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Difference Sturm-Liouville problems in the imaginary direction

Yury A. Neretin!

Abstract. We consider difference operators in L2 on R of the form

Lf(s)=pE) fls+i)+q(s)f(s)+r(s)f(s—i),

where i is the imaginary unit. The domain of definiteness are functions holomorphic in a strip
with some conditions of decreasing at infinity. Problems of such type with discrete spectra
are well known (Meixner—Pollaczek, continuous Hahn, continuous dual Hahn, and Wilson
hypergeometric orthogonal polynomials). We write explicit spectral decompositions for several
operators &£ with continuous spectra. We also discuss analogs of ‘boundary conditions’ for
such operators.
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1. Introduction

1.1. Formulation of problem. Consider the space .2 on R with respect to a positive
weight w(s) ds. Consider a subspace H consisting of functions f(s) holomorphic
in the strip —1 < Ims < 1 smooth up to the boundary Ims = =1 and sufficiently
rapidly decreasing in the strip as |s| — oo. We consider difference operators in
L?(R, w(s) ds) of the form

Lf(s) = pE)fls+i)+q@)f(s) +rs)f(s—i),

where i is the imaginary unit; the domain of definiteness of &£ is the subspace H.
For such operators we discuss essential self-adjointness and the eigenvalue problem

Lf(s) = Af(s).

Our main purpose is a spectral decomposition. In fact, several problems of this kind
were solved (see the list below). All solved problems had the following form. Denote

m
1_[ I'(ag +is)
ps)=es = (1.1)
[T +is)
=1
where ¢ € R, and
[] @ —is)
V) =p@ = S (1.2)

[[r®—is)
=1

Denote
. [T@k—is)
Als) = v(f)(j)l) = el (1.3)
[ —is)
=1
and
. l_[(ak +is)
B(s) = pls —1) _ ic k=1 (1.4)
p(s)

[ +i9)
=1
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We consider the space L?(R, w(s) ds) with respect to the weight

1
w(s)ds = s—p(s)v(s)
2
and the difference operator

Lf(s)=A(s)f(s+i)— (A(s) + B(s)) f(s) + B(s) f(s —i). (1.5)

1.2. Neo-classical orthogonal polynomials. Now we enumerate solved problems
of this kind. We use the standard notation for hypergeometric functions

air,....aq (@) - (@p)n 2"
qu[bl,...,bp’Z:| r;(bl)n...(bq)nn!’
where (@), = a(a + 1)...(a + n — 1) is the Pochhammer symbol.

Recall that there are 3 types of classical hypergeometric orthogonal polynomials;
see [3], [13], and [12]. The polynomials of the first type are solutions of the usual
Sturm—Liouville problems for second order differential operators: Jacobi (including
Gegenbauer, Legendre, Chebyshev), Laguerre, Hermite systems; see [9].

Polynomials of the second type are solutions of difference Sturm-Liouville prob-
lem on lattices: Racah, (Chebyshev)-Hahn, dual Hahn, Meixner, Krawtchouk, Char-
lier; see [25], [13], and [12].

Polynomials of the third type are solutions of Sturm—Liouville problems of the
form (1.1)—(1.5): Wilson, continuous Hahn, continuous dual Hahn, Meixner—Pollac-

zek systems; see [13] and [1]. Recall that all classical polynomial orthogonal systems
are degenerations of the Wilson polynomials; see [3], [13], and [12].

a) The Meixner—Pollaczek system or the Meixner polynomials of the second kind,
see [19] and [13], Section 1.7. We take

p(s) = e@ D50 (g + is),

where the parameters a, ¢ satisfy a > 0, 0 < ¢ < m. Therefore
w(s) = %e@“’—””r(a + i) (a —is). (1.6)
and the difference operator is
Lf(s)=ie"P(a—is)f(s+i)+2(—scosg + Asing) f(s)

S T a
—ie'a+is)f(s—1i).
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The eigenfunctions are the polynomials

2 : —n,a+is .
Pn(S) = —( :')n e”“szl |: 2a ) 1— 6_2”/):|

and

EPy(s) = nsing P,(s).

The norms of the Meixner—Pollaczek polynomials are given by

o0 r 2
w12 = [ 1w Puts) ds = P +2a),
oo (2sing) n!
Recall, see [8], formula 1.18(6), that
IT(a + is)| ~ V2r|s|* V27752 5 - . (1.8)

Therefore the weight w(s) exponentially decreases and the space L?(R,w(s) ds)
contains all polynomials. The operator &£ send a polynomial to a polynomial of the
same degree, therefore our Sturm-Liouville problem is pure algebraic. The same
remarks hold for 3 polynomial systems discussed below.

b) The continuous Hahn system; see [6], [2], [25], and [13]. In this case,
u(s)y=TI(a+is)I'(b+is).

where the parameters a, b satisty Rea > 0, Reb > 0. The eigenfunctions are the
polynomials

s

.n(a—l—a_)n(a—l—l;)n |:—n,n+a+b+a_+l;,a+is :|
3 ;1

Pn(s) =i y _ _
n! a+a,a+b
and

Lpn=nn+a+a+b+b)p,.

¢) The continuous dual Hahn system; see [35], [13], and [12]. In this case

F@+is)I'(b+is)I'(c +1is)
I'(2is) '

p(s) =

where the parameters a, b, ¢ satisfya > 0,b > 0,c > 0ora > 0,Reb > 0,c = b.
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We consider even orthogonal polynomials py (s?):

2 —n,a+is,a—is
= b : F. 01
pn(s) (a+ )n(a+c)n3 2|: a+batc i|

and

ELpn =npy.

d) The Wilson system; see [35], [1], [13], and [21]. In this case,

Fa+is)I'(b+is)I'(c +is)I'(d +is)
I'(2is) '

p(s) =

where Rea, Re b, Re c, Red > 0 and all parameters are real, or @, b are real, d = c,
orb = a,d = ¢. The Wilson polynomials are the even polynomials given by

Pn(a,b,c,d;sz)
= (a+b)(a+c)nla+d),
—n,n+a+b+c+d—-1,a+is,a—is
4F3 ;1.
a+b,a+c,a+d
They satisfy to the difference equation

EP,=n(a+b+c+d-—1)P,.

