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The Tan 2‚ Theorem for indefinite quadratic forms

Luka Grubišić, Vadim Kostrykin, Konstantin A. Makarov, and Krešimir Veselić1

Abstract. A version of the Davis–Kahan Tan 2‚ theorem [3] for not necessarily semibounded
linear operators defined by quadratic forms is proven. This theorem generalizes a result by
Motovilov and Selin [13].
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1. Introduction

In the 1970 paper [3], Davis and Kahan studied the rotation of spectral subspaces for
2 � 2 operator matrices under off-diagonal perturbations. In particular, they proved
the following result, the celebrated

Tan 2‚ Theorem. Let A˙ be strictly positive bounded operators in Hilbert spaces
H˙, respectively, and W a bounded operator from H� to HC. Denote by

A D
�

AC 0

0 �A�

�
and B D A C V D

�
AC W

W � �A�

�

the block operator matrices with respect to the orthogonal decomposition of the
Hilbert space H D HC ˚ H�.

Then

(i) the open interval .min spec.AC/; max spec.�A�// belongs to the resolvent set
of the operator B;

(ii) the operator angle ‚ between the subspaces Ran EA.RC/ and Ran EB.RC/

admits the bound

k tan 2‚k � 2kV k
d

; spec.‚/ � Œ0; �=4/; (1.1)

where d D dist.spec.AC/; spec.�A�//.

1The authors were supported in part by the Deutsche Forschungsgemeinschaft, grant KO 2936/3-1.
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For the concept of an operator angle and further details we refer to [8] and refer-
ences therein.

Estimate (1.1) can equivalently be expressed as the following inequality for the
norm of the difference of the orthogonal projections P D EA.RC/ and Q D EB.RC/:

kP � Qk � sin
�1

2
arctan

2kV k
d

�
; (1.2)

which, in particular, implies the estimate

kP � Qk <

p
2

2
: (1.3)

Independent of the work of Davis and Kahan, inequality (1.3) has been proven by
Adamyan and Langer in [1], where the operators A˙ were allowed to be semibounded.
The “critical” case d D 0 has been considered in the paper [9] by Kostrykin, Makarov,
and Motovilov. In particular, it was shown that for any orthogonal (not necessarily
spectral) projection P satisfying

EB..0; 1// � P � EB.Œ0; 1//;

there exists a unique orthogonal projection Q such that

EB..0; 1// � Q � EB.Œ0; 1//

and

kP � Qk �
p

2

2
:

It is worth mentioning that a particular case of this result has been obtained earlier by
Adamyan, Langer, and Tretter, in [2]. Recently, a version of the Tan 2‚ Theorem for
off-diagonal perturbations V that are relatively bounded with respect to the diagonal
operator A has been proven by Motovilov and Selin in [13], Theorem 1.

In the present work we are concerned with a sesquilinear form

b D a C v; (1.4)

wherea andv are densely defined symmetric forms, and obtain several generalizations
of the aforementioned results assuming that the perturbation v is given by an off-
diagonal symmetric form.

To introduce the framework of an off-diagonal form-perturbation theory, we pick
up a self-adjoint involution J and assume that the form a “commutes” with the
involution J,

aŒJ x; y� D aŒx; Jy�: (1.5)

We also assume that the form aJ Œx; y�
defD aŒx; Jy� on DomŒa� is a closed positive

definite form.
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Our further assumption is that the form v “anticommutes” with the involution J,

vŒJ x; y� D �vŒx; Jy�; (1.6)

and that v satisfies the estimate

jvŒx; x�j � ˇ aJ Œx; x�; x 2 DomŒaJ � D DomŒa�;

for some ˇ > 0.
The “commutation” relations (1.5) and (1.6) suggest to interpret the form v as

an off-diagonal perturbation of the diagonal form a with respect to the orthogonal
decomposition H D HC ˚ H� with H˙ D Ran.I ˙ J /.

