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Difference Sturm–Liouville problems in the imaginary direction

Yury A. Neretin1

Abstract. We consider difference operators in L2 on R of the form

Lf .s/ D p.s/f .sC i/C q.s/f .s/C r.s/f .s � i/;

where i is the imaginary unit. The domain of definiteness are functions holomorphic in a strip
with some conditions of decreasing at infinity. Problems of such type with discrete spectra
are well known (Meixner–Pollaczek, continuous Hahn, continuous dual Hahn, and Wilson
hypergeometric orthogonal polynomials). We write explicit spectral decompositions for several
operators L with continuous spectra. We also discuss analogs of ‘boundary conditions’ for
such operators.
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1. Introduction

1.1. Formulation of problem. Consider the spaceL2 on R with respect to a positive
weight w.s/ ds. Consider a subspace H consisting of functions f .s/ holomorphic
in the strip �1 < Im s < 1 smooth up to the boundary Im s D ˙1 and sufficiently
rapidly decreasing in the strip as jsj ! 1. We consider difference operators in
L2.R; w.s/ ds/ of the form

Lf .s/ D p.s/f .s C i/C q.s/f .s/C r.s/f .s � i/;
where i is the imaginary unit; the domain of definiteness of L is the subspace H .
For such operators we discuss essential self-adjointness and the eigenvalue problem

Lf .s/ D �f .s/:

Our main purpose is a spectral decomposition. In fact, several problems of this kind
were solved (see the list below). All solved problems had the following form. Denote

�.s/ D ecs

mY
kD1

�.ak C is/

nY
lD1

�.bl C is/

; (1.1)

where c 2 R, and

�.s/ D �.Ns/ D ecs

mY
kD1

�. Nak � is/
nY

lD1

�. Nbl � is/
: (1.2)

Denote

A.s/ D �.s C i/

�.s/
D e�ic

mY
kD1

. Nak � is/
nY

lD1

. Nbl � is/
(1.3)

and

B.s/ D �.s � i/
�.s/

D eic

mY
kD1

.ak C is/

nY
lD1

.bl C is/

: (1.4)
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We consider the space L2.R; w.s/ ds/ with respect to the weight

w.s/ ds D 1

2�
�.s/�.s/

and the difference operator

Lf .s/ D A.s/f .s C i/ � �
A.s/C B.s/

�
f .s/C B.s/f .s � i/: (1.5)

1.2. Neo-classical orthogonal polynomials. Now we enumerate solved problems
of this kind. We use the standard notation for hypergeometric functions

pFq

"
a1; : : : ; aq

b1; : : : ; bp
I z
#

D
1X

nD0

.a1/n : : : .ap/n z
n

.b1/n : : : .bq/n nŠ
;

where .a/n D a.aC 1/ : : : .a C n � 1/ is the Pochhammer symbol.
Recall that there are 3 types of classical hypergeometric orthogonal polynomials;

see [3], [13], and [12]. The polynomials of the first type are solutions of the usual
Sturm–Liouville problems for second order differential operators: Jacobi (including
Gegenbauer, Legendre, Chebyshev), Laguerre, Hermite systems; see [9].

Polynomials of the second type are solutions of difference Sturm–Liouville prob-
lem on lattices: Racah, (Chebyshev)–Hahn, dual Hahn, Meixner, Krawtchouk, Char-
lier; see [25], [13], and [12].

Polynomials of the third type are solutions of Sturm–Liouville problems of the
form (1.1)–(1.5): Wilson, continuous Hahn, continuous dual Hahn, Meixner–Pollac-
zek systems; see [13] and [1]. Recall that all classical polynomial orthogonal systems
are degenerations of the Wilson polynomials; see [3], [13], and [12].

a) The Meixner–Pollaczek system or the Meixner polynomials of the second kind;
see [19] and [13], Section 1.7. We take

�.s/ D e.'��=2/s�.aC is/;

where the parameters a, ' satisfy a > 0, 0 < ' < � . Therefore

w.s/ D 1

2�
e.2'��/s�.aC is/�.a � is/: (1.6)

and the difference operator is

Lf .s/ D ie�i'.a � is/f .s C i/C 2.�s cos' C � sin '/f .s/

� iei'.aC is/f .s � i/: (1.7)
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The eigenfunctions are the polynomials

Pn.s/ D .2a/n

nŠ
ein'

2F1

"
�n; aC is

2a
I 1� e�2i'

#

and

LPn.s/ D n sin ' Pn.s/:

The norms of the Meixner–Pollaczek polynomials are given by

kw.s/k2 D
Z 1

�1
jpn.s/j2w.s/ ds D �.nC 2a/

.2 sin '/ nŠ
:

Recall, see [8], formula 1.18(6), that

j�.a C is/j � p
2�jsja�1=2e��s=2; s ! 1: (1.8)

Therefore the weight w.s/ exponentially decreases and the space L2.R; w.s/ ds/
contains all polynomials. The operator L send a polynomial to a polynomial of the
same degree, therefore our Sturm–Liouville problem is pure algebraic. The same
remarks hold for 3 polynomial systems discussed below.

b) The continuous Hahn system; see [6], [2], [25], and [13]. In this case,

�.s/ D �.aC is/�.b C is/;

where the parameters a, b satisfy Re a > 0, Re b > 0. The eigenfunctions are the
polynomials

pn.s/ D in
.aC Na/n.a C Nb/n

nŠ
3F2

"
�n; nC a C b C NaC Nb; aC is

aC Na; aC Nb I 1
#

and

Lpn D n.nC a C NaC b C Nb/pn:

c) The continuous dual Hahn system; see [35], [13], and [12]. In this case

�.s/ D �.aC is/�.b C is/�.c C is/

�.2is/
;

where the parameters a, b, c satisfy a > 0, b > 0, c > 0 or a > 0, Re b > 0, c D Nb.
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We consider even orthogonal polynomials pn.s
2/:

pn.s
2/ D .aC b/n.aC c/n 3F2

"
�n; aC is; a � is
a C b; aC c

I 1
#

and

Lpn D npn:

d) The Wilson system; see [35], [1], [13], and [21]. In this case,

�.s/ D �.a C is/�.b C is/�.c C is/�.d C is/

�.2is/
;

where Re a, Re b, Re c, Re d > 0 and all parameters are real, or a, b are real, d D Nc,
or b D Na, d D Nc. The Wilson polynomials are the even polynomials given by

Pn.a; b; c; d I s2/

D .a C b/n.aC c/n.aC d/n

4F3

"
�n; nC a C b C c C d � 1; aC is; a � is

aC b; a C c; aC d
I 1
#
:

They satisfy to the difference equation

LPn D n.aC b C c C d � 1/Pn:

1.3. Sturm–Liouville problems with continuous spectra. The author know two
solved problems.

a) We consider even functions f .s/ on the line, and

�.s/ D �.aC is/�.b C is/

�.2is/
;

where a, b > 0. Let L be the same as above.
We consider the operator (it is called the inverse Olevsky transform, [26], or the

inverse Jacobi transform, [14]):

L2

�
RC;

1

�

ˇ̌̌
ˇ�.a C is/�.b C is/

�.2is/

ˇ̌̌
ˇ
2

ds

�
�! L2.RC; xaCb�1.1C x/a�b/

defined by

Jf .x/ D 1

��.aC b/

Z 1

0
2F1

"
a C is; a � is

a C b
I x
#
f .x/

ˇ̌̌
ˇ�.a C is/�.b C is/

�.2is/

ˇ̌̌
ˇ
2

ds:
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The J send the difference operator L to the operator

Mf.x/ D xf .x/:

See [20], Theorem 2.1, but this is a special case of Cherednik [4].

b) Let

�.s/ D �.a C is/�.b C is/�.c C is/

�.d C is/�.2is/
:

In this case the spectral decomposition was done by an integral operator, whose kernel
is a 4F3-function, see Groenevelt [10], the discrete part of the spectrum was found
in [21].

1.4. Partially solved problems. Romanovski-type systems of orthogonal poly-
nomials. Romanovski [29] constructed orthogonal polynomials on R with respect
to the weight .1C ix/�a.1� ix/� Na on R and with respect the weight xa�1.1Cx/�b

on .0;1/. Since the weights have polynomial decreasing, these orthogonal systems
are finite. However, Romanovski polynomials correspond to discrete part of spectra
of certain Sturm–Liouville problems; see [7], XIII.8, [14], and [22].

Lesky (see, e.g., [17] and [18]) constructed numerous Romanovski type polyno-
mial systems related to difference Sturm–Liouville problems, his list contains several
difference problems in imaginary direction.1

1.5. Multidimensional analogs. See [4] and [5].

1.6. Results of the paper. In Section 2, we show that the operators (1.1)–(1.5) are
formally symmetric. Next, we found spectral decomposition for several operators L.
In Sections 3 and 4 we consider

�.s/ D 1

�.is/
and �.s/ D �.aC is/

�.2is/

respectively. In both cases the spectrum is the half-line � > 0. The spectral decom-
position is given respectively by the inverse Kontorovich–Lebedev transform and the
inverse Wimp transform with Whittaker kernel. Note that in a certain sense these
problems (involving the Bessel functions 0F1 and the Kummer functions 1F1) are
simpler than neo-classical polynomial problems (involving the Gauss function 2F1

and higher hypergeometric functions 3F2.1/, 4F3.1/).

1More generally, Lesky’s papers indicate numerous unsolved but (certainly) solvable Sturm-Liouville
problems.
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Next (Section 5), we consider L2.R/ with respect to the measure

e�sj�.˛=2C is/j2 ds (1.9)

and the difference operator

Lf .s/ D i.˛=2C is/f .s � i/C 2 cosh ' sh.s/ � i.˛=2� is/f .s C i/: (1.10)

The form of this operator slightly differs from (1.1)–(1.5).
In Section 6 we discuss an example of a symmetric non self-adjoint operator and

its essentially self-adjoint extensions.
In all cases essential self-adjointness is derived from the explicit spectral decom-

position. It is an interesting question to find a priory proofs.
We also note that the problem (1.9)–(1.10) is an analytic continuation of the

Meixner–Pollaczek problem (1.6)–(1.7). The objects of Section 6 also are “analytic
continuations from integer points”2 of the Meixner–Pollaczek polynomials.

2. Preliminaries

2.1. The imaginary shift in L2. We say that a function is holomorphic in a closed
strip j Im sj 6 ˛ if it is holomorphic in a larger strip j Im sj < ˛ C ı:

Lemma 2.1. Let H � L2.R/ be the subspace in L2.R/ consisting of functions
f .s/ admitting holomorphic continuation to the strip j Im sj 6 1 and satisfying the
condition jf .s/j D O.s�1=2�"/ in this strip. The operators

TCf .s/ D f .s C i/ and T�f .s/ D f .s � i/
defined on H are symmetric in L2.R/.

Proof. We haveZ 1

�1
f .s C i/ g.Ns/ ds D

Z iC1

i�1
f .t/g.Nt C i/ dt D

Z 1

�1
f .t/g.Nt C i/ dt

2.2. Lemma on symmetry. Let �.s/, �.s/ be the same as above; see (1.1)–(1.2).
The weight w.s/ is given by

w.s/ D �.s/�.s/ D 1

2�
e2cs

mY
kD1

�.ak C is/�. Nak � is/
nY

lD1

�.bl C is/�. Nbl � is/
:

2I.e., a construction of analytic continuation involves the Carlson theorem, see, e.g., [1], Theorem 2.8.1
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For real s we can represent w.s/ in the form

w.s/ D 1

2�
e2cs

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌

mY
kD1

�.ak C is/

nY
lD1

�.bl C is/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌

2

:

Let A.s/, B.s/ be as above:

A.s/ D �.s C i/

�.s/
D e�ic

mY
kD1

. Nak � is/

nY
lD1

. Nbl � is/

and

B.s/ D �.s � i/
�.s/

D eic

mY
kD1

.ak C is/

nY
lD1

.bl C is/

:

By (1.8), we have the following asymptotics of w.s/ in any strip j Im sj < ˛:

w.s/ � ‰.s/ D const � jsj
P

.2 Re ak�1/�P.2 Re bl �1/ exp.2cs C .n �m/�s/; (2.1)

as s ! 1. We say that a function f is w-decreasing in a strip j Im sj 6 ˛ if

f .s/ D O.‰.s/�1=2s�m�1=2�"/; s ! 1:

This condition provides

f .s C iˇ/; A.s/f .s C iˇ/; B.s/f .s C iˇ/ 2 L2.R; w.s/ ds/

for all ˇ satisfying jˇj 6 ˛. Denote by H Œw� the space of all functions holomorphic
in the strip j Im sj 6 1 and w-decreasing in this strip.

Lemma 2.2. Let
Re aj > 0

for all j . The operator
Rf .s/ D A.s/f .s C i/

defined on the domain H Œw� is symmetric in L2.R; w.s/ ds/.
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Proof. We verify the identity hRf; gi D hf;Rgi for f , g 2 H Œw�:

Z 1

�1
�.s C i/

�.s/
f .s C i/ g.Ns/�.s/�.s/ ds

D
Z 1

�1
f .s C i/ g.Ns/�.s/�.s C i/ ds

D
Z iC1

i�1
f .s/ g.Ns C i/�.s � i/�.s/ ds

D
Z 1

�1
f .s/ g.Ns C i/�.s � i/�.s/ ds

D
Z 1

�1
f .s/

�.s � i/
�.s/

g.Ns C i/�.s/�.s/ ds

D
Z 1

�1
f .s/

�.Ns C i/

�.Ns/ g.Ns C i/�.s/�.s/ ds:

The condition Re aj > 0 provides absence of poles of �.s C i/�.s/ in the strip
0 < Im s < 1.