1.3. Sturm-Liouville problems with continuous spectra. The author know two
solved problems.

a) We consider even functions f(s) on the line, and

_ F@a+is)I'(b+is)

() T(2is) ’

where a, b > 0. Let £ be the same as above.
We consider the operator (it is called the inverse Olevsky transform, [26], or the
inverse Jacobi transform, [14]):

L2( 1 ’F(a—i—is)r(b—i—is)

2
[R — L2 [R a+b—1 1 a—b
b o ds)—> (R xT071 (1 4 )90

defined by

B 1 o a+tis,a—is I'a+is)I'(b+1is) 2
Jf(")—mfozﬂ[ atb ”‘]f(x)‘ reis |
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The J send the difference operator &£ to the operator
Mf(x) = xf(x).
See [20], Theorem 2.1, but this is a special case of Cherednik [4].
b) Let

_ F@a+is)I'(b +is)I'(c +1is)

() T(d +is)[(2is)

In this case the spectral decomposition was done by an integral operator, whose kernel
is a 4 F3-function, see Groenevelt [10], the discrete part of the spectrum was found
in [21].

1.4. Partially solved problems. Romanovski-type systems of orthogonal poly-
nomials. Romanovski [29] constructed orthogonal polynomials on R with respect
to the weight (1 4 ix)™?(1 —ix)~% on R and with respect the weight x*~1 (1 + x)~?
on (0, 00). Since the weights have polynomial decreasing, these orthogonal systems
are finite. However, Romanovski polynomials correspond to discrete part of spectra
of certain Sturm-Liouville problems; see [7], XIIL.8, [14], and [22].

Lesky (see, e.g., [17] and [18]) constructed numerous Romanovski type polyno-
mial systems related to difference Sturm—Liouville problems, his list contains several
difference problems in imaginary direction. '

1.5. Multidimensional analogs. See [4] and [5].

1.6. Results of the paper. In Section 2, we show that the operators (1.1)—(1.5) are
formally symmetric. Next, we found spectral decomposition for several operators &£.
In Sections 3 and 4 we consider

_ _T+is)
u(s) = Tis) and  wu(s) = T 2is)

respectively. In both cases the spectrum is the half-line A > 0. The spectral decom-
position is given respectively by the inverse Kontorovich—Lebedev transform and the
inverse Wimp transform with Whittaker kernel. Note that in a certain sense these
problems (involving the Bessel functions ¢ F; and the Kummer functions | F) are
simpler than neo-classical polynomial problems (involving the Gauss function 5 F
and higher hypergeometric functions 3 F2(1), 4 F3(1)).

"More generally, Lesky’s papers indicate numerous unsolved but (certainly) solvable Sturm-Liouville
problems.
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Next (Section 5), we consider L2(RR) with respect to the measure
eS|\ T(a/2 +is)|*ds (1.9)
and the difference operator
Ef(s) =i(a/2+is)f(s—1i)+ 2coshpsh(s) —i(a/2—1is)f(s+1i). (1.10)

The form of this operator slightly differs from (1.1)—(1.5).

In Section 6 we discuss an example of a symmetric non self-adjoint operator and
its essentially self-adjoint extensions.

In all cases essential self-adjointness is derived from the explicit spectral decom-
position. It is an interesting question to find a priory proofs.

We also note that the problem (1.9)—(1.10) is an analytic continuation of the
Meixner—Pollaczek problem (1.6)—(1.7). The objects of Section 6 also are “analytic
continuations from integer points™? of the Meixner—Pollaczek polynomials.

2. Preliminaries

2.1. The imaginary shift in L2. We say that a function is holomorphic in a closed
strip | Im 5| < « if it is holomorphic in a larger strip [Im s| < « + 8.

Lemma 2.1. Let H C L?*(R) be the subspace in L*(R) consisting of functions
f(s) admitting holomorphic continuation to the strip | Ims| < 1 and satisfying the
condition | f(s)| = O(s~Y?7¢) in this strip. The operators

Ty f(s) = f(s+1i) and T-f(s) = f(s—1i)

defined on H are symmetric in L*(R).

Proof. We have
i+o00

/_f(s+i)ﬁds=/_ f(t)g(t"+i)dt=/_ f(Hgt +i)de O

2.2. Lemma on symmetry. Let i(s), v(s) be the same as above; see (1.1)—(1.2).
The weight w(s) is given by

[k +is)T @ —is)

w(s) = plsy(s) = 5?0k |

[[T®+is)T(b; —is)
=1

2L.e., a construction of analytic continuation involves the Carlson theorem, see, e.g., [1], Theorem 2.8.1
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For real s we can represent w(s) in the form

m 2
1_[ I'(ar +is)
1 2¢s | k=1
w(s) = 7€ —_—
[]r®+is)
I=1
Let A(s), B(s) be as above:
m
. [ 1@ —is)
Als) = v(s+1) _ e k=1

Vi) [ —is)
=1

and
m

H(ak—l-is)
pls —i) — pic k=1

wis) [[@:+is)
=1

B(s) =

By (1.8), we have the following asymptotics of w(s) in any strip | Im s| < o
w(s) ~ W(s) = const - |[s|=CRe&=D=LCRRebI=D) ex 525 + (n — m)ws), (2.1)
as s — oo. We say that a function f is w-decreasing in a strip |Im 5| < « if
F(s) = O(W(s)"V2gm=1278) 5 5 .
This condition provides

f(s+iB), AGs)f(s +iB), B(s)f(s+iB) e L*(R, w(s)ds)

for all B satisfying |B| < «. Denote by # [w] the space of all functions holomorphic
in the strip | Im s| < 1 and w-decreasing in this strip.

