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An estimate on the number of eigenvalues
of a quasiperiodic Jacobi matrix of size n

contained in an interval of size n�C
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Abstract. We consider infinite quasi-periodic Jacobi self-adjoint matrices for which the three
main diagonals are given via values of real analytic functions on the trajectory of the shift
x ! x C !. We assume that the Lyapunov exponent L.E0/ of the corresponding Jacobi
cocycle satisfies L.E0/ � � > 0. In this setting we prove that the number of eigenvalues
E

.n/

j
.x/ of a submatrix of size n contained in an interval I centered at E0 with jI j D n�C1

does not exceed .log n/C0 for any x. Here n � n0, and n0, C0, C1 are constants depending
on � (and the other parameters of the problem).
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1. Introduction

Denote T
defD R=Z and let a W T ! R, and b W T ! C be real analytic functions,

with b not identically zero. Let ! 2 .0; 1/ satisfy a (generic) Diophantine condition
of the form

kn!k � C!

n .log n/˛ ;
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where ˛ > 1 is fixed. We consider the quasiperiodic Jacobi operator H.x; !/ defined
on l2.Z/ by

ŒH.x; !/'�.k/

D �b.x C .k C 1/!/'.k C 1/ � b.x C k!/'.k � 1/ C a.x C k!/'.k/:

The important special case given by b � 1 (Schrödinger operator) has been studied
extensively (see the monograph [3]). The study of results that apply to quasiperiodic
Jacobi operators in such a general setting has been launched by the recent work of Jit-
omirskaya, Koslover, and Schulteis [7] and Jitomirskaya and Marx [8]. In particular,
they studied the extended Harper’s model which corresponds to a .x/ D 2 cos.2�x/,
b.x/ D �1e2�i.x�!=2/ C �2 C �3e�2�i.x�!=2/ (see [6] and [9]). Further motivation
for the study of these operators comes from the general fact that quasiperiodic Jacobi
operators are necessary for the solution of the inverse spectral problem for discrete
quasiperiodic operators of second order, and for the solution of the Toda lattice with
quasiperiodic initial data.

The main objective of this work is to estimate the number of Dirichlet eigenvalues
of the problem on a finite interval of length n which fall into a given interval of
size n�C . This type of estimate plays a central role in the work of Goldstein and
Schlag [4] and [5]. In our analysis we use many ideas and methods of their work. On
the other hand, as it was noted in [8], the singularities (associated with the zeros of b)
of the corresponding matrix-functions introduce considerable technical difficulties.
These difficulties are addressed by using a large deviation theorem for subharmonic
functions ([4], Theorem 3.8) applied to log jbj, which will allow us to include the
singularities in the exceptional sets. The derivation of the large deviation estimate for
the characteristic polynomials via the method of [5] becomes especially complicated,
even if b would have no zeros. We show how to get around these difficulties by
introducing a different derivation which makes a finer use of the cocycle structure
(see the proof of Lemma 4.2). Our estimate on the number of eigenvalues also
improves on the estimate in [5].

The methods we will employ are complex analytic, so from now on we canonically
identify T with the unit circle in C. It is known that a and b can be extended to be
(complex) analytic on a neighborhood of T . Let

Qb.z/
defD b.1= Nz/

denote the analytic extension of Nb. We now extend the definition of H.�; !/, to a
neighborhood on which both a and b can be extended, by

ŒH.z; !/'�.k/

D �b.z C .k C 1/!/'.k C 1/ � Qb.z C k!/'.k � 1/ C a.z C k!/'.k/:

Note that H.�; !/ is not necessarily self-adjoint off T . We work with this ex-
tension because, for our methods to work, we want the determinant to be ana-
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lytic in the phase variable. For simplicity we make the notational convention that

z C k!
defD z exp.2�ik!/, for z 2 C and k 2 Z.

We consider the finite Jacobi submatrix on Œ0; n � 1�, denoted by H .n/ .z; !/, and
defined by2
666664

a.z/ �b.z C !/ 0 : : : 0

� Qb.z C !/ a.z C !/ �b.z C 2!/ : : : 0

: : :
: : :

: : : : : :
:::

0 : : : 0 � Qb.z C .n � 1/!/ a.z C .n � 1/!/

3
777775:

Let L .E/ be the Lyapunov exponent associated with H.x; !/; see (2.11). Our main
result is as follows.

Main theorem. Assume that E0 2 R is such that L.E0/ � � > 0. Then there exist
constants C0 D C0.!/, C1 D C1.a; b; E0; !; �/, and n0 D n0.a; b; E0; !; �/ such
that for every x 2 T and n � n0 the number of eigenvalues for H .n/.x; !/ located
in fE W jE � E0j < n�C1g is at most .log n/C0 and furthermore, for any x0 2 T and
n � n0 the number of zeros for det.H .n/.�; !/�E0/ contained in fz W jz�x0j < n�1g
is at most .log n/C0 .

In the Schrödinger case such estimates and further refinements were obtained
by Goldstein and Schlag (see [5], Proposition 4.9). In fact we will prove a slightly
stronger theorem, Theorem 4.13.

Acknowledgements. The authors are grateful to Michael Goldstein for suggesting
the problem and for extensive discussions which were instrumental to the completion
of the project. The first author was partially supported by the NSERC Discovery
Grant 5810-2009-298433.

2. Preliminaries

We proceed by introducing some notation and giving an overview of the methods.
For ' satisfying the difference equation H .z; !/ ' D E' let Mn be the matrix such
that "

'.n/

'.n � 1/

#
D Mn

"
'.0/

'.�1/

#
; n � 1:

We call Mn the fundamental matrix. We clearly have

Mn.z/ D
0Y

j Dn�1

 
1

b.z C .j C 1/!/

"
a.z C j!/ � E � Qb.z C j!/

b.z C .j C 1/!/ 0

#!
;
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for z such that
Qn

j D1 b.z C j!/ ¤ 0. Note that in order to simplify the notation we
suppressed the dependence on ! and E. We will be doing this throughout the paper
whenever possible. From now on, if needed, we will include the set on which the
matrices Mn are not defined in the exceptional sets.

It is straightforward to see that

Mn.z/ D

2
6664

fn.z/ �
Qb.z/

b.z C !/
fn�1.z C !/

fn�1.z/ �
Qb.z/

b.z C !/
fn�2.z C !/

3
7775; (2.1)

with

fn.z/ D 1
nY

j D1

b.z C j!/

f a
n .z/; (2.2)

where
f a

n .z/ D detŒH .n/.z; !/ � E�

(see [11], Chapter 1, where such relations are deduced in a detailed manner). Since
f a

n .x; E/ is the characteristic polynomial of H .n/.x; !/ it is natural to estimate the
number of eigenvalues by applying Jensen’s formula to f a

n . For this to work we
need upper and lower estimates on log jf a

n j. These estimates will follow from the
deviations estimates for the fundamental matrix and its entries (see Theorem 3.10
and Proposition 4.10).

The main tools for obtaining the deviations estimates for the fundamental matrix
are a deviations estimate for subharmonic functions and theAvalanche Principle, both
of which we recall next. In what follows A� will denote the annulus fz 2 C W jzj 2
.1 � �; 1 C �/g and we fix p > ˛ C 2.

Theorem 2.1 ([4], Theorem 3.8). Let u be a subharmonic function and let

u.z/ D
ˆ

C
log jz � �jd�.�/ C h.z/

be its Riesz representation on a neighborhood of A�. If �.A�/ C khk
L1.A�/

� M ,
then for any ı > 0 and any positive integer n we have

mes
�°

x 2 T W
ˇ̌̌ nX

kD1

u.x C k!/ � nhui
ˇ̌̌

> ın
±�

< exp.�c0ın C rn/;

where c0 D c0.!; M; �/ and

rn D
8<
:

C0 .log n/p ; n > 1;

C0; n D 1;
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with C0 D C0.!; p/. If ps=qs is a convergent of ! and n D qs > 1 then one can
choose rn D C0 log n.

Proposition 2.2 (Avalanche Principle; [5], Proposition 3.3). Let A1; : : : ; An, n � 2,
be a sequence of 2 � 2 matrices. If

max
1�j �n

j det Aj j � 1;

min
1�j �n

kAj k � � > n;

and

max
1�j <n

.log kAj C1k C log kAj k � log kAj C1Aj k/ <
1

2
log �;

then ˇ̌̌
log kAn : : : A1k C

n�1X
j D2

log kAj k �
n�1X
j D1

log kAj C1Aj k
ˇ̌̌

< C0

n

�

with some absolute constant C0.

In [4] (where b � 1) one takes advantage of the fact that log kMn.�/k is subhar-
monic (on a neighborhood of T ) and that it is almost invariant to get a first deviations
estimate by using Theorem 2.1. Next, this estimate is used to apply the Avalanche
Principle, which together with the almost invariance yields a sharper deviations esti-
mate. Almost invariance refers to the fact that

ˇ̌̌
log kMn.x/k � 1

l

l�1X
kD0

log kMn.x C k!/k
ˇ̌̌

� C l; x 2 T :

In our case log kMn.�/k is not necessarily subharmonic, the Avalanche Principle (as
stated) cannot be applied to Mn, because it possible that j det Mnj Š 1, and the almost
invariance may fail to hold on T . To work around these issues it is natural to use the
following two matrices associated with Mn:

M a
n .z/ D

� nY
j D1

b.z C j!/
�
Mn.z/ (2.3)

and

M u
n .z/ D 1pj det Mn.z/j Mn.z/ D

� n�1Y
j D0

ˇ̌̌b.z C .j C 1/!/

Qb.z C j!/

ˇ̌̌1=2�
Mn.z/I (2.4)

M a
n .�/ is analytic and hence log kM a

n .�/k is subharmonic, and M u
n .�/ is unimodular

(i.e. j det M u
n j D 1). Clearly, we will apply Theorem 2.1 to log kM a

n k and the
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Avalanche Principle to M u
n . Note that log kM a

n .�/k would be subharmonic even if we
had Nb instead of Qb, however Qb is needed to ensure that f a

n is analytic. Furthermore, if
we have Nb instead of Qb the function log jf a

n .�/j is not necessarily subharmonic. The
use of such auxiliary matrices is common to all the existing work in the quasiperiodic
Jacobi setting (see, for example, [7], [8], and [10]).