In this setting one can show that the form b admits the representation

bŒx; y� D hA1=2
J x; HA

1=2
J yi; x; y 2 DomŒa�;

where AJ is the self-adjoint operator associated with the closed positive definite form
aJ and H is a bounded operator with a bounded inverse. In spite of the fact that the
form b may not be semibounded, there exists a unique self-adjoint operator B in H
associated with the form b, i.e., Dom.B/ � DomŒb� and

bŒx; y� D hx; Byi x 2 DomŒb�; y 2 Dom.B/:

This result, proven in [4], is an extension of the First Representation Theorem for
closed semi-bounded quadratic forms (see, e.g., [7]). A comprehensive exposition on
representation theorems for indefinite quadratic forms can be found in [4]. In partic-
ular, we mention pioneering works [11] and [12] by McIntosh, where the relationship
of indefinite forms to self-adjoint operators has been considered.

In this paper we follow a different path. Based on the observation that

aŒx; Jy� C ivŒx; Jy�

is a sectorial closed form (cf. [13] and [15]), we give an alternative proof of the First
Representation Theorem for block operator matrices associated with the symmetric
forms of the type (1.4) (Theorem 2.4).

We also obtain (i) a relative version of the Tan 2‚ Theorem (Theorem 3.1) (for the
pair of the operators A D JAJ and B associated with the forms a and b, respectively)
and (ii) its variants (Theorem 4.2) in the case where the form a is semibounded,
including a generalization of the relative sin ‚ Theorem obtained in [6].

We would like to emphasize that in the off-diagonal perturbation theory setting,
the First Representation Theorem does not require any assumption on the magnitude
of the relative bound of the off-diagonal form v with respect to the positive definite
form aJ .
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2. The First Representation Theorem for off-diagonal form perturbations

To introduce the notation, it is convenient to assume the following hypothesis.

Hypothesis 2.1. Let a be a symmetric sesquilinear form on DomŒa� in a Hilbert
space H. Assume that J is a self-adjoint involution such that

J DomŒa� D DomŒa�:

Suppose that

aŒJ x; y� D aŒx; Jy� x; y 2 DomŒaJ � D DomŒa�:

Assume, in addition, that the form aJ given by

aJ Œx; y� D aŒx; Jy�; x; y 2 DomŒaJ � D DomŒa�;

is a positive definite closed form and denote by m˙ the greatest lower bound of the
form aJ restricted to the subspace

H˙ D Ran.I ˙ J /:

Definition 2.2. Under Hypothesis 2.1, a symmetric sesquilinear form v on DomŒv� �
DomŒa� is said to be off-diagonal with respect to the orthogonal decomposition

H D HC ˚ H�

if
vŒJ x; y� D �vŒx; Jy�; x; y 2 DomŒa�:

If, in addition,

v0
defD sup

0¤x2DomŒa�

jvŒx�j
aJ Œx�

< 1; (2.1)

the form v is said to be an a-bounded off-diagonal form.
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Remark 2.3. If v is an off-diagonal symmetric form and x D xC C x� is the unique
decomposition of an element x 2 DomŒa� such that x˙ 2 H˙ \ DomŒa�, then

vŒx� D 2Re vŒxC; x��; x 2 DomŒa�: (2.2)

Moreover, if v0 < 1, then

jvŒx�j � 2v0

p
aJ ŒxC�aJ Œx��: (2.3)

Proof. To prove (2.2), we use the representation

vŒx� D vŒxC C x�; xC C x��

D vŒxC� C vŒx�� C vŒxC; x�� C vŒx�; xC�; x 2 DomŒa�:

Since v is an off-diagonal form, we obtain that

vŒxC� D vŒxC; xC� D vŒJ xC; J xC� D �vŒxC; xC� D �vŒxC� D 0;

and similarly vŒx�� D 0. Therefore,

vŒx� D vŒxC; x�� C vŒx�; xC� D 2Re vŒxC; x��; x 2 DomŒa�:

