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Schrödinger operators with slowly decaying
Wigner–von Neumann type potentials

Milivoje Lukic

Abstract. We consider Schrödinger operators with potentials satisfying a generalized bounded
variation condition at infinity and an Lp decay condition. This class of potentials includes
slowly decaying Wigner–von Neumann type potentials sin.ax/=xb with b > 0. We prove
absence of singular continuous spectrum and show that embedded eigenvalues in the continuous
spectrum can only take values from an explicit finite set. Conversely, we construct examples
where such embedded eigenvalues are present, with exact asymptotics for the corresponding
eigensolutions.
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1. Introduction

In this paper, we will investigate a class of Schrödinger operators with decaying os-
cillatory potentials. The flagship example is the Wigner–von Neumann potential [19]
(see also [14], Section XIII.13) on .0;C1/, which has asymptotic behavior

V.x/ D �8sin.2x/

x
CO.x�2/; x ! 1; (1.1)

and the peculiar property that the Schrödinger operator H D ��C V has an eigen-
value at C1 embedded in the a.c. spectrum Œ0;C1/. In honor of this example,
potentials of the form

V.x/ D
KX
kD1

�k
cos.˛kx C �k/

x�k
CW.x/; �k > 0; W.x/ 2 L1; (1.2)

are often called Wigner–von Neumann type potentials. They have been the subject of
much research, mostly restricted to �k >

1
2

; see Atkinson [1], Harris and Lutz [5],
Theorem XI.63 in Reed and Simon [14], and Ben, Artzi, and Devinatz [3]. It is proved
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there that for �k >
1
2

, H has purely absolutely continuous spectrum on

.0;1/ n
n˛2

k

4
j 1 � k � K

o

and that E D ˛2
k

4
can be in the pure point spectrum of H . Simon [16], following

work by Naboko [11], has even used Wigner–von Neumann potentials to construct
decaying potentials with arbitrary positive pure point spectrum, including dense point
spectrum.

On a different note, Weidmann’s theorem [20] states that for V D V1CV2, where
V1 has bounded variation, lim

x!1V1.x/ D 0 and V2 2 L1.0;1/, the Schrödinger

operator H D �� C V has purely a.c. spectrum on .0;C1/. Inspired by those
two results, one defines functions of generalized bounded variation. This class of
functions includes functions of bounded variation and Wigner–von Neumann type
potentials (1.2) and is the natural class of potentials for the result that follows.

Definition 1.1. A function ˇ W .0;C1/ ! C has rotated bounded variation with
phase ' if ei'xˇ.x/ has bounded variation. A function V W .0;C1/ ! C has
generalized bounded variation with the set of phases A D f'1; : : : ; 'Lg if it can be
expressed as a sum

V.x/ D
LX
lD1

ˇl .x/CW.x/ (1.3)

such that the l-th function ˇl has rotated bounded variation with phase 'l andW.x/ 2
L1.0;C1/.

It is clear that a potential of the form (1.2) has generalized bounded variation
with the set of phases f˙˛1; : : : ;˙˛Kg, since �k

x�k
e˙iŒ˛kxC�k� has rotated bounded

variation with phase �˛k .
A real-valued function V of generalized bounded variation obeysV 2 L1loc.0;1/,

V 2 L1.0; 1/ and

lim
n!1

Z nC1

n

jV.x/jdx D 0: (1.4)

Thus, 0 is a regular point for ��CV and ��C V is limit point at C1. Therefore,
by the general theory of one-dimensional Schrödinger operators (as described in [13]
or [18]), the expression �� C V defines Schrödinger operators H� on L2.0;1/,
parametrized by � 2 Œ0; �/. The domain of H� is

D.H�/
D fu 2 L2.0;1/ j u; u0 2 ACloc;�u00 C V u 2 L2; u0.0/ sin � D u.0/ cos �g

(1.5)

and H� W D.H�/ ! L2.0;1/ acts as

.H�u/.x/ D �u00.x/C V.x/u.x/: (1.6)



Wigner–von Neumann type potentials 149

The operatorH� is self-adjoint, and for every z 2 C with Im z > 0, there is a solution
of �u00

z C V uz D zuz which is square-integrable near 1. This is used to define the
m-function

m� .z/ D u0
z.0/ cos � C uz.0/ sin �

uz.0/ cos � � u0
z.0/ sin �

which, in turn, defines a canonical spectral measure �� by

d�� D 1
�

w-lim
"#0

m� .x C i"/dx

(the weak limit is with respect to continuous functions of compact support). The
importance of �� lies in the fact that the operator H� is unitarily equivalent to mul-
tiplication by x on L2.R; d�� .x//.

Our first theorem describes the spectrum of operators with potentials of gener-
alized bounded variation, with an Lp condition on the decay. This is the analog of
our results for orthogonal polynomials on the real line and on the unit circle (The-
orems 1.1 and 1.2 from [10]), and the proof will use ideas from [10]. There is also
closely related recent work for orthogonal polynomials and discrete Schrödinger op-
erators by Wong [21] and Janas and Simonov [7]. For more on the history of this
problem for those systems, see [10].

Theorem 1.1. Let H� be the Schrödinger operator given by (1.5) and (1.6), where
V W .0;1/ ! R has generalized bounded variation with the set of phases A, and
V 2 L1 C Lp for some positive integer p. Then there is a finite set which depends
only on A and p,

Sp D
n	2
4

j 	 2
p�1[
kD1

.AC � � � C A„ ƒ‚ …
k times

/
o
; (1.7)

such that on .0;1/ n Sp, the spectral measure �� of H� is mutually absolutely
continuous with Lebesgue measure. Thus,

(i) 
ac.H� / D Œ0;1/;

(ii) 
sc.H� / D ;;

(iii) 
pp.H�/ \ .0;1/ � Sp is a finite set.

As we increase p in Theorem 1.1, we get larger sets Sp of allowed positive
eigenvalues in (1.7). It is natural to ask whether these eigenvalues are really possible.
We will construct examples for which these points are indeed eigenvalues of H� .

