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On a class of spectral problems on the half-line
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Abstract. A survey of estimates on the number N�.M˛G/ of negative eigenvalues (bound
states) of the Sturm–Liouville operator M˛Gu D �u00 � ˛G on the half-line, as depending
on the properties of the function G and the value of the coupling parameter ˛ > 0. The
central result is Theorem 5.1, giving a sharp sufficient condition for the semi-classical behavior
N�.M˛G/ D O.˛1=2/, and the necessary and sufficient conditions for a “super-classical”
growth rate N�.M˛G/ D O.˛q/ with any given q > 1=2. Similar results for the problem on
the whole R are also presented. Applications to the multi-dimensional spectral problems are
discussed.
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1. Introduction

1.1. Preliminary remarks. The main goal of this paper is to give a comprehensive
survey of the results on the estimates of the number of the negative eigenvalues (bound
states) of the Sturm–Liouville operator on the half-line RC, of the form

.MGu/.t/ D �u00.t / � G.t/u.t/; t > 0I u.0/ D 0:

The function G � 0 is always supposed to be integrable over any interval .a; b/; 0 <

a < b < 1. Further conditions on G will be imposed later. The operator MG acts
in the Hilbert space L2.RC/ and is defined via its quadratic form,

mG Œu� D
Z 1

0

.ju0j2 � Gjuj2/dt; u 2 H 1;0.RC/ D fu 2 H 1.RC/ W u.0/ D 0g:
(1.1)

The conditions guaranteeing that this quadratic form is bounded from below and
closed, are well known, and we recall them in the beginning of Section 5.

Such problems are of their own interest. Besides, they frequently arise in the
spectral analysis of some multi-dimensional problems, where they may strongly affect
the behavior of the spectrum. We illustrate it by some examples in Section 6.
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Given a self-adjoint, bounded from below operator A whose negative spectrum is
discrete, we denote by N�.A/ the number of its negative eigenvalues, counted with
multiplicities. So, we study the quantity N�.MG/ as depending on the properties
of G.

Historically, the first result in this direction was the famous Bargmann estimate [1]:

N�.MG/ �
Z 1

0

tG.t/dt: (1.2)

The next result, usually called Calogero estimate, was obtained simultaneously and
independently in the papers [13] and [16]. It says that if the potential G is monotone,
then

N�.MG/ � 2

�

Z 1

0

p
G.t/dt: (1.3)

As a rule, one considers this problem not for an “individual” potential G, but
rather for the family ˛G, where ˛ > 0 is a large parameter (the coupling constant).
The corresponding family of operators is given by

.M˛Gu/.t/ D �u00.t / � ˛G.t/u.t/; t > 0I u.0/ D 0: (1.4)

Here one is interested in the behavior of the function N�.M˛G/ as ˛ ! 1. The
“semi-classical” behavior

N�.M˛G/ D O.˛1=2/ (1.5)

is typical, it occurs if the potential G decays fast enough. For slowly decaying
potentials a “super-classical” behavior

N�.M˛G/ D O.˛q/; q > 1=2; (1.6)

(as well as a non-powerlike behavior) is also possible.

The further results discussed in this paper are mostly due to M. Sh. Birman, to the
author of the present paper, and to our students and colleagues. The most important
facts are collected in Theorem 5.1 that gives a sharp (close to the necessary) condition
on G for the semi-classical behavior (1.5), and also the necessary AND sufficient
condition for the behavior as in (1.6), with any given q > 1=2. Usually, these
estimates were being obtained as a “by-product”, in the course of the analysis of
various multi-dimensional problems of a similar nature. For this reason, the results
for the operators (1.4) were often published in an insufficiently complete form, and
they did not draw enough attention of the specialists in the field. That is why the
author considers it useful to collect the basic facts in one short survey paper. The
central results are given with proofs.

We also describe several typical multi-dimensional problems, whose spectral anal-
ysis uses these results as an important ingredient. We would like to stress the special
role of the super-classical estimates in this analysis.
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Substituting in (1.2) ˛G for G, we see that the Bargmann estimate gives an
excessive rate of growth (1.6), with q D 1. The estimate (1.3) gives the semi-
classical growth (1.5), however, only for the monotone potentials. For non-monotone
potentials the problem remained open for a long period of time.