To prove (2.3), first we observe that

aJ Œx� D aJ ŒxC� C aJ Œx��

and, hence, combining (2.2) and (2.1), we get the estimate

j2Re vŒxC; x��j � v0aJ Œx� D v0.aJ ŒxC� C aJ Œx��/ x˙ 2 H˙ \ DomŒa�:

Hence, for any t � 0 (and, therefore, for all t 2 R) we get that

v0aJ ŒxC� t2 � 2jRe vŒxC; x��j t C v0aJ Œx�� � 0;

which together with (2.2) implies (2.3).

In this setting we present an analog of the First Representation Theorem in the
off-diagonal perturbation theory.

Theorem 2.4. Assume Hypothesis 2.1. Suppose that v is an a-bounded off-diagonal
with respect to the orthogonal decomposition H D HC ˚ H� symmetric form. On
DomŒb� D DomŒa� introduce the symmetric form

bŒx; y� D aŒx; y� C vŒx; y�; x; y 2 DomŒb�:



88 L. Grubišić, V. Kostrykin, K. A. Makarov, and K. Veselić

Then

(i) there exists a unique self-adjoint operator B in H such that Dom.B/ � DomŒb�

and
bŒx; y� D hx; Byi x 2 DomŒb�; y 2 Dom.B/;

(ii) the operator B is boundedly invertible and the open interval .�m�; mC/ 3 0

belongs to its resolvent set.

Proof. (i) Given � 2 .�m�; mC/, on DomŒa�� D DomŒa� we introduce the positive
closed form a� by

a�Œx; y� D aŒx; Jy� � �hx; Jyi; x; y 2 DomŒa��;

and denote by Ha�
the Hilbert space DomŒa�� equipped with the inner product

h�; �i� D a�Œ�; ��. We remark that the norms k � k� D p
a�Œ�� on Ha�

D DomŒa�� are
obviously equivalent. Since v is a-bounded, we conclude then that

v�
defD sup

0¤x2DomŒa�

jvŒx�j
a�Œx�

< 1; � 2 .�m�; mC/:

Along with the off-diagonal form v, introduce a dual form v0 by

v0Œx; y� D ivŒx; Jy�; x; y 2 DomŒa�:

We claim that v0 is an a-bounded off-diagonal symmetric form. It suffices to show
that

v� D v0
� < 1; � 2 .�m�; mC/;

where

v0
�

defD sup
0¤x2DomŒa�

jv0Œx�j
a�Œx�

: (2.4)

Indeed, let x D xC C x� be the unique decomposition of an element x 2 DomŒa�

such that x˙ 2 H˙ \ DomŒa�. By Remark 2.3,

vŒx� D vŒxC; x�� C vŒx�; xC� D 2Re vŒxC; x��; x 2 DomŒa�:

In a similar way (since the form v0 is obviously off-diagonal) we get that

v0Œx� D ivŒxC C x�; J.xC C x�/�

D iv0ŒxC� � iv0Œx�� � ivŒxC; x�� C ivŒx�; xC�

D �ivŒxC; x�� C ivŒxC; x�� D 2Im vŒxC; x��; x 2 DomŒa�:
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Clearly, from (2.4) follows that

v0
� D 2 sup

0¤x2DomŒa�

jIm vŒxC; x��j
a�Œx�

D 2 sup
0¤x2DomŒa�

jRe vŒxC; x��j
a�Œx�

D v�;

for all � 2 .�m�; mC/, which completes the proof of the claim.
Next, on DomŒt�� D DomŒa� introduce the sesquilinear form

t�
defD a� C iv0; � 2 .�m�; mC/:

The real part of t�,

.Re t�/Œx; y�
defD 1

2
.t�Œx; y� C t�Œy; x� /;

equals a�. Hence, t� is closed. Since the form a� is positive definite and the form
v0 is an a�-bounded symmetric form, the form t� is a closed sectorial form with the
vertex 0 and semi-angle

