D ‰!.LM1/ D 	
PL

iD1 ˛i .!/ D 	n0.!/�n1.!/:

Since 	 ¤ 1, we conclude n0.!/ D n1.!/. Using n1.!/ C n0.!/ D L gives
2n1.!/ D L, so L is even and n0.!/ D n1.!/ D L=2.

5. The Bernoulli displacement model

In this section we carry out the remaining proofs of Theorems 2.6, 2.8 and 2.9, which
establish properties of the Bernoulli displacement model.
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5.1. Almost sure spectrum

Proof of Theorem 2.6. By spectral mapping, it suffices to show that

H!;� D
�
h!;� � �

2

�2�
�
2C �2

4

�
� �

p
4C �2 for all ! 2 �:

Fix ! 2 �. The operator H!;� is a five diagonal operator

H!;� D

0
BBBBBB@

: : :
: : :

: : :
: : :

: : :

1 s!.�2/ 0 s!.�1/ 1

1 s!.�1/ 0 s!.0/ 1

1 s!.0/ 0 s!.1/ 1
: : :

: : :
: : :

: : :
: : :

1
CCCCCCA ;

where
s!.n/ D �� � V!.n/ � V!.nC 1/:

Since V! assumes both 0 and � on each cell Œ2k � 1; 2k�, k 2 Z, it must be the case
that s!.2k � 1/ D 0, i.e. s! vanishes at all odd lattice sites. On the other hand, at
even sites an inspection of cases shows that

s!.2k/ D �.!kC1 � !k/:

Consequently,H!;� is an infinite tridiagonal block matrixH!;� D ŒBjk�j;k2Z where
each block Bjk is a 2� 2matrix with Bjk D I if jj �kj D 1 and �1 � j; k � 1 and

Bkk D
�

0 s!.2k/

s!.2k/ 0

�
:

Because of the 2�2 block structure, it is instructive to viewH!;� as a Jacobi-type
operator on `2.Z;C2/. That is, with u 2 `2.Z;C2/, u.k/ D .u1.k/; u2.k//

|, we
write

.H!;�u/.k/ D u.k � 1/C u.k C 1/C Bkku.k/:

Each Bkk may be diagonalized via the transformation

W D 1p
2

�
1 1

1 �1
�

which induces a unitary involution U on `2.Z;C2/ given by

.Uu/.k/ D Wu.k/ for all k 2 Z:

H!;� is unitarily equivalent, via U , to another infinite tridiagonal block matrix
M!;� D ŒMjk�j;k2Z with each Mjk a 2 � 2 matrix; Mjk D I if jj � kj D 1

and �1 � j; k � 1 and Mkk D diag.s!.2k/;�s!.2k//.
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The fact that I andMkk are diagonal means thatM!;� decouples into a direct sum
of “even” and “odd” parts. That is, if u 2 `2.Z/ is expressed as the direct sum of its
even and odd parts, corresponding to even and odd components, u D uodd ˚ ueven,
then

M!;�u D MC
!;�
uodd ˚M�

!;�ueven;

where M˙
!;�

are both discrete Schrödinger operators

M˙
!;� D �h0 ˙ q! Š h0 ˙ q! ;

and the potential term q! is defined in terms of s! by

q!.k/ D s!.2k/ D �.!kC1 � !k/:

In light of the fact that

M!;� D MC
!;�

˚M�
!;�;

the proof of Theorem 2.6 reduces to showing

h0 ˙ q! � �
p
4C �2 for all ! 2 � D f0; 1gZ: (32)

If T W � ! � denotes the bijection defined by

.T!/k D �!k C 1; (33)

i.e. the 0-1-flip map, then
qT! D �q! : (34)

Thus it suffices to establish (32) for h0 C q! . We do this by showing the existence
of a positive function  ! , not necessarily belonging to `2.Z/, which satisfies the
difference equation

.h0 C q!/ ! D �
p
4C �2 ! : (35)

This implies (32) by Theorem 3.3.
Let

z˙.�/ D
p
4C �2 ˙ �

2

be the two distinct solutions of z2 � zp4C �2 C 1 D 0. Note that both are positive
and zC.�/z�.�/ D 1. We define  ! explicitly by

 !.k/ D

8̂<
:̂
zC.�/

Pk
j D1.2!j �1/ if k > 0;