Using (2.1), (2.3), and (2.4) it is straightforward to check that

M a
n .z/ D

"
f a

n .z/ � Qb.z/f a
n�1.z C !/

b.z C n!/f a
n�1.z/ � Qb.z/b.z C n!/f a

n�2.z C !/

#
(2.5)

and

M u
n .z/

D

2
664

f u
n .z/ � Qb.z/

b.z C !/

ˇ̌̌
b.z C !/

Qb.z/

ˇ̌̌1=2

f u
n�1.z C !/

ˇ̌̌
b.z C n!/

Qb.z C .n � 1/!/

ˇ̌̌1=2

f u
n�1.x/ � Qb.z/

b.z C !/

ˇ̌̌
b.z C n!/b.z C !/

Qb.z C .n � 1/!/ Qb.z/

ˇ̌̌1=2

f u
n�2.z C !/

3
775;

(2.6)

where

f u
n .z/ D

� n�1Y
j D0

ˇ̌̌b.z C .j C 1/!/

Qb.z C j!/

ˇ̌̌1=2�
fn.z/ (2.7)

(fn and f a
n have already been defined).

Let

Sn.z/ D
n�1X
kD0

log jb.z C k!/j

and

zSn.z/ D
n�1X
kD0

log j Qb.z C k!/j:

From (2.3) and (2.4) we get

log kMn.z/k D �Sn.z C !/ C log kM a
n .z/k (2.8)

and

log kM u
n .z/k D �1

2
. zSn.z/ C Sn.z C !// C log kM a

n .z/k: (2.9)

It will be easy to see that these relations together with Theorem 2.1 applied to log jbj
and log j Qbj allow us to pass from deviations estimates for M a

n to deviations estimates
for Mn and M u

n (see for example Corollary 3.6).
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Even though we will apply the Avalanche Principle to M u
n the conclusion will

also hold for M a
n and Mn. We will make this more precise. Let n D Pm

j D1 lj ,

sk D Pk
j D1 lj where m; l1; : : : ; lm are positive integers. We assume that s0 D 0. By

saying that, for example, the conclusion of the Avalanche Principle applied to M u
n

also holds for M a
n we mean that

log kM u
n .z/k C

m�1X
j D2

log kM u
lj

.z C sj �1!/k

�
m�1X
j D1

log kM u
lj C1

.z C sj !/M u
lj

.z C sj �1!/k

D log kM a
n .z/k C

m�1X
j D2

log kM a
lj

.z C sj �1!/k

�
m�1X
j D1

log kM a
lj C1

.z C sj !/M a
lj

.z C sj �1!/k:

This follows easily from (2.9).
The deviations estimate for log jf a

n j is just the John–Nirenberg inequality. The
needed BMO norm bound will be obtained by using the “BMO splitting lemma” [1],
Lemma 2.3. As in the case for the fundamental matrix, we first obtain a rough estimate
(Lemma 4.9) that allows us to apply theAvalanche Principle in order to obtain a better
estimate. We follow the approach from [5] with the notable exception of the proof of
Lemma 4.2 (cf. [5], Lemma 2.7). This is the only place where the difficulties come
not only from the possible zeroes of b but also from the fact that b is not constant.

We will obtain a uniform upper bound for log jf a
n .�/j on T from an uniform

upper bound for log kM a
n .�/k (Proposition 3.14) and the obvious inequality log jf a

n .�/j
� log kM a

n .�/k. The proof of Proposition 3.14 requires that the deviations estimate
for log kM a

n k holds on rT for r in a neighborhood of 1. Of course this implies
that all the results leading to the deviations estimate should also hold on rT . For
simplicity we will prove these estimates on T , however the proofs will be such that
the generalization from T to rT is immediate. To this end the derivations up to
Proposition 3.14 won’t use the fact that Qb D Nb on T . However, after that point we
only need the results to hold on T and we will make use of said fact to simplify
notation.

The deviations estimates will rely on the positivity of the Lyapunov exponent. Let

Ln.r/ D 1

n

ˆ
T

log kMn.rx/kdx;

Lu
n.r/ D 1

n

ˆ
T

log kM u
n .rx/kdx;
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La
n.r/ D 1

n

ˆ
T

log kM a
n .rx/kdx;

D.r/ D
ˆ

T
log jb.rx/jdx;

and

zD .r/ D
ˆ

T
log j Qb.rx/jdx:

When r D 1 we will omit the r argument, so for example we will write Ln instead
of Ln.1/. The quantity D appears naturally whenever one has to deal with the
singularities given by the zeros of b (see, for example, [8] and [10]). The quantities
La

n.r/, D.r/, and zD.r/ are finite because the integrands are subharmonic (and not
identically �1), and Ln.r/ is finite because from (2.8) we have

Ln.r/ D �D.r/ C La
n.r/: (2.10)

By Kingman’s subadditive ergodic theorem the following limits exist:

L .r/ D lim
n!1 Ln .r/ D inf

n�1
Ln .r/ ; (2.11)

Lu .r/ D lim
n!1 Lu

n .r/ D inf
n�1

Lu
n .r/ ;

and

La .r/ D lim
n!1 La

n .r/ D inf
n�1

La
n .r/ :

L D L.E; !/ is called the Lyapunov exponent. From (2.9) it can be seen that

Lu.r/ D 1

2
. zD.r/ � D.r// C L.r/

and in particular, since D D zD, we have L D Lu. Since M u
n is unimodular it follows

that Lu
n.r/ � 0, and hence Lu.r/ � 0. In particular we have that L D Lu � 0.

Fix � > 0. From now on we assume that L � � > 0. This assumption is needed
to apply the Avalanche Principle, so in fact we will use Lu D L � � > 0. For
the results to hold on rT , r ¤ 1, we will need that r is close enough to 1 so that
Lu.r/ � �=2 > 0. Note that the results up to Lemma 3.9 don’t use the Avalanche
Principle and so they hold without the assumption that L � � > 0.

Henceforth we will assume that a and b are analytic on the closure of A�00
0

with
�00

0 > 0 fixed. We also fix �0 and �0
0 such that 0 < �0 < �0

0 < �00
0. The reason for

this setup is that log kM a
n .�/k will have a Riesz representation on A�0

0
, but we will

be able to get the estimates on the Riesz representation (needed for Theorem 2.1)
only on A�0

. The estimates before Proposition 3.14 will hold on rT for every r 2
.1��0=2; 1C�0=2/ (provided Lu.r/ > 0) and the constants can be chosen uniformly
for all such r . Proposition 3.14 will hold on rT for every r 2 .1 � �0=4; 1 C �0=4/

(provided Lu.r/ > 0).
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3. Estimates for the fundamental matrix

First we prove the almost invariance of M a
n ; see (3.7). The following lemma and

its corollaries contain the main estimates that are needed to deal with the fact that
b could have zeros. If b doesn’t have any zeros then all the estimates hold trivially
without exceptional sets and everything goes as in [4].

In what follows we will keep track of the dependence of the various constants
on the parameters of our problem. The dependence on ! will only come up through
Theorem 2.1. In order to simplify the notation we won’t record the dependence on �0,
�0

0, and �00
0 (except in the lemmas where �0 appears in the statement). Dependence on

any other quantities is such that if the quantity takes values in a compact set, then the
constant can be chosen uniformly with respect to that quantity. The main dependence
we are interested in, is that on jEj. We denote by k � k1 the L1 norm on A�00

0
and

we let
kbk� D kbk1 C sup

r2.1��0;1C�0/

jD.r/j:

Note that kbk� D k Qbk�. Also, note that, unless otherwise stated, the constants in
different results are different.

Lemma 3.1. There exist constants

�0 D �0.kak1; kbk�; jEj; !/

and

c0 D c0.kbk�; !/

such that the following inequalities hold for any positive integer l and any � � �0

up to a set (independent of E) of measure less than exp.�c0�l/:

j log kM a
l .x/kj � �l (3.1)

and

j log kM a
l .x/�1kj � �l: (3.2)

Proof. There exists a constant C D C.kak1; kbk1; jEj/ > 0 such that

log kM a
l .x/k � C l

for all x. On the other hand

kM a
l .x/k � j det M a

l .x/j1=2 D
l�1Y
j D0

j Qb.x C j!/b.x C .j C 1/!/j1=2

for all x. Hence

zSl .x/ C Sl.x C !/

2
� log kM a

l .x/k � C l (3.3)
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for all x. From Theorem 2.1 we can conclude that for any �0 > 0 we have

�2�0l �
� zD C D

2
� �0�l � log kM a

l .x/k � C l � 2�0l

up to a set not exceeding 2 exp.�c�0l C rl/ in measure, provided

�0 � maxf�. zD C D/; C g=2:

By setting � D 2�0 and choosing �0 � maxf�. zD C D/; C g we have that (3.1) holds
up to a set of measure not exceeding 2 exp.�c�l C rl /. Finally, it is easy to see that
by choosing �0 such that

�0 � 2

c
sup
l�1

log 2 C rl

l

we have
2 exp.�c�l C rl/ � exp.�c

2
�l/; � � �0; l � 1:

This concludes the proof of (3.1).
Since for almost every x we have"

a.x C j!/ � E � Qb.x C j!/

b.x C .j C 1/!/ 0

#�1

D 1

Qb.x C j!/b.x C .j C 1/!/

"
0 Qb.x C j!/

�b.x C .j C 1/!/ a.x C j!/ � E

#

it is straightforward to see that there exists a constant C D C.kak1; kbk1; jEj/
such that

�
zSl.x/ C Sl.x C !/

2
� log kM a

l .x/�1k � C l � zSl.x/ � Sl.x C !/

for almost every x. Now (3.2) follows in the same way as (3.1). Note that the
exceptional set comes from zSl .x/ C Sl .x C !/ and is thus independent of E.

The same type of estimates can be obtained now for Mn and M u
n . We just record

one of the estimates that will be needed later.

Corollary 3.2. There exist constants

�0 D �0.kak1; kbk�; jEj; !/

and

c0 D c0.kbk�; !/

such that
j log kM u

l .x/�1kj � �l

holds for any positive integer l and any � � �0 up to a set of measure less than
exp.�c0�l/.
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Proof. From (2.4) we have

log kM u
l .x/�1k D 1

2
. zSl.x/ C Sl .x C !// C log kM a

l .x/�1k:

Using Theorem 2.1 and (3.2) we get

�3�0l �
� zD C D

2
� 2�0�l � log kM u

l .x/�1k �
� zD C D

2
C 2�0�l � 3�0l

up to a set of measure less than 2 exp.�c1�0l C rl/ C exp.�c2�0l/ � exp.�c3�0l/
provided �0 is large enough. Now we can take � D 3�0.