Corollary 2.3. Under the same conditions the operator

Lf .s/ D A.s/f .s C i/ � .A.s/C B.s//f .s/C B.s/f .s � i/

is symmetric on the subspace H Œw� � L2.R; w.s/ ds/.

2.3. Changes of a weights. Let w2.s/ D �.s/�.Ns/w1.s/. Then the operator

Hf.s/ D �.s/f .s/

is a unitary operator L2.R; w2.s// ! L2.R; w1.s//. Evidently, we have

H�1TCHf.s/ D �.s C i/

�.s/
TC

and

H�1T�Hf.s/ D �.s � i/

�.s/
TC:
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2.4. Operators in L2.R/

Lemma 2.4. Let an operator

Rf .s/ D L.s/f .s C i/

be formally symmetric in L2.R; ds/. Then

L.s/ D L.Ns � i/: (2.2)

This is straightforward.

Note that, if L.s/ satisfy (2.2), then L.s/�1 satisfy the same condition. Also, if
L1.s/, L2.s/ satisfy (2.2), then L1.s/L2.s/ satisfy (2.2).

Obvious solutions are

L.s/ D i=2C s;

L.s/ D .i=2C ia C s/ .i=2� iaC s/;

and

L.s/ D h.e2�s/:

3. The Kontorovich–Lebedev transform

3.1. A difference operator. Now �.s/ D �.is/, w.s/ D j�.is/j�2. We consider
the space of even functions, f .s/ D f .�s/, the inner product is given by

hf; gi D 2

�

Z 1

�1
f .s/g.Ns/ ds

j�.is/j2 D 2

�2

Z 1

�1
f .s/g.Ns/s sinh.�s/ ds:

We consider a difference operator L given by

Lf .s/ D 1

is
.f .s C i/ � f .s � i// (3.1)

defined on the subspace H Œw� � L2.RC; j�.is/j�2ds/

Lemma 3.1. The operator L is essentially self-adjoint.

The lemma is a special case of Lemma 4.1, the latter lemma is proved in Section 4.
The spectral decomposition is given by the inverse Kontorovich–Lebedev trans-

form, see the next subsection.
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3.2. The Kontorovich–Lebedev transform. Preliminaries. The Macdonald func-
tionsK�.z/ are solutions of the modified Bessel differential equation, see [9], 7.2(11),
i.e. the equation �

z
d

dz

�2

g.z/ � z2g.z/ D ��2g.z/:

They are defined by, see [9], 7.2(13),

K�.z/ D �

sin.��/
.I��.z/ � I�.z//;

where I�.z/ are the modified Bessel functions,

I�.z/ D e�i��=2J�.ze
i�=2/ D

1X
mD0

.z=2/2mC�

mŠ�.mC � C 1/
:

For each z ¤ 0 the function hz.�/ D K�.z/ is an entire function of the variable �,

K�.z/ D K��.z/:

For positive z 2 R and � 2 iR values of K�.z/ are real.
Below we use two identities (see [34], (3.71.1)–(3.71.2)):

K��1.z/ �K�C1.z/ D �2�
z
K�.z/; (3.2)

and

K��1.z/CK�C1.z/ D � d

dz
K�.z/: (3.3)

The Kontorovich–Lebedev transform [15], [16], Section 6.5, and [37] is given
by3

Kg.s/ D
Z 1

0

Kis.x/g.x/
dx

x
: (3.4)

The inverse transform is

K�1f .x/ D 2

�

Z 1

0

f .s/Kis.x/
ds

j�.is/j2 : (3.5)

The Kontorovich–Lebedev transform is a unitary operator

L2.RC; x�1dx/ �! L2.RC; 2��1j�.is/j�2ds/:

3Here and below we understand integral operators in the sense of the kernel theorem, see, e.g., [11],
Section 5.2. However, for the Kontorovich–Lebedev transform and the Wimp transform discussed below
conditions of literal validness of formulas are well investigated.
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3.3. The statement

Theorem 3.2. The Kontorovich-Lebedev transform provides a unitary equivalence
between the operator

Pg.x/ D 2

x
g.x/

in L2.RC; x�1dx/ and the operator L given by (3.1).

Proof. We use (3.2),Z 1

0

2

x
g.x/ �Kis.x/

dx

x

D
Z 1

0

g.x/ � 2Kis.x/

x

dx

x

D
Z 1

0

g.x/
1

is
.Ki.sCi/.x/ �Ki.s�i/.x//

dx

x

D 1

is
.Kg.s C i/ � Kg.s � i//:

3.4. An additional remark. Applying (3.3), we get the following statement

Proposition 3.3. The Kontorovich–Lebedev transform send the operator

Qg.x/ D
� d
dx

� 1

x

�
g.x/

to the operator

Mf .s/ D 1

2
.f .s C i/ � f .s � i//:

It follows that we can evaluate the image of any operator x�m dn

dxn under the
Kontorovich–Lebedev transform.

4. The Wimp transform

4.1. A difference problem. Now �.s/ D �.1=2��Cis/
�.2is/

. We consider the space of
even functions on R with inner product

hf; gi D 1

4�

Z 1

�1
f .s/g.Ns/

ˇ̌̌
ˇ�.1=2 � 	C is/

�.2is/

ˇ̌̌
ˇ
2

ds:
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We consider the following difference operator

Lf .s/ D 1 � 	 � is
.�2is/.1� 2is/

f .s C i/

�
� 1� 	 � is
.�2is/.1� 2is/ C 1� 	C is

.C2is/.1C 2is/

�
f .s/

C 1 � 	C is

.C2is/.1C 2is/
f .s � i/:

(4.1)

As above, this operator is defined on the subspace H Œw� � L2.R; w.s/ds/.

Lemma 4.1. Let 	 < 1=2. Then the operator L is essentially self-adjoint.

4.2. The Whittaker functions and the Wimp transform. Preliminaries. The
Whittaker functions W�;�.z/ are versions of the confluent hypergeometric functions.
They are solutions of the Whittaker equation, see [8], 6.1(4),

�
x2 d

2

dx2
� x2

4
C 	x

�
f .x/ D .
2 � 1=4/f .x/: (4.2)

The explicit expression is

W�;� .x/ D e�x=2

 
�.�2
/x1=2C�

�.1=2� 	 � 
/ 1F1

"
1=2� 	C 


1C 2

I x
#

C �.2
/x1=2��

�.1=2 � 	C 
/
1F1

"
1=2� 	 � 

1 � 2
 I x

#!
;

(4.3)

see [30], (1.9.10). There are the following integral representations, see [8], 6.11(18),
and [27], 2.3.6.9,

W�;� .x/ D e�x=2x�

�.1=2 � 	C 
/

Z 1

0

e�xt t�1=2��C�.1C t /�1=2C�C�dt: (4.4)

and the Barnes representation, see [28], 8.4.44.3, and [30], (3.5.16)),

W�;� .z/ D e�x=2

2��.1=2� 	 � 
/�.1=2� 	 C 
/

�
Z 1

�1
�.it C 1=2C 
/�.i t C 1=2� 
/�.�	 � i t /x�itdt:

(4.5)

Remark. If 	 2 R, 
 2 iR, x > 0, then W�;�.x/ is real. This follows from (4.3).