1 if k D 0;

zC.�/�
P0

j DkC1.2!j �1/ if k < 0:

(36)
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Clearly, for all k 2 Z,  !.k/ > 0 and

 !.k C 1/ D  !.k/zC.�/2!kC1�1;  !.k � 1/ D  !.k/zC.�/�.2!k�1/:

Thus

� !.k � 1/C q!.k/ !.k/ �  !.k C 1/

D  !.k/.�zC.�/2!kC1�1 C �.!kC1 � !k/ � zC.�/�.2!k�1//

D �
p
4C �2  !.k/;

where the latter is easily verified separately for the four cases !k 2 f0; 1g, !kC1 2
f0; 1g. This completes the proof of Theorem 2.6.

5.2. Density of states

Proof of Theorem 2.8. Throughout the proof, we make use of the discrete Dirichlet
Laplacian which on a set ƒ � Zd is defined by

hD
0;ƒ D h0;ƒ CNƒ;

where Nƒ is the edge counting operator defined in (7).
If t � 0, then (6) is trivial. Thus, let t > 0. For any displacement configuration

!, using the unitary involution (21) we have the unitary equivalence

hD
ƒ.L/.!/ D hD

0;ƒ.L/ C �V! jƒ.L/ Š �hN
0;ƒ.L/ C �V! jƒ.L/ DW �HN

ƒ.L/.!/:

Thus

#fk 2 N W Ek.h
D
ƒ.L/.!// < E�.�/C tg

D #fk 2 Z W Ek.H
N
ƒ.L/.!// > �E�.�/ � tg

D jƒ.L/j � n.HN
ƒ.L/.!/;�E�.�/ � t/

D jƒ.L/j � n.HN
ƒ.L/.!/C �Ijƒ.L/;�E�.�/ � t C �/

D jƒ.L/j � n.HN
ƒ.L/.!/C �Ijƒ.L/; EC.�/ � t/

D jƒ.L/j � n.hN
ƒ.L/.T!/; EC.�/ � t/;

(37)

where, as before, in the last line hN D hN
0 C�V . Also, n.A;E/ denotes the number

of eigenvalues of an operatorAwhich are less than or equal toE and T is the bijection
on � defined by (33).

If p D 1=2, then T is measure preserving on �,

P.T �1A/ D P.A/ (38)

for all measurable sets A � �, as it is induced by the measure preserving mapping
a 7! �aC 1 on f0; 1g with symmetric Bernoulli measure.
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Dividing by jƒ.L/j and taking expectations in (37) gives

1

jƒ.L/jE.jfk 2 N W Ek.h
D
ƒ.L/.!// < E�.�/C tgj/ D 1� 1

jƒ.L/jE.g.T!//; (39)

where g.!/ D n.hN
ƒ.L/

.!/; EC.�/ � t/. Since T is measure preserving, we have
E.g.T!// D E.g.!//. Now (39) immediately gives

lim
L!1

1

jƒ.L/jE.jfk 2 N W Ek.h
D
ƒ.L/.!//

< E�.�/C tgj/ D 1 � lim
L!1

1

jƒ.L/jE.g.!//:

This gives (6) due to the independence of the IDS on the boundary condition.

Proof of Theorem 2.9. We give full details on how to do the proof atE�.�/ and only
an outline of the modifications for proving the result at GC.�/.

Lower Bound at E�.�/. Here we closely follow an argument developed in a
similar context for the continuum random displacement model in [1] and [3].

Let h�
0;ƒ.L/

.!/ D h�
0;ƒ.L/

C �V! jƒ.L/ for � 2 fD;N;P g. We will use the
standard a priori bound

N�.E/ � 1

jƒ.L/jP
�
E1.h

D
ƒ.L/.!// < E

�
; (40)

see, for example, (6.15) in [12]. We will show thatE1.h
D
ƒ.L/

.!// < E by construct-

ing a test function ‰! with Rayleigh quotient h‰! ; h
D
ƒ.L/

‰!i=k‰!k2 < E.