Corollary 3.3. There exist constants

�0 D �0.kak1; kbk�; jEj; !/

and

c0 D c0.kbk�; !/

such that the following inequalities hold for any positive integers l and n, and any
� � �0 up to a set (depending on n) of measure less than exp .�c0�l/:

j log kM a
l .x/k � lLa

l j � �l; (3.4)

j log kM a
nCl .x/k � log kM a

n .x/kj � �l; (3.5)

j log kM a
n .x C l!/k � log kM a

n .x/kj � �l; (3.6)

and ˇ̌̌
log kM a

n .x/k � 1

l

l�1X
kD0

log kM a
n .x C k!/k

ˇ̌̌
� �l: (3.7)

Proof. By integrating (3.3) we get

zD C D

2
� La

l � C: (3.8)

This and (3.1) imply (3.4).
We have

M a
nCl .x/ D M a

l .x C n!/M a
n .x/;

hence

� log kM a
l .x C n!/�1k � log kM a

nCl .x/k � log kM a
n .x/k � log kM a

l .x C n!/k
for almost every x. Now (3.5) follows by (3.1) and (3.2).
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From the fact that

M a
n .x C l!/M a

l .x/ D M a
l .x C n!/M a

n .x/

we conclude that

� log kM a
l .x C n!/�1k � log kM a

l .x/k
� log kM a

n .x C l!/k � log kM a
n .x/k

� log kM a
l .x C n!/k C log kM a

l .x/�1k
for almost every x. Now (3.6) also follows by (3.1) and (3.2).

Let � � �0. Then for k D 1; : : : ; l � 1 we have �l=k > �0, so by (3.6) we get

j log kM a
n .x C k!/k � log kM a

n .x/kj �
��l

k

�
k D �l

up to a set of measure less than exp.�c�l/. Summing over k D 0; : : : ; l � 1 and
dividing by l we get that (3.7) holds up to a set of measure less than l exp.�c�l/.
Finally, note that l exp.�c�l/ < exp.�c�l=2/; l � 1 if � is large enough. This
concludes the proof.

Next we provide bounds on the Riesz representation of log kM a
n .�/k, which are

needed to ensure that the constants we will get from Theorem 2.1 don’t depend on n.

Lemma 3.4. Let

1

n
log kM a

n .z/k D
ˆ

A
�0

0

log jz � �jd�n.�/ C hn.z/

be the Riesz representation on A�0
0
. There exists a constant

C0 D C0.kak1; kbk�; jEj; �0; �0
0; �00

0/

such that
�n.A�0

/ C khnk
L1.A�0

/
� C0:

Proof. Let un.z/ D log kM a
n .z/k=n and Tn D supA

�00
0

un. From [5], Lemma 2.2,

we have that

�n.A�0
/ � �n.A�0

0
/

� C.�0
0; �00

0/.Tn � sup
A

�0
0

un/

� C.Tn � sup
T

un/

� C.Tn � La
n/
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and

khnk
L1.A�0

/
� khn � sup

A
�0

0

unk
L1.A�0

/
C sup

A
�0

0

un

� C.�0; �0
0; �00

0/.Tn � sup
A

�0
0

un/ C Tn

� C.Tn � La
n/ C Tn:

The conclusion now follows from the fact that there exists a constant

C D C.kak1; kbk1; jEj; �00
0/

such that Tn � C , and from (3.8).

Now we can prove the first deviations estimate.

Lemma 3.5. Let ı0 > 0. For any ı 2 .0; ı0/ and any integer n > 1 we have

mesfx 2 T W j log kM a
n .x/k � nLa

nj > nıg < exp.�c0nı2 C C0.log n/p/;

where

c0 D c0.kak1; kbk�; jEj; !; ı0/

and

C0 D C0.kak1; kbk�; jEj; !; p; ı0/:

Proof. We have

mesfx 2 T W j log kM a
n .x/k � nLa

nj > nıg

� mes
°
x 2 T W

ˇ̌̌1
n

log kM a
n .x/k � 1

l

l�1X
kD0

1

n
log kM a

n .x C k!/k
ˇ̌̌

>
ı

2

±

C mes
n
x 2 T W

ˇ̌̌1
l

l�1X
kD0

1

n
log kM a

n .x C k!/k � La
n

ˇ̌̌
>

ı

2

o
:

(3.9)

The conclusion will follow by estimating the two quantities on the right-hand side of
the above inequality.

From (3.7) we get

ˇ̌̌
log kM a

n .x/k � 1

l

l�1X
kD0

log kM a
n .x C k!/k

ˇ̌̌
� C1l
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up to a set not exceeding exp.�cl/ in measure. Let l D Œın=2C1� C 1 . We have

ı

2
<

C1l

n

so we get ˇ̌̌1
n

log kM a
n .x/k � 1

l

l�1X
kD0

1

n
log kM a

n .x C k!/k
ˇ̌̌
� ı

2

for all x except for a set of measure less than exp.�cl/. Hence

mes
n
x 2 T W

ˇ̌̌ 1
n

log kM a
n .x/k � 1

l

l�1X
kD0

1

n
log kM a

n .x C k!/k
ˇ̌̌

>
ı

2

o
< exp.�cl/

< exp.�c1ın/;

where c1 D c=.2C1/.
From Theorem 2.1 we have

mes
n
x 2 T W

ˇ̌̌1
l

l�1X
kD0

1

n
log kM a

n .x C k!/k � La
n

ˇ̌̌
>

ı

2

o

< exp
�

� c
ı

2
l C C.log l/p

�

< exp.�c2ı2n C C 0.log n/p/:

Recall that Lemma 3.4 ensures that c and C don’t depend on n.
Now (3.9) becomes

mesfx 2 T W j log kM a
n .x/k � nLa

nj > nıg
< exp.�c1ın/ C exp.�c2ı2n C C 0.log n/p/

< 2 exp.�cı2n C C 0.log n/p/

< exp.�cı2n C C 00.log n/p/;

where c D c.c1; c2; ı0/. This concludes the proof.

The same proof, with an adequate change in the second to last inequality, yields
that for ı � ı0 we have

mesfx 2 T W j log kM a
n .x/k � nLa

nj > nıg < exp.�c0nı C C0.log n/p/:

Note that for ı0 large enough the above estimate, with C0 D 0, also follows from (3.4).
Also note that to get an estimate when n D 1 one just needs to apply Theorem 2.1.

The same type of estimate holds for M u
n and Mn.



An estimate on the number of eigenvalues 15

Corollary 3.6. Let ı0 > 0. For any ı 2 .0; ı0/ and any integer n > 1 we have

mesfx 2 T W j log kM u
n .x/k � nLu

nj > nıg < exp.�c0nı2 C C0.log n/p/

where

c0 D c0.kak1; kbk�; jEj; !; ı0/

and

C0 D C0.kak1; kbk�; jEj; !; p; ı0/:

An analogous estimate holds for Mn.

Proof. Using (2.9) we easily get

mesfx 2 T W j log kM u
n .x/k � nLu

nj > nıg
� mes

n
x 2 T W j log kM a

n .x/k � nLa
nj >

nı

2

o

C mes
n
x 2 T W j zSn.x/ � n zDj >

nı

2

o

C mes
n
x 2 T W jSn.x C !/ � nDj >

nı

2

o
:

The conclusion now follows from Lemma 3.5 and Theorem 2.1. The estimate for
Mn follows in the same way starting from (2.8).

The next step is to make use of the Avalanche Principle to improve the previous
estimate. The following lemma is the most general application of the Avalanche
Principle that suits our purposes.

Lemma 3.7. Let n > 1 be an integer and n D Pm
j D1 lj where lj are positive integers

such that l � lj � 3l , with l D l.n/ a real number. Let Aj .x/ D Aj .x; n/ be 2 � 2

matrices for x 2 T , and let Lk , k � 1 be a sequence of real numbers. If

l >
2

�
log n;

Llj � Llj Clj C1
� �

100
; Llj C1

� Llj Clj C1
� �

100
; j D 1; : : : ; m � 1;

max
1�j �m

j det Aj .x/j � 1; for a.e. x 2 T ;

mes
n
x 2 T W

ˇ̌̌ 1

lj
log kAj .x/k � Llj

ˇ̌̌
>

�

100

o
� exp.�c0l�

j /; j D 1; : : : ; m;
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and

mes
n
x 2W

ˇ̌̌ 1

lj C lj C1

log kAj C1.x/Aj .x/k � Llj Clj C1

ˇ̌̌
>

�

100

o

� exp.�c0.lj C lj C1/� /; j D 1; : : : ; m � 1;

then there exists an absolute constant C0 such that

ˇ̌̌
log kAm.x/ : : : A1.x/k C

m�1X
j D2

log kAj .x/k �
m�1X
j D1

log kAj C1.x/Aj .x/k
ˇ̌̌

< C0m exp
�
� �

2
l
�

< C0

1

l

up to a set of measure less than 3n exp.�c0l�/.

Proof. Let � D exp.l�=2/. We have

min
1�j �m

kAj .x/k � min
1�j �m

exp.lj Llj � �

100
/ > exp.l�=2/ D � > n

and

max
1�j <m�1

Œlog kAj C1.x/k C log kAj .x/k � log kAj C1.x/Aj .x/k�

� lj C1

�
Llj C1

C �

100

�
C lj

�
Llj C �

100

�
� .lj C lj C1/

�
Llj C1Clj � �

100

�

D lj C1

�
Llj C1

� Llj C1Clj C 2�

100

�
C lj

�
Llj � Llj C1Clj C 2�

100

�

< 6l
3�

100
<

�l

4
D 1

2
log �

up to a set of measure 3m exp.�c0l� / < 3n exp.�c0l� /. The conclusion follows
from the Avalanche Principle and the fact that m=� < 1=l .

As mentioned before, it is important for us that the constants in the deviations
estimate can be chosen uniformly for E in a compact set. For this we need to provide
a bound for Lu

n � Lu that holds for all E in a compact set. First we state a simple
estimate that we will use to deal with the integrals over the exceptional sets for our
functions.
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Lemma 3.8. Let f be a measurable function defined on T such that for any ı � ı0

we have that jf .x/ j � ı up to a set of measure less than exp.�c0ı/. Then

kf k
L2.T /

� C0;

where
C0 D C0.c0; ı0/:

Lemma 3.9. For any integer n > 1 we have

0 � Ln � L D Lu
n � Lu D La

n � La < C0

.log n/2

n

where
C0 D C0.kak1; kbk�; jEj; !; �/:

Proof. It is sufficient to get the estimate for large n. We will tacitly assume that n is
large enough for our estimates to hold. We should keep in mind that the choice of
large n should be uniform for E in a bounded set.