Lemma 2.2. Let
Rea; >0

forall j. The operator
Rf(s) = A(s) f(s + 1)

defined on the domain ¥ [w] is symmetric in L>(R, w(s) ds).
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Proof. We verify the identity (Rf, g) = (f, Rg) for f, g € H[w]:

/oo YOED fs 4+ 1) gOREVE) ds
o V(s)

_ /_OO s + 1) TOEs + i) ds

i+o0
— [ ORE T OuG i) ds

| —00

= [ 10 F OG- ds

/ f()“( )(s+l)M(S)V(S)ds

= [ 506+ s ds
TG
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O

The condition Rea; > 0 provides absence of poles of v(s + i) (s) in the strip

O0<Ims < 1.

Corollary 2.3. Under the same conditions the operator

Lf(s) = A@s)f(s +1) = (A(s) + B(s)) f(s) + B(s) f(s —0)

is symmetric on the subspace J[w] C L*(R, w(s) ds).

2.3. Changes of a weights. Let w,(s) = 7(s)t(5)w;(s). Then the operator

Hf(s) = t(s)f(s)

is a unitary operator L2(R, wa(s)) — L2(R, w;(s)). Evidently, we have

HOT Hf () = S D7,
7(s)
and
1 ‘C(S _l)
H\T_Hf(s) = T

)
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2.4. Operators in L2(R)

Lemma 2.4. Let an operator
Rf(s) = L(s)f(s +10)
be formally symmetric in L>(R, ds). Then
L(s) = LG —1). (2.2)

This is straightforward.

Note that, if L(s) satisfy (2.2), then L(s)™! satisfy the same condition. Also, if
L1(s), Lo(s) satisfy (2.2), then L1(s)L,(s) satisfy (2.2).
Obvious solutions are

L(s)=1i/2+s,
L(s)=(@G/24ia+s)(i/2—ia+s),

and
L(s) = h(e®™).

3. The Kontorovich-Lebedev transform

3.1. A difference operator. Now p(s) = ['(is), w(s) = |T(is)|~2. We consider
the space of even functions, f(s) = f(—s), the inner product is given by

ds

2 [ —
o)== [ fORP

2 [ —
== / f(s)g(5)s sinh(ms) ds.
72 ) oo
We consider a difference operator £ given by

L) = (s +) = S5 =) G
defined on the subspace #[w] C L?(Ry, |T'(is)|~2ds)
Lemma 3.1. The operator £ is essentially self-adjoint.
The lemma is a special case of Lemma 4.1, the latter lemma is proved in Section 4.

The spectral decomposition is given by the inverse Kontorovich—Lebedev trans-
form, see the next subsection.
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3.2. The Kontorovich-Lebedev transform. Preliminaries. The Macdonald func-
tions K, (z) are solutions of the modified Bessel differential equation, see [9],7.2(11),
i.e. the equation

() 8C) - 25(2) = %),

They are defined by, see [9], 7.2(13),

K,(z) = (I (2) = 1,(2)).

sin(vr)
where [,(z) are the modified Bessel functions,

[e.¢]
. . z/2 2m+v
I(z) = e "2, (ze™?) = m'l(“({n)+ v+ 1)

m=0

For each z # 0 the function %, (v) = K, (z) is an entire function of the variable v,
K,(z) = K_,(2).

For positive z € R and v € i R values of K, (z) are real.
Below we use two identities (see [34], (3.71.1)—(3.71.2)):

2
Kie1(2) = Koi1(2) = == Ku(2), (3.2)
and

d
Kum1(2) + o1 (2) = == Ko2). (3.3)

The Kontorovich—Lebedev transform [15], [16], Section 6.5, and [37] is given
by3

o d
fe6) = [ Kulng(o (3.4)
0 X
The inverse transform is
-1 _E/w 35
@ =2 | K0 s (3.5)

The Kontorovich—Lebedev transform is a unitary operator

L?>(Ry, x Ydx) — L?(Ry, 277 Y T (is)|2ds).

3Here and below we understand integral operators in the sense of the kernel theorem, see, e.g., [11],
Section 5.2. However, for the Kontorovich-Lebedev transform and the Wimp transform discussed below
conditions of literal validness of formulas are well investigated.
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3.3. The statement

Theorem 3.2. The Kontorovich-Lebedev transform provides a unitary equivalence
between the operator

Pg() = Zg(x)

in L?>(Ry, x~Ydx) and the operator £ given by (3.1).

Proof. We use (3.2),
*2 d
| 2o ki
o X X
_ /0 g(x) - —ZKiS(x) d_x

- X X
[ele] dx
= / g(X) (Kl(s+l)(x) l(S—i)(x))_
0 X

1
= E(ﬁg(s—i—i)—ﬁg(s—i)). O
3.4. An additional remark. Applying (3.3), we get the following statement

Proposition 3.3. The Kontorovich—Lebedev transform send the operator

Qﬁ)—(———k()

to the operator

M) = 3(fGs +i) = fls = D).

m d"

—7= under the

It follows that we can evaluate the image of any operator x~
Kontorovich—-Lebedev transform.

4. The Wimp transform

I'(1/2—p+is)

4.1. A difference problem. Now u(s) = Fars)

even functions on R with inner product

. We consider the space of

ra/2—p+is)|?

T(2is) ds.

(fg) = / f@ﬂ)‘
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We consider the following difference operator

B l—p—is }
:ﬁf(s)—mf(s+1)

I —p—is I—p+is
- ((—2is)(1 “ais) T (#2in)(1 + ZiS))f(s) “.D
Loptis iy,

(+2is)(1 + 2is)

As above, this operator is defined on the subspace # [w] C L2(R, w(s)ds).
Lemma 4.1. Let p < 1/2. Then the operator £ is essentially self-adjoint.

