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Spectral analysis of tridiagonal Fibonacci Hamiltonians

William N. Yessen1

Abstract. We consider a family of discrete Jacobi operators on the one-dimensional integer
lattice, with the diagonal and the off-diagonal entries given by two sequences generated by
the Fibonacci substitution on two letters. We show that the spectrum is a Cantor set of zero
Lebesgue measure, and discuss its fractal structure and Hausdorff dimension. We also extend
some known results on the diagonal and the off-diagonal Fibonacci Hamiltonians.
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1. Introduction

Partly due to the choice of the models in the original papers [30] and [35], until
quite recently, the mathematical literature on the Fibonacci operators had been fo-
cused exclusively on the diagonal model; see surveys [13], [11], and [45]. Recently
D. Damanik and A. Gorodetski in [17], Appendix A, and also J. M. Dahl in [10]
investigated the off-diagonal model. This model has been the object of interest in a
number of physics papers; see, for example, [34], [33], [31], [44], [52], and [54].

Quasi-periodicity has also been considered, as early as 1987, in a widely studied
model of magnetism: the Ising model, both quantum and classical; numerous nu-
merical and some analytic results were obtained; see [51], [5], [9], [24], [21], [6],
[55], [50], and references therein. Recently the author investigated some properties
of these models in [53]. The following problem was motivated as a result of this in-
vestigation. What can be said about the spectrum and spectral type of the tridiagonal
Fibonacci Hamiltonian? The aim of this paper is to investigate spectral properties of
such operators.

In general one would hope to parallel the development for the diagonal and the
off-diagonal cases; however, a fundamental difference presents some technical diffi-
culties: in the application of the trace map one finds that the constant of motion (the
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so-called Fricke–Vogt invariant), unlike in the diagonal and the off-diagonal cases,
is not energy-independent. The main tool in the investigation of the diagonal and
the off-diagonal operators has been hyperbolicity of the trace map when restricted
to a constant of motion. While this technique will not apply in our case verbatim,
motivated by it, and in part based on it, we employ some other tools to combat the
aforementioned difficulties.

Acknowledgements. I wish to thank my thesis advisor, Anton Gorodetski, for the
invaluable support and guidance. I also wish to thank Svetlana Jitomirskaya, David
Damanik and Christoph Marx for useful discussions. Finally, I would like to thank
the anonymous referees for their helpful comments and remarks.

2. The model and main results

2.1. The model. Let A D ¹a; bº; A� denotes the set of finite words over A. The
Fibonacci substitution S W A ! A� is defined by S W a 7! ab, S W b 7! a. We
formally extend the map S to A� and AN;Z by

S W ˛1˛2 : : : ˛k 7�! S.˛1/S.˛2/ : : : S.˛k/

and

S W : : : ˛1˛2 : : : 7�! : : : S.˛1/S.˛2/ : : : :

There exists a unique substitution sequence u 2 AN with the following proper-
ties [39]:

u1 � � �uFk
D Sk�1.a/; k � 2I

S.u/ D uI (1)

u1 � � �uFkC2
D u1 � � �uFkC1

u1 � � �uFk
;

where ¹Fkºk2N is the sequence of Fibonacci numbers: F0 D F1 D 1I Fk�2 D
Fk�1 C Fk�2. From now on we reserve the notation u for this specific sequence.

Let Ou denote an arbitrary extension of u to a two-sided sequence in AZ. Equip
A with the discrete topology and AN;Z with the corresponding product topology.
Define

� D ¹! 2 AZ W ! D lim
i!1T ni . Ou/; ni " 1º;

where T W AZ ! AZ is the left shift: for v 2 AZ; ŒT .v/�n D vnC1. The hull � is
compact and T -invariant, and T is continuous. Now to each ! 2 � we associate a
Jacobi operator.
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For every ! 2 �, we define the Fibonacci Jacobi operator or tridiagonal Fi-
bonacci Hamiltonian, H! , on l2.Z/ as follows. Let p; q W A ! R. We allow only
nonzero values for p:

.H!'/n D p.!n/'n�1 C p.!nC1/'nC1 C q.!n/'n: (2)

When p � 1, we call H the diagonal model and when q � 0, we call H the
off-diagonal model. Clearly these two models are special cases of the tridiagonal
Hamiltonian.

We single out a special !s 2 �, defined as follows. Notice that ba occurs in u
and that S2.a/ D aba begins with a and S2.b/ D ab ends with b. Thus, iterating S2

on bja, where j denotes the origin, we obtain as a limit a two-sided infinite sequence
!s in �. The sequence !s has the properties

Œ!s�k�1 D uk ; Œ!s��k D uk�1 for all k � 2: (3)

2.2. Main results. From now on the spectrum of an operator H will be denoted by
�.H/. The operators in (2) can be first scaled byp.a/ and then shifted by �q.a/=p.a/
while preserving the spectrum. So without loss of generality, we may assume that
p.a/ D 1 and q.a/ D 0. We represent p; q in compact vector notation .p; q/, where
p.b/ D p and q.b/ D q.

Theorem 2.1. There exists †.p;q/ � R, such that for all ! 2 �, �.H!/ D †.p;q/.
If .p; q/ ¤ .1; 0/, then †.p;q/ is a Cantor set of zero Lebesgue measure; it is purely
singular continuous.

Remark 2.2. By a Cantor set we mean a compact totally disconnected set with no
isolated points.

We write simplyH forH!s
. In what follows, the Hausdorff dimension of A � R

is denoted by dimH.A/. The local Hausdorff dimension of A at a 2 A is defined as

dimloc
H .A; a/

defD lim
"!0

dimH.A \ .a � "; aC "//:

We denote by dimB.A/ the box-counting dimension of A, and define dimloc
B .A/

similarly to dimloc
H .A/.

Our next results is the following theorem that describes the fractal structure of the
spectrum.

Theorem 2.3. For all .p; q/ ¤ .1; 0/, the spectrum †.p;q/ is a multifractal; more
precisely, the following holds.

(i) dimloc
H .†.p;q/; a/, as a function of a 2 †.p;q/, is continuous; It is constant in

the diagonal and the off-diagonal cases, and nonconstant otherwise.
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Figure 1.

(ii) There exists nonempty N � R2 of Lebesgue measure zero, such that the follow-
ing holds.

(a) For all .p; q/ … N, we have 0 < dimloc
H .†.p;q/; a/ < 1 for all a 2 †.p;q/;

hence we have 0 < dimH.†.p;q// < 1.

(b) for .p; q/ 2 N, 0 < dimloc
H .†.p;q/; a/ < 1 for all a 2 †.p;q/ away from the

lower and upper boundary points of the spectrum, and dimH.†.p;q// D 1.
In fact, the dimension accumulates at one of the two ends of the spectrum.

(iii) lim.p;q/!.1;0/ dimH.†.p;q// D 1. In fact, the Hausdorff dimension of the spec-
trum is a continuous function of the parameters.

(iv) dimH.†.p;0// and dimH.†.1;q// depend analytically on p and q, respectively.

Remark 2.4. We conjecture a stronger result in Section 4. We also mention that (iia)
and (iv) are extensions of results on the diagonal and the off-diagonal model; indeed,
previous results relied on transversality arguments (see below), but transversality
is still not known for some values of parameters p and q (see Section 4). Notice
also that unlike in the previously considered diagonal and off-diagonal models, in
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the tridiagonal model the spectrum may have full Hausdorff dimension even in the
non-pure regime (i.e. .p; q/ ¤ .1; 0/).