For concreteness, we will construct examples with power-law decay. In what
follows, the potential will have the form

V.x/ D
KX
kD1

�k
1

x�
cos.˛kx C �k.x//C ˇ0.x/; x � x0 ; (1.8)
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where

� 2
� 1
p
;

1

p � 1
i
; (1.9)

�k > 0, and

ˇ0.x/ 2 C 1; ˇ0
0.x/ D O.x�p� /; ˇ0.x/ D O.x�� /; x ! 1: (1.10)

The functions �k.x/ 2 C 1 are chosen so that

� 0
k.x/ D O.x�.p�1/� /; x ! 1; (1.11)

which ensures that (1.8) has generalized bounded variation with the set of phases
f0;˙˛1; : : : ;˙˛Kg. Moreover, �k.x/ will often obey the stronger condition

� 0
k.x/ D O.x�p� /; x ! 1; (1.12)

implying in particular that �k.x/ has bounded variation.
With the choice (1.9), we have V 2 Lp . Because of Theorem 1.1, we will focus

on an eigenvalue E 2 Sp n Sp�1. We will construct a real-valued solution u.x/ of

� u00.x/C V.x/u.x/ D Eu.x/ (1.13)

with the asymptotic behavior

1p
E
u0.x/C iu.x/ D Af .x/eiŒ

p
ExC�1�.1C o.1//; x ! 1; (1.14)

with

f .x/ D

8̂̂
<
ˆ̂:
x

�C�j1
:::�jp�1 ; � D 1

p � 1 ;

exp
�

� C

1 � .p � 1/� �j1
: : : �jp�1

x1�.p�1/��
; � 2

� 1
p
;

1

p � 1
�
;

(1.15)
andA;C > 0. At one step of the construction, we will have to cancel out a function of
bounded variation, and the easiest way to do that will be by adjusting ˇ0.x/ in (1.8);
we state this as a theorem.

Theorem 1.2. Let V be given by (1.8) and (1.9) and let E 2 Sp n Sp�1. For any
choice of˛1; : : : ; ˛K away from an algebraic set of codimension 1 (i.e., any choice not
obeying a non-trivial polynomial relation), we can make a choice of ˇ0.x/ consistent
with (1.10) and functions �k.x/ 2 C 1 with (1.12) such that (1.13) has a real-valued
solution u.x/ with asymptotics (1.14).

The constantC depends only on˛1, …,˛K andE. In particular, for � 2 . 1
p
; 1
p�1 /

or for large enough values of the product �j1
: : : �jp�1

, there is a choice of boundary
condition � such that E is an eigenvalue of H� .
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Adjusting ˇ0.x/ was just one way to construct solutions with the asymptotics
described in (1.14). Another approach is possible, which merely adjusts the �k ;
however, some restrictions on E apply. We present the result of this method for the
p D 3 case; the general case can be analyzed in the same way. The significance of
this theorem is that it doesn’t require the addition of any new terms such as ˇ0.x/.

Theorem 1.3. Let V be given by (1.8) with p D 3, (1.9) and ˇ0.x/ D 0 and
let E 2 Sp n Sp�1. For any choice of ˛1; : : : ; ˛K away from an algebraic set
of codimension 1 (i.e., any choice not obeying a non-trivial polynomial relation),
assume

min
n˛21
4
; : : : ;

˛2K
4

o
< E < max

n˛21
4
; : : : ;

˛2K
4

o
: (1.16)

Then for any �1; : : : ; �K > 0 which obey

KX
kD1

�2
k

4E � ˛2
k

D 0; (1.17)

there exist functions �k.x/ 2 C 1 with (1.12) such that (1.13) has a real-valued
solution u.x/ with asymptotics (1.14).

The constantC depends only on˛1, …,˛K andE. In particular, for � 2 . 1
p
; 1
p�1 /

or for large enough values of the product �j1
: : : �jp�1

, there is a choice of boundary
condition � such that E is an eigenvalue of H� .

Remark 1.1. The proofs of Theorems 1.2 and 1.3 can be adapted to construct poten-
tials with several embedded eigenvalues, as long as we have enough functions �k.x/
at our disposal; we need to be able to separately control suitable linear combinations
of the �k.x/, given by (6.8), which means that we can construct at mostK embedded
eigenvalues. Choosing a subset of eigenvalues from Sp n Sp�1 for which the linear
combinations (6.8) are linearly independent, the construction just needs to be done
simultaneously for all of them, which amounts to treating the equations for �k.x/ as
a coupled system of differential equations.

The method used to construct solutions with the asymptotics (1.14) extends di-
rectly to the setting of orthogonal polynomials on the real line or unit circle, using
the methods in Lukic [10].

Independently, in the setting of discrete Schrödinger operators, Krüger [9] has re-
cently shown existence of embedded eigenvalues for some potentials of generalized
bounded variation. The method in [9] is different than ours, but the constructed po-
tentials are of the same form as in our Theorem 1.2. However, the precise asymptotics
of the form (1.14), the critical case � D 1

p�1 and Theorem 1.3 are new.
We begin by discussing some relevant properties of functions of generalized

bounded variation in Section 2 and Prüfer variables in Section 3. Section 4 will
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prove Theorem 1.1, except for some functional identities postponed to Section 5.
Section 6 builds upon the method of Sections 4 and 5 to prove Theorems 1.2 and 1.3.

It is a pleasure to thank David Damanik, Yoram Last, and Barry Simon for useful
suggestions and discussions.

2. Generalized bounded variation

In this section we describe some properties of functions of rotated and generalized
bounded variation which will be needed later. The first lemma lists some elementary
properties.

Lemma 2.1. Let ';  2 R, and let ˇ.x/ and �.x/ be functions on .0;1/. Then

(i) If ˇ.x/ has rotated bounded variation, then ˇ.x/ is bounded;

(ii) If ˇ.x/ and �.x/ have rotated bounded variation with phases ' and  , respec-
tively, then ˇ.x/�.x/ has rotated bounded variation with phase ' C  .

