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Convergence of Dirichlet eigenvalues
for elliptic systems on perturbed domains

Justin L. Taylor

Abstract. We consider the eigenvalues of an elliptic operator
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where u D .u1 : : : ; um/t is a vector valued function and a˛ˇ.x/ are .n � n/ matrices whose
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for any combination of ˛; ˇ; i; and j . We assume we have two non-empty, open, disjoint, and
bounded sets,� and z�, in Rn, and add a set T" of small measure to form the domain�". Then
we show that as " ! 0C, the Dirichlet eigenvalues corresponding to the family of domains
f�"g">0 converge to the Dirichlet eigenvalues corresponding to �0 D � [ z�. Moreover,
our rate of convergence is independent of the eigenvalues. In this paper, we consider the
Lamé system, systems which satisfy a strong ellipticity condition, and systems which satisfy
a Legendre–Hadamard ellipticity condition.
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1. Introduction

There is a great deal of work studying eigenvalues for elliptic equations, but there
seems to be less work on eigenvalues for elliptic systems. Much of the work on
equations requires estimates for solutions that do not hold for systems. In this paper,
we consider the behavior of eigenvalues for elliptic systems in singularly perturbed
domains. We give a simple characterization of the families of domains that we can
study and this class includes families such as dumbbell domains formed by connecting
two domains by a thin tube. We show that as the measure of the perturbation shrinks
away, the convergence of the eigenvalues is obtained. We also provide a rate of
convergence, which is independent of any eigenvalue. We make no assumption on
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the smoothness of the coefficients and only mild assumptions on the boundary of the
domain.

Studying solutions of elliptic boundary value problems with Dirichlet or Neumann
boundary conditions on domains which can be approximated by solutions on simpler
domains has been an interest for many years, and is still ongoing. The motivation
to study such problems is that it is easier to study the spectra on sets with a reduced
dimensionality. One may approximate the spectra on these “fattened” sets with the
spectra on the “thinner” sets. Some applications include studying quantum wires,
free-electron theory of conjugated molecules, and photonic crystals. For a complete
description, see the work of Kuchment [26]. Recent work by Exner and Post [15]
study the Neumann Laplacian on manifolds with thin tubes which is related to the
theory of quantum graphs. The Fireman’s Pole problem consists of approximating
the resolvents of a bounded set in R3 by the resolvents of this set with a cylinder
removed. For a complete description, see Rauch and Taylor [29]. A classic paper
by Babuska and Výborný [5] shows continuity of Dirichlet eigenvalues for elliptic
equations under a regular variation of the domain, but gives no rates of convergence.
Dancer [11], [12] considers how perturbing the domain affects the number of positive
solutions for nonlinear equations with Dirichlet boundary conditions and includes the
case where solutions are eigenfunctions for the Laplacian. Davies [14] and Pang [28]
study the approximation of Dirichlet eigenvalues and corresponding eigenfunctions
in a domain � by eigenvalues and eigenfunctions in sets of the form R."/ D fx 2
� W dist.x; @�/ � "g. They each give rates of convergence and their estimates include
the case when the domain is irregularly shaped. The work of Brown, Hislop, and
Martinez [6] provides upper and lower bounds on the splitting between the first two
Dirichlet eigenvalues in a symmetric dumbbell region with a straight tube. Chavel
and Feldman [9] examine eigenvalues on a compact manifold with a small handle
and Dirichlet conditions on the ends of the handle. The work of Anné and Colbois [1]
examines the behavior of eigenvalues of the Laplacian on p-forms under a singular
perturbation obtained by adding a thin handle to a compact manifold, but requires
more regularity on the eigenfunctions than holds in our setting.

More recent work for Dirichlet conditions includes work by Daners [13], which
shows convergence of solutions for elliptic equations on sequences of domains. These
domains �n converge to a limit domain � in the sense of sequences un 2 H 1

0 .�n/

converging to a function u 2 H 1
0 .�/. Also, Burenkov and Lamberti [8] prove sharp

spectral stability estimates for higher-order elliptic operators on domains in certain
Hölder classes in terms of the Lebesgue measure of the symmetric difference of
the different domains. Kozlov [25] obtains asymptotics of Dirichlet eigenvalues for
domains in Rn for n � 2 using Hadamard’s formula. Grieser and Jerison [20] also
give asymptotics for Dirichlet eigenvalues and eigenfunctions, but only on plane
domains.

We note here that the results for Neumann eigenvalues may be different than those
for Dirichlet eigenvalues. In fact, a classic example of Courant and Hilbert [10] shows
that the Neumann eigenvalues may not vary continuously as the domain varies. Their
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example is constructed by taking the unit square in R2 and attaching a thin handle
with a proportional square attached to the other end. They show that if f�"

ng and
f�0

ng are the Neumann eigenvalues of �� in increasing order including multiplicities
with respect to the perturbed square and the unit square, then �"

2 ! 0 as " ! 0,
but �0

2 > 0. This example shows that one needs additional regularity in order to
achieve convergence. Furthermore, Arrieta, Hale, and Han [4] show that for this
type of domain, �"

m ! �0
m�1, as " ! 0 for m � 3. Another work of Arrieta [3]

gives rates of convergence for eigenvalues of the Neumann Laplacian on a dumbbell
domain in R2 when the tube is more general. Jimbo and Morita [24] study the firstN
eigenvalues of the Neumann Laplacian inN disjoint domains connected by thin tubes.
They show that the first N eigenvalues approach zero and the .N C 1/st eigenvalue
is uniformly bounded away from zero. If D1 and D2 are two disjoint domains,
then for f�kg D f�lg [ f�j g, where f�lg are the Neumann eigenvalues of �� in

