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A spectral alternative for continuous families
of self-adjoint operators

Alexander Y. Gordon

Abstract. We consider a continuous family of self-adjoint operators As in a separable Hilbert
space, the parameter s being a point of a complete metric space S . It is well known that
isolated simple eigenvalues (assuming that the operators are bounded and the mapping s 7! As

is continuous in the norm sense) behave “well”: under small changes of the parameter they
do not disappear and change continuously. Unlike this, the eigenvalues embedded in the
essential spectrum can display a very “bad” behavior. It turns out, nevertheless, that if the set
of eigenvalues is non-empty for a topologically rich (e.g., open) set of values of the parameter,
then the (multi-valued) eigenvalue function has continuous branches.

One application is as follows. Suppose a one-dimensional quasi-periodic Schrödinger
operator has Cantor spectrum; then a Baire generic operator in its hull does not have eigenvalues.
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1. Introduction

Let fAsgs2S be a family of self-adjoint operators in a separable Hilbert space H

parametrized by a complete metric space S . We need to assume some kind of conti-
nuity of the mapping s 7! As . Let first the operators As be of the form

As D A C Bs; s 2 S; (1)

where A is a self-adjoint operator (bounded or not) and Bs is a bounded self-adjoint
operator that depends on s strongly continuously. Here are two examples.

(a) Rank one perturbations:

As D A C sP; s 2 R; (2)

where A is a cyclic self-adjoint operator and P D .�; '/ ' is the orthogonal
projection onto a one-dimensional cyclic subspace C' .k'k D 1/ of A.
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(b) Almost periodic Schrödinger operators in L2.R/ or l2.Z/:

As D �� C vs; s 2 �; (3)

where � is the one-dimensional Laplacian or lattice Laplacian, � is the Bohr
compact of an almost periodic real-valued function v.�/, and vs.�/ is the element
of its hull corresponding to s 2 �; the second summand in (3) is the operator of
multiplication by the function vs.�/.

In many cases the parameter space S is also endowed with a natural Borel measure, �.
In (a), it is the Lebesgue measure on R; in (b), it is the Haar measure on �: In the
theory of random and almost periodic operators (see [5] and [19]) it often turns out
that for �-almost every s 2 S the spectrum of the operator (1) is pure point (i.e.,
there exists an orthonormal basis consisting of eigenvectors). In the case of rank one
perturbations (2), a necessary and sufficient condition for the spectrum to be pure
point for almost all s 2 R is given in [22]. Applications of that result to random
operators include the one-dimensional Anderson model (see [22]), where, under mild
conditions, the spectrum turns out to be pure point for a.e. s 2 R. The almost periodic
operator (3) in l2.Z/, in the case of the celebrated almost Mathieu potential (see [16])

vs.n/ D � cos.2�˛n C s/; s 2 R=2�Z; (4)

has pure point spectrum for almost all s if the irrational ˛ is Diophantine and j�j > 2,
see [14]. In both these examples the eigenvalues embedded in the essential spectrum
(which has the cardinality of the continuum) are dense there. The same holds in a
number of other cases, see [3] and references therein.

Therefore, if by “small” sets we understand those subsets of S whose �-measure
is zero, and remove a suitable one, then for the remaining “measure typical” s in these
examples the operator As has a pure point spectrum and the eigenvalues embedded
in the essential spectrum are dense in it.

On the other hand, since S is a complete metric space, there is another notion
of “smallness” for its subsets: we can consider as small the first category sets (also
called meager sets), i.e., countable unions of nowhere dense sets. What structure of
the spectrum (if any) is Baire generic, i.e., holds for all s except those in some meager
set (or equivalently, for all s in a dense Gı set)?

In the cases, where the answer is known, it is quite different from the above one.
In particular, in examples (2) and (3), (4) for a Baire generic s there are no eigenvalues
embedded in the essential spectrum. (For the operator family (2), this is proved in [12]
and independently in [7]; for the family (3), (4), this follows from the result of [15].)

Note that these results on absence of eigenvalues in the essential spectrum for
rank one perturbations (2) and for almost periodic operators (3), (4) are of the same
kind. Nevertheless, the proofs in these two cases are completely different and do not
reveal any common mechanism behind these phenomena.

In the present work we find an obstruction that in many cases prevents the existence
of eigenvalues embedded in the essential spectrum for all values of the parameter
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(even if they are dense there for almost all values of the parameter with respect to a
suitable measure). Now the results of [12] and [7], on the one hand, and of [15], on
the other, get a common explanation.