The proof is straightforward and analogous to the proof of Lemma 2.1 in [10].
We remind the reader that our potential V has the decomposition (1.3), where ˇl

has rotated bounded variation with phase 'l 2 A and W 2 L1. This decomposition
is not unique, and it will be useful to make some adjustments to it. First, it will be
useful to adjust the breakup in (1.3) so that ˇl 2 C 1.

Lemma 2.2. If V.x/ is of the form (1.3), with ˇl , W as described there, then the
breakup can be adjusted so that, in addition to assumptions stated there, ˇl 2 C 1

and
d

dx
.ei'lxˇl .x// 2 L1: (2.1)

This reduces to an observation made by Weidmann [20] in conjunction with the
proof of his theorem; therefore, we provide only an outline of the proof.

Outline of proof. By linearity, it suffices to prove this fact for L D 1 and by multi-
plying by e�i'lx , it suffices to prove it when ˇ D ˇ1 has bounded variation. Since
every function of bounded variation is the linear combination of four bounded real-
valued increasing functions, by linearity it suffices to prove it when ˇ is an increasing
function.

Extend ˇ to a function on R, with ˇ.y/ D lim
x#0

ˇ.x/ for y � 0. Pick j 2
C1
0 .�1; 1/with j � 0 and kj k1 D 1 and define Q̌ D j �ˇ. It can easily be verified

that Q̌ 2 C 1, Q̌ is an increasing function, and lim
x!˙1

Q̌.x/ D lim
x!˙1ˇ.x/. Further,

it can be proved that since ˇ has bounded variation, ˇ � Q̌ 2 L1. Thus, replacing
ˇ by Q̌ in the decomposition (1.3) and absorbing ˇ � Q̌ into W.x/ fulfills all the
requirements.
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The next step is to show that ˇl 2 Lp .

Lemma 2.3. Let f 2 L1. If f 2 L1 C Lp , then f 2 Lp .

Proof. Let f 2 L1 and
f .x/ D f1.x/C fp.x/ (2.2)

with f1 2 L1 and fp 2 Lp . Without increasing kf1k1 and kfpkp , we can adjust the
breakup (2.2) so that jf1.x/j � jf .x/j for all x (for example, replace f1.x/ by

Qf1.x/ D

8̂<
:̂

jf1.x/j
jf1.x/j C jfp.x/jf .x/; f .x/ ¤ 0;

0; f .x/ D 0;

and replace fp by Qfp D f � Qf1). Now f 2 L1 implies f1 2 L1, and this together
withf1 2 L1 impliesf1 2 Lp by Hölder’s inequality. Thus, f D f1Cfp 2 Lp .

Lemma 2.4. Let 1 � p � 1. If V 2 L1 C Lp and V has generalized bounded
variation with the set of phases f'1; : : : ; 'Lg, with the ˇl as in Definition 1.1, then
ˇl 2 Lp for all l .

Proof. Since ˇk.x/ has rotated bounded variation, it is a bounded function. Thus,PL
kD1 ˇk 2 L1. Since

PL
kD1 ˇk D V � W 2 L1 C Lp , Lemma 2.3 impliesPL

kD1 ˇk 2 Lp .
At this point, it will be convenient to introduce �k.x/ D ei'kxˇk.x/. By

Lemma 2.2, we can assume that �k 2 C 1 and � 0
k

2 L1. Then for any A > 0,

�k.x/ � �k.x C A/ 2 L1 (2.3)

becauseZ
j�k.x/ � �k.x C A/jdx �

Z ˇ̌̌
ˇ
Z xCA

x

� 0
k.t /dt

ˇ̌̌
ˇdx � A

Z
j� 0
k.t /jdt D Ak� 0

kk
1
:

The idea now will be to take

LX
kD1

e�i'kx�k.x/ 2 Lp (2.4)

and translate it with various offsets, then take a linear combination of those translates
in a way that will cancel all but one of the functions �k , up to an L1 term. Fix l . Let
T D f�=.'l � 'k/ j 1 � k � L; k ¤ lg. Let Q � T and denote s.Q/ D P

q2Q q.
From (2.4), perform the change of variables x 7! x C s.Q/ to get

LX
kD1

e�i'k.xCs.Q//�k.x C s.Q// 2 Lp
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and then, by using (2.3),

LX
kD1

e�i'k.xCs.Q//�k.x/ 2 L1 C Lp : (2.5)

Multiplying (2.5) by ei'ls.Q/ and summing over all Q � T gives

X
Q�T

LX
kD1

ei.'l�'k/s.Q/e�i'kx�k.x/ 2 L1 C Lp : (2.6)

At this point, notice thatX
Q�T

ei.'l �'k/s.Q/ D
X
Q�T

Y
q2Q

ei.'l �'k/q D
Y
q2T

.1C ei.'l �'k/q/ D 2L�1ıkl

because of the choice of T. Thus, (2.6) is just �l .x/ 2 L1 C Lp , which, because
�l 2 L1, implies by Lemma 2.3 that �l .x/ 2 Lp .

3. Prüfer variables

Prüfer variables were first introduced by Prüfer [12]. They are a tool for analyzing
real-valued solutions of

� u00.x/C V.x/u.x/ D Eu.x/ (3.1)

and have found extensive use in spectral theory; see e.g. Kiselev, Last, and Simon [8].
For

E D 	2

4
(3.2)

with 	 > 0 and a real-valued nonzero solution u.x/ of (3.1), we define modified
Prüfer variables by

u0.x/ D 1

2
	R�.x/ cos

�1
2
	x C ��.x/

�
; (3.3)

u.x/ D R�.x/ sin
�1
2
	x C ��.x/

�
: (3.4)

We have departed from the usual notation by parametrizing in 	 D 2
p
E rather than

k D p
E. We have also made a non-standard modification to include 1

2
	x in the

cos and sin in (3.3), (3.4). With this change, if V D 0 in some interval, then �� is
constant in that interval by (3.5) below.