4.2. The Whittaker functions and the Wimp transform. Preliminaries. The
Whittaker functions W, 5(z) are versions of the confluent hypergeometric functions.
They are solutions of the Whittaker equation, see [8], 6.1(4),
d? x?
(¥ 2 =+ %) f(0) = (@ = 1/4) £ (). (42)
dx 4

The explicit expression is

r1/2—p—o) ' 14+20

[ (20)x1/2—0 1/2—p—o0o
+ LQo)x 77 1F1 /2=p x|
ra/2—p+o) 1—20
see [30], (1.9.10). There are the following integral representations, see [8], 6.11(18),
and [27], 2.3.6.9,

(=2 1/240 1/2 —
Wp,o(x) — e—x/Z( (—20)x F |: / p+0_xj|

4.3)

e~X/2xP
ra/2—p4+o)Jo
and the Barnes representation, see [28], 8.4.44.3, and [30], (3.5.16)),

oo
Wpo(x) = e Tt (1 TR ReRO g (4.4)

e—x/2

Wpo(2) = 27T (1/2—p—0)[(1/2—p+0)

(4.5)
X / L@t +1/2+0)T@t+1/2—0)(—p—it)x"'dr.

—00

Remark. If p € R, 0 € iR, x > 0, then W), ;(x) is real. This follows from (4.3).
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Fix real p < 1/2. The Wimp transform 20, is the integral operator given by

o0 d
W5 (s) = /0 S Wi () S

see [36] and [37]. The inverse transform is

2
ds.

2
ds).

Remark. This theorem can be obtained by writing of explicit spectral decomposition
of the differential operator (4.2) as it is explained in [7], Chapter XIII.

T(1/2—p+is)
T (2is)

W, 160 = 5 [ W)

The Wimp transform is a unitary operator

T(1/2—p+is)
T (2is)

1
L*(Ry, x72dx) — Lz(m, — ’
2

The Macdonald function K, admits the following expression in the terms of

Whittaker functions:
|
Ky(x) = [ 5= Wou(x).
2x

Therefore the Kontorovich-Lebedev transform is a special case of Wimp transforms.

4.3. The statement

Theorem 4.2. The Wimp transform send the operator

Rg(x) = x""g(x) (4.6)
to the difference operator £ defined by (4.1).

The theorem is a corollary of the following lemma.

Lemma 4.3. The Whittaker functions satisfy the difference equation

1-p—0 l—p+o
(—20)(1 —20) Wpo-1(x) = Wy6) + m(wp,tﬂ-l(x) —Wo0) wn
1 .
= _Wp,a(x)-
X

Proof. We use the Barnes integral (4.5). We multiply both sides of (4.7) by ¢*/2 and
pass to their Mellin transforms (see below (5.2)—(5.3)). Denote by /4 (t) the Mellin
transform of ¢*/2 W,o(x),1e.,

_ TGt +1/240)0(it +1/2—0)[(—p— i)

h(e) /2= p—o)T(1/2—p +0)
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The Mellin transforms of e*/ 2W,.o41(x) are y4 (1)h(t), where

(=1/2—pFo)t+1/2+0)
(1/)2—pxo0)(t—1/2F0)

y£(t) =

In the left-hand side we get

l—-p—0o l-p+o
h(s) - {W(V—(U -+ m()@(ﬂ - 1)}
= h(s) e

(t—1/2—0)t—1/2+0)
_T(r—1/240)T(@t—1/2—0)(—p—it +1)
N I(1/2—p—0)L(1/2—p+0)

= h(s +i).

The shift of a Mellin transform by i is equivalent to multiplication of the original by
1/x. O

4.4. Proof of self-adjointness. The space C>°(R4) of smooth functions with com-
pact support on (0, co) is a domain of essential self-adjointness of the operator (4.6).
It is sufficient to prove the following lemma.

Lemma 4.4. 20,(C°(R4)) C H[w].

Lemma 4.5. Fix p < 1/2. For (0, x) ranging in a domain
|[Reo| <1, 0<c<x<C<x (4.8)
the following uniform estimate holds

[Wpo(x)| = O(e”|1m0|/2|lmo|p+l). (4.9)

Proof of Lemma 4.5. The integral formula (4.4) converges if Reo > p — 1/2 and
admits the holomorphic extension to the whole plane o € C.

The statement is very simple if p < —1/2 (the integral in (4.4) is bounded and the
desired estimate is obtained from an estimate of a pre-integral factor. But we wish to
cover also the interval —1/2 < p < 1/2.

Fix A > B > 1. Represent 1 as 1 = ¢(¢) + ¥ (¢), where ¢, ¥ () = 0 are smooth
nonnegative on R4, ¢ (1) = Ofort < A,and ¢ = 0 fort > B. We write the integral
in (4.4) as

o0 A
/ — / e—xtt—l/Z—p-i-O'(l 4 t)—1/2+,0+0(p(t) dt
° ° (4.10)

+ /ooe—xt[—l/Z—p-{-O'(l + [)—1/2+,0+0'w(t) dt.
B
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The second summand is uniformly bounded in our domain (4.8), the integrand is
dominated by
e—Cttl/Z—p(l + t)1/2+p

Next, we represent the first summand of (4.10) as

A A A
/ — / t—l/2—p+0’ (e—xt(l + t)—1/2+,0+0(p(t) _ 1) dt + / t—l/2—p+0’ dt
0 0 0

Denote by Q(¢, x, o) the first integrand. Then |Q(¢, x,0)| depends on ¢, x, and
Reo; these variables range in a compact set; the function Q is continuous on this
set. Therefore first the summand is uniformly bounded in (4.8) while the second
summand is uniformly bounded in (4.8) outside a neighborhood of 6 = p — 1/2.

Thus fooo is uniformly bounded in (4.8) outside a neighborhood of 6 = p — 1/2.

Next, we multiply the integral in (4.4) by the pre-integral factor %. Since
Re(l/2—p+0) € (—1/2—p,3/2—p), we have
r1/2—p+o0)"' = 0™ mo|*t!), |Imo|— oo
and we get (4.9). O

Proof of Lemma 4.4. By Lemma 4.5, for a function f € C>°(Ry) with compact
support, we have

120, f(5)| < C - e™IResI/2| Re s|PH1/2, (4.11)

Next, we use (4.2),

o0 d
—(1/4 + $2)2W, £(s) = / (—1/4 — )W, is (1)) - f() 2
0 X

©°, ,d*  x? dx
— 2 .
—/(; (x E—T‘pr)wp,ls(x)‘f(x)?
i d? 1 dx
= [ Wt [x g er ) = 12500+ prp ]
We apply (4.11) for the function in square brackets and get
120, ()] < C - (s> + 1/4)7" - ™IResI2 | Re 51!

and 20, f (s) € H[w]. O
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5. The Vilenkin transform

5.1. A difference problem. Fix o > 0 and ¢ > 0. We consider the weight
1 s N2,
w(t) = —|T(a/2+it)]7e™,
2

the corresponding space L2(R, w(t) dt), and the difference operator
() =i(a/2+it)f(t —i)+2coshpth(t)—i(a/2—it)f(t+1i).