The families of self-adjoint operators that we consider in this work do not neces-
sarily have the form (1). The only requirement is that As depend on s continuously
in the strong resolvent sense. In the rest of the paper, the term “Baire generic” is
abbreviated to “generic”. A property of an element of a complete metric space S is,
therefore, generic if there exists a dense Gı subset of S all of whose elements have
that property.

The remaining part of the paper is organized as follows. In Section 2 we state the
main result – Theorem 1. It is proved in Section 3, which also contains some gener-
alizations of the main result. Section 4 provides additional information (Theorem 2)
about eigenvectors in the case where the eigenvalues are simple. Section 5 contains
a sufficient condition for genericity of purely continuous spectrum (Theorem 3). In
Section 6 some applications are considered. First we prove the genericity of absence
of eigenvalues for certain ergodic families of one-dimensional Schrödinger operators
with Cantor spectrum. Then we show how results obtained in [12], [7] and in [15]
can be derived from the results of this work.

Acknowledgements. I am indebted to Artur Avila for his simplification of the orig-
inal proof of Theorem 1. I am also grateful to Yoram Last and Barry Simon for
valuable discussions and to Svetlana Jitomirskaya for useful suggestions regarding
applications of the main result. Finally, it is a pleasure to acknowledge the influence
of the work of Ilya Goldsheid [9] (see also [10]) on this paper.

2. The main result

Theorem 1. Let S be a complete metric space and fAsgs2S be a family of self-adjoint
operators in a separable Hilbert space H such that the mapping s 7! As is continuous
in the strong resolvent sense (that is, the mapping S 3 s 7! .As � z0I /�1x 2 H is
continuous for any z0 2 C n R and any x 2 H ). Let F be a closed subset of the real
line R. Denote by Z the set of all s 2 S such that the operator As has at least one
eigenvalue in F .

An alternative takes place: either

(i) Z is a meager set, or

(ii) Z has a non-empty interior; in this case there exist a non-empty open set U � Z

and a continuous function

s 7�! Es W U �! F

such that, for all s 2 U; Es is an eigenvalue of As :
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Remarks. 1. The first part of this theorem (stating that either Z is meager, or it con-
tains an open set) can also be derived from [21] (Theorem 1.1). What we emphasize
is the existence, in the latter case, of an eigenvalue that depends continuously on the
parameter (on some smaller open set).

2. Let the operator As be bounded for all s and depend on s continuously in the
norm sense. Assume that, for some s D s0, As has a simple isolated eigenvalue E0.
Then, as is well known, for all s close enough to s0, As also has a simple isolated
eigenvalue E.s/ close to E0; it is continuous in s and satisfies E.s0/ D E0. (The
corresponding eigenspace may be determined as the range of a suitable Riesz pro-
jection.) So in this case our statement is obvious. But if the eigenvalues are not
isolated – e.g., if they are dense in some interval, – we do not have such a natural
way to identify individual eigenvalues for different values of s, and it is not clear
whether it is possible to pick a point E.s/ in this dense set (depending on s) that
will be continuous in s on some open subset of S . Of course, such a selection is
impossible if for all s in some dense subset of S the operator As has no eigenvalues
at all. The theorem implies that this is the only case where continuous selection of
an eigenvalue is impossible.

3. The proof

1. Consider the topological product

T WD S � F � H ;

where the Hilbert space H is endowed with the weak topology. Furthermore, for any
m 2 N define a topological subspace of T

Tm WD S � Fm � B1;

where Fm D F \ Œ�m; m� and B1 D fy 2 H j kyk � 1g. Note that Tm endowed
with the induced topology is a product of two completely metrizable spaces S and
Fm � B1, the latter being compact.

Also consider a subset of T

Sol WD f� D .s; E; y/ 2 T j Asy D Ey; y ¤ 0g:
Clearly,

prS .Sol/ D Z

(by prS ; prS�F , etc. we denote the corresponding projections of the product T D
S � F � H onto S; S � F; etc.). Furthermore, fix a sequence fgkg1

kD1 that is dense
in the unit sphere of H ; let

Solkm WD
n
� D .s; E; y/ 2 T j Asy D Ey; .y; gk/ D 3

4
; y 2 B1; E 2 Fm

o
(5)
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or, equivalently,

Solkm WD Sol \
n
� D .s; E; y/ 2 Tm j .y; gk/ D 3

4

o
: (6)

2. We will need the following simple fact.

Lemma 1. Solkm is closed in Tm.