The 2� ambiguity in ��.x/ is partly fixed by making ��.x/ continuous in x; there
is still a 2� ambiguity in ��.0/, which won’t matter to us. Substituting into (3.1), we
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obtain a system of first-order differential equations for logR� and ��, which we’ll
write in terms of complex exponentials

d��

dx
D V.x/

	

�1
2
eiŒ�xC2��.x/� C 1

2
e�iŒ�xC2��.x/� � 1

�
; (3.5)

d

dx
logR�.x/ D Im

�V.x/
	

eiŒ�xC2��.x/�
�
: (3.6)

It will also be useful to think of �� and logR� as parts of one complex function
�� C i logR�, whose derivative is given by

d��

dx
C i

d

dx
logR�.x/ D V.x/

	
.eiŒ�xC2��.x/� � 1/: (3.7)

Note that boundedness of R�.x/ implies boundedness of the corresponding solu-
tion of (3.1). Our potential V is in L1 CLp , so its negative part is uniformly locally
L1; thus, by Behncke [2] and Stolz [17], boundedness of eigenfunctions allows one
to use subordinacy theory of Gilbert and Pearson [4] to imply purely absolutely con-
tinuous spectrum for the corresponding energies. We summarize this as a lemma.

Lemma 3.1. If for E D 	2=4 2 Sac, R�.x/ is bounded as x ! 1 for any initial
conditionsR�.0/, ��.0/, then the spectral measure�� of the operatorH� is mutually
absolutely continuous on Sac with the Lebesgue measure.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, except for some technical calculations deferred
to the next section.

For a given set of phases A, we define sets Ap for p 2 N by

Ap D f0g [
p�1[
kD1

.AC � � � C A„ ƒ‚ …
k times

/: (4.1)

Since A D �A, the set Ap contains all elements of

.AC � � � C A„ ƒ‚ …
i times

/ � .AC � � � C A„ ƒ‚ …
j times

/

for any i � 1, j � 0 and i C j < p.

Definition 4.1. Let B � .0;C1/ be a finite set. We define a binary relation 	B on
the set of functions parametrized by 	 2 .0;C1/ by: v�.x/ 	B w�.x/ if and only if

lim
M!C1

Z M

0

.v�.x/ �w�.x//dx
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converges uniformly (but not necessarily absolutely) in 	 2 I for compact intervals
I � .0;C1/ with dist.I; B/ > 0.

With this notation, if we are in the Lp case, our goal will be to show that for any
initial condition R�.0/ D R.0/ > 0, ��.0/ D � .0/ 2 R,

d

dx
logR�.x/ 	Ap

0: (4.2)

This implies boundedness of eigenfunctions withE D �2

4
, 	 … Ap , so by Lemma 3.1,

it implies purely absolutely continuous spectrum on

.0;1/ n
n	2
4

j 	 2 Ap
o
:

The fact that convergence is uniform in 	 is actually not needed, but will come
automatically with the proof. Even more, the proof below actually shows that con-
vergence is uniform in the initial condition � .0/ as well.

In proving (4.2), we will rely on the two recurrence equations (3.5) and (3.6).
Since V has the decomposition (1.3), by Lemma 2.2 we assume that ˇl 2 C 1 and
d
dx

�
ei'lxˇl .x/

� 2 L1.
Starting from (3.6) and seeking to prove (4.2), we are motivated to find a way

to control expressions of the form f .	/�.x/eiŒ�xC2��.x/�. The following lemma
will give us a way of passing from expressions of the form f .	/�.x/eikŒ�xC2��.x/�,
k 2 Z, to expressions with faster decay at infinity, but at the cost of a multiplicative
factor with a possible singularity in 	. These singularities will correspond to elements
of Ap , which our method will have to avoid.

The idea behind this lemma is that for 	 away from ', the exponential factor ei'x

in this function helps average out parts of it when integrals are taken; this averaging
is controlled by an integration by parts.

Lemma 4.1. Let k 2 Z and ' 2 R, with k and ' not both equal to 0. Let B � R be
a finite set and f W .0;C1/ n B ! C be a continuous function such that

g.	/ D �2k f .	/

k	 � ' (4.3)

is also continuous on .0;C1/ n B (removable singularities in g are allowed).

(i) If � 2 L1.0;1/, then

f .	/�.x/ekiŒ�xC2��.x/� 	B 0: (4.4)

(ii) If � 2 C 1.0;1/, d
dx

�
ei'x�.x/

� 2 L1.0;1/ and lim
x!1�.x/ D 0, then

f .	/�.x/ekiŒ�xC2��.x/� 	B g.	/�.x/ekiŒ�xC2��.x/�
d��

dx
: (4.5)
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It might seem extraneous to explicitly require that both f and g be continuous;
however, we want the lemma to cover both the case k ¤ 0, when f can be computed
from (4.3) and is continuous if g is, and the case k D 0, ' ¤ 0, when g 
 0 and we
want to allow f to be any continuous function.

Proof. (i) Since jekiŒ�xC2��.x/�j D 1,

lim
M!1

Z M

0

f .	/�.x/ekiŒ�xC2��.x/�dx

exists by dominated convergence and convergence is uniform since f is bounded on
compact subsets of .0;C1/ n B .