This operator differs from (1.1)—(1.5), but it is symmetric; the proof is the same as in
Lemma 2.2.

Theorem 5.1. The operator £ is essentially self-adjoint on the space ¥ [w].
5.2. The Vilenkin transform
Theorem 5.2. The Vilenkin transform

Vo g(t)

= (1 - ¢720)%/2, 701t / g(s) 2Py {

—00

a/2—is,a/2+it

1— e_z"’i| w(s) ds.
a

is a unitary operator
L*(R, w(s) ds) — L*(R, w(s) ds).

This is a minor modification of Vilenkin [32], §7.4, see also [33], 7.7.7.
Since the operator *¥ is unitary, the inversion formula is

ug f(s)
—-e02 [ £ ["‘/ Py e_z"’i| evitu(r) di.

Theorem 5.3. The inverse Vilenkin transform 0! send the operator £ to the oper-
ator

N f(s) = 2ssinh of (s).

To prove these statements, we decompose the Vilenkin transform as a product of
three simple transformations, see below formula (5.11).
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5.3. Highest weight representations of SL»(R). The group SL(2, R) is the group
of 2 x 2 real matrices g = (¢ 5) with detg = 1. Denote by IT the half-plane
Imz > 0.

Fix @ > 0. Consider the Hilbert space H, of holomorphic functions on IT
determined by the reproducing kernel, see, e.g., [23], Section 7.1,

Z—U\"®
2i )
In other words, denote W,(z) = K(z,a). Then for any F € H, we have

K(z,u) = (

(F,W,) = F(a). (5.1)

For & > 1 the inner product in H, admits the following integral representation

(F,G) = const(a) / F(z)G(z)(Im 2)*2dz dz.
I1
Consider the following operators in Hy:

Ty (a cbl) F(z) = F(l;j__zal)(a + ze) %

C zZc

The function (a + z¢)™* is multi-valued. We choose arbitrary branch of this function
on I1. Then the operators T (g) are unitary and satisfy the condition

To(g1)Tu(g2) = A(g1,82)Ta(g182),

where A(g1, g2) € C. Thus we get a projective unitary representation of SL,(R),
such representations are called highest weight representations.

The Mellin transform — preliminaries. See, e.g., [31]. For a function f on Ry
we define a Mellin transform 91 f(s) as

Mf(s) = / Fx0)x57dx. (5.2)
0
The inverse transform is given by
1 [ ;
M lg(x) = —/ g(s)x " ds. (5.3)
27 J oo

The Mellin transform is a unitary operator
1
L?*(Ry,x ldx) — L2<[R, —ds).
2

Notice, that changing variable x = e’ in (5.2), we come to the usual Fourier
transform.
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5.4. The spectral decomposition of dilatation operators. Consider a one-para-
metric subgroup A ~ R’ in SL;(RR) consisting of matrices of the form

all? 0
D(a) = ( 0 a—l/z)’

where a > 0. The subgroup A acts in the space H, by the transformations
To(D(@)) = f(z) = fla"'2)a*/. (5.4)

Next, consider the measure du(s) on R given by

u(s)yds = IT (/2 +is)|* ds

1
27T (o)
and the action of the same group in the space L?(R, jt(s) ds) given by the formula

w(D(a)) f(s) = f(s)a". (5.5)

Consider the operator
J: L*(R, u(s) ds) — Hy

given by

o e —a/2—is
F(2) = Jof(z) = 2n2r(a)/_ f(s)(li) UIN@2+isPds (5.6

we choose a branch of (z/i)~%/2715 = ¢=(@/2+is)In(z/1) gych that Inz /i is real for
z=1ip,p>0.
Therefore F(i p)(p)®/? is the inverse Mellin transform of ﬁ F($)|T (o) 2+i5)|%.
Applying the direct Mellin transform, we get

o

')

£5) - ——|P(@/2 + is)|? = /0 ~ Flip) p*/2+5 dp. 57

Proposition 5.4. The transform J, is a unitary operator
Jo t L2(R, u(s) ds) —> Hy
intertwining actions (5.4) and (5.5).
Proof. A verification of
J o1q(D(a)) = Ta(D(a)) o J
is straightforward. Next,

To(D(a)V¥; = aa/ijai'
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By (5.1), the system of vectors W,;, where a > 0, is total in the Hilbert space H,.
Next, we consider functions

®, = q¥/2+is
in L2(R, j(s) ds). Then
1o (D(a))®; = @y - a®/.
To prove the unitarity, it is sufficient to show, see, e.g., [23], Theorem 7.1.4, that

JOq = V4, (5.8)

and

at b)_a. (5.9)

(Pa, Pp)p2 = (Via. Yin)v, = ( 7

First, note that

ras)f'(a—is)

/0 (I+x)*x"dx =B(is,a —is) = @)

Applying the inversion formula for the Mellin transform, we get, see [28], 8.5.2.5,
1 b )
—/ L) (e —is)x™ tds = T(a)(1 4+ x)7%.
27 J oo
Both formulas (5.8)—(5.9) are reduced to the latter integral. Ol

5.5. A calculation. Proof of Theorem 5.2. Set

1 1 1
=— _ € SL,(R). 5.10
o= s (e ov) < SL2® (5.10)

Lemma 5.5. The operator

Ja_lTa(”fp)Jaf([)

= (2sinh @)*/2e 0@/ 2+i0) 7t/2
(5.11)

o 2—is,a/2 4 it
X/ £(s) 2 F |:Ol/ is,of2+i ;l_e—2<p:| e—ns/Zlu(s) ds.
oo a

is a unitary operator

L*(R, u(s) ds) — L*(R, u(s) ds).
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Proof. The operator

I Ta(rp) e
is unitary by definition as a product of three unitary operators
L*(R, u(s) ds) — Hy —> Hy —> L*(R, ju(s) ds).