Existence of box-counting dimension and, if it exists, whether it coincides with
the Hausdorff dimension, is of interest. The next theorem provides a partial answer
in this direction. Indeed, we prove that for all parameters .p; q/ in a certain region in
R2 (the shaded regions in Figure 1), the box-counting dimension of†.p;q/ exists and
coincides with the Hausdorff dimension (see, however, Section 4).

Theorem 2.5. The following statements hold.

(i) There exists " > 0 such that for all .p; q/ satisfying k.1; 0/� .p; q/k < ",
the box-counting dimension of †.p;q/ exists and coincides with the Hausdorff
dimension;

(ii) There exists � > 0, such that for all jpj � � there exists ıp > 0, such that
for all q satisfying jqj < ıp, the box-counting dimension of †.p;q/ exists and
coincides with the Hausdorff dimension.

(iii) There exists� > 0 such that for all jqj � � there exists ıq > 0, such that for all
p satisfying jpj < ıq, the box-counting dimension of†.p;q/ exists and coincides
with the Hausdorff dimension.

In the statement of the next theorem, denote the density of states for the operator
H.p;q/ by N and the corresponding measure by dN ; for definitions, properties and
examples see, for instance, [48], Chapter 5. Of course, N , and consequently dN ,
depend on .p; q/. We quickly recall that dN is a non-atomic Borel probability
measure on R whose topological support is the spectrum †.p;q/.

The next theorem states that the point-wise dimension of dN exists dN -almost
everywhere, but may depend on the point, unlike in the diagonal case; compare
Theorem 2.6 with the results of [18].

Theorem 2.6. For all .p; q/ 2 R2, there exists V.p;q/ � R of full dN -measure, such
that for all E 2 V.p;q/ we have

lim
"#0

log N .E � "; E C "/

log "
D d.p;q/.E/ 2 R; (4)

d.p;q/.E/ > 0. Moreover, if .p; q/ ¤ .1; 0/, then

d.p;q/.E/ < dimloc
H .†.p;q/; E/: (5)

Also,

lim
.p;q/!.1;0/

sup
E2V.p;q/

fd.p;q/.E/g D lim
.p;q/!.1;0/

inf
E2V.p;q/

fd.p;q/.E/g D 1: (6)
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3. Proof of main results

Assume, unless stated otherwise, that .p; q/ ¤ .1; 0/. Let Q!k be a periodic word of
period Fk with unit cell Œ!s�1 � � � Œ!s�Fk

. Let

. zH k'/n D p.Œ Q!k�n/'n�1 C p.Œ Q!k�nC1/'nC1 C q.Œ Q!k�n/'n:

If �.�/ 2 RZ satisfies

zH k�.�/ D ��.�/; (7)

then for all n 2 Z,

p.Œ Q!k�nC1/�nC1.�/ D .� � q.Œ Q!k�n//�n.�/ � p.Œ Q!k�n/�n�1.�/: (8)

Take  .�/; '.�/ 2 RZ, with '0 D  �1 D 1, '�1 D  0 D 1, satisfying (7). By
Floquet theory [49],

�. zH k/ D �k
defD

n
� W 1

2
j'Fk

.�/C  Fk�1.�/j � 1
o
: (9)

We write pk;n for p.Œ Q!k�n/; similarly for q. Define

Mn.�/
defD 1

pk;n

�
� � qk;n �pk;n�1

pk;n 0

�
; Tn.�/

defD 1

pk;n

�
� � qk;n �1
p2

k;n
0

�
(10)

and let ‚n D .�n; pk;n�n�1/
T. By (8), � satisfies (7) if and only if�

�n

�n�1

�
D Mn

�
�n�1

�n�2

�
() ‚n D Tn‚n�1 for all n 2 Z: (11)

Define

yTk.�/
defD TFk

.�/ � � � � � T1.�/:

From (11) we have ‚Fk
D yTk‚0; hence using ' and  in place of � we get 'Fk

D
Œ yTk�11 and pk;Fk

 Fk�1 D pk;0Œ yTk�22. Since Q!k is Fk-periodic, pk;Fk
D pk;0, so

1

2
j'Fk

.�/C  Fk�1.�/j D 1

2
jTr yTk.�/j: (12)

3.1. Proof of Theorem 2.1. Let †.p;q/ denote �.H!s
/. It is known that .�; T / is

topologically minimal, hence for all ! 2 �, �.H!/ D †.p;q/; see, for example, [12].
Since yTk is unimodular and, by (1), yTkC2 D yTkC1

yTk , we have, with 2xk D Tr yTk ,

.xkC3; xkC2; xkC1/ D f .xkC2; xkC1; xk/;
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where f .x; y; z/ D .2xy � z; x; y/ is the Fibonacci trace map; for a survey, see [2]
and references therein. The initial condition .x3; x2; x1/ is rather complicated. For a
simpler expression, we take (we omit calculations)

�.�/
defD .x1; x0; x�1/ D f �2.x3; x2; x1/ D

�� � q

2
;
�

2p
;
1C p2

2p

�
; (13)

where f �1.x; y; z/ D .y; z; 2yz � x/ is the inverse of f ; compare with the initial
conditions in, for example, [15] and in [17], AppendixA. We write �.p;q/ to emphasize
dependence on .p; q/ when necessary.

Fix C >
ˇ̌
.1C p2/=2p

ˇ̌ � 1 and for k � �1 define

O�k D
n
� W 1

2
jxk j � C

o
:

These sets are closed and O�k [ O�kC1 	 O�kC1 [ O�kC2. Moreover, for any l � �1,\
k�l

O�k [ O�kC1 D B1
defD ¹� W OC

f
.�.�// is boundedº; (14)

where OC
f
.x/ D ¹x; f .x/; f 2.x/; : : : º is the positive semi-orbit of x under f ;

see [53], Proposition 3.1, which is a slight extension of [13], Proposition 5.2. Since
zH k ����!

k!1
H strongly, combining (14), (12), and (9), we get

†.p;q/ �
\
l�1

[
k�l

�k �
\
k�1

O�k [ O�kC1 D B1:

Since ¹pk;nºk;n2N is uniformly bounded away from zero and infinity and !s satis-
fies (3), the argument in [46] applies and gives B1 
 †.p;q/. Hence

B1 D †.p;q/: (15)

(See also Remark 3.1 below for an outline of an alternative proof of (15)).
Define

Z
defD

n
� W lim

k!1
1

k
log k yTk.�/k D 0

o
:

By Kotani theory (see [32], [14], and [40] for extension to Jacobi operators), Z has
zero Lebesgue measure, and, by [28], B1 
 Z; this also follows from an earlier
work by A. Sütő – see [47] – and a later (and more general) work of D. Damanik and
D. Lenz in [19]. Hence †.p;q/ has zero Lebesgue measure.

The argument in [17], SectionA.3, without modification, shows that for all! 2 �
�.H!/ is purely singular continuous. So†.p;q/ contains no isolated points, is compact
and has zero Lebesgue measure. Thus it is a Cantor set. This completes the proof.
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Remark 3.1. An alternative proof of (15) can be given as follows. Using the results
of [1], we get convergence in Hausdorff metric of the sequence of spectra of periodic
approximations, ¹�kº, to the spectrum of the limit quasi-periodic operator. On the
other hand, [53], Theorem 2.1-i, shows convergence of ¹�kº to B1. One only needs
to note that [53], Theorem 2.1-i, relies on transversality (see Section 3.2.1 below),
which, as discussed below, we have everywhere except possibly at finitely many
points (which does not affect the conclusion of [53], Theorem 2.1-i).