To this end, let'1 denote the strictly positive ground state ofhN
ƒ1

C�ı2 normalized

so that '1.1/ D 1, and let '�1 denote the strictly positive ground state of hN
ƒ1

C �ı1

normalized so that '�1.1/ D 1. Using uniqueness of the positive ground state, we
have '�1.2/ D '1.2/

�1. In fact, 'f
�1 given by 'f

�1.n/ D '1.2� nC 1/ is a positive
ground state of hN

ƒ1
C �ı1. For ease of notation, we denote r D '1.2/. We know by

Lemma 4.3 that r 6D 1 and will now assume that r > 1. If 0 < r < 1, we can do the
following construction from “right to left”, choosing the test function ‰! such that
‰!.2L/ D 1.

Given !, we construct‰! by concatenating rescaled versions of '�1 and '1. The
test function ‰! is defined piecewise on ƒk , 1 � k � L, by

‰!.n/ D r
Pk�1

iD1 ˛i .!/'˛k.!/.n � 2.k � 1// n 2 ƒk; (41)

where ˛k.!/ D �1 if !k D 0 and ˛k.!/ D 1 if !k D 1. This choice of rescaling
guarantees that ‰!.2k/ D ‰!.2k C 1/ for all k and thus, by the properties of
Neumann boundary conditions on all ƒk , that hN

ƒ.L/
.!/‰! D E0.1/‰! . However,
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as we have shown in the proof of Theorem 2.2, E0.1/ D E� D min �.h0 C V!�/.
Thus we have hN

0;ƒ.L/
‰! D E�‰! and we may write

h‰! ; h
D
ƒ.L/

.!/‰!i
h‰! ; ‰!i �E� D h‰! ; h

D
ƒ.L/

.!/‰! � hN
0;ƒ.L/

.!/‰!i
h‰! ; ‰!i : (42)

The Dirichlet and Neumann operators only differ at the endpoints of ƒ.L/, so
most terms in the numerator of (42) cancel; what rests is

h‰! ; h
D
ƒ.L/

.!/‰!i
h‰! ; ‰!i �E� D 2.1C‰!.2L/

2/

h‰! ; ‰!i : (43)

With (40), we have

N�.E/ � 1

2L
P

� h‰! ; h
D
ƒ.L/

.!/‰!i
h‰! ; ‰!i < E

�

D 1

2L
P

�
2.1C‰!.2L/

2/

h‰! ; ‰!i < E �E�
�

� 1

2L
P

�
2.1C‰!.2L/

2/PL
kD1‰!.2k/2

< E �E�
�
:

It follows from the definition of ‰! that

j̨ .!/ D log‰!.2j /=‰!.2j � 1/
log r

D log‰!.2j C 1/=‰!.2j � 1/
log r

(where we use that ‰!.2j / D ‰!.2j C 1/) and

‰!.2j /
2 D e2Sj log r ; (44)

where Sj D ˛1 C ˛2 C � � � C j̨ . As P.˛k.!/ D 1/ D P.!k D 1/ D 1=2 and
P.˛k.!/ D �1/ D P.!k D 0/ D 1=2, the j̨ .!/ are independent symmetric
Bernoulli random variables with values in f˙1g. Therefore, the process Sj , j D
1; 2; : : :, is a simple, symmetric random walk. If Y D maxiD1;:::;LSi , then it is a
consequence of the reflection principle for symmetric random walks ([8]) that

P.Y � p
L j SL � 0/ D P.SL � 2

p
L/: (45)

The latter converges to


�1=2

Z 1

2

e�y2=2 dy > 0 (46)

as L ! 1 by the central limit theorem.
Denote by AL the event f! j Y � p

L and SL � 0g. If Y � p
L, thenPL

j D1‰!.2j /
2 � e2

p
L log r . The condition SL � 0means that equal or more single
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site potentials sit at the left than sit at the right onƒ.L/. As r > 1, it is clear from (44)
that ‰!.2L/

2 � 1 and we have

P
�
E1.h

D
ƒ.L/.!// < E

� � P

�
2.1C‰!.2L/

2/PL
j D1‰!.2j /2

< E �E�jAL

�
P.AL/

� P
�
4e�2

p
L log r < E �E�jAL

�
P.AL/

D P.AL/ D P.Y � p
LjSL � 0/„ ƒ‚ …

�C0

� P.SL � 0/„ ƒ‚ …
� 1

2

� 1

2
C0 > 0

(47)

if 4e�2
p

L log r < E � E� and L > L0 (where we have used (45) and (46)). If E is
so close to E� that

E �E� < 4e�2
p

L0 log r ;

then we can choose L � L0 for which

4e�2
p

L�1 log r � E �E� � 4e�2
p

L log r : (48)