We must find explicit formula for the composition. Write J, in the form

o
Jof(z) = eme/42® / [(9)z727 e 24 s), (5.12)
—0oQ
we use (e 7/2)71s = ¢=75/2 1p this formula we take the branch of z=%/27%5 given
by
Z—a/2—is — e—(a/2+is)lnz’ (513)

where the logarithm is real on the semi-axis z > 0. Then the inversion formula is

e—imx/42—ar(a)em,‘/2 )
Ma/2+iH)T(a/2—1it) Jo

JTVF() = F(z)z®/2+1=1 g, (5.14)

Recall that 7, is given by (5.10),
To(re)Ja f(2)

— glme/4ne (2 sinh go)"‘/2

Pz 41 \a/2mis ) )
x/_oo (m) (e™z + 1) f(s)e ™2 du(s)

B eima/4na (2 sinh g0)0[/2
B 27T (a)

o0
x / (€2 + 1)"%/275 (6792 4 1)7%/2H0S £(5) e ™™ /2|T (o + i) |2ds.
- (5.15)
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Next, we apply the inverse transform J; !,

Ja_lTa(”<p)Jaf(t)

_ (2 sinh @)/ 2¢7t/2
C T(a/2+it)T(a/2—it)

(5.16)
o0 o0
X/ / Z(x/2+it—1(e(pz + 1)—a/2—iS(e—(pZ + 1)—0[/2+i5f(s)
0 —00

x e ™2 (a0 + is)|?ds dz.

We must evaluate the integral in z,

/oo Za/2+it—1(e(pz + 1)—a/2—iS(e—(pZ + 1)—0[/2+is dz
0

%)
— e—(p(a/2+it)/ ua/2+it—1(1 + u)—a/z—iS(l + e—2(pu)—a/2+is du
0

:e_(p(a/zﬂt).F(a/2+it)F(oz/2—it) JFy oz/2—is,o¢/2+it;1_6_2(/7 ’
I'(o) o

here we applied an integral representation of the Gauss hypergeometric function,

a,b. - _L = b—1 a—c —a
ZFI[ ! u}_r(b)l"(c’—b)/o Y+ )+ yu) Ty, (5.17)

see [8], 2.12(5); this is valid for |argu| < .
Thus, we get (5.11). ]

Proof of Theorem 5.2. Finally, we change function by the rule
g(s) = e f(s). (5.18)

This is equivalent to passing to the space L2(R, w(s) ds), where w(s) = e™du(s).
O

5.6. Calculations. The difference operator. Now we evaluate the image of the
operator

J(s) —sf(s)

under J,; ' T4 (ry) Jo. Differentiating (5.15) by parameter z, we get that J,, ' Ty (ry)
send the operator

f(s) —> —2issinh gf(s)



Difference Sturm-Liouville problems in the imaginary direction 259

to
d
D = (z% 4+ 2z cosh ¢ + l)d— + a(z + coshg).
z

Next, we evaluate the corresponding operator in L?(R, w(s) ds). First, set

g(t) :/o F(z)z%?%17 14z and h(t) = F(a/2—|—i§)(;)(a/2—iS) (5.19)

and evaluate

w .
/ DF(Z)ZO[/Z-Ht—le
0
w . . .
— / F/(Z)(Zot/2+lt+1 + 2C05h§02a/2+lt + Za/2+lt—1)dz (520)
0

o0
—i—a/ F(Z)(z“/2+” —l—coshz"‘/2+”_1)dz.
0

Next we formally integrate by parts and come to

(/2 —it—1)g(t —i)—2coshptg(t)+ (—a/2 —it —1)g(t +1).
For functions & € L?(R, w(t) dt) we get the transformation

h(t) —> (/2 +it)h(t —i) —2icoshgth(t) — (a/2 —it)h(t +1).

5.7. Self-adjointness. Proof of Theorem 5.1. Denote by W the space of functions
f(s) holomorphic in the strip
[Ims| < R (5.21)

satisfying the condition: for any A > 0 there is C such that
| f(s)] < C -exp(—A|Res]).

The operator f + sf(s) in L?(R, dju(s)) is essentially self-adjoint on Wg.
Theorem 5.1 is a corollary of the following lemma.

Lemma 5.6. If R is sufficiently large, then for any [ € Wg we have Uy, [ € H[w].

Proof. Since f(z) super-exponentially decreases, Jy f(z), see (5.12)—(5.13), is a
well-defined analytic function on the universal covering of C \ {0}. In other words,
we can assume in (5.13) that —oco < argz < 4-o00. Since f is analytic in the strip,
the Fourier transform of f exponentially decreases, therefore the Mellin transform
decreases as O(|z|R) as |z| — 0 and as O(|z|7R) as z — oo (see [31], Theorem 31),
both O(-) are uniform in any sector | arg z| < C with finite central angle. O
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After the transform 7,(r,) we get a function F(z) = Ty(ry)Jo f(z) on the
universal covering over

C\{—e™? —e”}.
It has the following behavior near the ramification points:
1. near oo the function F(z) has form z=*y(1/z), where y is holomorphic near 0;
2. near e® we have F(z) = O(z — e%)%;

3. near e~ we have F(z) = O(z — e ?)R—,

The dominants O(-) are uniform in all sectors with finite central angles.

Next, we examine the function g(¢) given by (5.19). The function F(z)z%/? is
holomorphic in the sector | argz| < 7 and admit estimates O(|z|%/?) at zero and
O(|z|~%/?) at co. Therefore (see [31], Theorem 31), its Mellin transform g () is

* holomorphic in the strip | Im 7| < /2,

* decreases as O(e~"8IRetl) ag Ret — +o0.

Both consequences are not sufficient for our purposes.* For this reason, we
improve a behavior of F(z) at zero and at infinity (in the spirit of Watson’s Lemma?).
Consider the functions

1
71(2) = exp(—zl/3)(1 +z13 4 2—!22/3)
and

1
(z)=z"% exp(—z_1/3)<1 +z7V3 4 52_2/3).