3.2. Proof of Theorem 2.3. For the necessary notions from hyperbolic and partially
hyperbolic dynamics see a brief outline in [53], Appendix B, and [26], [25], [27],
[23], and [22] for details.

Define the so-called Fricke–Vogt invariant by

I.x; y; z/
defD x2 C y2 C z2 � 2xyz � 1;

and the corresponding level sets

SV
defD ¹.x; y; z/ 2 R3 W IV .x; y; z/� V D 0º;

see Figure 2. We are interested in SV >0. In this case SV is a non-compact, connected
analytic two-dimensional submanifold of R3. We have IV B f D IV , consequently
f .SV / D SV . We write fV for f jSV

. The nonwandering set �V for fV on SV is
compact fV -invariant locally maximal transitive hyperbolic set; see [8], [7], and [15].
Consequently, for x 2 SV , OC

fV
.x/ is bounded if and only if there exists y 2 �V

with x 2 W s.y/, the stable manifold at y (this follows from general principles).
There exists a family W s of smooth two-dimensional injectively immersed pair-wise
disjoint submanifolds of R3, called the center-stable manifolds and denoted W cs,
such that [

V >0

[y2�V
W s.y/ D

[
W cs2W s

W cs

(see [53], Proposition 3.9). It follows that for x 2 SV , OC
f
.x/ is bounded if and only

if x 2 W cs for some W cs 2 W s .

3.2.1. Proof of (i). In the proof below, isolation of tangential intersections (if such
exist) was suggested by A. Gorodetski, and the use of [4], Lemma 6.4, was suggested
by S. Cantat.

We have

I B �.�/ D �q.1� p2/C q2p2 C .p2 � 1/2

4p2
; (16)

which is �-dependent; compare with [15] and [17], Appendix A. Denote by ��

the image of � . Since �� � ¹z D 1Cp2

2p
º, which is away from the unit cube
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(a) V D 0:0001 (b) V D 0:01

(c) V D 0:05 (d) V D 1

Figure 2. Invariant surfaces SV for four values of V .

¹.x; y; z/ W jxj ; jyj ; jzj � 1º when p ¤ 1, for all � with I B �.�/ < 0 (which can
only happen when p ¤ 1), OC

f
.�.�// escapes to infinity (see [41]), and these points

do not interest us. Application of [29], Section 3, with the initial conditions (13) in
mind gives similar result for all � sufficiently large. Thus we restrict our attention to
a compact line segment along ��, which we denote by ��, and which lies entirely inS

V >0 SV .

Take m 2 �� whose forward orbit is bounded. Let Um be a small neighborhood
of m in R3. Pick a plane …m containing �� and transversal at m to the center-
stable manifold containing m. Since fV is analytic and depends analytically on V ,
the center-stable manifolds are analytic; for a detailed proof in the case of Anosov
diffeomorphisms, see [20], Theorem 1.4. Hence the intersection of …m with the
center-stable manifolds in the neighborhood Um, assuming Um is sufficiently small,
gives a family of analytic curves ¹#º in…m; see [53], proof of Theorem 2.1-iii. Those
curves that intersect �� can be parameterized continuously (in the C k�1-topology)
via �� 3 n 7! #.n/ if and only if n 2 #.n/ \ ��. This allows us to apply [4],
Lemma 6.4, and conclude that #.n/ intersects �� transversally for all, except possibly
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finitely many, n 2 ��. By compactness, �� intersects the center-stable manifolds
transversally at all, except possibly finitely many, points along ��. Observe that, with
.p; q/ ¤ .1; 0/,

@I B �
@�

D q.1 � p2/

4p2
¤ 0:

It follows that �� intersects the invariant surfaces ¹SV ºV >0 transversally. Let m 2
�� \ SV be a point of transversal intersection with the center-stable manifold. Ap-
plication of [53], proof of Theorem 2.1-iii, shows that

dimloc
H .�

�; m/ D 1

2
dimH.�V /: (17)

Since V 7! dimH.�V / is continuous (in fact, analytic: see [7], Theorem 5.23)
and the points of tangential intersection, if such exist, are isolated, (17) holds for
all points of intersection of �� with the center-stable manifolds. This proves the
continuity statement. That the local Hausdorff dimension is nonconstant follows by
the observation in [53], Proof of Theorem 2.1-iii; that it is constant in the diagonal and
the off-diagonal cases follows from the observation that in these cases I B �.�/ > 0
is �-independent; see [15], and [17].

3.2.2. Proof of (iia). Let�0 W R2n¹.1; 0/º ! R be such that I B�.p;q/B�0.p; q/ D 0.
Define

C
defD ¹.x; y; z/ W I.x; y; z/� V D 0 and jxj ; jyj ; jzj � 1ºc:

Then C is a smooth two-dimensional submanifold of R3 with four connected com-
ponents (see, for example, [2] and [43] and [42]), and the map F W R2 n ¹.1; 0/º ! C

defined as F.p; q/ D �.p;q/ B�0.p; q/ is smooth. There exist four smooth curves in C ,
whose union we denote by 	 , such that for all x 2 C , OC

f0
.x/ is bounded if and only

if x 2 	 ; see [7] and [15]. Let N D F�1.	/. Then N has zero Lebesgue measure,
and for all .p; q/ … N, the intersection of the corresponding �� with the center-stable
manifolds is away from S0. Now using (17) together with the fact that

for all V > 0; 0 < dimH.�V / < 2 (18)

(see [16] and [7]), we obtain (iia).

3.2.3. Proof of (iib). LetP D .1; 1; 1/. One of the four curves mentioned above is a
branch of the strong stable manifold at P , which we denote byW ss; the tangent space
TPW

ss is spanned by the eigenvector of the differential of f at P corresponding to
the smallest eigenvalue; see [15], Section 4. A simple computation, which we omit
here, shows that TPW

ss is transversal to the plane ¹z D 1º. Hence for all p � 1,

W ss \ ¹z D 1Cp2

2p
º ¤ ;. On the other hand, the first coordinate of � depends only
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on q; hence, evidently from (13), for any x 2 ¹z D 1Cp2

2p
º there exists q such that

x 2 ��
.p;q/

. Thus, N ¤ ;.

Let .p; q/ 2 N, and m 2 ��
.p;q/

\ S0. Then ��1.¹mº/ is one of the two extreme
boundary points of the spectrum, and away from it, by (17) and (18), the local
Hausdorff dimension is strictly between zero and one. On the other hand,

lim
V !0C

dimH.�V / D 2 (19)

(see [17], Theorem 1.1). Hence dimH.†.p;q// D 1.

3.2.4. Proof of (iii). This follows from (19), since ��
.p;q/

depends continuously on
.p; q/, and is close to S0 whenever .p; q/ is close to .1; 0/ (see eq. (16)).

3.2.5. Proof of (iv). This follows, since Vp
defD I B �.p;0/ depends analytically on p,

and at the same time dimH.�Vp/ depends analytically on Vp (see [7], Theorem 5.23);
similarly with .1; q/.

3.3. Proof of Theorem 2.5. In what follows, for a regular curve ˛ in Rn, by ˛� we
denote the image of ˛; the length of ˛ is denoted by lenŒ˛��, and for any a; b 2 ˛�,
the distance along ˛� between a and b is denoted by dist˛�.a; b/ (i.e. the length of
the arc along ˛� connecting a and b).