Starting from the seminal papers by Birman [3] and by Schwinger [29], it be-
came standard to consider, along with the family M˛G , the corresponding Birman–
Schwinger operator TG . This operator acts in the “homogeneous” Sobolev space

H 1;0.RC/ D fu 2 H 1
loc.RC/ W u.0/ D 0I u0 2 L2.RC/g

and it is generated by the quadratic form

tG Œu� D
Z 1

0

G.t/ju.t/j2dt: (1.7)

For the problems we discuss in this paper, the operator TG is compact. Given a
compact, self-adjoint operator T � 0 and a number s > 0, we write nC.s; T/ for
the number of eigenvalues �k.T/ (counted with multiplicities), such that �k.T/ > s.
More generally, for any countable family � of non-negative numbers we write

nC.s; �/ D #fx 2 � W x > sg:
So, nC.s; T/ D nC.s; f�k.T/g/. By the classical Birman–Schwinger principle, the
equality

N�.M˛G/ D nC.s; TG/; s D ˛�1; (1.8)

is valid for any ˛ > 0. This allows one to reduce the study of the function N�.M˛G/

to spectral estimates for the “individual” operator TG . Its spectrum can be calculated
using the Rayleigh quotient

R.u/ D
R 1

0
G.t/ju.t/j2dtR 1
0

ju0j2dt
; u 2 H 1;0.RC/: (1.9)

This reduction was applied to the estimates of N�.M˛G/ in the paper [6], where
also the multi-dimensional problems of this type were analyzed. The next statement
is a particular case (for l D 1 and .a; b/ D RC) of Lemma 3.1 in [6], “translated”
into the language of operators M˛G .

Proposition 1.1. Let G � 0 be such that for some non-decreasing function ' > 0

on RC we have

R
defD

Z 1

0

dt

'.t/
< 1; S

defD
Z 1

0

G.t/'.t/dt < 1:

Then the estimate is satisfied:

N�.M˛G/ � C˛1=2
p

RS;

with some constant C independent of the potential G.
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This estimate applies to arbitrary (i.e., not necessarily monotone) potentials and
gives the semi-classical growth as ˛ ! 1. If G is monotone, then the choice
' D G�1=2 gives estimate (1.3), up to the value of the estimating constant. Note also
that the Weyl type asymptotic formula

N�.˛; M˛G/ � ��1˛1=2

Z 1

0

p
Gdt; ˛ ! 1; (1.10)

is valid under the assumptions of Proposition 1.1; this also was shown in [6].
It turned out later that it is more convenient to use another type of estimates,

expressing the conditions on G in terms of the number sequence

z.G/ D fzj .G/gj 2Z W zj .G/ D 2j

Z
Ij

G.t/dt , where Ij D .2j �1; 2j /: (1.11)

As we will see in Section 3, this language is adequate for the problems considered: it
allows us to give conditions that guarantee the membership of TG in various operator
classes. These conditions are sharp, and in many important cases even necessary and
sufficient.

Acknowledgements. The author expresses his gratitude to G. Rozenblum for useful
suggestions and valuable discussion, and to the Referee for the careful reading the
manuscript and for indication of an additional bibliography.

2. Classes of number sequences and classes of operators

The conditions on the sequence z.G/ will be formulated in terms of the spaces `q

and their weak analogs `q;1, and the results on the operator TG will be formulated
in terms of the Neumann–Schatten ideals Sq and their weak analogs that we denote
by †q.

Given a number sequence x D fxkg, we write jxj D fjxkjg. A sequence x lies
in `q;1; q > 0; if and only if

kxkq
q;1

defD sup
s>0

sqnC.s; jxj/ < 1: (2.1)

The functional k�kq;w is a quasi-norm in `q;1. This means that instead of the standard
triangle inequality, a weaker property

kx C ykq;w � c.q/.kxkq;w C kykq;w/

is satisfied, with some constant c.q/ > 1 that does not depend on x; y. The quasi-
norm (2.1) generates a topology on `q;1, in which this space is non-separable. The
closure of the set of elements x with only a finite number of non-zero terms is a
separable subspace in `q;1. It is denoted by `B

q;1.
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If q > 1, and only in this case, there exists a norm on `q;1, equivalent to the
above quasi-norm. However, even when q > 1, we will use the quasi-norm k � kq;1
for the estimates.

Let us also recall that the spaces `q with q < 1 are quasi-normed with respect to
the standard quasi-norm

kfxj gkq D
� X

j
jxj jq

�1=q

:

These spaces are non-normalizable. Obviously, `q � `B
q;1 for any q > 0.

By definition, the space Sq; 0 < q < 1; is formed by the compact operators T,
whose sequence of singular numbers fsk.T/g lies in `q . The spaces †q and †B

q are
formed by the compact operators, such that this sequence lies in `q;1, or in `B

q;1
respectively. The (quasi-)norms in these spaces are induced by this definition. Recall
that S1 standardly denotes the space of all compact operators.

For any sequence x 2 `q;1 of non-negative numbers we define the (non-linear)
functionals

�q.x/ D lim sup
s!0

sqnC.s; x/; ıq.x/ D lim inf
s!0

sqnC.s; x/: (2.2)

It is clear that ıq.x/ � �q.x/ � kxkq
q;1 and `B

q;1 D fx 2 `q;1 W �q.x/ D 0g:
For a non-negative operator T 2 †q we define

�q.T/ D �q.fsk.T/g/; ıq.T/ D ıq.fsk.T/g/: (2.3)

See the book [12] for more detail about the spaces Sq; †q;1; †B
q;1, including the

case q � 1.