(ii) Let �.x/ D ei'x�.x/ and h.	/ D f .	/=.k	 � '/. By the product rule,

d

dx
Œh.	/�.x/eiŒ.k��'/xC2k��.x/��

D h.	/� 0.x/eiŒ.k��'/xC2k��.x/�

C ih.	/�.x/eiŒ.k��'/xC2k��.x/�
h
k	 � ' C 2k

d��

dx

i
:

(4.6)

Note thath is continuous on .0;C1/nB , by continuity ofg fork ¤ 0 and by continu-
ity of f for k D 0 and ' ¤ 0. Thus, h is bounded on compact subsets of .0;C1/nB
and together with lim

x!1 �.x/ D 0, this implies that h.	/�.x/eiŒ.k��'/xC2k��.x/� con-

verges to 0 uniformly in 	 away from B as x ! 1.
Boundedness of h away from B together with � 0 2 L1.0;1/ implies

h.	/� 0.x/eiŒ.k��'/xC2k��.x/� 	B 0:
Thus, taking the integral

RM
0
dx of (4.6) and taking the limit as M ! 1 gives

h.	/�.x/eiŒ.k��'/xC2k��.x/�
h
k	 � ' C 2k

d�

dx

i
	B 0

which can be rewritten as (4.5) since f .	/ D .k	�'/h.	/ and g.	/ D �2kh.	/.
To prove Theorem 1.1, we will need to apply Lemma 4.1 iteratively, starting

from (3.7). After every application of Lemma 4.1, all the terms containingW will be
in L1 and so 	Ap

0, and we will be left with terms with products of ˇk’s, with one
more ˇk than we started with. We will repeat this procedure until we have products
of p of the ˇk’s, at which point the Lp condition completes the proof. Using also
the form of (3.5), we notice that we will only have terms of the form

fI;K.	I 'j1
; : : : ; 'jI / ǰ1

.x/ : : : ǰI .x/e
iKŒ�xC2��.x/� (4.7)

with I � 1, 0 � K � I . Since terms of this form will occur with all permutations
of j1; : : : ; jI , we can agree to average in all of those terms, so that fI;K will be
symmetric in 'j1

; : : : ; 'jI .
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When we apply Lemma 4.1(ii) to such a term, the appropriate gI;K will be

gI;K.	I f'igIiD1/ D � 2K

K	� PI
iD1 'i

fI;K.	I f'igIiD1/: (4.8)

By (3.7), we will start from

V.x/

	
.eiŒ�xC2��.x/� � 1/

from which we read off the values of fI;K for I D 1,

f1;0.	I '1/ D �1
	

and f1;1.	I '1/ D 1

	
: (4.9)

By writing out which gI�1;k affect fI;K and remembering our convention to sym-
metrize in the 'j , we obtain a recurrence relation in fI;K and gI;K ,

fI;K.	I f'igIiD1/ D 1

	

KC1X
kDK�1

X
	2SI

1

I Š
!K�kgI�1;k.	I f'	.i/gI�1

iD1 /; I � 2;

(4.10)

where

!a D
8<
:
1

2
; a D ˙1;

�1; a D 0:

There is one issue we haven’t yet addressed: Lemma 4.1(ii) only applies when k
and ' aren’t both equal to 0. In our notation, this issue arises for terms

fI;0.	I 'j1
; : : : ; 'jI / ǰ1

.x/ : : : ǰI .x/

with 'j1
C � � �C'jI D 0. We will need a separate argument to eliminate these terms,

and this will come from a symmetry property of fI;0 proved in the next section.
Finally, we wish to prove that all iterations of Lemma 4.1(ii) can be performed

with B D Ap , and for that we need to be able to control the singularities of gI;K .
This will come from a functional identity in terms of the gI;K , also proved in the next
section.

We will now present the proof, up to those technical calculations deferred to the
next section.

Proof of Theorem 1.1. As described above, we want to control d
dx

logR�.x/by means
of an iterative process, and because of (3.7), we start with

V.x/

	
.eiŒ�xC2��.x/� � 1/ (4.11)
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which is a finite sum of terms of the form

fI;K.	I 'j1
; : : : ; 'jI / ǰ1

.x/ : : : ǰI .x/e
iŒK�xC2K��.x/� (4.12)

(in fact, initially, only terms with I D 1 are present). We then use Lemma 4.1(ii)
to replace terms (4.12) by finite sums of terms of the same form, but with a greater
value of I . We proceed with this process until we get terms with I � p; and by
Lemma 5.1(iv), all terms with I < p will have their corresponding gI;K continuous
(and thus bounded) away from the set Ap . Terms (4.12) with I � p are in L1, so
they are negligible in the relation 	Ap

.
Thus, the only terms we will be left with are the ones for which Lemma 4.1(ii)

does not apply. These are terms with K D 0 and 'j1
C � � � C 'jI D 0. However, for

any such term
fI;0.	I 'j1

; : : : ; 'jI / ǰ1
.x/ : : : ǰI .x/ (4.13)

in the sum, there is a corresponding term

fI;0.	I �'j1
; : : : ;�'jI / Ň

j1
.x/ : : : Ň

jI .x/ (4.14)

because we have chosen a decomposition (1.3) of V such that for every ˇi , there is a
Ň
i in the decomposition. However, by Lemma 5.1(ii), the sum of (4.13) and (4.14)

is purely real! Thus, when we take the imaginary part of (4.11), by (3.7) we get

d

dx
logR�.x/ 	Ap

0

which completes the proof.

5. Some functional identities

In this section, we will establish some properties of the functions fI;K and gI;K ,
which are used in the proof of Theorem 1.1 to restrict the set of their nonremovable
singularities and to prove the vanishing of terms which Lemma 4.1 isn’t able to handle.

We begin by establishing the notation. We will be dealing with functions of 1Cn

variables, where the first variable will be 	 and the remaining n will be phases. In
applications these will be some of the phases of generalized bounded variation, but
in this section we think of them merely as parameters of certain functions. We need
a kind of symmetrized product for such functions:

Definition 5.1. For a function pI of 1 C I variables and a function qJ of 1 C J

variables, we define their symmetric product as a function pI ˇ qJ of 1C .I C J /

variables by

.pI ˇ qJ /.	I f'igICJ
iD1 / D 1

.I C J /Š

X
	2SI CJ

pI .	I f'	.i/gIiD1/qJ .	I f'	.i/gICJ
iDIC1/

where SICJ is the symmetric group in I C J elements.
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It is straightforward to see that ˇ is commutative and associative. We will also
have a use for some auxiliary functions. Let 
a, with a 2 Z, be a function of 1C 1

variables and let „I;K , for 0 � K � I , be a function of 1C I variables,


a.	I '1/ D

8̂̂
<̂
ˆ̂̂:

2; a D 0;

1; a D ˙1;
0; jaj � 2;

and

„I;K.	I f'igIiD1/ D
8<
:
1; I D 1;

0; I � 2:

These functions are, of course, constant but defining them as functions will be con-
venient for use with the symmetric product. We also introduce rescaled versions of
the fI;K and gI;K ; for I � 1 and 0 � K � I , let

FI;K D .�1/K�1	IfI;K (5.1)

and

GI;K D .�1/K
2

	IgI;K : (5.2)

We will also take the convention

F0;0 D G0;0 D 0: (5.3)

Rescaling (4.8), (4.9), and (4.10) gives

FI;K D „I;K C
1X

aD�1

a ˇGI�1;KCa (5.4)

and

GI;K.	I f'igIiD1/ D K

K	 � PI
iD1 'i

FI;K.	I f'igIiD1/: (5.5)

Note that FI;K and GI;K have singularities, so we must be cautious when per-
forming arithmetic with them. Note, however, that (5.4) and (5.5) define functions
for complex values of all parameters, and that these functions are meromorphic in all
parameters. Moreover, by (5.4) and (5.5), FI;K andGI;K can only have singularities
for parameters 	; f'igIiD1 such that k	 D P

i2A 'i for some 0 < k < K and some
A � f1; : : : ; I g, which is only a finite set of hyperplanes in C1CI . Thus, when
proving identities like the ones that follow, we can perform the calculations for the
case when all quantities are finite, and then extend by meromorphicity. We will do
this without further explanation.
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Lemma 5.1. (i) For 0 � K � I and 0 < k < K, the identities

FI;K D
IX
iD0

Fi;k ˇGI�i;K�k (5.6)

and

GI;K D
IX
iD0

Gi;k ˇGI�i;K�k (5.7)

hold for all values of parameters for which all terms occurring in both sides are finite;
if seen as equalities involving meromorphic functions, they hold identically.

(ii) If
'1 C � � � C 'I D 0 (5.8)

then
FI;0.	; '1; : : : ; 'I / D FI;0.	;�'1; : : : ;�'I / : (5.9)

(iii) Nonremovable singularities of FI;K and fI;K for 	 > 0 are of the form

	 D
bX
aD1

'ma
(5.10)

with b < I .

(iv) Nonremovable singularities ofGI;K andgI;K for 	 > 0 are of the form (5.10)
with b � I .

Proof. (i) We prove (5.6) and (5.7) simultaneously by induction on I . The statement
is vacuous for I � 1. Assume it holds for I � 1. Then by (5.4),

IX
iD0

Fi;k ˇGI�i;K�k D
IX
iD0

�
„i;k C

1X
aD�1


a ˇGi�1;kCa
�

ˇGI�i;K�k :

Using the inductive assumption, we may apply (5.7) to the sums of G ˇ G, unless
k C a � 0. But k C a � 0 holds only for k D 1, a D �1, and in this exceptional
case Gi�1;kCa D 0. Thus,

IX
iD0

Fi;k ˇGI�i;K�k

D
IX
iD0

„i;k ˇGI�i;K�k C
1X

aD�1

IX
iD0


a ˇGi�1;kCa ˇGI�i;K�k

D ık�1„1;1 ˇGI�1;K�1 C
1X

aD�1

a ˇ .GI�1;KCa � ıaC1ık�1GI�1;K�1/
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D ık�1„1;1 ˇGI�1;K�1 C FI;K �„I;K �
�1ık�1GI�1;K�1
D FI;K

where we used (5.4) in the third line and „1;1 D 
�1 and „I;K D 0 (since I � 2)
in the fourth. We have thus proved part of the inductive step, proving that (5.6) holds
for our value of I . It remains to prove (5.7).

By (5.5), for any permutation 
 2 SI we have

KFI;K.	I f'	.j /gIjD1/
GI;K.	I f'	.j /gIjD1/

D kFi;k.	I f'	.j /gijD1/
Gi;k.	I f'	.j /gijD1/

C .K � k/FI�i;K�k.	I f'	.j /gIjDiC1/
GI�i;K�k.	I f'	.j /gIjDiC1/

:

Multiplying this byGi;k.	I f'	.j /gijD1/GI�i;K�k.	I f'	.j /gIjDiC1/, averaging in
 2
SI , and summing in i gives, by (5.6),

IX
iD0

KFI;K

GI;K
Gi;k ˇGI�i;K�k D KFI;K

which gives (5.7).

(ii) This identity will be obvious when written in the right way, but the no-
tation is cumbersome. Let AI be the set of sequences Ek D .k0; k1; : : : ; kI / with
jki � kiC1j � 1, ki � 1 for 0 < i < I and k0 D kI D 0, and let H

I;Ek be a function
of 1C I variables given by

H
I;Ek;	.	I '1; : : : ; 'I / D

I�1Y
iD0
.2 � jkiC1 � ki j/

I�1Y
iD1

ki

ki	 � Pi
aD1 '	.a/

:

This quantity is useful because, by a simple induction using (5.4) and (5.5),

FI;0 D 1

I Š

X
	2SI

X
Ek2AI

H
I;Ek;	 : (5.11)

If Ek0 D .kI ; kI�1; : : : ; k0/ and 
 0 is the “reversed” permutation from 
 defined by

 0.j / D I C 1� 
.I C 1 � j /, then (5.8) implies

k0
i

k0
i	C Pi

jD1 '	 0.j /

D kI�i
kI�i	 � PI�i

jD1 '	.j /
:

Taking the product
QI�1
iD1 of this, and similarly equating the other products, we obtain

H
I;Ek;	 .	I '1; : : : ; 'I / D H

I;Ek0;	 0.	I �'1; : : : ;�'I /:
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Summing in Ek and 
 and using (5.11) proves (5.9).