Therefore there are constants C1; C2 > 0 such that

C1L �
h log 1

4
.E �E�/
log r

i2� C2L: (49)

From (47) we get N�.E/ � C0

2
1
L

, so that

N�.E/ � C0

2C1

� log r

log 1
4
.E �E�/

�2 � C

log2.E �E�/

for E �E� sufficiently small.
Discussion of modifications for lower bound at GC.�/. We want to consider a

lower bound for N�.GC.�/C �/, with � > 0. The idea is to express the integrated
density of statesN� at the gap edgeGC.�/ in terms of the integrated density of states
of the operators h0 ˙q! from the proof of Theorem 2.6, call themN˙, at �p

4C �2.
One then estimates N˙ from below.

Let L 2 N and define

HL
!;� D

�
hP

Œ1;2L�.!/ � �

2

�2�
�
2C �2

4

�
: (50)

It follows from Theorems 2.3 and 2.6 that hP
Œ1;2L�

.!/ has no eigenvalues in the

interval .G�.�/; GC.�//. Thus, HL
!;�

� �p
4C �2. Moreover, via the same con-

struction as in Section 5.1, HL
!;�

is unitarily equivalent to the direct sum

HL
!;� Š .hP

0;Œ1;2L� � q! jŒ1;2L�/˚ .hP
0;Œ1;2L� C q! jŒ1;2L�/ DW J�

L ˚ JC
L :
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Therefore, setting �.�/ D 2�.GC.�/ � �=2/C �2,

N�.GC.�/C �/ � 1

2
D 1

2
.N�.GC.�/C �/ �N�.G�.�/ � �//

D lim
L!1

1

4L
E.#fk W Ek.h

P
Œ1;2L�.!// 2 ŒG�.�/ � �; GC.�/C ��g/

D lim
L!1

1

4L
E.#fk W Ek..h

P
Œ1;2L�.!/ � �

2
/2/ � .GC.�/ � �

2
C �/2g/

D lim
L!1

1

4L
E.#fk W Ek.J

�
L ˚ JC

L / � �
p
4C �2 C �.�/g/

D lim
L!1

1

4L
E.#fk W Ek.J

�
L / � �

p
4C �2 C �.�/g

C #fk W Ek.J
C

L / � �
p
4C �2 C �.�/g/

D 1

2
N�.�

p
4C �2 C �.�//:

The last equality uses that N� D NC, which follows from the fact that T defined
by (33) is measure-preserving on � and satisfies qT! D �q! . In particular,

N�.GC.�/C �/ � 1

2
� 1

2
N�.�

p
4C �2 C 2�.GC.�/ � �

2
//: (51)

One can prove thatN� has a 1= log2-singularity near �p
4C �2 with essentially

the same techniques used for N� near E�.�/. For N� one chooses a different trial
function ‰! . The appropriate choice is ‰! D  ! jŒ1;L�, where  ! is the positive
function defined by (36) in the proof of Theorem 2.6. With this choice, ‰! is, up
to an error term, an eigenfunction of hD

0;ƒ.L/
� q! jƒ.L/ with eigenvalue �p

4C �2.
More precisely,

h‰! ; .h
D
0;Œ1;L� � q! jŒ1;L�/‰!i D �

p
4C �2 k‰!k2 C‰!.1/

2 �‰!.1/‰!.2/

�‰!.L/‰!.L � 1/C‰!.L/
2:

Thus we have the lower bound

N�.E/ � 1

L
P

�
E1.h

D
0;Œ1;L� � q! jŒ1;L�/ < E

�
� 1

L
P

� h‰! ; .h
D
0;Œ1;L�

� q! jŒ1;L�/‰!i
k‰!k2

C
p
4C �2 < E C

p
4C �2

�

� 1

L
P

�
‰!.1/

2 �‰!.1/‰!.2/ �‰!.L/‰!.L � 1/C‰!.L/
2

k‰!k2

< E C
p
4C �2

�
:
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From here on the proof is completed in a similar fashion to what was done above
forE�.�/. Key is the simple multiplicative structure of  ! as defined in (36), which
leads to considering the symmetric random walk defined by the Bernoulli variables

˛k D log‰!.k C 1/=‰!.k/

log zC.�/
D 2!kC1 � 1:

If � > 0, then zC.�/ > 1 and the proof goes through with the same argument as
above. If � < 0, then 0 < zC.�/ < 1 and one can work from “right to left”, similar
to what was indicated for the case 0 < r < 1 above.