3. Main results on the operator TG

Here we formulate our main results. Their proofs, or the necessary references, will
be given in the next section. Given a potential G, we define the sequence z.G/ as
in (1.11), and the operator TG in the space H 1;0.RC/, associated with the quadratic
form (1.7) (or, equivalently, with the Rayleigh quotient (1.9)).

Our first result is rather elementary. It shows that the conditions of the bound-
edness and of the compactness of the operator TG can be conveniently expressed in
terms of the sequence z.G/.

Theorem 3.1. The operator TG is bounded if and only if z.G/ 2 `1.Z/, and

1

2
kz.G/k1 � kTGk � 8kz.G/k1: (3.1)

The operator TG is compact if and only if zj .G/ ! 0 as j ! ˙1.



220 M. Solomyak

In Subsection 4.1 we derive it from a well-known criterion due to Hille.

The next theorem gives a simple, but quite useful lower estimate for the function
nC.s; TG/. Its proof is given in Subsection 4.2.

Theorem 3.2. Let G � 0 be a function on RC, such that the operator TG is compact.
Then for any s > 0 the estimate is satisfied,

2nC.s; TG/ � nC.�s; z.G//; (3.2)

where � > 0 is an absolute constant.

The following result gives a general sufficient condition for the inclusion TG 2
†1=2 and for the Weyl type asymptotic behavior of the function nC.s; TG/. This
corresponds to the semi-classical behavior of the function N�.M˛G/ in the large
coupling constant regime. The result goes back to the lectures [11], see §4.8 there.
Taking into account its importance, we present the proof (in Subsection 4.3).

Theorem 3.3. Suppose z.G/ 2 `1=2. Then TG 2 †1=2, and there exists a constant
C > 0, such that

kTGk1=2;1 � C kz.G/k1=2; (3.3)

or, equivalently,
nC.s; TG/ � C s�1=2

X
j 2Z

z
1=2
j .G/: (3.4)

Under this assumption the Weyl type asymptotic formula holds:

nC.s; TG/ � ��1s�1=2

Z 1

0

p
Gdt; s ! 0: (3.5)

Theorem 3.3 is slightly stronger a result compared with Proposition 1.1; this was
proven in the paper [8], whose main purpose was to extend the results, already known
for the operators of the type TG , to higher order operators, and to similar problems
on vector-valued functions.

Theorem 3.3 gives a very convenient, but still only sufficient condition for TG 2
†1=2. The necessary condition, which is

TG 2 †1=2 H) z.G/ 2 `1=2;1;

immediately follows from Theorem 3.2.
The necessary and sufficient condition for TG 2 †1=2 is also known, it was

obtained in [28], Theorem C. We present it below, without proof. To formulate it, we
need one more notation. For any finite interval I � RC and a non-negative function
G on I , we denote by TG;I the self-adjoint operator in H 1;0.I /, whose corresponding
Rayleigh quotient is similar to (1.9), but with the integration over I, on the domain
H 1;0.I /. It is well-known that the function nC.s; TG;I / obeys the Weyl asymptotic
law, and hence, nC.s; TG;I / D O.s�1=2/ as s ! 0. The assumption (3.6) below
requires such estimate for the direct sum of Dirichlet problems on all intervals Ij .
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Theorem 3.4. The two conditions

z.G/ 2 `1=2;1

and
sup
s>0

X
j 2Z

s1=2nC.s; TG;Ij
/ < 1; Ij D .2j �1; 2j / (3.6)

are necessary and sufficient for TG 2 †1=2.

There are many ways to check the condition (3.6) in concrete situations. However,
it cannot be expressed in terms of the sequence z.G/ alone.

The necessary and sufficient condition guaranteeing the validity of the asymp-
totic formula (3.5) was also established in [28], Theorem D. Its formulation is more
involved, and we do not present it in this paper.

Based upon these two results, several examples of the potential G were constructed
in [28], such that nC.TG/ � cs�1=2, with some constant c that differs from the one
appearing in (3.5).

The last result in this section gives the necessary and sufficient conditions for the
operator TG to lie in the spaces, intermediate between †1=2 and S1. It was obtained
in [9], Section 6, and the detailed exposition was presented in [7]. The proof is
outlined in Subsection 4.4.

Theorem 3.5. The operator TG belongs to †q; †B
q, or toSq with some q 2 .1=2; 1/

if and only if the sequence z.G/ lies in the corresponding class `q;1; `B
q;1, or `q

respectively. The two-sided estimates are satisfied:

cqkz.G/kq;1 � kTGkq;1 � Cqkz.G/kq;1; (3.7)

cq�q.z.G// � �q.TG/ � Cq�q.z.G//; (3.8)

cqkz.G/kq � kTGkq � Cqkz.G/kq : (3.9)

Remark 3.6. Sometimes, one defines the sequence fzj .G/g by the equality zj .G/ DR
Ij

sG.s/ds. It is also possible to divide RC into the family of intervals .cj �1; cj /

with an arbitrary c > 1. It is clear that all this affects only the values of the estimating
constants.