Proof. Suppose

Solkm 3 �j D .sj ; Ej ; yj / �! � D .s; E; y/ 2 Tm as j ! 1:

We should verify that � 2 Solkm. That .y; gk/ D 3
4

is obvious, since yj
w�! y as

j ! 1 (by
w�! we denote the weak convergence in H ).

According to (6), it remains to check that � 2 Sol, i.e., Asy D Ey, or equivalently,
.As � z0I /�1y D .E � z0/�1y, where z0 2 C n R is fixed. We have Asj

yj D Ej yj ,
hence

.Asj
� z0I /�1yj D .Ej � z0/�1yj : (7)

The left-hand side converges weakly to .As � z0I /�1y. (Indeed, if ' is an arbitrary
vector in H , then ..Asj

� z0I /�1yj ; '/ D .yj ; .Asj
� xzN0I /�1'/ converges to

.y; .As � xzN0I /�1'/, in view of the strong continuity of the resolvent of As in s.) At
the same time, the right-hand side of (7) converges weakly to .E � z0/�1y. Thus
.As � z0I /�1y D .E � z0/�1y.

3. Let
Zk

m WD prS .Solkm/: (8)

The set Zk
m is closed in S:

This is a special case of the following general statement.

Lemma 2. If M and N are topological spaces, N is compact and B is a closed
subset of M � N , then the projection of B to M is closed.

Assume that case (i) of the theorem does not take place, i.e., the set Z is not a
countable union of nowhere dense sets. Since

Z D
1[

m; kD1

Zk
m;

there is a pair .k; m/ 2 N2 such that Zk
m is not nowhere dense in S: Being closed,

Zk
m contains some open set U ; this implies the first part of (ii).
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4. Now we are going to derive the existence of an eigenvalue Es 2 F of As depending
continuously on s 2 Zk

m.

Lemma 3. If � D .s; E; y/ 2 Solkm and Q� D .s; zE; Qy/ 2 Solkm, then E D zE.

Proof. We have Asy D Ey and As Qy D zE Qy, so that if E ¤ zE, then y and Qy
are orthogonal. It follows then from the Bessel inequality and relations .y; gk/ D
. Qy; gk/ D 3

4
, kyk � 1, and k Qyk � 1 that

kgkk2 �
ˇ̌
ˇ
�
gk ;

y

kyk
�ˇ̌
ˇ2 C

ˇ̌
ˇ
�
gk ;

Qy
k Qyk

�ˇ̌
ˇ2 �

�3

4

�2 C
�3

4

�2

> 1;

which is impossible because kgkk D 1.

Lemma 3 implies that on the set

Gk
m WD prS�Fm

.Solkm/

the second component of a pair .s; E/ is uniquely determined by its first component.
In other words, Gk

m is the graph of a function

s 7�! Es W Zk
m �! Fm (9)

(we use the fact that prS .Gk
m/ D prS .Solkm/ D Zk

m).
The set Gk

m is closed, again by Lemma 2, so that the function (9) has a closed
graph; consequently, it is continuous, in view of the following lemma.

Lemma 4. If M and N are topological spaces, N is compact and a mapping
f W M ! N has a closed graph, then f is continuous.

As was shown, if case (i) of Theorem 1 does not take place, then the set Zk
m (for

some m and k) contains a non-empty open set U . The restriction of the continuous
function (9) to U is continuous as well. This completes the proof of Theorem 1.1

Remarks. 1. The closed set F in the formulation of Theorem 1 can be replaced by
an arbitrary F� set, in particular, by any open set. This is an immediate consequence
of the theorem.

2. The set F in Theorem 1 does not need to be fixed. The following generalization
of Theorem 1 is true.

Theorem 1�. Let fAsgs2S be a family of self-adjoint operators satisfying the con-
ditions of Theorem 1. Let F be a closed subset of the product S � RI denote by
Fs.s 2 S/ its (closed) cross-section

Fs WD fE 2 R j .s; E/ 2 F g
1The proof presented here is a simplified version of the original proof; the simplification is due to Artur

Avila.
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and by Z the set of all s 2 S for which the operator As has at least one eigenvalue
in Fs : Then either

(i) Z is a meager set, or

(ii) there exist a non-empty open set U � Z and a continuous function

s 7�! Es W U �! R

such that for all s 2 U we have: Es is an eigenvalue of As and Es 2 Fs :

The proof differs from that of Theorem 1 only in that now we define the topological
space T by T WD F � H and then define Tm as follows: Tm WD Fm � B1, where
Fm D f.s; E/ 2 F j j E j� mg.