We also assume, unless stated otherwise, that .p; q/ ¤ .1; 0/, and we always have
p ¤ 0.

Proposition 3.2. The conclusion of Theorem 2.5 holds for all .p; q/ such that �.p;q/

intersects the center-stable manifolds transversally.

To avoid clutter, we first prove a few technical lemmas that we shall then use in
the proof of Proposition 3.2.

Lemma 3.3. Let K�.v/ denote the cone around v 2 Rn of angle 
:

K�.v/
defD ¹u 2 Rn W ].u; v/ < 
º:

For 
 < �=4, for any " 2 Œ0; 
� there exists M D M."/ � 1 such that for
any regular curve ˛ W Œ0; 1� ! Rn satisfying ˛0.t / 2 K".˛

0.0// for all t , we have
lenŒ˛��= k˛.0/ � ˛.1/k � M .

Proof. Let x1; : : : ; xn be the axes of Rn. We may assume that ˛.0/; ˛.1/ 2 x1.
Hence x1 2 K�.˛

0.0//. By regularity, if ˛0
1.t / D 0 implies that ].x1; ˛

0.t // D �=2,
contradicting the hypothesis. Hence ˛0

1.t / ¤ 0 for any t , and we may parameterize
˛ along x1 W ˛.t/ D .t; ˛2.t /; : : : ; ˛n.t // with t 2 Œ˛.0/; ˛.1/� � x1. We have
j˛0

j .t /j D tan � , where � is the angle between x1 and the projection of ˛0.t / onto the
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.x1; xj /-plane. Since ].˛0.t /; x1/ < 2", we have � < 2", hence j˛0
j .t /j < tan 2".

Now,

lenŒ˛�� D
Z ˛.1/

˛.0/

k˛0.t /kdt

�
Z ˛.1/

˛.0/

X
j

j˛0
j .t /jdt � Œ˛.1/ � ˛.0/�Œ1C .n � 1/ tan 2"�:

The result follows with M D Œ1C .n� 1/ tan 2"�.

All intersections of �� with the center-stable manifolds occur only on a compact
line segment along ��; denote this segment by ��. The Fricke–Vogt invariant along
� takes values

I B �.E/ D Eq.1 � p2/C q2p2 C .p2 � 1/2

4p2
: (20)

This gives

@I B �
@E

D q.1 � p2/

4p2
¤ 0: (21)

Hence � intersects the level surfaces ¹SV ºV �0 transversally. Notice that � lies in

the plane …p
defD ¹z D 1Cp2

2p
º (see (13)). Let T be a neighborhood of � . If T is

sufficiently small, then, by transversality and (21), …p intersects the center-stable
manifolds as well as the level surfaces transversally inside T , and zT defD T \…p gives
a neighborhood of � in …p. The intersection of …p with the center-stable manifolds
gives a family of smooth curves in zT , which we denote by ¹#º. The intersection of
…p with the invariant surfaces gives a family of smooth curves, ¹	V D …p\SV ºV �0,
which smoothly foliate zT .

Lemma 3.4. For every intersection point m of �� with the center-stable manifolds,
there exists "m; Cm > 0 such that the following holds. If m 2 	�

Vm
, Vm > 0, then for

every n 2 	�
Vm

, n ¤ m, with dist��
Vm
.n;m/ < "m,

�dist��
Vm
.n;m/

dist��.n; Qn/
�˙1 � Cm; (22)

where Qn is the intersection point of �� with the curve # from ¹#º going through n.

Proof. Parameterize the curves ¹#º by V with #.V / D # \ 	�
V (which is made pos-

sible by transversality of intersection of the center-stable manifolds with the level
surfaces ¹SV ºV >0 – see Proposition 3.9 and proof of Theorem 2.1-iii in [53]). Pa-
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rameterize the subfamily of ¹#º of curves that intersect 	�
Vm

inside zT by n 7! #n,
where ¹nº D #�

n \ 	�
Vm

. Define two constant cone fields Kver
� and Khor

� on …p,
transversal to each other, where 0 < 
 < �=4 is such that #m is tangent to Kver

� at
m, 	Vm

is tangent to Khor
� at m, and �� is transversal to both cones. Let ı > 0 such

that Vm � ı > 0 and set f#�
n D #nŒVm � ı; Vm C ı�. Now, taking ı sufficiently small,

we have f#�
m tangent everywhere to Kver

� . Similarly, let e	�
Vm

be a compact arc along

	�
Vm

containing m in its interior; assuming the arc is sufficiently short, we have e	�
Vm

tangent everywhere to Khor
� . The curves #n depend continuously on n 2 	�

Vm
in the

C 1-topology (see [53], Proposition 3.9), hence if "m is sufficiently small, then for all

n 2 e	�
Vm

with dist��
Vm
.n;m/ < "m, f#�

n intersects �� in one point and is everywhere

tangent to Kver
� . Let Lver

n denote the line segment connecting points n and Qn – the

point of intersection of f#�
n with ��, andLhor

n the line segment connectingm and n. If
n ¤ m and the distance between n and m is not greater than verone "m, by the mean
value theorem L

ver;hor
n is tangent to, respectively, Kver;hor

� . It follows that Lver;hor
n is

transversal to �� uniformly in n, and hence there exists zCm > 0, such that for all
n ¤ m whose distance from m is not greater than "m,

� len.Lhor
n /

dist��.n; Qn/
�˙1 � zCm: (23)

Now application of Lemma 3.3 allows to replace len.Lhor
n / in inequality (23) with the

distance between m and n, dist��
Vm
.m; n/, to obtain (22) with Cm D M zCm, where

M is as in Lemma 3.3.

Remark 3.5. The families ¹#º and ¹	V ºV >0 can be parameterized by n 7! #n and
n 7! 	n 2 ¹	V º where ¹nº D �� \ #n and ¹nº D �� \ 	n, respectively. In this
parameterization, #n and 	n depend continuously on n in the C 1-topology. Hence,
by compactness of ��, in Lemma 3.4 one can choose "; C independent of m.

Recall that a morphism H W .M1; d1/ ! .M2; d2/ of metric spaces is called
Hölder continuous, or simply Hölder, if there exist a constant K > 0 and exponent
˛ 2 .0; 1� such that for all x; y 2 M1, d2.H.x/;H.y// � Kd1.x; y/

˛.
Denote by � the intersection of �� with the center-stable manifolds. Denote

by TV the intersection of 	�
V with the curves ¹#º. Let HV1;V2

W TV1
! TV2

be the
holonomy map defined by projecting points along the curves ¹#º. Note that HV1;V2

is a homeomorphism.

Lemma 3.6. Letm 2 � with m 2 	�
Vm

, Vm > 0. Let h be the holonomy map defined
in a neighborhood (along 	�

Vm
) of m by projecting points from TVm

to � along the
curves ¹#º. Then for every ˛ 2 .0; 1/ there exists "˛ > 0 such that the following
holds.
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If 	� is a compact arc along 	�
Vm

containing m in its interior and lenŒ	�� < "˛ ,
then hjTVm \�� and its inverse are Hölder, both with exponent ˛.