Remark 3.7. The presence in (3.4) of the terms with j ! �1 reflects the fact that
due to the Dirichlet boundary condition at t D 0 the admissible weight function G

may have a non-integrable singularity at this point. If for some additional reasons
we restrict ourselves to the functions G that are integrable in a vicinity of t D 0,
then in (3.4) it is possible to replace the sum of terms with j � 0 by one term,
.
R 1

0 G.s/ds/1=2. This coarsens the upper estimate, but makes it look simpler. Clearly,
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the lower estimates in (3.7) and (3.9) do not survive. The lower estimate in (3.8)
remains valid.

This was the way to define the sequence z.G/ in the lectures [11], and also in the
paper [7]. In this connection, see also Subsections 5.1 and 5.2 of the present paper.

Remark 3.8. Estimate (3.9) for q D 1 says that the condition z.G/ 2 `1 is necessary
and sufficient for the operator TG to be trace class. This condition is equivalent to
� .G/

defD R
tG.t/dt < 1. So, it yields Bargmann’s estimate (1.2), up to the constant

factor. In this connection we note that actually, � .G/ D TrTG:

3.1. An unsolved problem. In all the results formulated above, we assumed G � 0.
The results for sign-indefinite potentials then follow from the variational principle,
since

N�.M˛G/ � N�.M˛GC
/; 2GC D jGj C G:

In principle, it is possible that for such potentials some better estimates can be ob-
tained, that take into account the interplay between the positive and the negative parts
of G. Such estimates are known for the operator norm kTGk, they follow from the
results of [26]. Much earlier, some qualified estimates for N�.M˛G/ with sign-
indefinite G were obtained in [14]. More recently this problem was analyzed in [18].
However, no estimates, giving for such potentials the order (1.5), are known till now,
and establishing them is an interesting and important problem.

4. Proofs

4.1. Proof of Theorem 3.1. We will derive the desired result from the following
statement that, in an equivalent form, is due to Hille [20].

Proposition 4.1. Let G 2 L1;loc.0; 1/; G � 0. The operator TG is bounded if and
only if

ˇ0.G/
defD sup

t>0

�
t

Z 1

t

G.s/ds
�

< 1: (4.1)

If this condition is fulfilled, then

ˇ0.G/ � kTGk � 4ˇ0.G/: (4.2)

The operator TG is compact if and only if

t

Z 1

t

G.s/ds ! 0 as t C t�1 ! 1:

A simple proof of the first statement can be found, e.g., in [10], Proposition 4.3.
The second statement follows in a standard way.



Spectral problems on the half-line 223

To derive from here Theorem 3.1, suppose first that zj .G/ � K for all j 2 Z.
Take any t > 0, and let j0 2 Z be the unique number, such that 2j0 < t � 2j0C1.
ThenZ 1

t

G.s/ds �
Z 1

2j0

G.s/ds D
X

j >j0

Z
Ij

G.s/ds D
X

j >j0

2�j zj .G/ � 2�j0K;

whence (4.1) is fulfilled with ˇ0.G/ � 2kz.G/k1:

Let now (4.1) be satisfied. Then

zj .G/ D 2j

Z
Ij

G.s/ds � ˇ0.G/;

and (3.1) is fulfilled with ˇ0.G/ � K=2. The first statement of Theorem follows
from (4.2). As in the case of Proposition 4.1, the second statement follows from here
in a standard way, and this completes the proof.

4.2. Proof of Theorem 3.2. The next argument is borrowed from the paper [7],
Subsection 4.3.

Let us fix an arbitrary non-negative function f 2 C 1
0 .2�3=2; 21=2/, such that

f .t/ D 1 for 1 < t < 2, and denote uj .t / D f .2�j t /; j 2 Z. Note that the
supports of uj and uj C2 do not intersect. Besides,

Z 1

0

ju0
j .t /j2dt D 2�j � I � D

Z 1

0

jf 0.t /j2dt;

and Z 1

0

Gjuj j2dt �
Z

Ij

Gdt D 2�j zj .G/:

If u.t/ D P
j

c2j u2j .t /, then

Z 1

0

ju0.t /j2dt D �
X

j

2�2j jc2j j2I
Z 1

0

Gjuj2dt �
X

j

2�2j z2j .G/jc2j j2:

By the variational principle this yields that

nC.s; TG/ � nC.�s; fz2j .G/g/:

The same inequality holds for the sequence fz2j �1.G/g on the right. These two
inequalities immediately imply (3.2). The proof is complete.
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4.3. Proof of Theorem 3.3. Consider first the case of a finite interval I D .a; b/ �
R. Let QI;G be the operator that corresponds to the Rayleigh quotientZ

I

Gjuj2dtZ
I

.ju0j2 C juj2/dt

; u 2 H 1.I /: (4.3)

The eigenpairs of QI;G solve the boundary value problem

�.�u00.t / C u.t// D G.t/u.t/; a < t < bI u0.a/ D u0.b/ D 0:

The behavior of its spectrum is well known. Estimate (4.4) below is the simplest par-
ticular case (for m D l D a D 1; � D I; d� D Gdt ) of Theorem 4.1, Statement 2),
in the book [11]. Besides, in Appendix we present its short proof that does not rely
on the general techniques used in [11].