250 Yu. A. Neretin

Fix real 	 < 1=2. The Wimp transform W� is the integral operator given by

W�g.s/ D
Z 1

0

g.x/W�;is.x/
dx

x2
I

see [36] and [37]. The inverse transform is

W�1
� f .x/ D 1

2�

Z 1

0

f .x/W�;is.x/

ˇ̌̌
ˇ�.1=2 � 	C is/

�.2is/

ˇ̌̌
ˇ
2

ds:

The Wimp transform is a unitary operator

L2.RC; x�2dx/ ! L2

�
RC;

1

2�

ˇ̌̌
ˇ�.1=2� 	 C is/

�.2is/

ˇ̌̌
ˇ
2

ds

�
:

Remark. This theorem can be obtained by writing of explicit spectral decomposition
of the differential operator (4.2) as it is explained in [7], Chapter XIII.

The Macdonald function K� admits the following expression in the terms of
Whittaker functions:

K�.x/ D
r
�

2x
W0;�.x/:

Therefore the Kontorovich–Lebedev transform is a special case of Wimp transforms.

4.3. The statement

Theorem 4.2. The Wimp transform send the operator

Rg.x/ D x�1g.x/ (4.6)

to the difference operator L defined by (4.1).

The theorem is a corollary of the following lemma.

Lemma 4.3. The Whittaker functions satisfy the difference equation

1� 	 � 

.�2
/.1� 2
/.W�;��1.x/ �W�;� /C 1� 	C 


.2
/.1C 2
/
.W�;�C1.x/ �W�;� /

D 1

x
W�;� .x/:

(4.7)

Proof. We use the Barnes integral (4.5). We multiply both sides of (4.7) by ex=2 and
pass to their Mellin transforms (see below (5.2)–(5.3)). Denote by h.t/ the Mellin
transform of ex=2W�;�.x/, i.e.,

h.t/ D �.it C 1=2C 
/�.i t C 1=2 � 
/�.�	 � i t /

�.1=2� 	 � 
/�.1=2� 	C 
/
:



Difference Sturm–Liouville problems in the imaginary direction 251

The Mellin transforms of ex=2W�;�˙1.x/ are �˙.t /h.t/, where

�˙.t / D .�1=2� 	� 
/.t C 1=2˙ 
/

.1=2� 	˙ 
/.t � 1=2� 
/
:

In the left-hand side we get

h.s/ �
° 1� 	 � 

.�2
/.1� 2
/.��.t / � 1/C 1 � 	C 


.2
/.1C 2
/
.�C.t / � 1/

±

D h.s/
�t � 	

.t � 1=2� 
/.t � 1=2C 
/

D �.it � 1=2C 
/�.i t � 1=2� 
/�.�	 � i t C 1/

�.1=2 � 	 � 
/�.1=2 � 	C 
/

D h.s C i/:

The shift of a Mellin transform by i is equivalent to multiplication of the original by
1=x.

4.4. Proof of self-adjointness. The space C1
c .RC/ of smooth functions with com-

pact support on .0;1/ is a domain of essential self-adjointness of the operator (4.6).
It is sufficient to prove the following lemma.

Lemma 4.4. W�.C
1
c .RC// � H Œw�.

Lemma 4.5. Fix 	 < 1=2. For .
; x/ ranging in a domain

j Re 
 j 6 1; 0 < c 6 x 6 C < 1 (4.8)

the following uniform estimate holds

jW�;�.x/j D O.e�j Im �j=2j Im 
 j�C1/: (4.9)

Proof of Lemma 4.5. The integral formula (4.4) converges if Re 
 > 	 � 1=2 and
admits the holomorphic extension to the whole plane 
 2 C.

The statement is very simple if 	 < �1=2 (the integral in (4.4) is bounded and the
desired estimate is obtained from an estimate of a pre-integral factor. But we wish to
cover also the interval �1=2 < 	 < 1=2.

Fix A > B > 1. Represent 1 as 1 D '.t/C .t/, where ',  .t/ > 0 are smooth
nonnegative on RC,  .t/ D 0 for t < A, and ' D 0 for t > B . We write the integral
in (4.4) as Z 1

0

D
Z A

0

e�xt t�1=2��C�.1C t /�1=2C�C�'.t/ dt

C
Z 1

B

e�xt t�1=2��C�.1C t /�1=2C�C� .t/ dt:

(4.10)
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The second summand is uniformly bounded in our domain (4.8), the integrand is
dominated by

e�ct t1=2��.1C t /1=2C�

Next, we represent the first summand of (4.10) as

Z A

0

D
Z A

0

t�1=2��C�
�
e�xt .1C t /�1=2C�C�'.t/ � 1

�
dt C

Z A

0

t�1=2��C� dt

Denote by Q.t; x; 
/ the first integrand. Then jQ.t; x; 
/j depends on t , x, and
Re 
 ; these variables range in a compact set; the function Q is continuous on this
set. Therefore first the summand is uniformly bounded in (4.8) while the second
summand is uniformly bounded in (4.8) outside a neighborhood of 
 D 	 � 1=2.

Thus
R1

0
is uniformly bounded in (4.8) outside a neighborhood of 
 D 	 � 1=2.

Next, we multiply the integral in (4.4) by the pre-integral factor e�x=2x�

�.1=2��C�/
. Since

Re.1=2� 	C 
/ 2 .�1=2� 	; 3=2� 	/, we have

�.1=2 � 	C 
/�1 D O.e�j Im �j=2j Im 
 j�C1/; j Im 
 j ! 1

and we get (4.9).

Proof of Lemma 4.4. By Lemma 4.5, for a function f 2 C1
c .RC/ with compact

support, we have

jW�f .s/j 6 C � e�j Re sj=2j Re sj�C1=2: (4.11)

Next, we use (4.2),

�.1=4C s2/W�f .s/ D
Z 1

0

.�1=4� s2/W�;is.x// � f .x/dx
x

D
Z 1

0

�
x2 d

2

dx2
� x2

4
C 	x

�
W�;is.x/ � f .x/dx

x

D
Z 1

0

W�;is.x/ �
h
x
d2

dx2
.xf .x// � 1

4
x2f .x/C 	xf .x/

idx
x
:

We apply (4.11) for the function in square brackets and get

jW�f .s/j 6 C � .s2 C 1=4/�1 � e�j Re sj=2j Re sj�C1

and W�f .s/ 2 H Œw�.
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5. The Vilenkin transform

5.1. A difference problem. Fix ˛ > 0 and ' > 0. We consider the weight

w.t/ D 1

2�
j�.˛=2C i t /j2e�t ;

the corresponding space L2.R; w.t/ dt/, and the difference operator

Lf .t/ D i.˛=2C i t /f .t � i/C 2 cosh ' th.t/� i.˛=2� i t /f .t C i/:

This operator differs from (1.1)–(1.5), but it is symmetric; the proof is the same as in
Lemma 2.2.