Corollary 1. Let As D A C Bs , where A is a self-adjoint operator in a separable
Hilbert space H and Bs is a bounded self-adjoint operator in H depending on the
point s of a complete metric space S continuously in the norm sense. Denote by
	ess.As/ the essential spectrum of As (which in general depends on s). Then either

(i) for a generic s 2 S there are no eigenvalues of As in 	ess.As/, or

(ii) there is a non-empty open set U � S and an eigenvalue Es of As (s 2 U ) that
belongs to 	ess.As/ and depends continuously on s 2 U .

Proof. In order to apply Theorem 1�, we need to verify that the set F WD f.s; E/ 2
S �R j E 2 	ess.As/g is closed. This follows immediately from the following charac-
terization of the essential spectrum [8]: E 2 	ess.As/ if and only if for any " > 0 there
exists an infinitely-dimensional linear set D � D.As/ such that kAsx � Exk � "kxk
for all x 2 D.

4. The case of simple eigenvalues

Theorem 2. Let fAsgs2S be a family of operators that satisfies the conditions of
Theorem 1, and F a closed subset of R. Assume, in addition, that all eigenvalues of
the operators As are simple. Then an alternative takes place: either

(i) for all s in some dense Gı set, the operator As has no eigenvalues in F , or

(ii) there exist a non-empty open set U � Z and two mappings U 3 s 7! Es 2 F

and U 3 s 7! Ys 2 H n f0g such that

(a) AsYs D EsYs for all s 2 U ;

(b) the mapping s 7! Es is continuous;

(c) the mapping s 7! Ys is weakly continuous;

(d) there is a dense Gı set Q in U such that for any s� 2 Q we have
kYs � Ys�k ! 0 as U 3 s ! s�.
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Proof. Assume that case (ii) of Theorem 1 takes place. In what follows, we use the
objects and notation introduced in the proof of that theorem. For each point s of
Zk

m D prS .Solkm/, there is only one triple .s; E; y/ 2 Solkm with the given s. (The
uniqueness of E D Es was established in the proof of Theorem 1; the uniqueness
of y, denoted below by Ys , follows from the equality .y; gk/ D 3

4
(see (5)) and the

assumed simplicity of the eigenvalue Es of As .)
Consequently, the set Solkm is the graph of a mapping Zk

m 3 s 7! .Es ; Ys/ 2
Fm � B1, which is continuous by Lemmas 1 and 4. In particular, the mapping Zk

m 3
s 7! Ys 2 B1 is weakly continuous, so that its restriction to the open subset U of Zk

m

is weakly continuous as well. Therefore, the mapping U 3 s 7! .Es; Ys/ 2 Fm � B1

has properties (a), (b) and (c). Obviously, Ys ¤ 0. It remains to prove (d).
Fix an orthonormal basis e1; e2; : : : of the Hilbert space H . The function h.s/ WD

kYsk2; s 2 Zk
m, is the pointwise limit of a sequence of continuous functions: h.s/ D

lim
n!1 hn.s/; where

hn.s/ D
nX

j D1

j.Ys; ej /j2:

Consequently, there is a dense Gı set in Zk
m, say X , such that the function h.�/ is

continuous at all points of X ([18], Theorem 7.3).

If s� 2 X , then, as Zk
m 3 s ! s�, we have Ys

w�! Ys� and kYsk ! kYs�k,
which implies kYs � Ys�k ! 0. Setting Q WD X \ U completes the proof.

5. A sufficient condition for genericity of purely continuous spectrum

Theorem 3. Let fAsgs2S be an operator family satisfying the conditions ofTheorem 1.
Let F be a closed subset of R. Denote by D the set of all eigenvalues of all the
operators As: D WD [s2S 	p.As/. Suppose that

(a) S is locally connected;

(b) the subset F \ D of R has no interior points;

(c) for any E 2 F , the set

NE WD fs 2 S W E is an eigenvalue of Asg (10)

has no interior points.

Then for all s in some dense Gı set S0 � S , the operator As has no eigenvalues in F .

Proof. Assume the converse. Then case (ii) of Theorem 1 takes place, so that there
exist an open set U � S and a continuous function s 7! Es W U ! F such that Es is
an eigenvalue of As for all s 2 U . Let U0 be a connected component of U . By (a), it
is open. Thus, we have a continuous function U0 3 s 7! Es 2 D \ F and, since U0
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is connected, the set fEs W s 2 U0g � D \ F is connected as well, being, therefore,
an interval. By the assumption (b), this interval consists of a single point, say E0.
This implies that the set (10) with E D E0 contains an open set, U0. However, this
contradicts (c).