Proposition 4.2. Let G 2 L1.I /; G � 0. Then there exists a constant C D C.I / >

0, such that

nC.s; QI;G/ � C s�1=2
� Z

I

Gdt
�1=2

: (4.4)

The result survives, up to the value of the estimating constant C.I /, if we replace
the denominator in (4.3) by

R
I .ju0j2 C juj2t�2/dt .

Consider now the Rayleigh quotient (4.3) with the integration over the interval
I.h/ D .ah; bh/; h > 0. The substitution t D hs; u.t/ D v.s/ reduces it to the
form (4.3) for the original interval I, with the function Gh.s/ D h2G.hs/. Applying
the estimate (4.4), we get

nC.s; QI.h/;G/ � C s�1=2
�
h

Z
I.h/

Gdt
�1=2

;

with the constant C D C.I / that does not depend on h. In particular, take I D I0 D
.1=2; 1/ and h D 2j . Then we conclude that the estimate

nC.s; QIj ;G/ � C s�1=2z1=2
j .G/ (4.5)

is satisfied with the constant that does not depend on j 2 Z. Now, applying the
estimate (4.5) to each interval Ij and using the variational principle, we obtain (3.4).

The asymptotic formula (3.5) is well-known, say, for the potentials G 2 C 1
0 .RC/.

This class is dense in the space defined by the condition z.G/ 2 `1=2, and the
formula (3.5) for all such potentials follows from the general theorem on the continuity
of asymptotic coefficients, see Theorem 11.5.6 in the book [12].

The proof is complete.
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4.4. Proof of Theorem 3.5. The upper estimates in (3.7), (3.8), and (3.9) follow
from (3.1) and (3.3) by interpolation (we use the real interpolation method for the
quasi-normed spaces, see [2]). The lower estimates immediately follow from Theo-
rem 3.2.

5. Behavior of the function N�.M˛G /. Related problems

Using the Birman–Schwinger principle (i.e. equality (1.8)), it is easy to reformulate
the results of Section 3 in terms of the function N�.M˛G/. Recall that the compact-
ness of the operator TG is equivalent to the statement that for all ˛ > 0 the quadratic
form m˛G is bounded from below and closed (so that the operator M˛G ; ˛ > 0, is
well-defined), and, moreover, N�.M˛G/ < 1. So, by Theorem 3.1 the condition
zj .G/ ! 0 as j ! ˙1 guarantees that all these properties hold true.

The results below are immediate consequences of Theorems 3.3 and 3.5. We only
note that the property TG 2 Sq cannot be conveniently re-formulated in terms of
the function N�.M˛G/. For this reason, we use the inclusion z.G/ 2 `q only as a
sufficient condition for TG 2 †B

q .

Theorem 5.1. Let G � 0 be a function on RC, integrable on each interval .a; b/; 0 <

a < b < 1. Define the sequence z.G/ as in (1.11).

1. If z.G/ 2 `1=2, then

N�.M˛G/ � C˛1=2
X
j 2Z

z
1=2
j .G/;

with a constant C > 0 that does not depend on G, and the asymptotic for-
mula (1.10) holds.

2. Let q > 1=2. The function N�.M˛G/ behaves as O.˛q/ if and only if z.G/ 2 `q;1,
and it behaves as o.˛q/ if and only if z.G/ 2 `B

q;1, in particular if z.G/ 2 `q.
The two-sided estimate is satisfied:

cq�q.z.G// � lim sup
˛!1

˛�qN�.M˛G/ � Cq�q.z.G//:

Example 5.2. Let G.t/ D t�2.ln t /�1=q for t > e and G.t/ D 0 otherwise. Then
zj .G/ � cj �1=q ; c > 0, as j ! 1 and hence, z.G/ 2 `q;1 and �q.z.G// ¤ 0.
By Theorem 5.1, for q > 1=2 we have N�.M˛G/ D O.˛q/, and the estimate is
sharp. This example is borrowed from the paper [7] where it was also shown that the
function N�.M˛G/ has a regular asymptotic behavior of the order ˛q .
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5.1. The Neumann boundary condition at t D 0. Suppose that instead of the
Dirichlet boundary condition u.0/ D 0 in (1.4), we impose the Neumann condition
u0.0/ D 0. We denote the resulting operator by MN ;˛G , and its quadratic form by
mN ;˛G :

mN ;˛G Œu� D
Z 1

0

.ju0j2 � ˛G.t/juj2/dt; u 2 H 1.RC/: (5.1)

The results for the function N�.MN ;˛G/ can be easily derived from the ones for
N�.M˛G/. However, an important difference appears due to the fact that now the
potential G must be integrable near the point t D 0, since otherwise the quadratic
form (5.1) cannot be bounded from below. Hence, it is reasonable, instead of (1.11),
to consider the “one-sided” sequence

z.N ; G/ D fzj .N ; G/gj �0 W

z0.N ; G/ D
Z 1

0

Gdt I zj .N ; G/ D zj .G/ for j > 0I
(5.2)

cf. Remark 3.7.