It is easy to see that the conclusion follows if we have

jLa
2n � La

nj � C
.log n/2

n
: (3.10)

Since we have

jLa
2n � La

nj D
ˇ̌̌ˆ

T

log kM a
2n.x/k � log kM a

n .x C n!/k � log kM a
n .x/k

2n
dx
ˇ̌̌
;

it will be sufficient to prove that

j log kM a
2n.x/k � log kM a

n .x C n!/k � log kM a
n .x/kj � C1.log n/2 (3.11)

up to a set not exceeding C2n�1 in measure. Indeed, from (3.1) it follows that for
ı � ı0 we have

ˇ̌̌ log kM a
2n.x/k � log kM a

n .x C n!/k � log kM a
n .x/k

2n

ˇ̌̌
� ı

up to a set not exceeding exp.�c1ı2n/ C 2 exp.�c1ın/ < exp.�cın/ in measure,
and by using (3.11) and Lemma 3.8 we get

jLa
2n � La

nj �
ˆ

T

ˇ̌̌ log kM a
2n.x/k � log kM a

n .x C n!/k � log kM a
n .x/k

2n

ˇ̌̌
dx

� C1.log n/2 C C3

p
C2n�1

� C.log n/2:
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Now we check that the sufficient condition (3.11) holds. Let l D ŒCl log n� and
m D Œn=l�. If Cl is sufficiently large, we have l > 2 log n=� and 3n exp.�cl/ < n�1.
We want to choose Cl so that Lu

l
� Lu

2l
� �=100 and Cl � C (note that without the

bound, such Cl obviously exists). Suppose that Lu
2j l

� Lu
2j C1l

> �
100

for j � 0.
Then using (3.8) we get

C �
zD C D

2
� Lu

l � Lu
2j C1l

>
j �

100
:

This shows that by eventually replacing l with 2j l with some

j < 100.2C � zD � D/=�

we will have Lu
l

� Lu
2l

� �=100, and the corresponding Cl will be bounded. Using
Corollary 3.6 and Lemma 3.7 we get

ˇ̌̌
log kM a

ml .x/kC
m�2X
j D1

log kM a
l .xCjl!/k�

m�2X
j D0

log kM a
2l .xCjl!/k

ˇ̌̌
< C (3.12)

up to a set not exceeding n�1 in measure, and analogous estimates for log kM a.xC
ml!/k and log kM a

2ml
.x/k. Recall that we apply the Avalanche Principle to M u

n but
the conclusion also holds for M a

n . Note that we need to have m � 2. This clearly
holds for large enough n depending on Cl . This can be done uniformly for E in a
bounded set because of our bound on Cl . Putting these estimates together we get

j log kM a
2ml .x/k � log kM a

ml .x C ml!/k � log kM a
ml .x/k

C log kM a
l .x C .m � 1/l!/k C log kM a

l .x C ml!/k
� log kM a

2l .x C .m � 1/l!/kj
< C

(3.13)

up to a set not exceeding C n�1 in measure. By (3.1) we have that

j log kM a
l .x/kj � C log n

up to a set not exceeding n�1 in measure. From this, similar estimates, and (3.13) we
get

j log kM a
2ml .x/k � log kM a

ml .x C ml!/k � log kM a
ml .x/kj < C log n (3.14)

up to a set not exceeding C n�1 in measure.
From (3.5) we get that for sufficiently large ı we have

j log kM a
n .x/k � log kM a

ml .x/kj � ı.n � ml/

up to a set not exceeding exp.�cı.n�ml// in measure. We can choose ı > .log n/=c

to conclude that

j log kM a
n .x/k � log kM a

ml .x/kj � C.log n/2
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up to a set not exceeding n�1 in measure. From this, similar estimates (using (3.5)
and (3.6)), and (3.14) we can conclude that

j log kM a
2n.x/k � log kM a

n .x C n!/k � log kM a
n .x/kj < C.log n/2

up to a set not exceeding C n�1 in measure. Thus we proved (3.11) and this concludes
the proof.

The bound from the previous lemma can be improved, as in [4], Theorem 5.1, to
Ln � L � C0=n. However, we won’t need this better bound in this paper.

Now we are able to prove the improved version of the deviations estimate (cf. [4],
Theorem 7.1). A couple of other deviations estimates exist for the Jacobi case. Kai
Tao proved an estimate which is very similar to Lemma 3.5 (see [10], Theorem 2.15).
Jitomirskaya, Koslover, and Schulteis generalized the estimate [2], Lemma 4, to the
Jacobi case (see [7], Lemma 1; also see [8], Theorem 3.1, for a more general version).
Their estimate is given in terms of approximants of the frequency, and in particular
it applies to any irrational frequency. As in the Schrödinger case, the fact that we
are restricting to frequencies satisfying a strong Diophantine condition allows us to
obtain a better estimate.

Theorem 3.10. For any ı > 0 and any integer n > 1 we have

mesfx 2 T W j log kM a
n .x/k � nLa

nj > ıng < exp.�c0ın C C0.log n/p/

where

c0 D c0.kak1; kbk�; jEj; !; �/

and

C0 D C0.kak1; kbk�; jEj; !; �; p/:

The same estimate, with possibly different constants, holds with La instead of La
n.

Proof. First note that due to (3.4) we just need to check the estimate for ı < ı0.
Furthermore, note that the estimate is trivial if �c0ın C C0.log n/p > 0. Hence we
just need to check the estimate for ı satisfying

C
.log n/p

n
� ı < ı0; (3.15)

where C D C0=c0 can be made as large as we need by choosing C0 large. Furthermore
by choosing C0 large enough we can make sure that the deviations estimate holds
trivially for small n. Hence it is enough to check the estimate for n large enough.
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Let l D Œın�+1, m D Œn=l� and l 0 D n � .m � 1/l . An application of the
Avalanche Principle (using Corollary 3.6, (3.15), and Lemma 3.7) yields

log kM a
n .x/k C

m�2X
j D1

log kM a
l .x C jl!/k � log kM a

l 0Cl .x C .m � 2/l!/k

�
m�3X
j D0

log kM a
l .x C .j C 1/l!/M a

l .x C jl!/k

D O
�1

l

�

up to a set of measure less than 3n exp.�cl/ < exp.�cın=2/. From (3.1) we can
conclude that

j log kM a
l 0 .x C .m � 1/l!/M a

l .x C .m � 2/l!/kj
D j log kM a

l 0Cl .x C .m � 2/l!/kj
� C l

up to a set of measure less than exp.�cl/ � exp.�cın/. Hence

log kM a
n .x/k C

m�2X
j D1

log kM a
l .x C jl!/k �

m�3X
j D0

log kM a
2l .x C jl!/k D O.l/

up to a set of measure less than exp.�cın/. Summing the above estimate with xCk!

instead of x yields

1

l

l�1X
kD0

log kM a
n .x C k!/k C

.m�1/l�1X
j Dl

1

l
log kM a

l .x C j!/k

�
.m�2/l�1X

j D0

1

l
log kM a

2l .x C j!/k

D O.l/

up to a set of measure less than l exp.�cın/ < exp.�cın=2/. Using (3.7) we can
conclude that

log kM a
n .x/k C

.m�1/l�1X
j Dl

1

l
log kM a

l .x C j!/k �
.m�2/l�1X

j D0

1

l
log kM a

2l .x C j!/k

D O.l/



An estimate on the number of eigenvalues 21

up to a set of measure less than exp.�c1ın/ C exp.�c2l/ < exp.�cın/. From this,
Theorem 2.1, and (3.8) it follows that

log kM a
n .x/k C .m � 2/l.La

l � 2La
2l / D O.ın/

up to a set of measure less than

2 exp.�c1ın C C.log n/p/ C exp.�c2ın/ < exp.�cın C C.log n/p/:

Integrating over T and using Lemma 3.8 yields

jnLa
n C .m � 2/l.La

l � 2La
2l /j < C1ın C C2n exp..�cın C C.log n/p/=2/

< Cın:

Note that for the last inequality to hold we need to choose C large enough in (3.15).
Now we have that

j log kM a
n .x/k � nLa

nj < Cın

up to a set of measure less than exp.�cın C C.log n/p/. The fact that La
n can be

replaced by La follows from Lemma 3.9 and (3.15).

Corollary 3.11. For any ı > 0 and any integer n > 1 we have

mesfx 2 T W j log kM u
n .x/k � nLu

nj > ıng < exp.�c0ın C C0.log n/p/

where

c0 D c0.kak1; kbk�; jEj; !; �/

and

C0 D C0.kak1; kbk�; jEj; !; �; p/:

The same estimate, with possibly different constants, holds with Lu instead of Lu
n.

An analogous statement holds for Mn.

Proof. The proof is the same as for Corollary 3.6.

Next we establish some estimates that will be needed in the next section. First
we prove a uniform upper bound for log kM a

n k. We will need the following general
result about averages of subharmonic functions.

Lemma 3.12 ([5], Lemma 4.1). Let u be a subharmonic function and let

u.z/ D
ˆ

C
log jz � �jd�.�/ C h.z/

be its Riesz representation on a neighborhood of A�. If �.A�/ C khk
L1.A�/

� M ,
then for any r1; r2 2 .1 � �; 1 C �/ we have

jhu.r1.�//i � hu.r2.�//ij � C0jr1 � r2j;
where C0 D C0.M; �/.
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The following corollary is an immediate consequence of the previous lemma and
Lemma 3.4.

Corollary 3.13. There exists a constant

C0 D C0.kak1; kbk�; jEj; �0; �0
0; �00

0/

such that
jLu

n.r1/ � Lu
n.r2/j D jLa

n.r1/ � La
n.r2/j � C0jr1 � r2j

for any r1; r2 2 .1 � �0; 1 C �0/ and any positive integer n.

Proposition 3.14. For any integer n > 1 we have that

sup
x2T

log kM a
n .x/k � nLa

n C C0.log n/p

where
C0 D C0.kak1; kbk�; jEj; !; �; p/:

Proof. It is sufficient to establish the estimate for large n. From the large deviations
estimate, with nı D C.log n/p where C is sufficiently large, we have

log kM a
n .rx/k � nLa

n.r/ � C.log n/p

except for a set B.r/ of measure less than

exp.�c1C.log n/p C C 0.log n/p/ < exp.�c.log n/p/:

Here r is in a neighborhood of 1 such that Lu.r/ � �=2. Such a neighborhood exists
because of Corollary 3.13. By the subharmonicity of log kM a

n .z/k we have

log kM a
n .x/k � nLa

n � 1

�n�2

ˆ
D.x;n�1/

.log kM a
n .z/k � nLa

n/dA.z/

� 1

�n�2

ˆ 1Cn�1

1�n�1

ˆ xC2n�1

x�2n�1

j log kM a
n .ry/k � La

njrdydr:

(3.16)

For r 2 .1 � n�1; 1 C n�1/ we have
ˆ xC2n�1

x�2n�1

j log kM a
n .ry/k � La

njdy

�
ˆ xC2n�1

x�2n�1

j log kM a
n .ry/k � La

n.r/jdy C jLa
n � La

n.r/j

� C1.log n/pn�1 C C2n exp
�
� c

.log n/p

2

�
C C3n�1

< C.log n/pn�1:
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As usual, we used Lemma 3.8 to deal with the exceptional set. Plugging this estimate
in (3.16) yields the desired conclusion.