Proof. Let C; " > 0 be as in Remark 3.5. Let "˛ > 0 be so small, that for all
n; n0 2 TVm

\ 	�, n ¤ n0, the following holds. If h.n0/ 2 TV , then

dist��
V
.h.n0/;HVm;V .n// D dist��

V
.HVm;V .n

0/;HVm;V .n// < ":

By Lemma 3.4, we get

�dist��
V
.h.n0/;HVm;V .n//

dist��.h.n0/; h.n//

�˙1 D
�dist��

V
.HVm;V .n

0/;HVm;V .n//

dist��.h.n0/; h.n//

�˙1 � C: (24)

By [53], Lemma 4.21, there exist ı; K > 0 such that Vm � ı > 0 and for all
V 2 ŒVm � ı; Vm C ı�, HVm;V and its inverse are both Hölder with constant K and
exponent˛. By taking "˛ smaller as necessary, we can ensure that for alln 2 TVm

\	�,
if h.n/ 2 TV , then V 2 ŒVm � ı; Vm C ı�. Combining this with (24) completes the
proof.

Proof of Proposition 3.2. Denote by dimB and dimB the lower and upper box-counting
dimensions, respectively. Note that TV is a dynamically defined Cantor set; see [36],
Chapter 4, for definitions. As a consequence, for every n 2 TV , dimloc

B .n; TV / exists
and

dimB.TV / D dimloc
B .n; TV / D dimloc

H .n; TV / D dimH.TV /: (25)

As a consequence of (25) and Lemma 3.6 we obtain the following. For every m 2
� \ TV and ˛ 2 .0; 1/ there exists "m;˛ > 0 such that for any compact arc ˇ� along
�� containing m in its interior and lenŒˇ�� < "m;˛ , we have

˛dimH.TV / � dimH.� \ ˇ�/ � dimB.� \ ˇ�/ � dimB.� \ ˇ�/

� 1

˛
dimB.TV / D 1

˛
dimH.TV /;

(26)

where V is such that x 2 TV .
Now letˇ� be any compact arc along�� containingm in its interior. Let˛ 2 .0; 1/.

Pick a sequence of points m1; : : : ; ml in ˇ� \ � , with mj 2 TVj
, and partition ˇ�

into sub-arcs ˇ�
1 ; : : : ; ˇ

�
l

such that mj 2 ˇ�
j and, by (26),

˛dimH.TVj
/ � dimB.� \ ˇ�

j / � dimB.� \ ˇ�
j / � 1

˛
dimH.TVj

/: (27)

Say max1�j �l¹dimB.�\ˇ�
j /º D dimB.�\ˇ�

j0
/. Then via basic properties of lower

and upper box-counting dimensions (see, for example, [37], Theorem 6.2), we have

dimB.� \ ˇ�/ � dimB.� \ ˇ�/ � dimB.� \ ˇ�
j0
/ � max

1�j �l
¹dimB.� \ ˇ�

j /º

� dimB.� \ ˇ�
j0
/ � dimB.� \ ˇ�

j0
/:

(28)
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In view of (27), the right side of (28) can be made arbitrarily small by taking ˛
sufficiently close to one. Hence dimB.�\ˇ�/ D dimB.�\ˇ�/, and so dimB.�\ˇ�/
exists. This proves the first assertion of the proposition. That local Hausdorff and
box-counting dimensions coincide follows from (26). Hence, by continuity, both
local box-counting and local Hausdorff dimensions are maximized simultaneously
at some point in the spectrum. This shows equality of global Hausdorff and box-
counting dimensions.

Remark 3.7. In the proof above, we assumed that the intersections occur away from
the surface S0 (i.e. the assumption in Lemmas 3.3 and 3.6 that Vm > 0). This need
not always be the case; however, if an intersection does occur on S0, then it occurs
in a unique point that corresponds to one of the extreme boundaries of the spectrum,
and at this point the local Hausdorff dimension is maximal (equals one).

To complete the proof of Theorem 2.5 it is enough to prove, by Proposition 3.2,
that for the values .p; q/ given in the statement of the theorem, the corresponding line
of initial conditions intersects the center-stable manifolds transversally. We do this
next.

Proposition 3.8. For all .p; q/ � .1; 0/ and not equal to .1; 0/, �.p;q/ intersects the
center-stable manifolds transversally.

Proof. As we recalled above, SV >0 is a two-dimensional non-compact connected
analytic submanifold of R3; S0, however, is smooth everywhere except for four conic
singularities: P1 D .1; 1; 1/, P2 D .�1;�1; 1/, P3 D .1;�1;�1/, and P4 D
.�1; 1;�1/. Let

S D ¹.x; y; z/ 2 S0 W jxj ; jyj ; jzj � 1º:
Then S is homeomorphic to the two-sphere and f .S/ D S. Moreover, f jS is a factor
of the hyperbolic automorphism A D �

1 1
1 0

�
on the two-torus T 2, given by

F W .�; '/ 7�! .cos 2�.� C '/; cos 2'�; cos 2�'/: (29)

Let Ui be a small neighborhood of Pi . Set U D S
i Ui . For all V > 0 sufficiently

small, S0 n U and SV n U are smooth manifolds (with boundary) consisting of five
connected components, one of which is compact; denote the compact component by
SV;U . The unstable cone family for A on T 2 can be carried to S0;U via DF and
extended to all SV;U , for V sufficiently small; see [15] for details. Denote this field by
KV . With V0 sufficiently small, define the following cone field on

S
0<V <V0

SV ;U:

K
�
V .x/ D

n
.u; v/ 2 TxSV;U ˚ .TxSV;U /

? W u 2 KV .x/,
kvkp
V kuk � 


o
: (30)

From [53] we have the following result.
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Lemma 3.9. There exists 
 > 0 such that for all V > 0 sufficiently small, the cones
¹K�

V .x/ºx2SV;U
are transversal to the center-stable manifolds.

Intersections of � with the center-stable manifolds occur on a compact segment
along ��, which we denote by ��, and which belongs to

S
V >0 SV . Set, for conve-

nience, V.E/ D I B �.E/. If E0 denotes the unique value for which V.E0/ D 0,
then away from E0, from (20) and (21) we obtain

@V .E/

@E
� V.E/�1 D q.1� p2/

Eq.1 � p2/C q2p2 C .p2 � 1/2
D 1

E � E0

H) @V .E/

@E
D 1

E �E0

V.E/:

(31)

Notice that �.1;0/ passes through P1 and P2, hence application of [53], Proposi-
tion 3.1-(2), shows that for all .p; q/ sufficiently close to .1; 0/, intersections of
� with the center-stable manifolds occur along ��

.p;q/
that lies entirely inside U [

.[V >0SV;U /. On the other hand, intersection of �� with S0 occurs inside U1 [ U2,
hence outside ofU , jE �E0j is bounded uniformly away from zero. Combining this
with the fact that outside of U , rI.x; y; z/ is bounded uniformly away from zero,
using (31) we obtain that for all .p; q/ sufficiently close to .1; 0/, ��

.p;q/
is tangent to

the cones K�
V , with 
 as in Lemma 3.9, and hence transversal to the center-stable

manifolds; see proof of Corollary 4.12 in [53] for details. Therefore, we only need
to investigate the situation in the vicinity of �� \ S0.