Theorem 5.3. Let G � 0 be a function on RC integrable on each finite interval .0; b/.
Define the sequence z.N ; G/ as in (5.2). Then

1. If z.N ; G/ 2 `1=2, then

N�.MN ;˛G/ � 1 C C˛1=2
X
j �0

z1=2
j .N ; G/;

and the asymptotic formula (1.10) holds for the operator MN ;˛G .

2. The result of Theorem 5.1; 2 holds true for MN ;˛G , with the sequence z.G/ re-
placed by z.N ; G/.

For the proof, it is sufficient to note that H 1;0.RC/ is a subspace of co-dimension 1

in H 1.RC/.

5.2. Operator on the whole line. In quite a similar way, the results can be applied
to the operator on the whole line,

.MR;˛Gu/.t/ D �u00.t / � ˛G.t/u.t/; t 2 R:

Indeed, by imposing the additional condition u.0/ D 0, one reduces the resulting
operator to the direct orthogonal sum of two operators of the type (1.4). Here it is
convenient to use the sequence
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Oz.G/ D f yzj .G/gj �0 W

�z0.G/ D
Z 1

�1

G.t/dt; �zj .G/ D 2j

Z
2j �1<jt j<2j

G.t/dt
(5.3)

(j 2 N).
The following result is the direct analog of Theorem 5.3.

Theorem 5.4. Let G � 0 be a function on R integrable on each finite interval .a; b/.
Define the sequence Oz.G/ as in (5.3). Then

1. If Oz.G/ 2 `1=2, then

N�.MR;˛G/ � 1 C C˛1=2
X
j �0

Oz1=2
j .G/; (5.4)

and the asymptotic formula (1.10) .with the integration over R/ holds for the
operator MR;˛G .

2. The result of Theorem 5.1; 2, holds true for MR;˛G , with the sequence z.G/ re-
placed by Oz.G/.

Among other results, let us mention the estimate

N�.MR;˛G/ � 1 C p
2˛

� Z
R

t2G.t/dt

Z
R

G.t/dt
�1=4

(5.5)

presented in [15], with the reference to an earlier paper [25]. It applies to the poten-
tials, such that Z

R
.1 C t2/G.t/dt < 1:

The latter condition is quite restrictive. Still, the presence of an explicitly given
constant in (5.5) gives it a certain interest.

One more attempt to investigate this problem was recently undertaken in the
preprint [27]. The authors’ goal was to adapt Lieb’s approach of proving CLR esti-
mate (6.1) to the low-dimensional cases. It is well known that this approach does not
work well in dimensions 1 and 2, and the result of [27] for d D 1 is much weaker
than our Theorem 5.4. In particular, the authors present an example that actually
coincides with our Example 5.2, for q D 1. Their result shows that N�.M˛G/ < 1
for all ˛ > 0, but gives an excessive estimate for its growth rate.

5.3. Comparison with the estimates in other dimensions. It is well known that
for the operator �� � ˛V on Rd the asymptotic formula

N�.�� � ˛V / � c0.d/˛d=2

Z
Rd

V d=2dx; c0.d/ D vd .2�/�d ; (5.6)



228 M. Solomyak

holds true, under some appropriate assumptions on the potential V � 0. In (5.6) vd

stands for the volume of the unit ball in Rd .
The conditions on the potential V, guaranteeing the validity of (5.6), depend on the

dimension d . For d > 2 the CLR estimate (6.1) shows that the function N�.��˛V /

is estimated through its own asymptotics.
For d D 1; 2 the situation is different. In particular, for d D 1 a similar estimate

is impossible, since the inclusion V 2 L1;loc is necessary for the quadratic form of
the operator MR;˛G to be well-defined.

The necessary and sufficient conditions for the validity of (5.6) for d D 1 can
be easily derived from Theorem D in [28], and they are much stronger than those
guaranteeing (1.5). As it was already mentioned (in an equivalent form) in Section 3,
in the paper [28] several examples were constructed where N�.H˛G/ D O.˛1=2/

but the asymptotic formula (5.6) (for d D 1) fails.
The CLR estimate for d D 2 fails. Instead, the opposite inequality is satisfied,

N�.�� � ˛V / � c˛

Z
R2

Vdx:

It was established in [17] for radial potentials V.x/ D F.jxj/ and in [19] for general
potentials V � 0.