�� D arctan.v0
�/ D arctan.v�/: (2.5)

Let T� be a unique m-sectorial operator associated with the form t� (cf., e.g.,
Theorem VI.2.1 in [7]). Introduce the operator

B� D JT� on Dom.B�/ D Dom.T�/; � 2 .�m�; mC/:

We obtain that

hx; B�yi D hx; JT�i D hJ x; T�yi D a�ŒJ x; y� C iv0ŒJ x; y�

D aŒx; y� � �hJ x; Jyi C i2vŒJ x; Jy�

D aŒx; y� � �hx; yi C vŒx; y�;

(2.6)

for all x 2 DomŒa�, y 2 Dom.B�/ D Dom.T�/. In particular, B� is a symmetric
operator on Dom.B�/, since the forms a and v are symmetric, and Dom.B�/ D
Dom.T�/ � DomŒa�.

Since the real part of the form t� is closed and positive definite with a positive
lower bound, the operator T� has a bounded inverse. This implies that the operator
B� D JT� has a bounded inverse and, therefore, the symmetric operator B� is
self-adjoint on Dom.B�/.

As an immediate consequence, we conclude (put � D 0) that the self-adjoint

operator B
defD B0 is associated with the symmetric form b and that Dom.B/ �

DomŒa�.
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To prove uniqueness, assume that B 0 is an another self-adjoint operator associated
with the form b. Then for all x 2 Dom.B/ and all y 2 Dom.B 0/ we get that

hx; B 0yi D bŒx; y� D bŒy; x� D hy; Bxi D hBx; yi;
which means that B D .B 0/� D B 0.

(ii) From (2.6) we conclude that the self-adjoint operator B� C �I is associated
with the form b and, hence, by the uniqueness

B� D B � �I on Dom.B�/ D Dom.B/:

Since B� has a bounded inverse for all � 2 .m�; mC/, so does B � �I which
means that the interval .�m� ; mC/ belongs to the resolvent set of the operator B0 .

Remark 2.5. In the particular case v D 0, from Theorem 2.4 follows that there exists
a unique self-adjoint operator A associated with the form a.

For a different, more constructive proof of Theorem 2.4 as well as for the history
of the subject we refer to our work [4].

Remark 2.6. For the part (i) of Theorem 2.4 to hold it is not necessary to require
that the form aJ in Hypothesis 2.1 is positive definite. It is sufficient to assume that
aJ is a semi-bounded from below closed form (see, e.g., [14]).

Remark 2.7. We conjecture that in the case of off-diagonal form perturbation theory
in question the following domain stability property

DomŒb� D Dom.jBj1=2/ (2.7)

holds. In this case (see, e.g., [4]), the form b is represented by the operator B , i.e.,

bŒx; y� D hjBj1=2x; sign.B/jBj1=2yi; x; y 2 DomŒb�;

which is the content of the Second Representation Theorem. We refer however to [4]
for a simple counterexample of a not off-diagonal relative bounded perturbation for
which the domain stability property fails to hold. We also refer to [17], p. 53, where
the domain stability problem in a more general context of the perturbation theory is
discussed.

3. The Tan 2‚ Theorem

The main result of this work provides a sharp upper bound for the angle between the
positive spectral subspaces Ran EA.RC/ and Ran EB.RC/ of the operators A and B

respectively. This result is an extension of Theorem 1 in [13].
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Theorem 3.1. Assume Hypothesis 2.1 and suppose that v is off-diagonal with respect
to the decomposition H D HC ˚ H�. Let A be a unique self-adjoint operator
associated with the form a and B the self-adjoint operator associated with the form
b D a C v referred to in Theorem 2.4.