(iii), (iv) We prove (iii) and (iv) simultaneously by induction on I .
If (iv) holds for I < M : by (5.4), singularities of FI;K come from a GI�1;k,

so (iii) then holds for I � M .
If (iii) holds for I < M : by applying (5.7)K � 1 times, GI;K can be written as a

sum of K-fold products of Gi;1 with i � I , so all its nonremovable singularities are
singularities of aGi;1 with i � I . By (5.5), those can only be of the form (5.10) with
b D i � I , or coming from fi;1, so again of that form with b < i � I . Thus, (iv)
holds for I � M .

The statements for fI;K and gI;K follow from (5.1) and (5.2).

6. Existence of embedded eigenvalues

In previous sections, we used Lemma 4.1 iteratively to prove logR� 	Ap
0, that is,

to prove boundedness of solutions away from the set Ap . In this section, we will use
the same approach at a point 	 2 Ap , looking for point spectrum. To establish what
we are looking for, note the following simple lemma.

Lemma 6.1. Let E > 0 and let R.x/, �.x/ be the Prüfer variables corresponding
to some solution of (3.1), and assume that

d

dx
logR.x/ 	 � B

x.p�1/� (6.1)

and the limit �1 D lim
x!1 �.x/ exists. Then for some A > 0,

2

	
u0.x/C iu.x/ D Af .x/e

iŒ
�
2
xC�1�

.1C o.1//; x ! 1: (6.2)

where

f .x/ D

8̂̂
<
ˆ̂:
x�B ; � D 1

p � 1;

exp
�

� B

1� .p � 1/� x
1�.p�1/�

�
; � 2

� 1
p
;

1

p � 1
�
:

(6.3)

Proof. If we define r.x/ by

d

dx
log r.x/ D � B

x.p�1/� ;

then r.x/ D zAf .x/. By definition, d
dx

logR.x/ 	 d
dx

log r.x/ implies that R.x/
r.x/

has a finite non-zero limit, so we obtain R.x/ D Af .x/.1C o.1//. The rest follows
from (3.3) and (3.4).



164 M. Lukic

Proof of Theorem 1.2. Our V is of the form (1.8), but we will also use the nota-
tion from Definition 1.1; namely, let f'0; : : : ; 'Lg D f0;˙˛1; : : : ;˙˛Kg and let
ˇ0.x/; : : : ; ˇL.x/ be the functions ˇ0.x/ and �k

x� e
˙i.˛kxC�k.x// with 1 � k � K.

We focus on a point

E D 	2

4
2 Sp n Sp�1

which means that 	 is of the form

	 D 'j1
C 'j2

C � � � C 'jp�1
(6.4)

and that 	 can’t be similarly written as a sum of less than p � 1 terms.
Note that unless the 'j solve one of finitely many linear equations, 	 can be

represented in the form (6.4) in exactly one way. We will work under this assumption
from now on.

With 	 given by (6.4), we start from (3.7) and apply Lemma 4.1 iteratively. The
process will go as in the proof of Theorem 1.1, except for the term

fI;1.	I 'j1
; : : : ; 'jp�1

/ ǰ1
.x/ : : : ǰp�1

.x/eiŒ�xC2�.x/�: (6.5)

By (6.4), Lemma 4.1(ii) is not applicable to the term (6.5). Remember that this
term appears with all permutations of the set of indices, so denoting the number of
distinct permutations of .j1; : : : ; jp�1/ by C1, we obtain

d

dx
logR.x/ 	 Im

� ƒ

x.p�1/� e
i Œ�.x/C2�.x/�� (6.6)

where
ƒ D C1fI;1.	I 'j1

; : : : ; 'jp�1
/�j1

: : : �jp�1
(6.7)

and �.x/ 2 R is given by

�.x/ D �j1
.x/C � � � C �jp�1

.x/: (6.8)

Conversely, once we construct appropriate �.x/, we will pick �j .x/ obeying (6.8) by
taking

�j .x/ D cj �.x/ (6.9)

for some cj 2 R with cj1
C � � � C cjp�1

D 1.
Note that fI;1 is a rational function in 	; 'j1

; : : : ; 'jp�1
; moreover, .�1/IfI;1 is

strictly positive for large enough 	, which follows by induction from the defining
recurrence relations (4.10) and (4.8). Thus, fI;1 is a non-trivial rational function. We
will assume from now on that

fI;1.	I 'j1
; : : : ; 'jp�1

/ ¤ 0;

and therefore ƒ ¤ 0. This, and our earlier decision to avoid 'j which solve certain
linear equations, is why Theorem 1.2 holds away from an algebraic set of codimen-
sion 1.
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In addition, to use Lemma 6.1, we need control of the Prüfer phase �.x/. To
get (6.6), we took the imaginary part of (3.7); to obtain information about the Prüfer
phase, we instead take the real part of (3.7) after the iterative process, so we have

d�

dx
	 Re

�

.x/C ƒ

x.p�1/� e
i Œ�.x/C2�.x/��: (6.10)

Here 
.x/ is the sum of terms


.x/ D
p�1X
ID1

X
'j1

C���C'jI
D0
fI;0.	I 'j1

; : : : ; 'jI / ǰ1
.x/ : : : ǰI .x/ (6.11)

which we discarded in the proof of Theorem 1.1 because it was real-valued, but
for (6.10) we have to take it into account.

This is where the choice of ˇ0.x/ becomes important. Note that 
.x/ is a lin-
ear combination of functions of bounded variation, so 
.x/ has bounded variation;
moreover, one of the terms in (6.11) is � 1

�
ˇ0.x/, and all other terms are at least

quadratic in the ˇ’s,


.x/ D �1
	
ˇ0.x/C L.ˇ0/.x/ (6.12)

with

L.ˇ0/.x/ D
p�1X
ID2

X
'j1

C���C'jI
D0
fI;0.	I 'j1

; : : : ; 'jI / ǰ1
.x/ : : : ǰI .x/: (6.13)

Ifˇ0.x/weren’t present in (6.13), we could simply replace it by Q̌
0.x/ D ˇ0.x/C

	
.x/ and the new z
.x/ given by (6.12) would be 0. Sinceˇ0.x/ is present in (6.13),
destroying 
.x/ takes a little more work. Note that a priori we know that 
.x/ D
O.x�� / and ˇk.x/ D O.x�� /, d

dx
.e�i'kxˇk.x// D O.x�p� / for all k.