As was mentioned in the introduction, from this point forward we will make use
of the fact that Qb D Nb on T . In particular we will tacitly use that D D zD, S D zS ,
Ln D Lu

n, L D Lu, and j Qbj D j Nbj D jbj.
Next we want to estimate Ln.E/ � Ln.E0/ in a neighborhood of E0.

Lemma 3.15. There exist constants

C0 D C0.kak1; kbk�; maxfjE1j; jE2jg/
and

c0 D c0.kbk�; !/

such that

j log kM u
l .x; E1/k � log kM u

l .x; E2/kj
D j log kM a

l .x; E1/k � log kM a
l .x; E2/kj

� exp.C0l/jE1 � E2j
holds for any positive integer l and any x up to a set (independent of E1 and E2) of
measure less than exp.�c0l/.

Proof. The identity follows from (2.9). By the Mean Value Theorem we have

j log kM a
l .x; E1/k � log kM a

l .x; E2/kj

� 1

minfkM a
l

.x; E1/k; kM a
l

.x; E2/kg jkM a
l .x; E1/k � kM a

l .x; E2/kj

� 1

minfkM a
l

.x; E1/k; kM a
l

.x; E2/kg sup
E2ŒE1;E2�

��� @

@E
M a

l .x; E/
���jE1 � E2j:

There exists a constant

C D C.kak1; kbk1; maxfjE1j; jE2jg/
such that

sup
E2ŒE1;E2�

��� @

@E
M a

l .x; E/
��� � exp.C l/:

The conclusion now follows by using (3.1).
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Lemma 3.16. Fix E0 2 C such that L.E0/ � � . There exist constants

C0 D C0.kak1; kbk�; jE0j; !; �/;

C1 D C1.kak1; kbk�; jE0j; !; �/;

and

n0 D n0.kak1; kbk�; jE0j; !; �/

such that we have

j log kM a
n .x; E/k � log kM a

n .x; E0/kj � n�C0

for n � n0, jE � E0j < n�C1 , and all x up to a set B D B.n; E0/ of measure less
than n�1.

Proof. Let l D ŒC2 log n�, m D Œn=l�, and l 0 D n � .m � 2/l . In what follows we
should keep in mind that some of the estimates hold by choosing C2 large enough.
To be able to apply the Avalanche Principle we will need that m � 2, hence we also
need that n is large enough. Applying the Avalanche Principle (see Lemma 3.7) we
get

log kM a
n .x; E0/k C

m�2X
j D1

log kM a
l .x C jl!; E0/k

� log kM a
lCl 0.x C .m � 2/l!; E0/k �

m�3X
j D0

log kM a
2l .x C jl!; E0/k

D O
�n

l
exp

�
� �

2
l
��

D O
� 1

ncC2

�

(3.17)

up to a set of measure 3n exp.�c1l/ < n�cC2 . We claim that the Avalanche Principle
can be applied, with the same �, for the same factorization of M a

n .x; E/. Note that
we cannot apply the deviations estimate since we don’t know whether L.E/ > 0.
For example, Lemma 3.15 and Corollary 3.6 imply that

log kM u
l .x; E/k � log kM u

l .x; E0/k � exp.C l � C1 log n/

� .� � �

100
/l � exp.C l � C1 log n/

>
�

2
l

up to a set of measure exp.�c1l/Cexp.�c2l/ < exp.�cl/. Note that the exceptional
set from the deviation estimate is already included in the exceptional set for (3.17)
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and recall that the exceptional set from Lemma 3.15 doesn’t depend on E. Also note
that C1 needs to satisfy C1 � CC2. The other estimates needed for the Avalanche
Principle are obtained similarly, provided C1 is large enough. Hence, (3.17) holds
with E instead of E0. The conclusion follows by subtracting (3.17) for E and E0

and using Lemma 3.15 (again, C1 needs to be chosen to be large enough).

Corollary 3.17. Fix E0 2 C such that L.E0/ � � . There exist constants

C0 D C0.kak1; kbk�; jE0j; !; �/;

C1 D C1.kak1; kbk�; jE0j; !; �/;

and

n0 D n0.kak1; kbk�; jE0j; !; �/

such that we have

jn.Ln.E/ � Ln.E0//j D jn.La
n.E/ � La

n.E0//j � n�C0

for n � n0 and jE � E0j < n�C1 .

Proof. Integrate the estimate of the previous lemma. To deal with the exceptional set
we used Lemma 3.8 and the fact that as a consequence of (3.1) we have

j log kM a
n .x; E/k � log kM a

n .x; E0/kj � �n

up to a set of size exp.�c�n/ for any � � �0.

4. Estimates for the entries of the fundamental matrix

We will need the following particular case of a lemma from [5].

Lemma 4.1 ([5], Lemma 2.4). Let u be a subharmonic function defined on A� such
that supA�

u � M . There exist constants C1 D C1.�/ and C2 such that, if for some
0 < ı < 1 and some L we have

mesfx 2 T W u.x/ < �Lg > ı;

then

sup
T

u � C1M � L

C1 log.C2=ı/
:

Let Ia;E D ´T log ja.x/ � Ejdx. Note that jIa;E j < 1 if and only if a 6� E.
If a � E then it is straightforward to see that L D 0. Hence if L.E/ > 0 then
jIa;E j < 1. Furthermore, if L.E/ > 0 on some set, it can be seen that Ia;E is
continuous in E on that set.
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Lemma 4.2. There exists l0 D l0.kak1; Ia;E ; kbk�; jEj; !; �/ such that

mesfx 2 T W jfl .x/j � exp.�l3/g � exp.�l/

for all l � l0.

Proof. We argue by contradiction. Assume

mesfx 2 T W jfl .x/j � exp.�l3/g > exp.�l/

for arbitrarily large l . We will be tacitly using the fact that l can be arbitrarily large.
We have that

jf a
l .x/j D jfl .x/j

lY
j D1

jb.x C j!/j � exp.�l3/C l � exp.�l3=2/

on a set of measure greater than exp .�l/. Hence

mesfx 2 T W jf a
l .x/j � exp.�l3=2/g > exp.�l/:

At the same time we have that

log jf a
l .x/j � log kM a

l .x/k � C l

for all x, so by applying Lemma 4.1 we get that

jf a
l .x/j � exp

�
C1l � l3

C2 log.C3 exp.l//

�
� exp.�C l2/

for all x and consequently

jfl .x/j � exp.l.1 � D/ � C1l2/ � exp.�C l2/ (4.1)

for all x except for a set of measure less than exp.�c1l C rl / < exp.�cl/.
From Corollary 3.11 we have that

exp.l�/ � kMl .x/k2

� 2
�
jfl .x/j2 C jfl�1.x/j2 C

ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌2

C
ˇ̌̌ b.x/

b.x C !/
fl�2.x C !/

ˇ̌̌2�
(4.2)

for all x except for a set of measure less than exp.�c1�l=2 C rl / < exp.�cl/.
Suppose that ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌2 � 1

4
exp.l�/ (4.3)
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for all x except for a set of measure less than 1=3 (any constant in .0; 1=2/ would
work). Since

b.x/

b.x C l!/
D det Ml .x/

D � b.x/

b.x C !/
fl .x/fl�2.x C !/ C b.x/

b.x C !/
fl�1.x/fl�1.x C !/

it follows that

jfl�1.x/j

D
ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌�1 ˇ̌̌ b.x/

b.x C l!/
C b.x/

b.x C !/
fl .x/fl�2.x C !/

ˇ̌̌

� 2 exp
�
� l�

2

�
.C1 exp.ı � D/ C exp.�C2l2 C C3l//

for all x except for a set of measure less than 1=3 C exp.�c1ı C r1/ C exp.�c1l/ C
exp.�c2l C r

0

l
/. For the first factor in the above estimate we used (4.3). For the first

term in the second factor we applied Theorem 2.1 with u.x/ D b.x C l!/ and n D 1

to get ˇ̌̌ b.x/

b.x C l!/

ˇ̌̌
� C1

jb.x C l!/j � C1 exp.ı � D/

up to a set of measure less than exp.�c1ı C r1/. For the second term in the second
factor we used (4.1), and (2.1) (recall that jbj D j Nbj D j Qbj on T ) together with the
deviations estimate for Ml (with ı D 1) to conclude that

ˇ̌̌ b.x/

b.x C !/
fl�2.x C !/

ˇ̌̌
� kMl .x/k � exp..L C 1/l/ D exp.C3l/

up to a set of measure less than exp.�c2l C r 0
l
/. Choosing ı D l�=2 we get

jfl�1.x/j � C

for all x except for a set of measure less than 1=3 C exp .�cl/. This contradicts (4.3)
because

jfl�1.x C !/j � C

and (4.3) would hold at the same time on a set of measure greater than 1=3�exp.�cl/.
Hence we must have

ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌2
<

1

4
exp.l�/ (4.4)

on a set of measure greater than 1=3. At the same time
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exp..l C 1/�/ � kMlC1.x/k2

� 2
�
jflC1.x/j2 C jfl .x/j2 C

ˇ̌̌ b.x/

b.x C !/
fl .x C !/

ˇ̌̌2

C
ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌2�

for all x except for a set of measure less than

exp.�c1�.l C 1/=2 C rlC1/ < exp.�cl/:

This, (4.1), and (4.4) imply that we must have

jflC1.x/j2

� 1

2
exp..l C 1/�/ � exp.�C1l2/ � C2 exp.l � D � C1l2/ � 1

4
exp.l�/

>
1

4
exp.l�/

on a set of measure greater than

1

3
� exp.�c1l/ � 2 exp.�c2l/ � exp.�c3l C r1/ >

1

3
� exp.�cl/:

From

b.x/

b.x C .l C 1/!/

D det MlC1.x/

D � b.x/

b.x C !/
flC1.x/fl�1.x C !/ C b.x/

b.x C !/
fl .x/fl.x C !/

it can be seen thatˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌

D jflC1.x/j�1
ˇ̌̌ b.x/

b.x C .l C 1/!/
� b.x/

b.x C !/
fl .x/fl.x C !/

ˇ̌̌

� 2 exp
�
� l�

2

�
.C1 exp.ı � D/ C C1 exp.ı � D � C2l2//

on a set of measure greater than 1=3 � exp.�c1l/ � 2 exp.�c2ı C r1/ � 2 exp.�c3l/.
Choosing ı D l�=5 we get

ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌
� exp

�
� l�

4

�
(4.5)
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on a set of measure greater than 1=3�exp .�cl/. We will contradict (4.2) by showing
that

jfl .x/j2 C jfl�1.x/j2 C
ˇ̌̌ b.x/

b.x C !/
fl�1.x C !/

ˇ̌̌2 C
ˇ̌̌ b.x/

b.x C !/
fl�2.x C !/

ˇ̌̌2
� C

(4.6)

on a set of measure greater than 1=3 � exp .�cl/. Let Gl be the set on which (4.5)
holds.