Then the norm of the difference of the spectral projections P D EA.RC/ and
Q D EB.RC/ satisfies the estimate

kP � Qk � sin
�1

2
arctan v

�
<

p
2

2
;

where

v D inf
�2.�m�;mC/

v� D inf
�2.�m�;mC/

sup
0¤x2DomŒa�

jvŒx�j
a�Œx�

;

with
a�Œx; y� D aŒx; Jy� � �hx; Jyi; x; y 2 DomŒa�� D DomŒa�:

The proof of Theorem 3.1 uses the following result borrowed from [16].

Proposition 3.2. Let T be an m-sectorial operator of semi-angle � < �=2. Let
T D U jT j be its polar decomposition. If U is unitary, then the unitary operator U

is sectorial with semi-angle � .

Remark 3.3. We note that for a bounded sectorial operator T with a bounded inverse
the statement is quite simple. Due to the equality

hx; T xi D hjT j�1=2y; U jT j1=2yi D hy; jT j�1=2U jT j1=2yi; y D jT j1=2x;

the operators T and jT j�1=2U jT j1=2 are sectorial with the semi-angle � . The resol-
vent sets of the operators jT j�1=2U jT j1=2 and U coincide. Therefore, since U is
unitary, it follows that U is sectorial with semi-angle � .

Proof of Theorem 3.1. Given � 2 .�m�; mC/, let T� D U�jT�j be the polar de-
composition of the sectorial operator T� with vertex 0 and semi-angle ��, with

�� D arctan.v�/ (3.1)

(as in the proof of Theorem 2.4 (cf. (2.5)). Since B� D JT�, we conclude that

jT�j D jB�j and U� D J �1 sign.B�/:

Since T� is a sectorial operator with semi-angle ��, by a result in [16] (see Proposi-
tion 3.2), the unitary operator U� is sectorial with vertex 0 and semi-angle �� as well.
Therefore, applying the spectral theorem for the unitary operator U� from (3.1) we
obtain the estimate

kJ � sign.B�/k D kI � J �1 sign.B�/k D kI � U�k � 2 sin
�1

2
arctan v�

�
:
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Since the open interval .�m�; mC/ belongs to the resolvent set of the operator
B D B0, the involution sign.B�/ does not depend on � 2 .�m�; mC/ and, hence,
we conclude that

sign.B�/ D sign.B0/ D sign.B/; � 2 .�m�; mC/:

Therefore,

kP � Qk D 1

2
kJ � sign.B/k D 1

2
kJ � sign.B�/k � sin

�1

2
arctan v�

�
(3.2)

and, hence, since � 2 .�m�; mC/ has been chosen arbitrarily, from (3.2) follows
that

kP � Qk � inf
�2.�m�;mC/

sin
�1

2
arctan v�

�
� sin

�1

2
arctan v

�
:

The proof is complete.

As a consequence, we have the following result that can be considered a geometric
variant of the Birman–Schwinger principle for the off-diagonal form-perturbations.

Corollary 3.4. Assume Hypothesis 2.1 and suppose that v is off-diagonal. Then the
form aJ C v is positive definite if and only if the aJ -relative bound (2.1) of v does
not exceed one. In this case

kP � Qk � sin
��

8

�
;

where P and Q are the spectral projections referred to in Theorem 3.1.

Proof. Since v is an a-bounded form, we conclude that there exists a self-adjoint
bounded operator V in the Hilbert space DomŒa� such that

vŒx; y� D aJ Œx; Vy�; x; y 2 DomŒa�:

Since v is off-diagonal, the numerical range of V coincides with the symmetric about
the origin interval Œ�kVk; kVk�. Therefore, we can find a sequence fxng1

nD1 in
DomŒa� such that

lim
n!1

vŒxn�

aJ Œxn�
D �kVk;

which proves that kVk � 1 if and only if the form aJ C v is positive definite. If it is
the case, applying Theorem 3.1, we obtain the inequality

kP � Qk � sin
�1

2
arctan.kVk/

�
� sin

��

8

�
which completes the proof.