6. Applications

The problem discussed in the previous part of this paper can be treated as a special
case of the general problem in which one studies the behavior of the negative spectrum
of the Schrödinger operator

H˛V D �� � ˛V

in a domain � 2 Rd under some boundary condition at @�, or on a manifold. The
general effect studied here is the birth of the eigenvalues from the edge �0 of the
continuous spectrum of the unperturbed operator ��. Hence, those problems are of
interest, when �0 D 0. Otherwise, one should consider �� � �0 as the unperturbed
operator. If � is a domain, and if d > 2, then the situation for the Dirichlet Laplacian,
�D , is governed by the same rules as for the whole space, since the Cwikel–Lieb–
Rozenblum estimate (CLR estimate)

N�.��D � V / � C.d/

Z
�

V d=2dx; � � Rd ; d > 2; (6.1)

is satisfied in any domain �, with the same constant as for the whole of Rd .
In the case of the Neumann Laplacian, �N , the picture can be different. Usually

it happens due to some special geometric features of the domain. Similar problems
arise when the unperturbed operator has a different nature, for example if it is an
elliptic operator with periodic coefficients. The reader finds a profound discussion of
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this class of problems in the papers [4] and [5] by M. Sh. Birman. We, in this paper,
restrict ourselves by giving a couple of typical examples.

6.1. Perturbed Neumann Laplacian in a cylinder. Let � D �0 	 RC be a semi-
infinite cylinder in Rd ; d � 3:

� D fx D .y; t / W y 2 �0; t > 0g;
where �0 is a bounded domain in Rd�1 with smooth boundary. We are interested in
the behavior of the number N�.�N � ˛V / as ˛ ! 1. The operator �N � ˛V is
rigorously defined via its quadratic form

hN ;˛V Œu� D
Z

�

.jruj2 � ˛V juj2/dx; u 2 H 1.�/: (6.2)

The form-domain contains the subspace X of functions depending only on t , u.y; t/ D
w.t/. On X we have

hN ;˛V Œu� D m˛G Œw�

where mG is as in (1.1) and

G.t/ D 1

meas �0

Z
�0

V.y; t/dy: (6.3)

The decomposition H 1.�/ D X˚X? does not diagonalize the quadratic form (6.2).
Still, the operator family M˛G affects the spectrum, and its influence is reflected both
in the estimates and in the asymptotic formulas for N�.HN ;˛V /.

Below we formulate the result. See [31] for its proof, and also for some other
examples of a similar nature.

Theorem 6.1. Let d > 2; �0 � Rd�1 be a bounded domain with smooth boundary,
� D �0 	 RC, and let V 2 L1;loc.�/; V � 0. Define the function G as in (6.3) and
the corresponding sequence z.N ; G/ as in (5.2). Then

1. N�.HN ;˛V / D O.˛d=2/ if and only if V 2 Ld=2.�/ and z.G/ 2 `d=2;1. Under
these assumptions the following estimate and asymptotic formulas are valid:

N�.HN ;˛V / � 1 C C
� Z

�

V d=2dx C sup
s>0

.sd=2nC.s; z.G///
�
I

lim sup
˛!1

˛�d=2N�.HN ;˛V / D c0.d/

Z
�

V d=2dx C �d=2.TG/I

lim inf
˛!1 ˛�d=2N�.HN ;˛V / D c0.d/

Z
�

V d=2dx C ıd=2.TG/;

where c0.d/ is the classical Weyl coefficient. In particular, the Weyl formula holds
if and only if V 2 Ld=2.�/ and z.G/ 2 `B

d=2;1.
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2. If V 2 Ld=2.�/ and z.G/ 2 `q;1 with some q > d=2, then

lim sup
˛!1

˛�qN�.HN ;˛V / D ıq.TG/; lim inf
˛!1 ˛�qN�.HN ;˛V / D �q.TG/:

Recall that the functionals �q.T/; ıq.T/ for any q > 0 were defined in (2.2)
and (2.3).

The same effect manifests itself in some problems of asymptotics in the spectral
parameter, see [21], [32], and [22].

6.2. Schrödinger operator on R2. This was historically the first example of the
problem in which the effect discussed had been revealed. This was done in the
papers [30] for estimates, and [7] for asymptotics. The mechanism here is more
subtle that in the previous example: an auxiliary operator on the line appears due to
the special character of the Hardy inequality in dimension 2.

The result presented below was obtained in the paper [23]. It concerns the operator
�� � ˛V on R2, with the radial potential, that is, V.x/ D F.jxj/ where F � 0

is a given function on RC. The subspace in H 1.R2/, that gives rise to the auxiliary
operator, is X D fu 2 H 1.R2/ W u.x/ D '.jxj/g. For u 2 X the quadratic form of
the Schrödinger operator with radial potential becomesZ

R2

.jruj2 � ˛F.jxj/juj2/dx D 2�

Z 1

0

.j'0
r j2 � ˛F.r/j'j2/rdr:

The substitution r D et ; '.r/ D !.t/ reduces it to the form

2�

Z
R
.j!0

t j2 � ˛GF .t /j!j2/dt; GF .t / D e2jt jF.et /:

The following result is Theorem 5.1 in [23].