Theorem 5.1. The operator L is essentially self-adjoint on the space H Œw�.

5.2. The Vilenkin transform

Theorem 5.2. The Vilenkin transform

V˛g.t/

D .1� e�2'/˛=2e�'it

1Z
�1

g.s/ 2F1

"
˛=2� is; ˛=2C i t

˛
I 1� e�2'

#
w.s/ ds:

is a unitary operator

L2.R; w.s/ ds/ �! L2.R; w.s/ ds/:

This is a minor modification of Vilenkin [32], §7.4, see also [33], 7.7.7.
Since the operator V is unitary, the inversion formula is

V�1
˛ f .s/

D .1� e�2'/˛=2

1Z
�1

f .t/ 2F1

"
˛=2C is; ˛=2� i t

˛
I 1� e�2'

#
e'itw.t/ dt:

Theorem 5.3. The inverse Vilenkin transform V�1
˛ send the operator L to the oper-

ator
N f .s/ D 2s sinh 'f .s/:

To prove these statements, we decompose the Vilenkin transform as a product of
three simple transformations, see below formula (5.11).
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5.3. Highest weight representations of SL2.R/. The group SL.2;R/ is the group
of 2 � 2 real matrices g D �

a b
c d

�
with det g D 1. Denote by … the half-plane

Im z > 0.
Fix ˛ > 0. Consider the Hilbert space H˛ of holomorphic functions on …

determined by the reproducing kernel, see, e.g., [23], Section 7.1,

K.z; u/ D
�z � Nu
2i

��˛

:

In other words, denote ‰a.z/ D K.z; a/. Then for any F 2 H˛ we have

hF;‰ai D F.a/: (5.1)

For ˛ > 1 the inner product in H˛ admits the following integral representation

hF;Gi D const.˛/
Z

…

F.z/G.z/.Im z/˛�2dz d Nz:

Consider the following operators in H˛:

T˛

�
a b

c d

�
F.z/ D F

�b C zd

aC zc

�
.aC zc/�˛:

The function .aCzc/�˛ is multi-valued. We choose arbitrary branch of this function
on …. Then the operators T˛.g/ are unitary and satisfy the condition

T˛.g1/T˛.g2/ D �.g1; g2/T˛.g1g2/;

where �.g1; g2/ 2 C. Thus we get a projective unitary representation of SL2.R/,
such representations are called highest weight representations.

The Mellin transform – preliminaries. See, e.g., [31]. For a function f on RC
we define a Mellin transform Mf .s/ as

Mf .s/ D
Z 1

0

f .x/xis�1dx: (5.2)

The inverse transform is given by

M�1g.x/ D 1

2�

Z 1

�1
g.s/x�isds: (5.3)

The Mellin transform is a unitary operator

L2.RC; x�1dx/ �! L2
�
R;

1

2�
ds
�
:

Notice, that changing variable x D et in (5.2), we come to the usual Fourier
transform.
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5.4. The spectral decomposition of dilatation operators. Consider a one-para-
metric subgroup A ' R�C in SL2.R/ consisting of matrices of the form

D.a/ D
�
a1=2 0

0 a�1=2

�
;

where a > 0. The subgroup A acts in the space H˛ by the transformations

T˛.D.a// D f .z/ D f .a�1z/a�˛=2: (5.4)

Next, consider the measure d�.s/ on R given by

�.s/ ds D 1

2��.˛/
j�.˛=2C is/j2 ds

and the action of the same group in the space L2.R; �.s/ ds/ given by the formula

�˛.D.a//f .s/ D f .s/ais : (5.5)

Consider the operator
J W L2.R; �.s/ ds/ ! H˛

given by

F.z/ D J˛f .z/ D 2˛

2��.˛/

Z 1

�1
f .s/

�z
i

��˛=2�is j�.˛=2C is/j2dsI (5.6)

we choose a branch of .z=i/�˛=2�is D e�.˛=2Cis/ ln.z=i/ such that ln z=i is real for
z D ip, p > 0.

ThereforeF.ip/.p/˛=2 is the inverse Mellin transform of 2˛

�.˛/
f .s/j�.˛=2Cis/j2.

Applying the direct Mellin transform, we get

f .s/ � 2˛

�.˛/
j�.˛=2C is/j2 D

Z 1

0

F.ip/ p˛=2Cis�1dp: (5.7)

Proposition 5.4. The transform J˛ is a unitary operator

J˛ W L2.R; �.s/ ds/ �! H˛

intertwining actions (5.4) and (5.5).

Proof. A verification of

J B �˛.D.a// D T˛.D.a// B J
is straightforward. Next,

T˛.D.a//‰i D a˛=2‰ai :



256 Yu. A. Neretin

By (5.1), the system of vectors ‰ai , where a > 0, is total in the Hilbert space H˛.
Next, we consider functions

ˆa D a˛=2Cis

in L2.R; �.s/ ds/. Then

�˛.D.a//ˆ1 D ˆa � a˛=2:

To prove the unitarity, it is sufficient to show, see, e.g., [23], Theorem 7.1.4, that

Jˆa D ‰ia; (5.8)

and

hˆa; ˆbiL2 D h‰ia; ‰ibiV˛
D
�aC b

2

��˛

: (5.9)

First, note thatZ 1

0

.1C x/�˛x�isdx D B.is; ˛ � is/ D �.is/�.˛ � is/
�.˛/

:

Applying the inversion formula for the Mellin transform, we get, see [28], 8.5.2.5,

1

2�

Z 1

�1
�.is/�.˛ � is/xis�1ds D �.˛/.1C x/�˛:

Both formulas (5.8)–(5.9) are reduced to the latter integral.