Remark 3.5. We remark that in accordance with the Birman–Schwinger principle,
for the form aJ C v to have the negative spectrum it is necessary that the aJ -relative
bound kVk of the perturbation v is greater than one. As Corollary 3.4 shows, in the
off-diagonal perturbation theory this condition is also sufficient.
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4. Two sharp estimates in the semibounded case

In this section we will be dealing with the case of off-diagonal form-perturbations of
a semi-bounded operator.

Hypothesis 4.1. Assume that A is a self-adjoint semi-bounded from below operator.
Suppose that A has a bounded inverse. Assume, in addition, that the following
conditions hold.

(i) The spectral condition. An open finite interval .˛; ˇ/ belongs to the resolvent
set of the operator A. We set

†� D spec.A/ \ .�1; ˛� and †C D spec.A/ \ Œˇ; 1�:

(ii) Boundedness. The sesquilinear formv is symmetric on Dom Œv� � Dom.jAj1=2/

and

v
defD sup

0¤x2DomŒa �

jvŒx�j
kjAj1=2xk2

< 1: (4.1)

(iii) Off-diagonality. The sesquilinear form v is off-diagonal with respect to the
orthogonal decomposition H D HC ˚ H�, with

HC D Ran EA..ˇ; 1// and H� D Ran EA..�1; ˛//:

That is,
vŒJ x; y� D �vŒx; Jy�; x; y 2 DomŒa�;

where the self-adjoint involution J is given by

J D EA ..ˇ; 1// � EA ..�1; ˛// : (4.2)

Let a be the closed form represented by the operator A. A direct application of
Theorem 2.4 shows that under Hypothesis 4.1 there is a unique self-adjoint boundedly
invertible operator B associated with the form

b D a C v:

Under Hypothesis 4.1 we distinguish two cases (see Fig. 1 and 2).

Case I. Assume that ˛ < 0 and ˇ > 0. Set

dC D dist.min.†C/; 0/ and d� D dist.min.†�/; 0/

and suppose that dC > d�.

Case II. Assume that ˛; ˇ > 0. Set

dC D dist.min.†C/; 0/ and d� D dist.max.†�/; 0/:
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As it follows from the definition of the quantities d˙, the sum d� C dC coincides
with the distance between the lower edges of the spectral components †C and †� in
Case I, while in Case II the difference dC � d� is the distance from the lower edge of
†C to the upper edge of the spectral component †�. Therefore, dC � d� coincides
with the length of the spectral gap .˛; ˇ/ of the operator A in the latter case.

†� †C0

d� dC

˛ ˇ
�

Figure 1. The spectrum of the unperturbed sign-indefinite semibounded invertible operator A

in Case I.

†� †C0

d�

dC

˛ ˇ
�

Figure 2. The spectrum of the unperturbed strictly positive operator A with a gap in its
spectrum in Case II.

We remark that the condition dC > d� required in Case I holds only if the length
of the convex hull of the negative spectrum †� of A does not exceed the one of the
spectral gap .˛; ˇ/ D .max.†�/; min.†C//.

Now we are prepared to state a relative version of the Tan 2‚ Theorem in the case
where the unperturbed operator is semi-bounded or positive.

Theorem 4.2. In either of Cases I or II, introduce the spectral projections

P D EA..�1; ˛�/ and Q D EB..�1; ˛�/ (4.3)

of the operators A and B respectively.
Then the norm of the difference of P and Q satisfies the estimate

kP � Qk � sin
�1

2
arctan

h
2

v

ı

i�
<

p
2

2
; (4.4)

where

ı D 1p
dCd�

8<
:

dC C d� in Case I,

dC � d� in Case II,
(4.5)
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and v stands for the relative bound of the off-diagonal form v (with respect to a) given
by (4.1).