6. Applications

6.1. Ergodic one-dimensional Schrödinger operators with Cantor spectrum

6.1.1. Continuum operators. Let S be a complete metric space; fGtgt2R a group of
its homeomorphisms such that Gt .s/ is continuous in t for any s; V.�/ a bounded con-
tinuous real-valued function on S ; and � a Borel measure on S such that �.S/ D 1.
For s 2 S , define a self-adjoint operator Hs on L2.R/ by

Hs D � d 2

dt2
C vs; (11)

where vs is the operator of multiplication by the function

vs.t / D V.Gt .s//: (12)

Suppose that

(A) the group fGtgt2R preserves the measure � and is �-ergodic;

(B) the group is minimal, that is, the trajectory fGt .s/gt2R of any point s 2 S is
dense in S ;

(C) �.U / > 0 for any non-empty open set U � S .

The operators Hs and HG� .s/ are unitarily equivalent: HG� .s/ D U �1
� HsU� ,

where .U� y/.t/ D y.t � 
/; hence their spectra 	.Hs/ and 	.HG� .s// are iden-
tical. Furthermore, the multiplication operator vs depends on s strongly continu-
ously, so that the operator family (11) satisfies the strong resolvent continuity con-
dition: if sk ! s, then Hsk

converges to Hs in the strong resolvent sense ([20],
Theorem VIII.25). Consequently, for any E 2 	.Hs/ there exist Ek 2 	.Hsk

/ such
that Ek ! E ([20], Theorem VIII.24). Assumption (B), therefore, implies that the
spectrum of Hs does not depend on s. Denote this closed set by †. It does not contain
isolated points ([19], Theorem 2.11).

Theorem 4. Suppose that the group fGtgt2R, the measure � and the function V

satisfy the above assumptions. If S is locally connected and † is nowhere dense in R,
then there is a dense Gı set S0 2 S such that for any s 2 S0 the operator Hs defined
by (11) and (12) has no eigenvalues.
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Proof. We use Theorem 3, putting F WD †. As was said, the operator family (11)
satisfies the strong resolvent continuity condition. Conditions (a) and (b) ofTheorem 3
are fulfilled due to the assumptions of Theorem 4. Condition (c) is satisfied, because
the operators (11) cannot have eigenvalues of infinite multiplicity, so that the set (10)
has �-measure zero ([19], Theorem 2.12) and, in view of (C), cannot contain an open
set.

Corollary 2. Let Hs , where s D .s1; : : : ; sd / 2 T d D Rd =Zd .d � 2/, be the
operator (11) in L2.R/ with the potential

vs.t / D V.s1 C ˛1t; : : : ; sd C ˛d t /; t 2 RI
here V is a continuous real-valued function on T d , and the numbers ˛1; : : : ; ˛d are
rationally independent. If the spectrum of the operator Hs is nowhere dense (for
some s and hence for all s 2 T d ), then for all s in some dense Gı set S0 � T d the
operator Hs has no eigenvalues.

Proof. Apply Theorem 4, setting S D T d and defining the homeomorphism

Gt W T d �! T d .t 2 R/

by Gt .s1; : : : ; sd / D .s1 C ˛1t; : : : ; sd C ˛d t /, � being the Lebesgue measure
on T d .

6.1.2. Discrete operators

1. Let S be a complete metric space, G its homeomorphism, V.�/ a bounded con-
tinuous real-valued function on S , and � a Borel measure on S such that �.S/ D 1.
For s 2 S , define a self-adjoint operator Hs on l2.Z/ by

.Hsy/.n/ D y.n � 1/ C y.n C 1/ C vs.n/y.n/; n 2 Z; (13)

where
vs.n/ D V.Gn.s//: (14)

Suppose that

(A) the homeomorphism G preserves the measure � and is �-ergodic;

(B) G is minimal, that is, the trajectory fGn.s/gn2Z of any point s 2 S is dense in S ;

(C) �.U / > 0 for any non-empty open set U � S .

All the operators Hs .s 2 S/ have the same spectrum, from now on denoted by
† (with interior Int.†/). Furthermore, this closed set does not have isolated points.
These statements, as well as the following theorem, can be proved in the same way
as in the continuum case.
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Theorem 5. Suppose that the homeomorphism G, the measure � and the function V

satisfy the above assumptions. If S is locally connected and † is nowhere dense in R,
then there is a dense Gı set S0 2 S such that for all s 2 S0 the operator Hs defined
by (13) and (14) has no eigenvalues.