5.5. A calculation. Proof of Theorem 5.2. Set

r' D 1p
2 sinh '

�
1 1

e�' e'

�
2 SL2.R/: (5.10)

Lemma 5.5. The operator

J�1
˛ T˛.r'/J˛f .t/

D .2 sinh '/˛=2e�'.˛=2Cit/e�t=2

�
Z 1

�1
f .s/ 2F1

"
˛=2� is; ˛=2C i t

˛
I 1� e�2'

#
e��s=2�.s/ ds:

(5.11)

is a unitary operator

L2.R; �.s/ ds/ �! L2.R; �.s/ ds/:
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Proof. The operator

J�1
˛ T˛.r'/J˛

is unitary by definition as a product of three unitary operators

L2.R; �.s/ ds/ �! H˛ �! H˛ �! L2.R; �.s/ ds/:

We must find explicit formula for the composition. Write J˛ in the form

J˛f .z/ D ei�˛=42˛

Z 1

�1
f .s/z�˛=2�ise��s=2d�.s/; (5.12)

we use .e�i�=2/�is D e��s=2. In this formula we take the branch of z�˛=2�is given
by

z�˛=2�is D e�.˛=2Cis/ ln z; (5.13)

where the logarithm is real on the semi-axis z > 0. Then the inversion formula is

J�1
˛ F.t/ D e�i�˛=42�˛�.˛/e�t=2

�.˛=2C i t /�.˛=2� i t /
Z 1

0

F.z/z˛=2Cit�1ds: (5.14)

Recall that r' is given by (5.10),

T˛.r'/J˛f .z/

D ei�˛=42˛.2 sinh '/˛=2

�
Z 1

�1

� e'z C 1

e�'z C 1

�˛=2�is

.e�'z C 1/�˛f .s/e��s=2 d�.s/

D ei�˛=42˛.2 sinh '/˛=2

2��.˛/

�
Z 1

�1
.e'z C 1/�˛=2�is.e�'z C 1/�˛=2Cisf .s/ e��s=2j�.˛ C is/j2ds:

(5.15)
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Next, we apply the inverse transform J�1
˛ ,

J�1
˛ T˛.r'/J˛f .t/

D .2 sinh '/˛=2e�t=2

�.˛=2C i t /�.˛=2� i t /

�
Z 1

0

Z 1

�1
z˛=2Cit�1.e'z C 1/�˛=2�is.e�'z C 1/�˛=2Cisf .s/

� e��s=2j�.˛ C is/j2ds dz:

(5.16)

We must evaluate the integral in z,Z 1

0

z˛=2Cit�1.e'z C 1/�˛=2�is.e�'z C 1/�˛=2Cis dz

D e�'.˛=2Cit/

Z 1

0

u˛=2Cit�1.1C u/�˛=2�is.1C e�2'u/�˛=2Cis du

D e�'.˛=2Cit/ � �.˛=2C i t /�.˛=2� i t /
�.˛/

2F1

"
˛=2� is; ˛=2C i t

˛
I 1� e�2'

#
;

here we applied an integral representation of the Gauss hypergeometric function,

2F1

"
a; b

c
I 1� u

#
D �.c/

�.b/�.c � b/
Z 1

0

yb�1.1C y/a�c.1C yu/�ady; (5.17)

see [8], 2.12(5); this is valid for j arguj < � .
Thus, we get (5.11).

Proof of Theorem 5.2. Finally, we change function by the rule

g.s/ D e��s=2f .s/: (5.18)

This is equivalent to passing to the space L2.R; w.s/ ds/, where w.s/ D e�sd�.s/.

5.6. Calculations. The difference operator. Now we evaluate the image of the
operator

f .s/ 7�! sf .s/

under J�1
˛ T˛.r'/J˛. Differentiating (5.15) by parameter z, we get that J�1

˛ T˛.r'/

send the operator
f .s/ 7�! �2is sinh 'f .s/
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to

D D .z2 C 2z cosh ' C 1/
d

dz
C ˛.z C cosh '/:

Next, we evaluate the corresponding operator in L2.R; w.s/ ds/. First, set

g.t/ D
Z 1

0

F.z/z˛=2Cit�1dz and h.t/ D g.t/

�.˛=2C is/�.˛=2 � is/ (5.19)

and evaluateZ 1

0

DF.z/z˛=2Cit�1dz

D
Z 1

0

F 0.z/.z˛=2CitC1 C 2 cosh ' z˛=2Cit C z˛=2Cit�1/ dz

C ˛

Z 1

0

F.z/.z˛=2Cit C cosh z˛=2Cit�1/ dz:

(5.20)

Next we formally integrate by parts and come to

.˛=2� i t � 1/g.t � i/ � 2 cosh ' tg.t/C .�˛=2� i t � 1/g.t C i/:

For functions h 2 L2.R; w.t/ dt/ we get the transformation

h.t/ 7�! .˛=2C i t /h.t � i/ � 2i cosh ' th.t/� .˛=2� i t /h.t C i/:

5.7. Self-adjointness. Proof of Theorem 5.1. Denote byWR the space of functions
f .s/ holomorphic in the strip

j Im sj < R (5.21)

satisfying the condition: for any A > 0 there is C such that

jf .s/j < C � exp.�Aj Re sj/:
The operator f 7! sf .s/ in L2.R; d�.s// is essentially self-adjoint on WR.

Theorem 5.1 is a corollary of the following lemma.

Lemma 5.6. If R is sufficiently large, then for any f 2 WR we have V˛f 2 H Œw�.

Proof. Since f .z/ super-exponentially decreases, J˛f .z/, see (5.12)–(5.13), is a
well-defined analytic function on the universal covering of C n f0g. In other words,
we can assume in (5.13) that �1 < arg z < C1. Since f is analytic in the strip,
the Fourier transform of f exponentially decreases, therefore the Mellin transform
decreases asO.jzjR/ as jzj ! 0 and asO.jzj�R/ as z ! 1 (see [31], Theorem 31),
both O.�/ are uniform in any sector j arg zj < C with finite central angle.
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After the transform T˛.r'/ we get a function F.z/ D T˛.r'/J˛f .z/ on the
universal covering over

C n f�e�';�e'g:
It has the following behavior near the ramification points:

1. near 1 the function F.z/ has form z�˛�.1=z/, where � is holomorphic near 0;

2. near e' we have F.z/ D O.z � e'/R;

3. near e�' we have F.z/ D O.z � e�'/R�˛ .

The dominants O.�/ are uniform in all sectors with finite central angles.
Next, we examine the function g.t/ given by (5.19). The function F.z/z˛=2 is

holomorphic in the sector j arg zj < � and admit estimates O.jzj˛=2/ at zero and
O.jzj�˛=2/ at 1. Therefore (see [31], Theorem 31), its Mellin transform g.t/ is

� holomorphic in the strip j Im t j < ˛=2,

� decreases as O.e�.��"/j Re t j/ as Re t ! ˙1.

Both consequences are not sufficient for our purposes.4 For this reason, we
improve a behavior of F.z/ at zero and at infinity (in the spirit of Watson’s Lemma5).