By writing

Ml .x C !/

D 1

b.x C .l C 1/!/

"
a.x C l!/ � E �b.x C l!/

b.x C .l C 1/!/ 0

#
Ml�1.x C !/

we get

fl .x C !/ D a.x C l!/ � E

b.x C .l C 1/!/
fl�1.x C !/ � b.x C l!/

b.x C .l C 1/!/
fl�2.x C !/:

From this we deduce thatˇ̌̌ b.x/

b.x C !/
fl�2.x C !/

ˇ̌̌

D
ˇ̌̌b.x C .l C 1/!/

b.x C l!/

ˇ̌̌

�
ˇ̌̌ a.x C l!/ � E

b.x C .l C 1/!/
b.x/b.x C !/fl�1.x C !/ � b.x/

b.x C !/
fl.x C !/

ˇ̌̌

� C1 exp.ı � D/.C2 exp.ı � D � �l=4/ C C1 exp.ı � D � C3l2//

on a subset of Gl of measure greater than

1

3
� 3 exp.�c1ı C r1/ � exp.�c2l/ � exp.�c3l/:

By choosing ı D �l=17 we getˇ̌̌ b.x/

b.x C !/
fl�2.x C !/

ˇ̌̌
� exp

�
� �l

8

�

on a subset of Gl of measure greater than 1=3 � exp.�cl/.
By writing

Ml .x � !/ D Ml�1.x/
1

b.x/

"
a.x � !/ � E �b.x � !/

b.x/ 0

#
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we get

fl .x � !/ D a.x � !/ � E

b.x/
fl�1.x/ � b.x/

b.x C !/
fl�2.x C !/:

From this we deduce that

jfl�1.x/j D
ˇ̌̌a.x � !/ � E

b.x/

ˇ̌̌�1 ˇ̌̌
fl .x � !/ C b.x/

b.x C !/
fl�2.x C !/

ˇ̌̌

� C1 exp.ı � Ia;E /
�

exp.�C1l2/ C exp
�
� �l

8

��

on a subset of Gl of measure greater than 1=3 � exp .�c1ı C r1/ � exp .�c3l/ �
exp .�c4l/. By choosing ı D �l=17 we get

jfl�1.x/j � exp
�
� �l

16

�

on a subset of Gl of measure greater than 1=3 � exp.�cl/. Now it is easy to see that
we have (4.6).

Lemma 4.3. Let 	 > 0. There exist constants

l0 D l0.kak1; Ia;E ; kbk�; jEj; !; �; 	/

and

N0 D N0.kak1; Ia;E ; kbk�; jEj; !; �; 	/

such that
mesfx 2 T W jfl .x/j � exp.�N �/g � exp.�N � l�2/

for any N � N0 and for any l0 � l � N �=3. The same result, but with possibly
different l0 and N0, holds for f u

l
.

Proof. We argue by contradiction. Assume

mesfx 2 T W jfl .x/j � exp.�N �/g > exp.�N � l�2/

for some arbitrarily large l and N . We have that

jf a
l .x/j D jfl .x/j

lY
j D1

jb.x C j!/j � exp.�N � /C l�1 � exp
�
� N �

2

�

on a set of measure greater than exp.�N � l�2/. Hence

mesfx 2 T W jf a
l .x/j � exp.�N � =2/g > exp.�N � l�2/:
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By applying Lemma 4.1 we get that

jf a
l .x/j � exp

�
C1l � N �

2C1 log.C2 exp.N � l�2//

�
� exp.�C l2/

for all x. Note that the last inequality is equivalent to

C1

l
C C � N � l�2

2C1 log.C2 exp.N � l�2//
D N � l�2

2C1 log C2 C 2C1N � l�2

which clearly holds with C D 1=.4C1/ for large l and N; since N � l�2 � N �=3. We
now have that

jfl .x/j � exp..l � 1/.1 � D/ � C 0l2/ � exp.�C l2/

for all x except for a set of measure less than exp .�c1 .l � 1/ C rl�1/ < exp .�cl/.
The contradiction follows in the same way as in the previous lemma.

To get the result for f u
l

one can argue by contradiction. Using

jf a
l .x/j D jf u

l .x/j
n�1Y
j D0

jb.x C j!/b.x C .j C 1/!/j1=2

one can get that jf a
l

.x/j � exp.�C l2/ for all x and this gives the same contradiction
as before.

We recall for convenience some facts about stability of contracting and expanding
directions of unimodular matrices. It follows from the polar decomposition that
if A 2 SL.2; C/ then there exist unit vectors uC

A ? u�
A and vC

A ? v�
A such that

AuC
A D kAk vC

A and Au�
A D kAk�1v�

A .

Lemma 4.4 ([5], Lemma 2.5). For any A, B 2 SL .2; C/ we have

jBu�
AB ^ u�

A j � kAk�2kBk;

ju�
BA ^ u�

A j � kAk�2kBk2;

jvC
AB ^ vC

A j � kAk�2kBk2;

jvC
BA ^ BvC

A j � kAk�2kBk:

We will need the following estimate (cf. [5], eq. (2.35)) in the proof of Lemma 4.6.

Lemma 4.5. If A 2 SL .2; C/ and w1, w2, and w3 are unit vectors in the plane then

jw1 ^ Aw2j � jw1 ^ Aw3j C p
2kA�1kjw2 ^ w3j

and

jw1 ^ Aw2j � jw3 ^ Aw2j C p
2kAkjw1 ^ w3j
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Proof. Since A preserves area we have

jw1 ^ Aw2j D jA�1w1 ^ w2j
� jA�1w1 ^ w3j C min jA�1w1 ^ .w2 ˙ w3/j
� jw1 ^ Aw3j C kA�1w1k min kw2 ˙ w3k
� jw1 ^ Aw3j C kA�1kp

2jw2 ^ w3j:
The second inequality follows from the first one.

Let GN be the set of points x 2 T such that for any 1 � j � N and any jl j � 2N

we have

j log kM u
j .x C l!/k � jLj � N � ;

log kM u
j .x C l!/�1k � N � ;

and

j log jb.x C j!/j � Dj � N � :

From Corollary 3.11, Corollary 3.2. and Theorem 2.1 we have that

mes.T n GN /

� .4N C 1/N exp.�c1N � C rN / C .4N C 1/N exp.�c2N � /

C N exp.�c3N � C r 0
1/

� exp.�cN � /

for N large enough. The choice of GN is such that all the estimates in the next lemma
hold on this set.

Lemma 4.6. Let 0 < 	 < 1. There exist constants

l0 D l0.kak1; Ia;E ; kbk�; jEj; !; �; 	/

and

N0 D N0.kak1; Ia;E ; kbk�; jEj; !; �; 	/

such that

mesfx 2 T W jf u
N .x/j C jf u

N .x C j1!/j C jf u
N .x C j2!/j

� exp.NLN � 100N � /g
� exp.�N �=2/

(4.7)

for any l0 � j1 � j1 C l0 � j2 � N �=8 and N � N0.
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Proof. Let fe1; e2g be the standard basis of R2. By (2.6) we have

f u
N .x/ D M u

N .x/e1 ^ e2

D .M u
N .x/Œ.uC

N .x/ � e1/uC
N .x/ C .u�

N .x/ � e1/u�
N .x/�/ ^ e2

D .uC
N .x/ � e1/kM u

N .x/kvC
N .x/ ^ e2

C .u�
N .x/ � e1/kM u

N .x/k�1v�
N .x/ ^ e2:

If jf u
N .x/j � exp.NLN � 100N � / then

kM u
N .x/kjuC

N .x/ � e1jjvC
N .x/ ^ e2j � kM u

N .x/k�1ju�
N .x/ � e1jjv�

N .x/ ^ e2j
� exp.NLN � 100N � /:

From the above and the fact that uC
N .x/ � e1 D u�

N .x/ ^ e1 (recall that uC
N ? u�

N )
one gets that on GN we have

ju�
N .x/ ^ e1jjvC

N .x/ ^ e2j � exp.N.LN � L/ � 99N � / C exp.2N � � 2NL/

� exp.�90N �/

and hence ju�
N .x/ ^ e1j � exp.�40N � / or jvC

N .x/ ^ e2j � exp.�40N � /.
Suppose (4.7) fails. Then

mesfx 2 GN W jf u
N .x/j C jf u

N .x C j1!/j C jf u
N .x C j2!/j

� exp.NLN � 100N � /g
> exp.�N �=2/ � exp.�c1N � / > exp.�cN �=2/:

Let x be in the above set. By the preliminary discussion, either

ju�
N .x/ ^ e1j � exp.�40N � /

or
jvC

N .x/ ^ e2j � exp.�40N � /

has to hold for two of the points x, x C j1!, x C j2!.
We first assume that

ju�
N .x C j1!/ ^ e1j � exp.�40N � / and ju�

N .x C j2!/ ^ e1j � exp.�40N �/:

(4.8)
We now compare M u

j2�j1
.x C j1!/ u�

N .x C j1!/ and u�
N .x C j2!/. It follows

from Lemma 4.5 that

ju�
N .x C j2!/ ^ M u

j2�j1
.x C j1!/u�

N .x C j1!/j
� ju�

N .x C j2!/ ^ M u
j2�j1

.x C j1!/u�
N Cj2�j1

.x C j1!/j
C C kM u

j2�j1
.x C j1!/�1kju�

N Cj2�j1
.x C j1!/ ^ u�

N .x C j1!/j:
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Applying Lemma 4.4 with A D M u
N .x C j2!/ and B D M u

j2�j1
.x C j1!/ for the

first term, and A D M u
N .x Cj1!/ and B D M u

j2�j1
.x C .N C j1/ !/ for the second

term, yields

ju�
N .x C j2!/ ^ M u

j2�j1
.x C j1!/u�

N .x C j1!/j
� kM u

N .x C j2!/k�2kM u
j2�j1

.x C j1!/k
C C kM u

j2�j1
.x C j1!/�1kkM u

N .x C j1!/k�2kM u
j2�j1

.x C .N C j1/!/k2

� exp..�2N C j2 � j1/L C 3N � / C C exp..�2N C 2.j2 � j1//L C 5N � /

� exp.�NL/

(4.9)

for x 2 GN . Using Lemma 4.5, (4.8), and (4.9) we get

je1 ^ M u
j2�j1

.x C j1!/e1j
� je1 ^ M u

j2�j1
.x C j1!/u�

N .x C j1!/j
C C kM u

j2�j1
.x C j1!/�1kje1 ^ u�

N .x C j1!/j
� ju�

N .x C j2!/ ^ M u
j2�j1

.x C j1!/u�
N .x C j1!/j

C C kM u
j2�j1

.x C j1!/kje1 ^ u�
N .x C j2!/j

C C kM u
j2�j1

.x C j1!/�1kje1 ^ u�
N .x C j1!/j

� exp.�NL/ C C exp..j2 � j1/L � 39N � / C C exp.�39N �/

� exp.�30N � /:

On the other hand by (2.6) we have

je1 ^ M u
j2�j1

.x C j1!/e1j D
ˇ̌̌ b.x C j2!/

b.x C .j2 � 1/!/

ˇ̌̌1=2jf u
j2�j1�1.x C j1!/j;

so

jf u
j2�j1�1.x C j1!/j � C exp

�1

2
.N � � D/ � 30N �

�
� exp.�20N � /:

The same type of estimate is obtained if we replace .j1; j2/ in (4.8) with .0; j1/ or
.0; j2/.