Corollary 3. Let Hs , where s D .s1; : : : ; sd / 2 T d D Rd =Zd .d � 1/, be the
operator (13), (14) in l2.Z/, where G is a shift on T d :

G.s1; : : : ; sd / D .s1 C ˛1; : : : ; sd C ˛d /; (15)

the numbers 1; ˛1; : : : ; ˛d being rationally independent. If Int.†/ D ;, then for all s

in some dense Gı set S0 � T d the operator Hs has no eigenvalues.

Corollary 4. Let Hs , where s D .s1; s2/ 2 T 2, be the operator (13), (14) in l2.Z/,
where G is a skew-shift on T 2:

G.s1; s2/ D .s1 C ˛; s2 C s1/ (16)

with an irrational ˛. If Int.†/ D ;, then for all s in a dense Gı set S0 � T 2 the
operator Hs has no eigenvalues.

2. Some ergodic Schrödinger operators having Cantor spectrum for generic values
of the functional parameter are studied in [1]. These are operators over a strictly
ergodic homeomorphism that fibers over an almost periodic dynamical system.

Proposition 1 ([1]). Let S be a compact metric space and G W S ! S a strictly
ergodic homeomorphism (that is, G is minimal and uniquely ergodic). Suppose that
there exist an infinite compact Abelian group K and an onto continuous mapping
p W S ! K such that p.G.s// D p.s/ C ˛ for some ˛ 2 K and all s 2 S . Then for
a generic V 2 C.S; R/ the operator H V

s in l2.Z/ defined by

.H V
s y/.n/ D y.n � 1/ C y.n C 1/ C V.Gn.s//y.n/; n 2 Z; (17)

has Cantor spectrum.

Proposition 1 and Theorem 5 imply the following statement.

Corollary 5. Let S; G; K; and p be such as in Proposition 1. Assume, in addition,
that S is locally connected. Then for a generic V 2 C.S; R/ there exists a dense Gı

set SV � S such that for all s 2 SV the operator (17) does not have eigenvalues.

Examples of particular interest include those where G is a shift or a skew-shift on
the torus (see the above Corollaries 3 and 4).



140 A. Y. Gordon

Corollary 6. Let H V
s , where V 2 C.T d ; R/ and s 2 T d .d � 1/, be the operator

in l2.Z/ given by

.H V
s y/.n/ D y.n�1/Cy.nC1/CV.s1Cn˛1; : : : ; sd Cn˛d / y.n/; n 2 Z; (18)

the numbers 1; ˛1; : : : ; ˛d being rationally independent. Then for a generic V 2
C.T d ; R/ and all s in some dense Gı set SV � T d (which may depend on V ) the
operator H V

s has no eigenvalues.

Remark. For a different way to obtain this result, see [13].2

Corollary 7. Let H V
s , where V 2 C.T 2; R/ and s D .s1; s2/ 2 T 2, be the following

operator in l2.Z/:

.H V
s y/.n/ D y.n � 1/ C y.n C 1/ C V.Gn.s//y.n/; n 2 Z;

where G.s1; s2/ D .s1 C ˛; s2 C s1/ with an irrational ˛. Then for a generic
V 2 C.T 2; R/ and all s in some dense Gı set SV � T 2 (which may depend on V )
the operator H V

s has no eigenvalues.

3. Recently Goldstein and Schlag [11] proved that the spectrum is a Cantor set for
quasi-periodic operators with one-frequency analytic potentials for almost all values
of the frequency in the regime of positive Lyapunov exponent. Their main result
(Theorem 1.1) implies the following statement.

Proposition 2 (Corollary to Theorem 1.1 in [11]). Suppose the operator family
A˛

! .! 2 T D R=Z/ is given by the equation

.A˛
!y/.j / D y.j � 1/ C y.j C 1/ C V.j˛ C !/ y.j /; j 2 Z; (19)

where ˛ 2 R and V.�/ is a 1-periodic real-analytic function on R. Suppose ˛0 2 R
satisfies the Diophantine condition

kk˛0k � c

k.1 C log k/a
; k D 1; 2; : : : ; (20)

with some a > 1; c > 0. Here k � k denotes the distance from the nearest integer.
Suppose, furthermore, that the Lyapunov exponent L.E; ˛0/ of the operator A

˛0
!

satisfies the inequality

L.E; ˛0/ � �0 > 0; E 0 � E � E 00: (21)

2Note that the proof of one of lemmas in [13] (Lemma 2) is incomplete: it contains a statement about
sequences of Schrödinger operators with convergent potentials and weakly convergent eigenfunctions that
is not actually proved. To correct that, the end of the proof of the lemma should be replaced by an argument
similar to that used in the proof of Lemma 1 above.
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Then there exists ı > 0 such that for almost all ˛ 2 .˛0 � ı; ˛0 C ı/ the spectrum
of A˛

! (which, for irrational ˛, does not depend on !) is nowhere dense in ŒE 0; E 00�.