Let us first assume that �.E0/ 2 U1. The set of period-two periodic points for f
passes through P1 and forms a smooth curve in its vicinity:

Per2.f / D
n
.x; y; z/ W x 2 .�1; 1=2/[ .1=2;1/; y D x

2x � 1; z D x
o
: (32)

This curve is normally hyperbolic, and the stable manifold to this curve, which we
denote byW cs.P1/, is tangent to S0 along the strong-stable manifold to P1, denoted
by W ss.P1/; see [15]. Let O.P1/ be a small neighborhood of P1 in R3 and define

W cs
loc.P1/ D ¹x 2 R3 W f n.x/ 2 O.P1/ for all n 2 NºI

W ss
loc.P1/ D ¹x 2 W cs

loc.P1/ W f n.x/ �! P1 as n �! 1º:
(33)

The manifolds W cs
loc.P1/ and W ss

loc.P1/ are neighborhoods of P1 in W cs
loc.P1/ and

W cs
loc.P1/, respectively, contained in O.P1/. The manifolds W cs.P1/ and W ss.P1/

are injectively immersed two- and one-dimensional submanifolds of R3, respectively.
The manifold W ss.P1/ consists of two smooth branches, one injectively immersed
in S n ¹P1; : : : ; P4º, the other in the cone of S0 attached to P1 (see Figure 2), and
these two branches connect smoothly at P1.

At this point we pause with the proof of Proposition 3.8 and prove a few technical
results: Lemma 3.10 and Proposition 3.11.
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Lemma 3.10. For all .p; q/ sufficiently close to .1; 0/, �.p;q/ intersects W cs
loc.P1/

transversally in a unique point, call it p. The arc along ��
.p;q/

connecting p and
�.p;q/.E0/ does not intersect the center-stable manifolds other than at p, where E0

is the unique point such that �.p;q/.E0/ 2 S0.

Proof of Lemma 3.10. The tangent space to W ss.P1/ at P1 is spanned by the eigen-
vector of Df corresponding to the largest eigenvalue. After a simple computation,
we get that

TP1
W ss.P1/˚ TP1

Per2.f /˚ TP1
��

.1;0/ D R3:

Hence ��.1; 0/ intersects W cs
loc.P1/ transversally at the unique point P1. Since

W cs
loc.P1/ is a two-dimensional disc embedded in R3, all sufficiently small C 1 per-

turbations of ��
.1;0/

intersect W cs
loc.P1/ transversally in a unique point; this is true in

particular for all ��
.p;q/

with .p; q/ � .1; 0/.
Let CP1

denote the cone of S0 attached to P1. If the arc connecting p and �.E0/

intersects center-stable manifolds at points other than p, then the intersection of
these center-stable manifolds with CP1

will form a lamination of a neighborhood
of P1 in CP1

consisting of uncountably many disjoint one-dimensional embedded
submanifolds of CP1

, each point of which has bounded forward semi-orbit under f .
On the other hand, a point in CP1

has bounded forward semi-orbit if and only if it lies
in zW ss.P1/, the branch ofW ss.P1/ lying in CP1

(this follows from general principles);

hence this lamination must consist of pieces of zW ss.P1/. Let zW ss
loc.P1/ denote the

branch of W ss
loc.P1/ lying on CP1

. Then zW ss.P1/ D S
n2N f

�n. zW ss
loc.P1//. On the

other hand, since the points of S0 whose full orbit is bounded belong to S, every
point of zW ss

loc.P1/, not including P1, must diverge under iterations of f �1. Now,
f �1.x; y; z/ D .y; z; 2yz�x/ D � Bf B � , where � W .x; y; z/ 7! .z; y; x/; see [3]
for more details on reversing symmetries of trace maps. Hence the results of [41]
apply: unbounded backward semi-orbits under f escape to infinity. It follows that
pieces of zW ss.P1/ cannot form the aforementioned lamination.

Proposition 3.11. IfU1 is taken sufficiently small, then there existN0 2 N andC > 0

such that the following holds. IfE is such that �.E/ does not lie on the arc connecting
�.E0/ and p (with p as in the previous lemma), and the arc connecting �.E/ and p,
which we denote byˇ, lies entirely inU1 , and ifk 2 N is the smallest number such that
f k.ˇ/ \ U c

1 ¤ ;, then if k � N0, we have kDf k.� 0.E//k jE �E0j � Ck� 0.E/k.

Remark 3.12. The bound Ck� 0.E/k in the conclusion of Proposition 3.11 can be
replaced with a constant, say zC , since for all .p; q/with p uniformly away from zero,
k� 0.E/k is uniformly away from infinity; see (13).

Before we start on the proof of Proposition 3.11, we need some technical prepa-
ration.
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Assuming O.P1/ is taken sufficiently small, take a diffeomorphism

ˆ W O.P1/ �! R3

such that

� ˆ.P1/ D .0; 0; 0/;

� ˆ.Per2.f // is part of the line ¹x D 0; z D 0º;

� ˆ.W cs
loc.P1// is part of the plane ¹z D 0º.

Assume also that U1 � O.P1/.

Lemma 3.13. There exist � > 1, C � > 0, C �� > 0, and for every 
 > 0 there exist
C1 > 0 and N0 2 N such that the following holds. Define

K� D ¹.x; y; z/ D .u; v/ 2 R2 ˚ R W kvk � 
 kukº; (34)

and let Qf D ˆ B f Bˆ�1.

(i) For all x 2 ˆ.U1/, if k 2 N is such that Qf k�1.x/ 2 ˆ.U1/, Qf k.x/ … ˆ.U1/

and k � N0, then for any v 2 TxR3 with v 2 K� , kD Qf k.v/k � C1�
k kvk.

(ii) If xz denotes the z-component of x, then C ���k � xz � C ����k .

Proof. For the first assertion, one needs to notice that the cones in (34), unlike those
defined in [17], Proposition 3.15, have fixed width. This allows us to replace the
inequality kD Qf k.v/k � C1�

k=2 in [17], Proposition 3.15, with kD Qf k.v/k � C1�
k .

The second assertion is a restatement of [17], Proposition 3.14.

Proof of Proposition 3.11. Let m be a point in ˆ.ˇ/ such that Qf k.m/ … ˆ.U1/,Qf k�1.m/ 2 ˆ.U1/. Let Q̌ denote the arc along ˆ.ˇ/ connecting m and ˆ.p/. We
have

0 < mz � lenŒˆ. Q̌/� � lenŒˆ.ˇ/�:

Let v 2 TmR3 with v 2 K�. Application of Lemma 3.13 gives

kD Qf k.v/kmz � C1C
� kvk :

Hence we have kD Qf k.v/klenŒˆ.ˇ/� � C1C
�kvk. On the other hand, since, by

Lemma 3.10, ��
.p;q/

is uniformly transversal toW cs
loc.P1/ for all .p; q/ sufficiently close

to .1; 0/, for U1 sufficiently small there exists 
 > 0 such that for all .p; q/ � .1; 0/,
ˆ.��

.p;q/
\ U1/ is tangent to K� . This completes the proof.