Proof. We start with the remark that the form a��, where a is the form of A, satisfies
Hypothesis 2.1 with J given by (4.2). Set

a� D .a � �/J ; � 2 .˛; ˇ/;

that is,
a�Œx; y� D aŒx; Jy� � �Œx; Jy�; x; y 2 DomŒa�:

Notice thata� is a strictly positive closed form represented by the operators JA�J� D
jAj � �J and JA � �J D jA � �I j in Cases I and II, respectively.

Since v is off-diagonal, from Theorem 3.1 follows that

kEA��I .RC/ � EB��I .RC/k � sin
�1

2
arctan v�

�
; � 2 .˛; ˇ/; (4.6)

with

v�
defD sup

0¤x2DomŒa �

jvŒx�j
a�Œx�

: (4.7)

Since v is off-diagonal, by Remark 2.3 we get the estimate

jvŒx�j � 2v0

p
a0ŒxC�a0Œx��; x 2 DomŒa�;

where x D xC C x� is a unique decomposition of the element x 2 DomŒa� with

x˙ 2 H˙ \ DomŒa�:

Thus, in these notations, taking into account that

v0 D v;

where v is given by (4.1), we get the bound

v� � 2v sup
0¤x2DomŒa �

p
a0ŒxC�a0Œx��

a�Œx�
: (4.8)

Since a� is represented by JA � J� D jAj � �J and JA � �J D jA � �I j in
Cases I and II, respectively, we observe that

a�Œx� D
8<
:
a0ŒxC� � �kxCk2 C a0Œx�� C �kx�k2 in Case I,

a0ŒxC� � �kxCk2 � a0Œx�� C �kx�k2 in Case II.
(4.9)

Introducing the elements y˙ 2 H˙,

y˙
defD
8<
:

.jAj 	 �I/1=2x˙ in Case I,

˙.A � �I/1=2x˙ in Case II;
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and taking into account (4.9), we obtain the representationp
a0ŒxC�a0Œx��

a�Œx�
D kjAj1=2.jAj � �I/�1=2yCk kjAj1=2.�A C �I/�1=2y�k

kyCk2 C ky�k2
;

valid in both Cases I and II. Using the elementary inequality

kyCk ky�k � 1

2
.kyCk2 C ky�k2/;

we arrive at the following boundp
a0ŒxC�a0Œx��

a�Œx�
� 1

2
kjAj1=2.jAj � �I/�1=2jHC

k � kjAj1=2.�A C �I/�1=2jH�
k:

(4.10)
It is easy to see that

kjAj1=2.jAj � �I/�1=2jHC
k �

p
dCp

dC � �
; � 2 .˛; ˇ/; in Cases I and II;

(4.11)
while

kjAj1=2.�A C �I/�1=2jH�
k �

8̂̂̂
<̂
ˆ̂̂̂:

p
d�p

d� C �
; � 2 .0; ˇ/; in Case I,

p
d�p

� � d�
; � 2 .˛; ˇ/; in Case II.

(4.12)

Choosing � D dC�d�

2
> 0 in Case I (recall that dC > d� by the hypothesis) and

� D dCCd�

2
in Case II, and combining (4.10), (4.11), and (4.12), we get the estimatesp

a0ŒxC�a0Œx��

adC�d�

2

Œx�
�
p

dCd�
dC C d�

in Case I

and p
a0ŒxC�a0Œx��

adCCd�

2

Œx�
�
p

dCd�
dC � d�

in Case II:

Hence, from (4.8) it follows that

v dC�d�

2

� 2v

p
dCd�

dC C d�
in Case I

and

v dCCd�

2

� 2v

p
dCd�

dC � d�
in Case II:
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Applying (4.6), we get the norm estimates

kE
A� dC�d�

2
I
.RC/ � E

B� dC�d�

2
I
.RC/k � sin

�1

2
arctan

h
2

p
dCd�

dC C d�
v
i�

(4.13)

in Case I and

kE
A� dCCd�

2
I
.RC/ � E

B� dCCd�

2
I
.RC/k � sin

�1

2
arctan

h
2

p
dCd�

dC � d�
v
i�

(4.14)

in Case II. It remains to observe that kP � Qk, where the spectral projections P and
Q are given by (4.3), coincides with the left hand side of (4.13) and (4.14) in Case I
and Case II, respectively.