Lemma 5.7. The functions

o0

o0
R() = / 11(2)z*? "4z and Q@r) = / 1(z) /2 H g7
0 0
are meromorphic in the strip
—a/2—1<Imt <oa/2+1.
A unique singularity of R(t) in the strip is a simple pole att = ia. A unique
singularity of Q(t) in the strip is a simple pole att = —ia. Both functions admit the

following estimate in the strip:

O(|t|P*/?>~1/2¢=37111/2) " Ret — +oo. (5.22)

4If o < 2, then the width of the strip is not sufficient.
3See, e.g., [1], Theorem C.3.1.
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Proof. We have
1
R(t) = 3(TGer/2 + 3i1) + T(Ba/2 + 1 + 3i1) + STGe/2+2+ 3i1)).

The poles of the summands are ior/2, ior/2 +i/3, and io/2 + 2i /3, but the last two
poles cancel. O

Next, consider the function
F°(z) = F(z) = F(0)11(2) — (2 F(2))] 2200 - T2(2).

Set
*° : o '
g(t) = / Za/zF(Z)Z”_lds and g°(t) = / Z“/ZFO(Z)le—lds‘
0 0

The function z%/2 F°(z) admits the following expansions near 0 and oco:
2PPF(2) = puz®PT 4 2P paz Pz 0, (523
22F(2) = iz b oz P2 gy PR 4 L |z > o0 (5.24)

in the sector |arg z| < . It is continuous up to the boundary of the sector if R > «.
The functions

ya(x) = 2% F°(2)|,_prin

have R — « derivatives. Expansions (5.23)—(5.24) imply the following lemma.

Lemma 5.8. All derivatives kakyi (x) tend to zero as x — +o0.

Therefore, see [31], Theorem 31 and proof of Theorem 26, g°(¢) is holomorphic
in the strip [Im 7| < «/2 + 1 and satisfies the estimate

1g°(1)] = O(e IRt Re |~ (R=®))  Ret — +o0.

The function g(¢) satisfy the same estimate (because g(¢) — g°(¢) is (5.22)) at
infinity, but it is meromorphic in the strip with simple poles at t = +a//2.

Now it remains to divide® g(¢) by I'(at/2 + it)T'(a/2 — it). The poles at t =
+ia/2 disappear; we get a function holomorphic in the strip | Im¢| < 1 + «/2, and
decreasing as O(t~®=22+D) [t remains to choose a sufficiently wide strip (5.21).

®Formula (5.16) contains also a multiplication by e’ /2 but this factor cancels after (5.18).
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6. Example of self-adjoint extensions

This section contains another construction in Vilenkin’s style; see [33], Section7.7.11.
A representation-theoretic standpoint of our considerations is explained at the end of
the section.

6.1. The difference operator. Consider the space L?(R) and the subspace V con-
sisting of functions holomorphic in the strip | Im s| < 1 and decreasing as

|7(s)| = O(Res) 3?7, |Res| — oo.
Fix r € R, 0 < ¢ < 7, and consider the operator
Lf(s)=i(1/2—is)f(s+i)+2(s—1)cosef(s) —i(1/24+is—2it)f(s—1i).

The form of this operator slightly differs from operators considered in the intro-
duction. By Lemma 2.4, £ is formally symmetric.

Proposition 6.1. The operator L is not self-adjoint. Its defect indices are (1, 1).

We also discuss a modified version of this example where self-adjoint extensions
arise in a natural way.

Consider the operator £ @ & acting in the space L?(R, ds) @ L?(R, e?>™5ds).

Consider the space J¢ consisting of pair of functions ( f1, f>) meromorphic in the
strip | Im 5| < 1 such that

fi(s) = O(Re )28, |Res| > oo (6.1)
e>™ f5(s) = O(Res)™>/27%,  |Res| — oo. (6.2)

Fix 0 € R. Consider the space #, consisting of pair of functions ( fi, f2)
meromorphic in the strip | Im s| < 1 and satisfying (4.6), with simple poles at points
i/2 and —i/2 + 2t. We also require

res fi(s) = res fa(s) (6.3)
s=i/2 s=i/2
and
res  fi(s) = —eZTHD res  fo(s). (6.4)
s=—i/2+421 s=—i/242t

The parameter o is present only in the last condition, it is a parameter of a self-adjoint
extension.

Proposition 6.2. a) The operator £ @ £ has defect indices (2,2) on J.
b) The operator £ ® £ is essentially self-adjoint on the domain H.
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Next, consider the following elements of the space H,:
(W17 (). w5”(s)), (6.5)
where both functions \Ilgn) and ‘llgn) are given by the same formula

1/2+is,1/2—0+it—n .
B(1/2+is,1/2+2it—is) 2 Fy { / / ;l_e—zw]

14+2it

The function lllgn) is obtained by the analytic continuation of

1/2+is,1/2—0+it—n
B()2F1|: 142t ;Z:|

from z = 0 along the path z = 1 — e™219 with 6 < [0, ¢]; \Ilgn) along the path
z=1-—e%9 with 0 € [0, 7 — ¢].

Proposition 6.3. a) (See [24].) The elements (‘l’gn)(s), \Ilgn)(s)), where n ranges in
Z, form an orthogonal basis in the space L>(R, ds) ® L*(R, e?>™5ds).

b) They also are the eigenfunctions of the operator £ @& L defined on Hy. The
eigenvalues are 2 sin (o + n).

6.2. A family of orthogonal bases in L2(R). Fixr € R, 0 € C, and ¢ € (0, 7).
Define the functions

Ao (x) = Ag(x:7.0) = (1 + xe®) /27770 (1 4 xe™'9)1/271wt0,
We choose a branch of Ay (x) by the condition A4 (0) = 1.

Lemma 6.4. For any t, 0 € R, the functions As,, where n ranges in Z, form an
orthogonal basis in L*(R).