We now continue with the proof of Proposition 3.8. Let U �
i be a neighborhood

of Pi such that for all m 2 U �
1 , if f k.m/ … U1, then k > N0, with N0 as in

Proposition 3.11. For all .p; q/ sufficiently close to .1; 0/, ��
.p;q/

, the compact line
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segment along ��
.p;q/

on which intersections with center-stable manifolds occur, has
its endpoints inside U �

1 [ U �
2 . If E 2 R is such that �.p;q/.E/ 2 U �

1 is a point of
intersection with a center-stable manifold, and if for all k, f k.�.p;q/.E// 2 U1, then
�.p;q/.E/ 2 W cs

loc.P1/, hence �.p;q/.E/ coincides with p of Lemma 3.10, and this
intersection is transversal. Otherwise, say k 2 N is such that f k.�.p;q/.E// … U1

and f k�1.�.p;q/.E// 2 U1. We have

kProj.T�.p;q/.E/SV .E//?.� 0
.p;q/.E//k D @V .E/

@E
rI.�.p;q/.E//

�1

(recall: V.E/ D I B �.E/). On the other hand, by [53], Lemma 4.9, we have

kProj.T
f k .�.p;q/.E//

SV .E//?.� 0
.p;q/.E//k

D rI.�.p;q/.E//

rI.f k.�.p;q/.E///
kProj.T�.p;q/.E/SV .E//?.� 0

.p;q/.E//k:

Hence we obtain

kProj.T
f k.�.p;q/.E//

SV .E//?.� 0
.p;q/.E//k D @V .E/

@E
rI.f k.�.p;q/.E///

�1

� 1

D

@V.E/

@E
;

where D > 0 is the lower bound of the gradient of I restricted to SV;U . Therefore,

kProj.T
f k.�.p;q/.E//

SV .E//?.� 0
.p;q/.E//k.kDf k.� 0

.p;q/.E//kV.E//�1

� 1

D

@V.E/

@E
.kDf k.� 0

.p;q/.E//kV.E//�1

D 1

DkDf k.� 0
.p;q/

.E//kjE �E0j

� 1

D zC
(the last equality follows from (31)), where zC is as in Remark 3.12. Finally, with (31)
in mind, we obtain

kProj.T
f k.�.p;q/.E//

SV .E//?.� 0
.p;q/.E//k kDf k.� 0

.p;q/.E//k�1 � 1

D zC V.E/:

Hence if V.E/ is small (i.e. for all .p; q/ sufficiently close to .1; 0/), Df k.� 0
.p;q/

/ is

tangent to the cone K�

V.E/
, with 
 as in Lemma 3.9. By invariance of the center-

stable manifolds under f and Lemma 3.9 it follows that the intersection of ��
.p;q/
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with center-stable manifold at �.p;q/.E/ is transversal. Thus, for all .p; q/ sufficiently
close to .1; 0/, if �.p;q/.E0/ 2 U1, then ��

.p;q/
intersects the center-stable manifolds

transversally inside U �
1 . An argument similar to the one above, withU � D S

i U
�
i in

place ofU , shows that outside ofU � the intersections are also transversal. It remains
to investigate the case when �.p;q/.E0/ 2 U2.

In case �.p;q/.E0/ 2 U2, we can reduce everything to the previous case as follows.
Replace, without loss of generality, f with f 3. Let � W .x; y; z/ 7! .�x;�y; z/.
Notice that � is simply rotation in the xy-plane around the origin by � , � preserves
SV for all V , f 3 D ��1 B f 3 B � D � B f 3 B � , and � maps P1 to P2. Essentially,
all of this guarantees that one can rotate the line �� by � in the xy-plane while
keeping all other geometric objects invariant (i.e. the level surfaces SV as well as
center-stable manifolds), thus reducing everything to the previous case. The proof of
Proposition 3.8 is complete.

Proposition 3.14. There exists � > 0 such that for all p satisfying jp � 1j > � and
all q satisfying jqj > �, there exist ıp; ıq > 0, such that for all ˛ in the interval
.1 � ıp; 1 C ıp/ and ˇ 2 .�ıq; ıq/, ��

.˛;q/
and ��

.p;ˇ/
intersect the center-stable

manifolds transversally.

Proof. Following Casdagli’s result in [8] combined with [53], Proposition 3.9, we
have: for all q with jqj sufficiently large, ��

.1;q/
intersects the center-stable mani-

folds transversally, and this intersection occurs on a compact segment along ��
.1;q/

.
Hence all sufficiently small perturbations of ��

.1;q/
intersect the center-stable mani-

folds transversally.
Similarly, combination of results in [10] with [53], Proposition 3.9, shows that

for all p with jp � 1j sufficiently large, ��
.p;0/

intersects the center-stable manifolds
transversally, so again all sufficiently small perturbations of ��

.p;0/
also intersect the

center-stable manifolds transversally. This completes the proof of Proposition 3.8.

Combination of Propositions 3.2, 3.8 and 3.14 gives the proof of Theorem 2.5.

3.4. Proof of Theorem 2.6. For the existence of the limit in (4), it is enough to
prove the following

Proposition 3.15. There exists C > 0 and for every n 2 N there exists a subset Un

of †.p;q/ of full dN -measure, such that for all E 2 Un, we have

lim sup
"#0

log N .E � "; E C "/

log "
� C; (35)

with C independent of n, and

lim sup
"#0

log N .E � "; E C "/

log "
� lim inf

"#0

log N .E � "; E C "/

log "
� 1

n
: (36)
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Proof. Transversal intersection of ��
.p;q/

with the center-stable manifolds will be the
main ingredient for us; however, we have proved transversality in only special cases.
On the other hand, we know that tangential intersections, if such exist, occur at no
more than finitely many points. Since dN is non-atomic and our results are stated
modulo a set of measure zero, we may exclude those points. We also exclude the
extreme upper and lower boundary points of the spectrum, as these may correspond
to intersection of ��

.p;q/
with S0; while this doesn’t present great complications, it is

certainly more convenient to work away from S0.
For what follows, the interested reader should see [18] for technical details where

we omit them.
Under � W R ! R3 from (13), the spectrum for the pure Hamiltonian, †.1;0/, cor-

responds to the line in R3 connecting the pointsP1 andP2. Following the convention
that we’ve established above, call this line segment ��

.1;0/
. A Markov partition for A

on T 2 is shown in Figure 3.

(0,0) (0, 1/2) (1,0)

(0,1) (1,1)

� ��

� �

1 1

1 1

5

5

5

5

4

43

3

2 2

6

6

Figure 3. The Markov partition for T jS (picture taken from [15]).

The preimage of ��
.1;0/

under F from (29) is the line segment l � Œ0; 1=2� � ¹0º
in T 2 (i.e. the segment connecting .0; 0/ and .0; 1=2/ in Figure 3). Let R be the
element of the Markov partition containing l . Take the Lebesgue measure on R,
normalize it, project it onto l , and push the resulting measure forward under F onto
��

.1;0/
. The resulting probability measure on ��

.1;0/
, denoted by d zN0, corresponds to

the density of states measure for the pure Hamiltonian, which we denote by dN0,
under the identification

�.1;0/ W E 7�!
�E
2
;
E

2
; 1

�
: (37)

Now, let ¹
1
V ; 


2
V º D SV \ Per2.f /. Observe that 
1

V D 
2
V if and only if V D 0.
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For i D 1; 2 and V > 0, 
i
V is a hyperbolic fixed point for f 2

V on SV . The stable
manifolds to 
i

V , ¹W s.
1
V /ºV >0 and ¹W s.
2

V /ºV >0, foliate two two-dimensional
injectively immersed submanifolds of R3 that connect smoothly along W ss.P1/ to
form W cs.P1/; see [38], Theorem B, for details.

Now fix .p; q/ ¤ .1; 0/. Define a probability measure � on ��
.p;q/

as follows.