Now assume that

jvC
N .x C j1!/ ^ e2j � exp.�40N � /

and

jvC
N .x C j2!/ ^ e2j � exp.�40N � /:
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Similarly to the previous case (first use Lemma 4.5 and then Lemma 4.4) we have

jvC
N .x C j2!/ ^ M u

j2�j1
.x C .N C j1/!/vC

N .x C j1!/j
� jvC

N Cj2�j1
.x C j1!/ ^ M u

j2�j1
.x C .N C j1/!/vC

N .x C j1!/j
C C kM u

j2�j1
.x C .N C j1/!/k jvC

N .x C j2!/ ^ vC
N Cj2�j1

.x C j1!/j
� kM u

N .x C j1!/k�2kM u
j2�j1

.x C .N C j1/!/k
C C kM u

j2�j1
.x C .N C j1/!/kkM u

N .x C j2!/k�2kM u
j2�j1

.x C j1!/k2

� exp..�2N C j2 � j1/L C 3N � / C C exp..�2N C 3.j2 � j1//L C 5N � /

� exp.�NL/

for x 2 GN and

je2 ^ M u
j2�j1

.x C .N C j1/!/e2j
� je2 ^ M u

j2�j1
.x C .N C j1/!/vC

N .x C j1!/j
C C kM u

j2�j1
.x C .N C j1/!/�1kje2 ^ vC

N .x C j1!/j
� jvC

N .x C j2!/ ^ M u
j2�j1

.x C .N C j1/!/vC
N .x C j1!/j

C C kM u
j2�j1

.x C .N C j1/!/kje2 ^ vC
N .x C j2!/j

C C kM u
j2�j1

.x C .N C j1/!/�1kje2 ^ vC
N .x C j1!/j

� exp.�NL/ C C exp..j2 � j1/L � 39N � / C C exp.�39N �/

� exp.�30N � /:

On the other hand by (2.6) we have

je2 ^ M u
j2�j1

.x C .N C j1/!/e2j

D
ˇ̌̌ b.x C .N C j1/!/

b.x C .N C j1 C 1/!/

ˇ̌̌1=2jf u
j2�j1�1.x C .N C j1 C 1/!/j;

so

jf u
j2�j1�1.x C .N C j1 C 1/!/j � C exp

�1

2
.N � � D/ � 30N �

�
� exp.�20N � /:

In conclusion

mesfx 2 T W jf u
l .x/j � exp.�20N � /g > exp.�cN �=2/

for some choice of l from j1 � 1, j2 � 1, j2 � j1 � 1. However, this contradicts the
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fact that Lemma 4.3 implies

mesfx 2 T W jf u
l .x/j � exp.�20N � /g

� mesfx 2 T W jf u
l .x/j � exp.�N � /g

� exp.�N � l�2/ � exp.�N 3�=4/ < exp.�cN �=2/

(we used l � N �=8).

Lemma 4.7. There exist constants 
 > 0 and

N0 D N0.kak1; Ia;E ; kbk�; jEj; !; �/

such that for N � N0 we haveˆ
T

1

N
jf u

N .x/jdx > LN � N �� :

Proof. Let �N be the set of points x 2 GN such that

minfjf u
N .x C j1!/j C jf u

N .x C j2!/j C jf u
N .x C j3!/j W

0 < j1 < j1 C l0 � j2 < j2 C l0 � j3 � N �=8g
> exp.NLN � 100N � /;

where l0 is as in the previous lemma. If N is large enough then

mes.T n �N / � N exp.�c1N �=2/ < exp.�cN �=2/:

Let u.x/ D log jf u
N .x/j=N and set

M D ŒN �=8=l0�:

For each x 2 �N we have that

jf u
N .x C kl0!/j > exp.NLN � 100N � /=3

for all but at most two k’s, 1 � k � M . We have

hui defD
ˆ

T
u.x/dx

D 1

M

MX
kD1

ˆ
T

u.x C kl0!/dx

�
ˆ

�N

�M � 2

M

�
LN � 100N ��1 � log 3

N

�
C 2

M
inf

1�k�M
u.x C kl0!/

�
dx

C 1

M

MX
kD1

ˆ
Tn�N

u.x C kl0!/dx:

(4.10)
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Let v.x/ D log jf a
N .x/j=N . We have that

S
defD sup

z2A
�00

0

v.z/ � sup
z2A

�00
0

1

N
log kM a

N .z/k < 1:

Let

v.z/ D
ˆ

A
�0

0

log jz � �jd�.�/ C h.z/

be the Riesz representation on A�0
0
. Applying [5], Lemma 2.2, (see the proof of

Lemma 3.4) we get that

�.A�0
/ C khkL1.A�0

/ � C.2S � sup
T

v/ � C.2S � hvi/: (4.11)

Note that hvi is finite by subharmonicity. Since hvi D hui C D, it follows that hui
is also finite. Using Cartan’s estimate (see [4], Lemma 2.2) we get that for any small
" > 0 we have

inf
1�k�M

v.x C kl0!/ � �C.2S � hvi/N " (4.12)

up to a set not exceeding CM exp.�N "/ in measure. Since

u.x/ D v.x/ � 1

2N
.SN .x/ C SN .x C !// (4.13)

we can use (4.12) and Theorem 2.1 to conclude that

inf
1�k�M

u.x C kl0!/ > �C.2S � hui � D/N " � D � N " > .C hui � C 0/N "

up to a set BN not exceeding exp.�cN "/ in measure. Therefore
ˆ

�N

inf
1�k�M

u.x C kl0!/dx

> .C hui � C 0/N " C
ˆ

�N \BN

inf
1�k�M

u.x C kl0!/

> .C hui � C 0/N " �
MX

kD1

ˆ
�N \BN

ju.x C kl0!/jdx:

Now (4.10) becomes

hui �
�
1 � 2

M

��
LN � 100N ��1 � log 3

N

�
C .C hui � C 0/N "

M

� 2

M

MX
kD1

ˆ
�c

N
[BN

ju.x C kl0!/j:
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Using Lemma 4.3 (with 	 D 3) and reasoning as in the proof of Lemma 3.8 we get
that kukL2.T / � CN 3 and consequently
ˆ

�c
N [BN

ju.x C kl0!/jdx � .mesf�c
N [ BN g/1=2kuk

L2.T /
� CN 3 exp.�cN "/:

Now it is straightforward to reach the conclusion.

Corollary 4.8. Let

1

n
log jf a

n .z/j D
ˆ

A
�0

0

log jz � �jd�n.�/ C hn.z/

be the Riesz representation on A�0
0
. There exists a constant

C0 D C0.kak1; Ia;E ; kbk�; jEj; !; �; �0; �0
0; �00

0/

such that
�n.A�0

/ C khnk
L1.A�0

/
� C0:

Proof. It suffices to obtain the bound for large n. The bound follows from (4.11) and
the previous lemma.

Lemma 4.9. There exist constants 	0 > 0,

c0 D c0.Ia;E ; kbk�; jEj; !; �/;

and
C0 D C0.Ia;E ; kbk�; jEj; !; �/

such that for every integer n and any ı > 0 we have

mesfx 2 T W j log jf a
n .x/j � hlog jf a

n jij > nıg � C0 exp.�c0ın�0/:

The same estimate with possibly different c0 and C0 holds for f u
n .

Proof. It is enough to establish the estimate for n large enough. Let u.x/ D
log jf u

n .x/j=n and v.x/ D log jf a
n .x/j=n. By the previous lemma (recall that

hvi D hui C D) and Proposition 3.14 we have that there exists a small 
 > 0

such that 8̂<
:̂

hvi � La
n � n�� ;

sup
T

v � La
n C n�� :

This implies that
kv � hvik

L1.T /
� C n��
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and hence by [1], Lemma 2.3, we have

kvkBMO.T /
D kv � hvikBMO.T /

� C kv � hvik1=2

L1.T /
� C n��=2:

As in the proof of [5], Proposition 2.11, we note that in order to get the conclusion
of [1], Lemma 2.3, we just need the bounds on the Riesz representation of v. By the
John–Nirenberg inequality we get

mesfx 2 T W jv.x/ � hvij > ıg � C exp.�cın�=2/:

Using (4.13) we have

mesfx 2 T W ju.x/ � huij > ıg

� mes
°
x 2 T W jv.x/ � hvij >

ı

2

±

C mes
°
x 2 T W

ˇ̌̌ 1

2n
.Sn.x/ C Sn.x C !// � D

ˇ̌̌
>

ı

2

±

� C exp.�cın�=2=2/ C 2 exp.�c0ın=2 C rn/

� C 0 exp.�c00ın�=2=2/:

This concludes the proof.

Next we will use the Avalanche Principle to refine the previous estimate.