Theorem 6.2. Let d D 2 and V.x/ D F.jxj/ � 0. Define an auxiliary one-
dimensional potential

GF .t / D e2jt jF.et /; t 2 R;

and let Oz.GF / be the corresponding sequence (5.3). Then N�.H˛V / D O.˛/ if and
only if V 2 L1.R2/ and Oz.GF / 2 `1;1. Under these two assumptions the estimate
is satisfied:

N�.H˛V / � 1 C ˛
� Z 1

0

rF.r/dr C C kOz.GF /k1;1
�
;

with some constant C independent on F .

An analogue of Statement 2 in Theorem 6.1 is also valid but we do not present it
here.
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In the paper [24] an estimate was obtained for general (i.e., not necessarily radial)
potentials. This estimate also involves the term kOz.G/k1;1 where G is some “effective
potential” on the line. The nature of this term is the same as in Theorem 6.2. However,
not all the difficulties, appearing in the dimension two, have been overcome, and the
result gives only some sufficient conditions for N�.H˛V / D O.˛/ and for the validity
of the Weyl type asymptotic formula.

We conclude this section with the following remark. The approach described
applies to many other problems, and the auxiliary operator appearing in this way not
necessarily acts on the line, or on the half-line. For example, we could consider the
operator ��N � ˛V in the domain �0 	 R� ; �0 � Rd�� ; with any 	 < d . Then
the auxiliary operator would act on R� . The common feature of all such problems
is that in order to obtain the sharp condition for the behavior N�.H˛V / D O.˛d=2/,
we need the estimates of the same order for the auxiliary operator. For a problem
on R� ; 	 < d , this order is super-classical. In this respect, the special peculiarity
of the problems discussed in this paper is that only for 	 D 1 the nature of such
super-classical estimates is completely understood.

7. Appendix. Proof of Proposition 4.2

Let G 2 L1.I /; G � 0, where I is a finite interval of the length l . For definiteness,
we take I D .0; l/. Let 0 D t0 < t1 < : : : < tn D l be a partition of I into n

sub-intervals Ik D .tk�1; tk/. Below „ stands for any such partition, and j„j stands
for the number of sub-intervals in „, i.e., j„j D n. Given a real number a > 0,
consider the following “function of partitions”:

ˆ.„/ D max
k

.tk � tk�1/a

Z
Ik

G.t/dt:

We need the following

Lemma 7.1. For any n 2 N there exists a partition „ of the interval I , such that
j„j D n and

ˆ.„/ � lan�1�a

Z
I

G.t/dt: (7.1)

Proof. By scaling, we conclude that it is sufficient to prove (7.1) for l D 1 andR
I

G.t/dt D 1. We use induction. For n D 1 it is nothing to prove. Suppose now
that (7.1) is satisfied for some n, and show that then this is true also for n C 1.

To this end, take a point x, such that

.1 � x/a

Z 1

x

G.t/dt D .n C 1/�1�a:
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Such x does exist by Cauchy’s theorem. Then we haveZ x

0

G.t/dt D 1 � .n C 1/�1�a.1 � x/�a:

By the induction assumption, there exists a partition „ of .0; x/ into n intervals, such
that

ˆ.„/ � xa.1 � .n C 1/�1�a.1 � x/�a/n�1�a:

To prove Lemma, we need to show that ˆ.„/ � .n C 1/�1�a. This will be achieved
if we show that

.n C 1/�ax�a C .n C 1/�1�an�1�a.1 � x/�a � 1:

A standard procedure shows that the function on the left attains its minimal value on
.0; 1/ at the point x D n.n C 1/�1 and this minimal value is equal to 1.

Now we are in a position to finish the proof of Proposition 4.2.
Take any partition „ of the interval I into n subintervals, and consider the subspace

F � H 1.I / of co-dimension n, formed by the functions u such that u.t1/ D : : : D
u.tn/ D 0. For any x 2 Ik we have

ju.t/j2 D ju.t/ � u.tk/j2 � .tk � tk�1/

Z
Ik

ju0.s/j2ds;

whence Z
Ik

G.t/ju.t/j2dt � .tk � tk�1/

Z
Ik

G.t/dt

Z
Ik

ju0.s/j2ds:

This impliesZ
I

G.t/ju.t/j2dt �
nX

kD1

.tk � tk�1/

Z
Ik

G.t/dt

Z
Ik

ju0.s/j2ds

� max
k

�
.tk � tk�1/

Z
Ik

G.t/dt
�
ku0k2

L2
:

So, we come to the situation described in Lemma 7.1, with a D 1. By using Lemma
and the variational principle, we conclude that

�n.QI;G/ � ln�2

Z
I

G.t/dt

for all n > 1. Further, it follows from the embedding H 1.I / � C.I / that

�1.QI;G/ D kQI;Gk � C

Z
I

G.t/dt;

with some constant C D C.l/. This is equivalent to (4.4). The proof of Proposi-
tion 4.2 is complete.
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