Let .ˇ1.t /; ˇ2.t // be a smooth regular curve in R2 with .ˇ1.0/; ˇ2.0// D .1; 0/,
.ˇ1.1/; ˇ2.1// D .p; q/. Denote by W the smooth two-dimensional submanifold of
R3 given by

W
defD

[
t2Œ0;1�

��
.ˇ1.t/;ˇ2.t//:

For t 2 Œ0; 1�, even if ��
.ˇ1.t/;ˇ2.t//

intersects W cs.P1/ tangentially (at finitely many
points), this intersection cannot be quadratic (this would produce an isolated point),
nor can an intersection contain connected components (since the set of intersections
is a Cantor set). It follows that W \W cs.P1/ consists of uncountably many smooth
regular curves, each with one endpoint in ��

.1;0/
, and the other in ��

.p;q/
. Hence a

holonomy map from ��
.p;q/

\W cs.P1/ to �.1;0/ \W ss.P1/, given by projection along
these curves (this map is not one-to-one), is well-defined; call this map H . Now,
with E0; E1 2 ��

.p;q/
\W cs.P1/, let the interval bounded by E0; E1 carry the same

weight under � as the interval bounded by H .E0/ and H .E1/ carries under dN0.
This defines � on intervals with endpoints in a dense subset, and hence completely
determines �.

Claim 3.16. The measure dN.p;q/ corresponds to the measure � under the identifi-
cation (37).

Proof of Claim 3.16. Take two distinct pointsE0; E1 2 ��1
.1;0/

.��
.1;0/

\W ss.P1//. As
soon as the parameters p; q are turned on, a gap opens at the points E0; E1. Let I be
the interval bounded by E0 and E1, and I.p;q/ the interval bounded by the two gaps.
Then dN.p;q/.I.p;q// D dN0.I /. On the other hand, dN0.I / is, modulo (37), just
d zN0.�.1;0/.I //, which is the same as �.�.p;q/.I.p;q///.

Let us now concentrate on � along ��
.p;q/

. Let � denote the intersection of ��
.p;q/

with the center-stable manifolds, excluding points of tangential intersection and those
corresponding to the extreme boundary points of the spectrum.

Say m 2 � \ SVm
, Vm > 0. With the notation from Lemma 3.6, let 	�

m be a
compact arc along 	�

Vm
containing m in its interior and short enough such that the

holonomy map h restricted to 	�
m is Hölder with exponent ˛, as in Lemma 3.6. We

may assume that the endpoints of 	m lie on the center-stable manifolds. A slight
modification of results in [18] gives

Lemma 3.17. There exists a measure�m defined on 	�
m, whose topological support is

the intersection of 	�
m with the center-stable manifolds, with the following properties.
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If E0; E1 are distinct points in 	�
m \W cs.P1/ which are not boundary points of the

same gap, and if zE0; zE1 2 ��
.1;0/

such that Ei is a boundary point of the gap that

opens at zEi , then the interval bounded by E0; E1 carries the same weight under �m

as does the interval bounded by zE0; zE1 under d zN0. Moreover, for �m-almost every
x 2 	�

m, we have

lim
"#0

log�mB��
m;".x/

log "
D d.m/ 2 R; (38)

with

0 < inf
m2�

¹d.m/º sup
m2�

¹d.m/º < 1: (39)

Moreover,

lim
.p;q/!.1;0/

inf
m2�

¹d.m/º D lim
.p;q/!.1;0/

sup
m2�

¹d.m/º D 1: (40)

Here B��
m;".x/ denotes "-ball around x along 	�

m.

As an immediate consequence, ifE0; E1 2 	�
m in the domain of h, then the interval

bounded by E0; E1 carries the same weight under �m as does the interval bounded
by h.E0/; h.E1/ under�. As a consequence of (38) and (39) together with ˛-Hölder
continuity of h, we have the following. For �m-almost every x 2 	�

m in the domain
of h,

˛d.m/ � lim inf
"#0

log�B��;".h.x//

log "

� lim sup
"#0

log�B��;".h.x//

log "
� 1

˛
d.m/;

(41)

which implies

lim sup
"#0

log�B��;".h.x//

log "
� lim inf

"#0

log�B��;".h.x//

log "
�

� 1
˛

� ˛
�

sup
m2�

¹d.m/º:

Now choose ˛ 2 .0; 1/ such that

� 1
˛

� ˛
�
<

1

n supm2� d.m/
:

LetVm be the subset of 	�
m of full�m-measure for which the conclusion of Lemma 3.17

holds, and set Un D S
m2� h.Vm/. Finally, apply Claim 3.16.
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That the limit in (4) is strictly positive follows from (39), and (6) follows from (40).
It remains to prove (5).

From [18] we have that d.m/ < 1
2

dimH.�Vm
/, where�Vm

is the non-wandering
set for fVm

on SVm
. On the other hand, we have dimloc

H .†.p;q/; m/ D 1
2

dimH.�Vm
/.

Also, from [18] we know that d.m/ depends continuously on m (in fact it is the
restriction to � of a smooth function), so there is ı > 0 such that for all m 2 � ,
dimloc

H .†.p;q/; m/ � d.m/C ı. Thus combined with (41) we have

lim sup
"#0

log�B��;".h.x//

log "
� 1

˛
.dimloc

H .†.p;q/; m/ � ı/:

On the other hand local Hausdorff dimension is a continuous function over the spec-
trum, hence, assuming x and m are sufficiently close (that is, assuming x 2 	�

m with
	�

m sufficiently short), we have

lim sup
"#0

log�B��;".h.x//

log "
� 1

˛

�
dimloc

H .†.p;q/; h.x//� ı

2

�
:

We can take ˛ arbitrarily close to one. Now (5) follows.

4. Concluding remarks and open problems

We believe that Theorem 2.3 holds in greater generality. Namely, we believe that
��

.p;q/
intersects the center-stable manifolds transversally for all .p; q/ ¤ .1; 0/, p ¤ 0.

This would allow one to extend many results that are currently known for the diagonal
and the off-diagonal operators (e.g. [17], and [18]). We should mention, however,
that even in those two cases, transversality isn’t known for all values of q and p,
respectively (compare [8], and [15]).

Conjecture 4.1. With the notation as above, for all .p; q/ ¤ .1; 0/, p ¤ 0, ��
.p;q/

intersects the center-stable manifolds transversally.

We also note that, unlike in the diagonal and the off-diagonal cases, there are
parameters .p; q/ for which the spectrum of the corresponding tridiagonal operator
has full Hausdorff dimension, contrary to what one would expect from previous
results.

Another particularly curious problem is analyticity of the Hausdorff dimension.
We believe this to be true:

Conjecture 4.2. If ˛.t/ D .p.t /; q.t // is an analytic curve in R2 n.1; 0/ and p.t / ¤ 0

for all t , then dimH.†˛.t// is analytic as a function of t .

In fact, this ties in with the monotonicity problem for the diagonal (and similarly
the off-diagonal) model.
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Conjecture 4.3. The Hausdorff dimension of the spectrum of the diagonal operator
is a monotone-decreasing function of q 2 Œ0;1/.

Let us show how the claim of Conjecture 4.2 follows from the conclusion of
Conjecture 4.3.

Take ˛ as in the statement of Conjecture 4.2. Let V.t/ be such that for the lower
endpoint of the spectrum †˛.t/, which we denote by l.t /, we have �.l.t // 2 SV.t/,
where � is the curve that was defined in (13). Clearly V.t/ is analytic. On the other
hand, monotonicity of q 7! dimH.†.1;q// implies monotonicity of V 7! dimH.�V /

(see (17)). Thus by monotonicity, we have:

dimH.†˛.t// D dimloc
H .†˛.t/; l.t // D 1

2
dimH.�V.t//:

Since t 7! V.t/ is analytic, and V 7! dimH.�V / is also analytic, analyticity of
dimH.†˛.t// follows.

We should also that strict upper and lower bounds on the Hausdorff dimension of
�V , as a function of V , have been given in [17] for all V sufficiently close to zero.

Evidently both conjectures would follow from monotonicity of V 7! dimH.�V /.
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