Proposition 4.10. There exist constants

c0 D c0.kak1; Ia;E ; kbk�; jEj; !; �/;

C0 D C0.!/ > ˛ C 2;

and

C1 D C1.kak1; Ia;E ; kbk�; jEj; !; �/

such that for every integer n > 1 and any ı > 0 we have

mesfx 2 T W j log jf a
n .x/j � hlog jf a

n jij > nıg
� C1 exp.�c0ın.log n/�C0/:

Proof. It is enough to establish the estimate for n large enough. We have that"
f u

n .x/ 0

0 0

#
D
"�1 0

0 0

#
M u

n .x/

"�1 0

0 0

#
defD Mu

n.x/:

We define Ma
n analogously. We obviously have that jf a

n .x/j D kMa
n.x/k.
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Let l D Œ.log n/2=�0 � with 	0 as in Lemma 4.9. Let n D l C .m � 2/l C l 0 with
2l � l 0 � 3l . We want to apply the Avalanche Principle to Mu

n.x/ D Q1
j Dm Au

j .x/

where Au
j .x/ D M u

l
.x C .j � 1/l!/, j D 2; : : : ; m � 1,

Au
1.x/ D M u

l .x/

"�1 0

0 0

#
D
"

f u
l

.x/ 0

? 0

#
;

and

Au
m.x/ D

"�1 0

0 0

#
M u

l 0 .x/ D
"

f u
l 0 .x/ ?

0 0

#
:

We define the matrices Aa
j analogously. We clearly have that

log jf u
l .x/j � log kAu

1.x/k � log kM u
l .x/k;

and an analogous estimate for log kAu
mk. Now it follows from Corollary 3.11,

Lemma 4.9, and Lemma 4.7 that the hypotheses of Lemma 3.7 are satisfied and
hence

log kMa
n.x/k C

m�1X
j D2

log kAa
j .x/k �

m�1X
j D1

log kAa
j C1.x/Aa

j .x/k D O
�1

l

�

up to a set of measure less than 3n exp.�cl�0/ < exp.�c0.log n/2/. Note that, as
before, we checked the conditions of the Avalanche Principle for Mu

n , but we wrote
the conclusion for Ma

n . By letting

u0.x/ D log kAa
m.x/Aa

m�1.x/k C log kAa
2.x/Aa

1.x/k
we rewrite the previous relation as

log kMa
n.x/k C

m�1X
j D2

log kM a
l .x C .j � 1/l!/k

�
m�2X
j D2

log kM a
2l .x C .j � 1/l!/k � u0.x/

D O
�1

l

�
:

Note that

log kf a
lCl 0.x C .m � 2/l!/k C log kf a

2l .x/k � u0.x/

� log kM a
lCl 0.x C .m � 2/l!/k C log kM a

2l .x/k:
(4.14)
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We apply the Avalanche Principle l � 1 more times. At each step we decrease the
length of Am by one and increase the length of A1 by one. Adding the resulting
estimates and dividing by l yields

log kMa
n.x/k C

.m�1/l�1X
j Dl

1

l
log kM a

l .x C j!/k

�
.m�2/l�1X

j Dl

1

l
log kM a

2l .x C j!/k �
l�1X
kD0

1

l
uk.x/

D O
�1

l

�
(4.15)

up to a set of measure less than l exp.�c.log n/2/ < exp.�c0.log n/2/. The functions
uk , k D 1; : : : ; l � 1 are defined analogously to u0 and satisfy estimates analogous
to (4.14). Based on these estimates it is straightforward to conclude (see Lemma 3.4
and (4.11)) that there is an uniform bound for the Riesz representations of uk=l ,
k D 1; : : : ; l � 1. Hence we can use Theorem 2.1 to get

l�1X
kD0

1

l
uk.x/ �

l�1X
kD0

1

l
huki D O.l.log n/2/ D O..log n/2C2=�0/

up to a set of measure less than l exp.�c.log n/2/ < exp.�c0.log n/2/. On the other
hand, using Theorem 3.10 we have

.m�1/l�1X
j Dl

1

l
log kM a

l .x C j!/k �
.m�2/l�1X

j Dl

1

l
log kM a

2l.x C j!/k

D .m � 2/lLa
l � .m � 3/lLa

2l C O..log n/p/

up to a set of measure less than exp.�c.log n/p/. We can now conclude from (4.15)
that

log jf a
n .x/j C .m � 2/lLa

l � .m � 3/lLa
2l �

l�1X
kD0

1

l
huki D O..log n/C2/

up to a set of measure less than exp.�c.log n/2/, where C2 D maxfp; 2 C 2=	0g.
Integrating the above relation and then subtracting it, yields

j log jf a
n .x/j � hlog jf a

n jij � C.log n/C2 (4.16)

up to a set of measure less than exp.�c.log n/2/. Note that the exceptional set was
handled by using the fact that k log jf a

n jk
L2.T /

� C n. This follows from

k log jf a
n j � hlog jf a

n jik
L2.T /

� C n (4.17)
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and jhlog jf a
n jij � C n. The first estimate is an immediate consequence of Lemma 4.9

and Lemma 3.8. The second estimate can be deduced from Lemma 4.7.
Let B be the exceptional set for (4.16). Let

log jf a
n j � hlog jf a

n ji D u0 C u1

where u0 D 0 on B and u1 D 0 on T n B. By (4.16) and (4.17) we have that
ku0 � hu0ik

L1.T /
� C.log n/C2 and

ku1k
L2.T /

� C n
p

mes.B/ � exp.�c.log n/2/:

Applying [1], Lemma 2.3, we have

k log jf a
n jkBMO.T /

� C..log n/C2C2 C
p

n exp.�c.log n/2// � C 0.log n/C0 :

The conclusion follows from the John–Nirenberg inequality.

Lemma 4.11. There exists a constant

C0 D C0.kak1; Ia;E ; kbk�; jEj; !; �/

such that
jhlog jf a

n ji � nLa
nj � C0

for all integers.

Proof. Subtracting the Avalanche Principle expansions for Ma
n and M a

n at scale l Ð
.log n/A and then integrating, yields

jhlog jf a
n ji � nLa

nj � CR.4.log n/A/ C O
�1

l

�

where
R.n/ D sup

n=2�m�n

jhlog jf a
m ji � mLa

mj:

Iterating this estimate yields the desired conclusion (cf. [5], Lemma 3.5).

We now prepare to prove the estimate on the number of eigenvalues. Fix E0 2 R
such that L.E0/ � � > 0. As a consequence of Corollary 3.17 and Lemma 3.9 it
follows that there exists a disk D around E0 such that L.E/ � �=2 on I . In what
follows we also fix D . Note that the existence of the disk D would follow from the
continuity of the Lyapunov exponent, which is known from [8]. However, we also
need the information on the modulus of continuity provided by Corollary 3.17. This
information follows from the Hölder continuity of the Lyapunov exponent proved
in [10], but we use Corollary 3.17 in order to keep the paper self-contained. The
following deviations estimate in E will be needed in the proof of the estimate.
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Lemma 4.12. Let C0 be as in Proposition 4.10. There exist constants

c0 D c0.kak1; Ia;E ; kbk�; jEj; !; �/

and

C1 D C1.kak1; Ia;E ; kbk�; jEj; !; �/

such that for every integer n > 1 and every ı � ı0 there exists a set Bn;ı � T with
mes Bn;ı < C1 exp.�c0ı.log n/�C0/, such that for each x 2 T n Bn;ı there exists
En;ı;x � D , with mes En;ı;x < C1 exp.�c0ı.log n/�C0/, such that

j log jf a
n .x; E/j � nLa

n.E/j � ı; (4.18)

for any E 2 D n En;ı;x .

Proof. From Proposition 4.10 and Lemma 4.11 it follows that (4.18) holds for ı �
ı0, and .x; E/ 2 T � D except for a set of measure C exp.�cı=.log n/C0/. The
conclusion follows by Fubini’s Theorem and Chebyshev’s inequality.

Theorem 4.13. Let C0 D C0.!/ be as in Proposition 4.10. There exist constants

C1 D C1.kak1; kbk�; jE0j; !; �/;

C2 D C2.kak1; Ia;D ; kbk�; jE0j; !; �/;

and

n0 D n0.kak1; Ia;D ; kbk�; jE0j; !; �/

such that for any x0 2 T , E0 2 R, and n � n0 one has

#fE 2 R W f a
n .x0; E/ D 0; jE � E0j < n�C1g � C2.log n/2C0

and
#fz 2 C W f a

n .z; E0/ D 0; jz � x0j < n�1g � C2.log n/2C0 :

Proof. From (4.18) it follows that there exist x1; E1 such that

jx1 � x0j � C exp.�c.log n/C0/;

jE1 � E0j � C exp.�c.log n/C0/;

and

log jf a
n .x1; E1/j � nLn.E1/ � .log n/2C0 : (4.19)

Let R D n�2C3 , where C3 is the constant C1 from Corollary 3.17, and let �x;E .r/ D
#fE W f a

n .x; E 0/ D 0; jE 0 � Ej � rg. Using Jensen’s formula we have that

�x1;E1
.3R/ � C

ˆ 4R

0

�x1;E1
.t /

t
dt

D 1

2�

ˆ 2�

0

log jf a
n .x1; E1 C 4Rei	/jd � log jf a

n .x1; E1/j:
(4.20)
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By Proposition 3.14 we have

log jf a
n .x1; E/j � nLa

n.E/ C C.log n/p

for E 2 D . Using this, together with (4.19) and (4.20) yields

�x1;E1
.3R/ � C. sup

jE�E1jD4R

.n.La
n.E/ � La

n.E1/// C .log n/2C0/:

For E such that jE � E0j � R we have that jE � E1j � n�C3 and hence by
Corollary 3.17 we have that jn.La

n.E/ � La
n.E1//j � n�C . We can now conclude

that

�x1;E0
.2R/ � �x1;E1

.3R/ � C.log n/2C0 : (4.21)

Using the Mean Value Theorem we can conclude that

kH .n/.x0/ � H .n/.x1/k � C njx0 � x1j � C exp.�c.log n/C0/:

Let E
.n/
j .x/, j D 1; : : : ; n be the eigenvalues of H .n/.x/ ordered increasingly. Since

H .n/.x0/ and H .n/.x1/ are Hermitian it follows that

jE.n/
j .x0/ � E

.n/
j .x1/j � C exp.�c.log n/C0/:

This implies that �x0;E0
.R/ � �x1;E0

.2R/ and now the first estimate follows from
eq. (4.21).

The second estimate follows in a similar way. From Proposition 4.10 it follows
that there exists x1 such that jx1 � x0j � C exp.�c.log n/C0/ and

log jf a
n .x1; E0/j � nLn.E0/ � .log n/2C0 : (4.22)

Let �x.r/ D #fz 2 C W f a
n .z; E0/ D 0; jz �xj < rg. Using Jensen’s formula, (4.22)

and Proposition 3.14, as before, yields

�x0
.n�1/ � �x1

.2n�1/

� C. sup
r2.1�3n�1;1C3n�1/

.n.La
n.r; E0/ � La

n.1; E0/// C .log n/2C0/

� C 0.log n/2C0 :

For the last inequality we used Corollary 3.13. This concludes the proof.
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