Proof. We pass to a new variable 6 € [0, 27r] defined by

ei9=ﬂ and df = 25in<pdx - )
1 4 e~ i%x (1 +e'x)(1 + e7"%x)

Then we have
(2sing) /2T Ay, = eI OTMIg (x)1 /24T,
We consider the map from L2[0, 2] to L2(R) given by
Sf(x) = f(B(x))6' (x)"/>FT.

Evidently, this map is unitary. The system As 1, is the image of the complete or-
thogonal system e @+ ynder the map S. O
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6.3. A differential operator. Fix t € R and ¢ € (0, 7). We consider the following
symmetric differential operator

d
D =D, =i(x*+2cospx + 1)d— +i(1 4 2i7)(x + cos ) (6.6)
X

in L2(R, dx/2m).
The functions A, are formal eigenfunctions of the operator D,

DAs(x) = (2sing) 0Ag(x). (6.7)

Lemma 6.5. a) Defect indices of the operator D defined on the subspace C>°(R)
are (1, 1).

b) Defect indices of the operator D defined on the subspace C° ((O, 00)) are
(1,1).

Proof. Indeed, the functions A, are contained in L?(R) for all o € C. Therefore,
dimker(D* £1i) = 1. O

Fix 0 € R. Denote by W, the space of C°°-functions on R such that there is a
function /(y) smooth near zero such that

X172t (1 /x) for sufficiently large positive x,
fx) = (6.8)

e~2mio(—x)~172iTh(1/x) for sufficiently small negative x.

Lemma 6.6. The operator D is essentially self-adjoint on the subspace Wy and
Ay are its eigenfunctions.

Proof. Verification of symmetry of D on W, is straightforward. The subspace W,
contains vectors Ag4,. Other functions A, are not in the domain of definiteness of
D* and therefore defect indices are (0, 0). O
6.4. The double Mellin transform. Let f € L?(R). Consider the pair of functions
0 .
0161 = [ feox 2, (©9)
0

and
0 .
g5(s) = /_ FOO(=x) 2. 6.10)

Obviously,

[irwprar= A [~ okt [ igopas).
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Thus we get a unitary operator L2(R, dx) — L?(R,ds/2m) @ L*(R,ds/2m).
Let modify this transform and set

g2(s) = /_ T Fx2ds = e /0 T Ao s 6

here we take a branch of x5~1/2

x > 0. Now we get

/ : )P = 5= { / s + / ” |g2(s)|2e2”ds} |

—00 —00

that is analytic in the upper half-plane and real for

We denote the operator f +— (g1, g2) by Mm

6.5. The difference operator. We evaluate the ﬁt—image of Df asin (5.20) and get
the formal difference operator £ @ £ in L2(R, ds) @ L*(R, e*™ds).
Propositions 6.1 and 6.2.a are corollaries of the following lemma.

Lemma 6.7. a) The image of CZ°(0, 0o) under (6.9) is contained in V.
b) The image of C2°(—00,0) + C£°(0, 00)) is contained in H.

Proof. a) Recall that the Mellin transform of f is reduced to the Fourier transform
by the substitution x = e” to f(x). In (6.9) we evaluate the Fourier transform of
f(e?)e?/?; the function g (s) decreases as O(s~V) for any N.

b) We apply the same argument to g5 (s), see (6.10). After passing to g, we get
the estimate in (6.2). O

Proposition 6.2.b is a corollary of the following lemma.

Lemma 6.8. The image of the space W, under the Mellin transform M is contained
in the space Hy.

Proof. We repeat considerations in the spirit of Watson lemma. Pass to the function

F(x) — f(0)e™ — h(0)x~172iTe=1/x, x>0,

PO =) 0 - F00er - moyemio (o i-inetis, ¢ <o,

where £ is the same as in (6.8). Consider the first component of the transform .
We have

) =cx+-+eyx¥ + 0N, x>0, (6.12)
and
) =dix 7H popdyx M2 L oM7Y, x> 400, (6.13)
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Examine the behavior of
w . w .
g1(s) :/ f)xP72dx, and  gi(s) :/ S o)X 2,
0 0

The functions g1 (s) and g7 (s) are Fourier transforms of f(e¥)e?? and f*(e¥)e?/2.
It is easy to see that the derivatives of f*(e¥)e?/? admit the estimates

dk
GF (@) = 00,

Therefore g7 (s) is defined in the strip [Ims| < 3/2 and decreases in this strip as
O(|Res|™) for any N.

On the other hand,
gi(s) —gr1(s) = fOT(1/2+is)+h(0)(—1/2—2it +is)
is meromorphic in the stip with poles at s = i/2 and s = —i/2 + 2it and it

exponentially decreases as | Re s| — 0o. The residues at the poles are f(0) and /(0)
respectively.

In the same way we prove that g5 (s) is decreasing at infinity. The residues at the
poles s = i/2and s = —i/2 + 2it are respectively f(0) and e =277 It remains to
multiply g5(s) by —ie”™*h(0) and we come to (6.3)—(6.4). O

6.6. Proof of Proposition 6.3. We evaluate 93IA(,+,, using formula (5.17) and come
to (6.5).

6.7. The origin of the construction of this section. Fix o, t € R. Consider the
following representation T; 4 (g) of the group SL,(R) in L2(R):

b b+ xd 1/2—gtig—————1/2+0+iT
Tz,a(ccl d)f(x)=f(a+zc)(a+zc) 12=0+it (3 70) )

In this formula, we choose any branch of In(a + z¢) that is holomorphic in the upper
half-plane and define powers as

(a + ZC)_1/2_0.+irm—l/2+O’+if _

=exp((—1/2—o +it)In(a + zc) + (—1/2+ 0 +it)In(a + zc))

Thus, an operator 77 4 (g) is determined up to a constant factor and we get a projective
unitary representation of SL(2, R) (it is a representation of the principal series, see,
e.g., [23], Section 7.4.3).

The operator D , given by (6.6) is an infinitesimal generator of the group SL, (R).
It generates a compact subgroup, and A 4p are eigenvectors of this subgroup.

The transform 91 is the spectral decomposition of the one-parametric group of

operators T ( agl )-
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