Lemma 6.2. Let
.x/ be given by (6.12), (6.13), and
.x/ D O.x�n� /, with n � 1.

Replacing ˇ0.x/ by Q̌
0.x/ D ˇ0.x/C	
.x/ on the right hand side of (6.11) leads to

z
 D � 1
�

Q̌
0 C L. Q̌

0/ with z
.x/ D O.x�.nC1/� /. If ˇ0 obeys the conditions (1.10),

then so does Q̌
0.

Proof. Notice that

z
 D �1
	
ˇ0 �
C L. Q̌

0/ D L. Q̌
0/ � L.ˇ0/

is, by (6.13), a linear combination of products of 
 with one or more of the ˇ’s
and Q̌

0; thus, since 
.x/ D O.x�n� / and ˇk.x/ D O.x�� / for all k, we conclude
z
.x/ D O.x�.nC1/� /. The claims about Q̌ follow analogously.
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By applying this lemma p � 1 times, we get from 
.x/ D O.x�� / to 
.x/ D
O.x�p� / 2 L1, so (6.10) becomes

d�

dx
	 Re

� ƒ

x.p�1/� e
i Œ�.x/C2�.x/��: (6.14)

With (6.6) and (6.14), we are now ready to construct �.x/ which will lead to the
desired asymptotics. Denote

 .x/ D �.x/C 2�.x/:

Lemma 6.3. Fix E D �2

4
> 0 and let R.x/, �.x/ be the Prüfer variables corre-

sponding to some solution of (3.1). Assume that both (6.14) and (6.6) hold. Then we
may pick �.x/ with � 0.x/ 2 O.x�.p�1/� / such that

lim
x!1 .x/ D ��

2
� argƒ: (6.15)

Proof. With x0 to be specified later, pick �.x/ arbitrarily (e.g. constant) for x < x0,
and by the formula

d

dx
�.x/ D �2Re

� ƒ

x.p�1/� e
i.�.x/C2�.x//�; x > x0: (6.16)

Then � 0.x/ 2 O.x�.p�1/� / is trivial. By (6.14) and (6.16),  0.x/ 	 0, so lim
x!1 .x/

exists. The formula (6.16) determines �.x/ only up to a choice of initial condi-
tion �.x0/. Alternatively, we can view this as a choice of initial condition  .x0/ for
the function  . It remains to show that we can pick the value of the limit (6.15) by a
suitable choice of �.x0/.

The convergence of  .x/ followed, through (6.14), from an iterative application
of Lemma 4.1. Revisiting the proof of that lemma and assuming power law decay,
we see that the same proof implies the following more quantitative version of the
lemma: if �.x/ 2 C 1, j d

dx
.ei'x�.x//j � C1x

�p� and limx!1 �.x/ D 0, thenˇ̌̌
ˇ
Z 1

M

�
f .	/�.x/ekiŒ�xC2�.x/� � g.	/�.x/ekiŒ�xC2�.x/� d�

dx

�
dx

ˇ̌̌
ˇ

� 2C1jh.	/jM 1�p� :

Thus, under our current assumptions of power-law decay (1.8), (6.9), and (6.16),
using this quantitative estimate for the rate of convergence,

j .x/ � lim
x!1 .x/j � Cx1�p� ; (6.17)

where C depends only on p, the set of phases andƒ, but not on the choice of  .x0/.
Thus, convergence is uniform in different choices of this initial condition .x0/. Pick
x0 such that j .x0/ � lim

x!1 .x/j < � for all initial values  .x0/. Then, the map

exp.i .x0// 7�! exp.i lim
x!1 .x//
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is a continuous (by uniform convergence) map from the unit circle to itself, which
has no point z which maps to its antipodal point �z. Thus, by standard topological
considerations (see e.g. Hatcher [6], Section 2.2), this map is homotopic to the identity
map on the unit circle; further, since it isn’t null-homotopic, it is onto (since the circle
with one point removed has trivial fundamental group). This implies that (6.15) holds
for some choice of  .x0/ or, equivalently, �.x0/.

From now on, let us use the choice of �.x/ given by Lemma 6.3. From (6.17)
and (6.14) it follows that d�

dx
	 O.x�p� / 	 0 so the limit

�1 D lim
x!1 �.x/ (6.18)

exists. Similarly, (6.16) implies that �.x/ has bounded variation.
By (6.6), (6.15), and (6.17), we have

d

dx
logR.x/ 	 Im

� ƒ

x.p�1/� e
i 1 C ƒ

x.p�1/� .e
i .x/ � ei 1/

�

	 Im
�

� i
jƒj

x.p�1/� CO.x�p� /
�

	 � jƒj
x.p�1/� :

Thus, Lemma 6.1 is applicable and the asymptotics (6.2) hold, with B D jƒj. This
concludes the proof of Theorem 1.2.

We only manipulated ˇ0.x/ in order to destroy 
.x/ from (6.10) and (6.11) (i.e.
to make it L1). There are other ways to do so, which do not involve ˇ0.x/. We
illustrate this with the proof of Theorem 1.3.

Proof of Theorem 1.3. Since we are assuming ˇ0.x/ D 0, (6.11) becomes


.x/ D 1

	

KX
kD1

�2
k

	2 � ˛2
k

1

x2�
:

Thus, if
minf˛1; : : : ; ˛Kg < 	 < maxf˛1; : : : ; ˛Kg;

we can choose �1; : : : ; �K > 0 so that

KX
kD1

�2
k

	2 � ˛2
k

D 0

and therefore 
.x/ D 0. The condition for this is a homogeneous equation in
�1; : : : ; �K, so this choice of �k does not hinder us in making a product of �’s as
large as wanted. With 
.x/ D 0, the remainder of the proof proceeds exactly as in
the proof of Theorem 1.2.
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