Consider the functions

�1.z/ D exp.�z1=3/
�
1C z1=3 C 1

2Š
z2=3

�
and

�2.z/ D z�˛ exp.�z�1=3/
�
1C z�1=3 C 1

2Š
z�2=3

�
:

Lemma 5.7. The functions

R.t/ D
Z 1

0

�1.z/z
˛=2Cit�1dz and Q.t/ D

Z 1

0

�2.z/z
˛=2Cit�1dz

are meromorphic in the strip

�˛=2� 1 < Im t < ˛=2C 1:

A unique singularity of R.t/ in the strip is a simple pole at t D i˛. A unique
singularity ofQ.t/ in the strip is a simple pole at t D �i˛. Both functions admit the
following estimate in the strip:

O.jt j3˛=2�1=2e�3�jt j=2/; Re t ! ˙1: (5.22)

4If ˛ 6 2, then the width of the strip is not sufficient.
5See, e.g., [1], Theorem C.3.1.
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Proof. We have

R.t/ D 3
�
�.3˛=2C 3it/C �.3˛=2C 1C 3it/C 1

2
�.3˛=2C 2C 3it/

�
:

The poles of the summands are i˛=2, i˛=2C i=3, and i˛=2C 2i=3, but the last two
poles cancel.

Next, consider the function

F B.z/ D F.z/ � F.0/�1.z/ � .z˛F.z//jzD1 � �2.z/:

Set

g.t/ D
Z 1

0

z˛=2F.z/zis�1ds and gB.t / D
Z 1

0

z˛=2F B.z/zis�1ds:

The function z˛=2F B.z/ admits the following expansions near 0 and 1:

z˛=2F B.z/ D p1z
˛=2C1 C p2z

˛=2C2 C p3z
˛=2C3 C : : : ; jzj ! 0; (5.23)

z˛=2F B.z/ D q1z
�˛=2�1 C q2z

�˛=2�2 C q3z
�˛=2�3 C : : : ; ; jzj ! 1 (5.24)

in the sector j arg zj 6 � . It is continuous up to the boundary of the sector if R > ˛.
The functions

�˙.x/ D z˛=2F B.z/jzDex˙i�

have R � ˛ derivatives. Expansions (5.23)–(5.24) imply the following lemma.

Lemma 5.8. All derivatives dk

dxk �˙.x/ tend to zero as x ! ˙1.

Therefore, see [31], Theorem 31 and proof of Theorem 26, gB.t / is holomorphic
in the strip j Im t j < ˛=2C 1 and satisfies the estimate

jgB.t /j D O.e��j Re t jj Re t j�.R�˛//; Re t ! ˙1:

The function g.t/ satisfy the same estimate (because g.t/ � gB.t / is (5.22)) at
infinity, but it is meromorphic in the strip with simple poles at t D ˙˛=2.

Now it remains to divide6 g.t/ by �.˛=2 C i t /�.˛=2 � i t /. The poles at t D
˙i˛=2 disappear; we get a function holomorphic in the strip j Im t j < 1C ˛=2, and
decreasing as O.t�.R�2˛C1//. It remains to choose a sufficiently wide strip (5.21).

6Formula (5.16) contains also a multiplication by e�t=2, but this factor cancels after (5.18).
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6. Example of self-adjoint extensions

This section contains another construction inVilenkin’s style; see [33], Section 7.7.11.
A representation-theoretic standpoint of our considerations is explained at the end of
the section.

6.1. The difference operator. Consider the space L2.R/ and the subspace V con-
sisting of functions holomorphic in the strip j Im sj 6 1 and decreasing as

jf .s/j D O.Re s/�3=2�"; j Re sj ! 1:

Fix � 2 R, 0 < ' < � , and consider the operator

Lf .s/ D i.1=2 � is/f .s C i/C 2.s � �/ cos'f .s/ � i.1=2C is � 2i�/f .s � i/:
The form of this operator slightly differs from operators considered in the intro-

duction. By Lemma 2.4, L is formally symmetric.

Proposition 6.1. The operator L is not self-adjoint. Its defect indices are .1; 1/.

We also discuss a modified version of this example where self-adjoint extensions
arise in a natural way.

Consider the operator L ˚ L acting in the space L2.R; ds/˚ L2.R; e2�sds/.
Consider the space H consisting of pair of functions .f1; f2/meromorphic in the

strip j Im sj 6 1 such that

f1.s/ D O.Re s/�3=2�"; j Re sj ! 1 (6.1)

e2�sf2.s/ D O.Re s/�3=2�"; j Re sj ! 1: (6.2)

Fix 
 2 R. Consider the space H� consisting of pair of functions .f1; f2/

meromorphic in the strip j Im sj 6 1 and satisfying (4.6), with simple poles at points
i=2 and �i=2C 2� . We also require

res
sDi=2

f1.s/ D res
sDi=2

f2.s/ (6.3)

and

res
sD�i=2C2�

f1.s/ D �e2�.�Ci�/ res
sD�i=2C2�

f2.s/: (6.4)

The parameter 
 is present only in the last condition, it is a parameter of a self-adjoint
extension.

Proposition 6.2. a) The operator L ˚ L has defect indices .2; 2/ on H .

b) The operator L ˚ L is essentially self-adjoint on the domain H� .



Difference Sturm–Liouville problems in the imaginary direction 263

Next, consider the following elements of the space H˛:

.‰
.n/
1 .s/; ‰

.n/
2 .s//; (6.5)

where both functions ‰.n/
1 and ‰.n/

2 are given by the same formula

B.1=2C is; 1=2C 2i� � is/ 2F1

"
1=2C is; 1=2� 
 C i� � n

1C 2i�
I 1� e�2i'

#
:

The function ‰.n/
1 is obtained by the analytic continuation of

B.: : : / 2F1

"
1=2C is; 1=2� 
 C i� � n

1C 2i�
I z
#

from z D 0 along the path z D 1 � e�2i� with � 2 Œ0; '�; ‰.n/
2 along the path

z D 1 � e2i� with � 2 Œ0; � � '�.

Proposition 6.3. a) (See [24].) The elements .‰.n/
1 .s/; ‰

.n/
2 .s//, where n ranges in

Z, form an orthogonal basis in the space L2.R; ds/˚ L2.R; e2�sds/.

b) They also are the eigenfunctions of the operator L ˚ L defined on H˛. The
eigenvalues are 2 sin '.
 C n/.

6.2. A family of orthogonal bases in L2.R/. Fix � 2 R, 
 2 C, and ' 2 .0; �/.
Define the functions

� .x/ D � .xI �; '/ D .1C xei'/�1=2�i��� .1C xe�i'/�1=2�i�C� :

We choose a branch of � .x/ by the condition � .0/ D 1.

Lemma 6.4. For any � , 
 2 R, the functions �Cn, where n ranges in Z, form an
orthogonal basis in L2.R/.