The proof is complete.

Remark 4.3. We remark that the quantity ı given by (4.5) coincides with the relative
distance (with respect to the origin) between the lower edges of the spectral compo-
nents †C and †� in Case I and it has the meaning of the relative length (with respect
to the origin) of the spectral gap .d�; dC/ in Case II.

For the further properties of the relative distance and various relative perturbation
bounds we refer to the paper [10] and references quoted therein.

We also remark that in Case II, i.e., in the case of a positive operator A, the
bound (4.4) directly improves a result obtained in [6], the relative Sin‚ Theorem,
that in the present notations is of the form

kP � Qk � v

ı
:

We conclude our exposition with considering an example of a 2 � 2 numerical
matrix that shows that the main results obtained above are sharp.

Example 4.4. Let H be the two-dimensional Hilbert space H D C2, ˛ < ˇ and
w 2 C.

We set

A D
 

ˇ 0

0 ˛

!
; V D

 
0 w

w� 0

!
and J D

 
1 0

0 �1

!
:

Let v be the symmetric form represented by (the operator) V.
Clearly, the form v satisfy Hypothesis 4.1 with the relative bound v given by

v D jwjpj˛ˇj ;

provided that ˛; ˇ ¤ 0. Since VJ D �J V , the form v is off-diagonal with respect
to the orthogonal decomposition H D HC ˚ H�.
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In order to illustrate our results, denote by B the self-adjoint matrix associated
with the form a C v, that is,

B D A C V D
 

ˇ w

w� ˛

!
:

Denote by P the orthogonal projection associated with the eigenvalue ˛ of the
matrix A, and by Q the one associated with the lower eigenvalue of the matrix B .

It is well known (and easy to see) that the classical Davis–Kahan Tan 2‚ Theorem
(cf. (1.2)) is exact in the case of 2 � 2 numerical matrices. In particular, the norm of
the difference of P and Q can be computed explicitly

kP � Qk D sin
�1

2
arctan

h 2jwj
ˇ � ˛

i�
: (4.15)

Since, in the case in question,

v� D sup
0¤x2DomŒa �

jvŒx�j
a�Œx�

D jwjp
.ˇ � �/.� � ˛/

; � 2 .˛; ˇ/; (4.16)

from (4.16) follows that

inf
�2.˛;ˇ/

v� D 2jwj
ˇ � ˛

(with the infimum attained at the point � D ˛Cˇ
2

).
Therefore, the result of the relative tan 2‚ Theorem 3.1 is sharp.
It is easy to see that if ˛ < 0 < ˇ (Case I), then the equality (4.15) can also be

rewritten in the form

kP � Qk D sin
�1

2
arctan

h
2

p
dCd�

dC C d�
v
i�

; (4.17)

where dC D ˇ, d� D �˛ and v D jwjpj˛jˇ .

If 0 < ˛ < ˇ (Case II), the equality (4.15) states that

kP � Qk D sin
�1

2
arctan

h
2

p
dCd�

dC � d�
v
i�

; (4.18)

with dC D ˇ, d� D ˛, and v D jwjp
˛ˇ

.

The representations (4.17) and (4.18) show that the estimate (4.4) becomes equal-
ity in the case of 2 � 2 numerical matrices and, therefore, the results of Theorem 4.2
are sharp.
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indefinite quadratic forms revisited. To appear in Mathematika. Preprint 2010
arXiv:1003.1908

[5] L. Grubišić and K. Veselić, On Ritz approximations for positive definite operators. I. The-
ory. Linear Algebra Appl. 417 (2006), 397–422. MR 2250321 Zbl 1111.47024
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