6. Concluding remarks

(i) Our results for d > 1 fall short of what was proven in [2] and [3] for the continuum
displacement model in several respects.

� In part (i) of Theorem 2.1 we have required sign-definiteness of q. The corre-
sponding result for the continuum from [2] only requires that E0.a/ does not
vanish identically in a. In other words, in the continuum the multi-dimensional
analogue of part (ii) of Theorem 2.1 holds (noting that 0 is the spectral minimum
of the continuum Neumann Laplacian, while �2 is the spectral minimum of the
discrete one-dimensional Neumann Laplacian).

� We have yet to prove any uniqueness results for the set of periodic configurations
! with min �.h!/ D Emin in the case of d � 2, but we conjecture the following
analogue of a result which was shown to hold for the continuum case in [3].

Conjecture 6.1. Ifd � 2andq ¤ 0 is sign-definite, then!� is (up to translation)
the unique periodic configuration with min �.h!�/ D Emin and max �.h!�/ D
Emax.

Both of these shortcomings of our results are due to the lack of unique continuation
properties of the discrete Schrödinger equation, which were used in this context in
the continuum in [2] and [3].

(ii) It has recently been shown in [15] that the continuum multi-dimensional
random displacement model, under symmetry assumptions similar to the ones used
here, exhibits Anderson localization at energies near the bottom of the almost sure
spectrum. Proving this also in the discrete case remains a challenging problem. A
uniqueness result as conjectured in (i) above would allow to prove Lifshitz tails for
the IDS with a strategy developed in [17] (and used in [15]). However, due to the
“discrete” nature of the randomness we can not expect a Wegner estimate to hold
for the discrete displacement model. The new type of multiscale analysis recently
developed in [5] to circumvent this problem for the continuum Bernoulli–Anderson
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model does not work on the lattice, again due to the lack of unique continuation
properties.

(iii) For the one-dimensional Bernoulli displacement model we have no result like
Corollary 2.7 if j�j > 2, but our conjecture is the following.

Conjecture 6.2. For any � ¤ 0,

†� D �.h!�;�/ [ �.h!1;�/; (52)

where !1 is the displacement configuration with components !1
k

D 1 for all k 2 Z.

If Conjecture 6.2 is true, it would mean that †� consists of exactly six bands
separated by five non-vanishing spectral gaps. Other than the fact that this would
be a natural generalization of what we can prove for j�j � 2 (where Corollary 2.7
followed as a consequence of (52)), we have numerical evidence for this conjecture
which was provided to us by Jeff Baker. Figure 2 shows numerical plots of the density
of states (through histograms of the eigenvalues of finite volume restrictions averaged
over multiple sample configurations) as well as the IDS for � D 3. The same pattern
arises numerically for other values of � > 2.
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Figure 2. The density of states and integrated density of states for the one-dimensional BDM
with � D 3 and p D 1=2.
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(iv) Note that Figure 2 also illustrates the 1= log2-lower bounds for the growth of
the IDS found at the band edgesE˙.�/ andG˙.�/ in Theorem 2.9. One of the reasons
which make this bound interesting is that it was proven in [6] that for general ergodic
Jacobi matrices the IDS satisfies an upper bound of the form jN.E/ � N.E 0/j �
C=j log jE � E 0jj locally at all energies, i.e. that N.E/ is log-Hölder continuous. It
would be interesting to find out if our lower bound is sharp, i.e. if there is also an
upper bound of type 1= log2.

Known examples showing the optimality of the 1=j log j upper bound were pro-
vided in [6] and, more recently, in [9]. These examples are in terms of quasi-periodic
and limit-periodic potentials. As opposed to our example, these are non-random in
the sense of having long-range spatial correlations.

(v) The eight additional band edges which would exist for j�j > 2 if Conjecture 6.2
were to hold show different numerical properties in Figure 2. This is most drastically
apparent in the density of states plot, where delta-peaks appear at the edges addressed
by Theorem 2.9, but not at the other eight edges. Based on the numerics we state the
following conjecture.

Conjecture 6.3. If j�j > 2, then the IDS has thin tails (e.g. of Lifshits type) at the
eight other band edges of †�.
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