Proposition 2 and Corollary 3 lead to the following statement.

Theorem 6. Suppose the operator (19), where V.�/ is a 1-periodic real-analytic func-
tion on R, has strictly positive Lyapunov exponent L.E; ˛0/ > 0 for some ˛0 satis-
fying the Diophantine condition (20) and all E in a compact interval � D ŒE 0; E 00�.

Then for almost all ˛ in a small enough neighborhood of ˛0, the operator A˛
! has

singular continuous spectrum in � for a dense Gı set of ! 2 T .

Proof. According to the result of Bourgain–Jitomirskaya [4], the real-analyticity of V

and the irrationality of ˛0 imply that the Lyapunov exponent L.E; ˛/ is jointly
continuous in E and ˛ at all points .E; ˛0/, E 2 R. (Note that L.E; ˛/, for rational ˛,
is understood here as the Lyapunov exponent averaged over ! 2 T .) It follows
that (21) holds for some small �0 > 0; moreover, for all ˛ 2 .˛0 � ˇ; ˛0 C ˇ/ with
small enough ˇ > 0 we have

L.E; ˛/ � �0=2 > 0; E 0 � E � E 00: (22)

By Proposition 2, the operator A˛
! has Cantor spectrum for almost all ˛ 2 .˛0 � ı;

˛0 C ı/, where ı 2 .0; ˇ� is sufficiently small. By Corollary 3, for any such ˛ and
all ! in a dense Gı set T˛ 2 T , the operator A˛

! does not have eigenvalues in �.
The singularity of the spectrum of A˛

! in the interval � is implied by inequal-
ity (22); this follows from the Ishii–Pastur–Kotani theorem (see, e.g., [6]) for almost
all ! and from the result of Last and Simon [17] for all !.

Corollary 8. Suppose the operator (19) with a 1-periodic real-analytic function
V has positive Lyapunov exponent L.E; ˛/ > 0 for almost all .˛; E/ 2 Œ˛0; ˛00� �
ŒE 0; E 00�. Then for almost every ˛ 2 Œ˛0; ˛00� the operator A˛

! has singular continuous
spectrum in ŒE 0; E 00� for a dense Gı set of ! 2 T .

Proof. Let I D Œ˛0; ˛00�, � D ŒE 0; E 00� and R D I � �. Let Y be the union of all
rectangles Q D Œ˛0

Q; ˛00
Q��ŒE 0

Q; E 00
Q� D IQ ��Q with rational vertices, such that for

all ˛ 2 IQ n NQ, where jNQj D 0 (j � j denotes the Lebesgue measure), the operator
A˛

! has Cantor spectrum on �Q and a positive Lyapunov exponent a.e. on �Q. It
follows from the proof of Theorem 6 (and the fact that almost all ˛ are Diophantine
in the sense of (20)) that jR n Y j D 0. In addition, j S

Q NQj D 0. This implies that
for a.e. ˛ 2 I the interval � is almost entirely covered with countably many intervals
on each of which the operator A˛

! has Cantor spectrum and a.e. positive Lyapunov
exponent; therefore, the same is true for the whole interval �. Consequently, for a.e.
˛ 2 I the spectrum of A˛

! on � is singular for all ! and, for generic !, singular
continuous.

Remark. Another sufficient condition for the operator (19) to have Cantor spectrum
was given by Sinai [23].
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6.2. Rank one perturbations. Consider an operator family

At D A C tP; t 2 R;

where A is a cyclic self-adjoint operator and P is an orthogonal projection onto its
one-dimensional cyclic subspace C' (k'k D 1/ W Py D .y; '/ '. All operators At

have the same essential spectrum, which we denote by †ess. It was proved in [12]
and [7] (in different ways) that for a generic t there are no eigenvalues of At in †ess.

The first and easiest step in both proofs (especially in [7]) was to show that the set

fE 2 † j E is an eigenvalue of At for some tg (23)

is meager. Now we will show how to replace the rest of the proof by a reference to
Theorem 3.