Proof. We pass to a new variable � 2 Œ0; 2�� defined by

ei� D 1C ei'x

1C e�i'x
and d� D 2 sin ' dx

.1C ei'x/.1C e�i'x/
:

Then we have

.2 sin '/1=2Ci� ��Cn D e�i.�Cn/�� 0.x/1=2Ci� :

We consider the map from L2Œ0; 2�� to L2.R/ given by

Sf .x/ D f .�.x//� 0.x/1=2Ci� :

Evidently, this map is unitary. The system �Cn is the image of the complete or-
thogonal system e�i.�Cn/� under the map S .
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6.3. A differential operator. Fix � 2 R and ' 2 .0; �/. We consider the following
symmetric differential operator

D D D�;' D i.x2 C 2 cos'x C 1/
d

dx
C i.1C 2i�/.x C cos'/ (6.6)

in L2.R; dx=2�/.
The functions � are formal eigenfunctions of the operator D,

D�.x/ D .2 sin '/ 
�.x/: (6.7)

Lemma 6.5. a) Defect indices of the operator D defined on the subspace C1
c .R/

are .1; 1/.

b) Defect indices of the operator D defined on the subspace C1
c

�
.0;1/

�
are

.1; 1/.

Proof. Indeed, the functions � are contained in L2.R/ for all 
 2 C. Therefore,
dim ker.D� ˙ i/ D 1.

Fix 
 2 R. Denote by W˛ the space of C1-functions on R such that there is a
function h.y/ smooth near zero such that

f .x/ D
8<
:
x�1�2i�h.1=x/ for sufficiently large positive x,

e�2�i� .�x/�1�2i�h.1=x/ for sufficiently small negative x.
(6.8)

Lemma 6.6. The operator D is essentially self-adjoint on the subspace W� and
�Cn are its eigenfunctions.

Proof. Verification of symmetry of D on W� is straightforward. The subspace W�

contains vectors �Cn. Other functions ~ are not in the domain of definiteness of
D� and therefore defect indices are .0; 0/.

6.4. The double Mellin transform. Let f 2 L2.R/. Consider the pair of functions

g1.s/ D
Z 1

0

f .x/xis�1=2dx; (6.9)

and

gB
2.s/ D

Z 0

�1
f .x/.�x/is�1=2dx: (6.10)

Obviously,Z 1

�1
jf .x/j2dx D 1

2�

²Z 1

�1
jg1.s/j2ds C

Z 1

�1
jgB

2.s/j2ds
³
:
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Thus we get a unitary operator L2.R; dx/ ! L2.R; ds=2�/ ˚ L2.R; ds=2�/.
Let modify this transform and set

g2.s/ D
Z 1

�1
f .x/xis�1=2ds D �ie��s

Z 1

0

f .x/.�x/is�1=2dsI (6.11)

here we take a branch of xis�1=2 that is analytic in the upper half-plane and real for
x > 0. Now we getZ 1

�1
jf .x/j2dx D 1

2�

²Z 1

�1
jg1.s/j2ds C

Z 1

�1
jg2.s/j2e2�sds

³
:

We denote the operator f 7! .g1; g2/ by zM

6.5. The difference operator. We evaluate the zM-image ofDf as in (5.20) and get
the formal difference operator L ˚ L in L2.R; ds/˚ L2.R; e2�sds/.

Propositions 6.1 and 6.2.a are corollaries of the following lemma.

Lemma 6.7. a) The image of C1
c .0;1/ under (6.9) is contained in V .

b) The image of C1
c .�1; 0/C C1

c .0;1// is contained in H .

Proof. a) Recall that the Mellin transform of f is reduced to the Fourier transform
by the substitution x D ey to f .x/. In (6.9) we evaluate the Fourier transform of
f .ey/ey=2; the function g1.s/ decreases as O.s�N / for any N .

b) We apply the same argument to gB
2.s/, see (6.10). After passing to g2 we get

the estimate in (6.2).

Proposition 6.2.b is a corollary of the following lemma.

Lemma 6.8. The image of the spaceW˛ under the Mellin transform zM is contained
in the space H˛.

Proof. We repeat considerations in the spirit of Watson lemma. Pass to the function

f ?.x/ D
8<
:
f .x/ � f .0/e�x � h.0/x�1�2i�e�1=x; x > 0;

f .x/ � f .0/ex � h.0/e�2�i� .�x/�1�2i�e1=x; x < 0;

where h is the same as in (6.8). Consider the first component of the transform zM.
We have

f ?.x/ D c1x C � � � C cNx
N CO.xN C1/; x ! 0C (6.12)

and

f ?.x/ D d1x
�2�2i� C � � � C dMx

�M �2i� CO.x�M �1/; x ! C1: (6.13)
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Examine the behavior of

g1.s/ D
Z 1

0

f .x/xis�1=2dx; and g?
1 .s/ D

Z 1

0

f ?.x/xis�1=2dx:

The functions g1.s/ and g?
1 .s/ are Fourier transforms of f .ey/ey=2 and f ?.ey/ey=2.

It is easy to see that the derivatives of f ?.ey/ey=2 admit the estimates

dk

dyk
.f ?.ey/ey=2/ D O.e�3jyj=2/:

Therefore g?
1 .s/ is defined in the strip j Im sj < 3=2 and decreases in this strip as

O.j Re sj�N / for any N .
On the other hand,

g1.s/ � g?
1 .s/ D f .0/�.1=2C is/C h.0/�.�1=2� 2i� C is/

is meromorphic in the stip with poles at s D i=2 and s D �i=2 C 2i� and it
exponentially decreases as j Re sj ! 1. The residues at the poles are f .0/ and h.0/
respectively.

In the same way we prove that gB
2.s/ is decreasing at infinity. The residues at the

poles s D i=2 and s D �i=2C 2i� are respectively f .0/ and e�2��i . It remains to
multiply gB

2.s/ by �ie��sh.0/ and we come to (6.3)–(6.4).

6.6. Proof of Proposition 6.3. We evaluate zM�Cn using formula (5.17) and come
to (6.5).

6.7. The origin of the construction of this section. Fix 
 , � 2 R. Consider the
following representation T�;�.g/ of the group SL2.R/ in L2.R/:

T�;�

�
a b

c d

�
f .x/ D f

�b C xd

a C zc

�
.aC zc/�1=2��Ci� .a C zc/

�1=2C�Ci�
:

In this formula, we choose any branch of ln.aC zc/ that is holomorphic in the upper
half-plane and define powers as

.aC zc/�1=2��Ci� .a C zc/
�1=2C�Ci� D

D exp..�1=2� 
 C i�/ ln.aC zc/C .�1=2C 
 C i�/ln.aC zc//

Thus, an operator T�;�.g/ is determined up to a constant factor and we get a projective
unitary representation of SL.2;R/ (it is a representation of the principal series, see,
e.g., [23], Section 7.4.3).

The operatorD�;' given by (6.6) is an infinitesimal generator of the group SL2.R/.
It generates a compact subgroup, and �Cn are eigenvectors of this subgroup.

The transform zM is the spectral decomposition of the one-parametric group of
operators T�;�

�
a 0
0 a�1

�
.
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