We apply Theorem 3 with S D R and F D †ess. Assumptions (a) and (b) of
Theorem 3 are fulfilled; to prove (c), assume first that E and zE are eigenvalues of
the operators At and AQt , respectively, with nonzero eigenvectors y and Qy. Since the
vector ' is cyclic for A, it is easy to see that .y; '/ ¤ 0 and . Qy; '/ ¤ 0, so we may
assume that .y; '/ D . Qy; '/ D 1. Then the obvious identity

. zE � E/. Qy; y/ D .Qt � t /. Qy; Py/

takes the form
. zE � E/. Qy; y/ D Qt � t;

so that Qt D t if zE D E. Therefore, for any E 2 R the set

NE WD ft 2 R W E is an eigenvalue of At g
contains at most one point, which proves (c).

6.3. Even almost periodic potentials. Let v.t/ be a real-valued almost periodic
function on R, S its Bohr compact, and As D �d 2=dt2 C vs.t / .s 2 S/ the
corresponding family of Schrödinger operators in L2.R/: It was proved in [15] that
if v.t/ is even, then for a generic s 2 S the operator As has no eigenvalues. (The
l2.Z/ version of this result was also proved in [15].)

Now we will show how a somewhat more general statement can be derived from
the results of the present work.

Let S be a complete metric space; fGtgt2R a group of its homeomorphisms such
that Gt .s/ is continuous in t for any s; and V.�/ a bounded continuous real-valued
function on S . For s 2 S , define a self-adjoint operator As on L2.R/ by

As D � d 2

dt2
C vs; (24)

where vs is the operator of multiplication by the function

vs.t / D V.Gt .s//: (25)
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Theorem 7. Suppose that for some s0 2 S , setting �.t/ WD Gt .s0/, we have:

(a) V.�.�t // D V.�.t// for all t 2 R;

(b) the trajectory f�.t/gt2R of s0 is dense in S ;

(c) there exists a sequence tk .jtkj ! 1/ for which �.tk/ ! s0.

Then there is a dense Gı set S0 � S such that for all s 2 S0 the operator (24), (25)
has no eigenvalues.

Proof. Apply Theorem 2 with F D R. Assume that case (ii) of the theorem takes
place. Pick a point s� 2 Q; denoting Ys� by y�, we have: for any ı > 0 there exists
a neighborhood U 0 of s� (U 0 � U ) such that kYs � y�k � ı for any s 2 U 0.

In view of (b) and (c), we can choose a sequence uk 2 R so that juk j ! 1 and
sk WD �.uk/ 2 U 0 for all k. Then we have

��Ysk
� y��� � ı; k D 1; 2; : : : (26)

The function Ysk
.t / is a solution of the equation �y00 C vsk

.t / y D Esk
y, or

equivalently, since vsk
.t / D V.Gt .sk// D V.�.t C uk//, the equation

� y00 C v.t C uk/ y D Esk
y; (27)

where v.t/ D V.�.t//. It follows that the function Ysk
.�t / solves the “reflected”

equation �y00 C v.�t C uk/y D Esk
y, or

� y00 C v.t � uk/ y D Esk
y (28)

(here we use the evenness of the function v.�/, which follows from (a)).
Since the equation (28) is the .�2uk/-shift of (27) and the L2-solution of each of

these equations is uniquely determined up to a constant factor, we have

Ysk
.�t / D ckYsk

.t � 2uk/; (29)

where jck j D 1.
It follows from (29) and (26) that

ky�.�t / � ck y�.t � 2uk/k � 2ı; k D 1; 2; : : :

But for large k, j2uk j is large, so the functions y�.t � 2uk/ and y�.�t / are almost
orthogonal, and hence passing to the limit we have 2 ky�k2 � 4ı2. Since ı > 0 can
be chosen arbitrarily small, we obtain: y� D 0. We have arrived at a contradiction,
which shows that case (ii) of Theorem 2 is impossible.

Corollary 9. Let v W R ! R be a bounded uniformly continuous function, and S be
the set of all pointwise limits of its shifts vu.t / D v.t C u/ .u 2 R/ endowed with
the topology of pointwise convergence (so that S is a compact metrizable topological
space). Suppose that v.�t / D v.t/ for all t 2 R and v.t C un/ ! v.t/ for some
sequence un 2 R .junj ! 1/ and all t 2 R. Then for a generic s 2 S the operator
�d 2=dt2 C s.t/ in L2.R/ does not have eigenvalues.
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Proof. Define homeomorphisms Gt .t 2 R/ of S by .Gt .s//.u/ D s.u C t / and the
function V on S by V.s/ D s.0/. Then the function (25) is vs.t / D V.Gt .s// D
.Gt .s//.0/ D s.t/, and it remains to apply Theorem 7 with s0 D v.�/.

In the particular case, where v.t/ is an even almost periodic function, we obtain
the result [15].

The l2.Z/ versions of these results can be proved similarly.
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