D D D1 [D2 and f�j g are the Dirichlet eigenvalues of �d2

dx2 in .�1; 1/, Jimbo [22]
gives a rate of convergence on the difference �k � �"

k
. This work was generalized

to more classes of domains in a more recent work by Jimbo and Kosugi [23]. Also,
Brown, Hislop, and Martinez [7] show that if �k 2 f�lgnf�j g then

j�k � �"
kj � C

h
log

�1
"

�i �1
2
; n D 2;

and
j�k � �"

k j � C"
n�2

2 ; n � 3:

Here, we aim to provide an outline of the proof. In section 2, we give several
definitions and describe the family of domains for which we can prove the conver-
gence of eigenvalues. We also describe the well-known construction of eigenvalues
and state our main result. In section 3, we give Theorem 3.1 from Giaquinta and
Modica [17] and [18] which uses a technique introduced by Gehring [16]. We also
prove a Caccioppoli type estimate for eigenfunctions in Theorem 3.4 and use this
along with Theorem 3.1 to obtain a reverse Hölder inequality given in Theorem 3.5.
This gives Lp-integrability for the gradient of the eigenfunctions for p > 2. In
section 4, we are able to bound these Lp norms by a constant in Proposition 4.2.
The proof uses the reverse Hölder inequality as the key ingredient. This estimate
is then used to prove Lemma 4.2 and Proposition 4.4, which are used to satisfy the
first part of a well-known theorem from Anné [2] given in Lemma 4.1. The second
part of Lemma 4.1 follows from the first part along with the above estimates, thus
giving Corollary 4.1. The main result follows from this corollary. As a by-product of
our research, we give a simple proof of Shi and Wright’s [30] Lp-estimates for the
gradient of the Lamé system as well as other elliptic systems. Many of the results
first appeared in the author’s Ph.D. dissertation [31].

Acknowledgments. The author thanks Russell Brown for his valuable discussions
and suggestions. The author also thanks the referee for his or her helpful comments.
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2. Preliminaries and main result

We give conditions on a family of domains�" that allow us to prove the convergence
of eigenvalues. We let� and z� in Rn be two non-empty, open, disjoint, and bounded
sets. We let "1 > 0 (which will be chosen small later), and then let fT"g0<"�"1

be a
family of open sets such that

TQ" � T" if Q" � ":

If jT"j denotes the Lebesgue measure of T", then

jT"j � C"d ; (2.1)

where C and 0 < d � n are independent of ". Fix two points p1 and p2 on @� and
@ z�, respectively. For each ", let B" and zB" be two balls of radius " in Rn centered at
p1 and p2, respectively. The connections from T" to � and z� will be contained in
B" and zB", so that T" \� D ; and xT" \ x� � B "

2
where B "

2
is the concentric ball

to B" of radius "
2

. Also, suppose a similar condition for z� and zB". Then for any ",
define�" to be the set�[ z�[ T", which we assume to be open and connected, and
�0 D � [ z�. So, if our family is the family of dumbbell domains, you may think
of T" as a “tube” connecting each of the two domains. We now have the family of
domains f�"g0�"�"1

.
Next, we give a condition on the boundary of �". If Br is any ball of radius r

satisfying Br \�c
" ¤ ;, then

jB2r \�c
" j � C0r

n; (2.2)

whereC0 is a constant independent of r and ". This eliminates domains with “cracks”
and “in-cusps,” and will be used to help show the Caccioppoli inequality in Theo-
rem 3.4 for the case when we are close to the boundary.

Throughout this paper we use the convention of summing over repeated indices,
where i and j will run from 1 to n and ˛, ˇ, and � will run from 1 to m. We
let a˛ˇ

ij .x/ be bounded, measurable, real-valued functions on Rn which satisfy the
symmetry condition

a
˛ˇ
ij .x/ D a

ˇ ˛
ji .x/; i; j D 1; 2; : : : ; n; ˛; ˇ D 1; 2; : : : ; m:

We letL2.�"/ denote the space of square integrable functions taking values in Rm and
H 1

0 .�"/ denotes the Sobolev space of vector-valued functions having one derivative
in L2.�"/ and which vanish on the boundary. We use u˛

j to denote the partial

derivative @u˛

@xj
.
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Let �" 2 C1
c .Rn/ be a cutoff function so that we have �" D 0 in T", �" D 1

in �0n.B" [ zB"/, jr�"j � Cn

"
, and 0 � �" � 1, where Cn only depends on n.

We emphasize thatB", zB", and �" depend on the parameter ". With these assumptions
and definitions, we have that for any u 2 H 1

0 .�"/, �"u will be in H 1
0 .�0/.

We now introduce the notion of an eigenvalue and corresponding eigenvector. We
say that the number � is a Dirichlet eigenvalue of L with Dirichlet eigenfunction
u 2 H 1

0 .�/, if u ¤ 0 and
Z

�

a
˛ˇ
ij .x/u

˛
i .x/'

ˇ
j .x/ dx D �

Z
�

u� .x/'� .x/ dx; ' 2 H 1
0 .�/: (2.3)

We say that L satisfies the Legendre–Hadamard condition if there exists 	 > 0 so
that

a
˛ˇ
ij .x/
˛
ˇ i j � 	 j
j2j j2; 
 2 Rm;  2 Rn; a.e. x 2 �": (2.4)

If we define the norm on matrices A D Aij 2 Rm�n as

jAj2 D
mX

iD1

nX
j D1

jAij j2;

andL satisfies the Legendre–Hadamard condition with continuous coefficients in x�,
then it is well-known that for any u 2 H 1

0 .�/, we have Gårding’s inequality [32],
p. 347,

C1

Z
�

jruj2 dx �
Z

�

a
˛ˇ
ij .x/u

˛
i .x/u

ˇ
j .x/ dx C C2

Z
�

juj2 dx: (2.5)

L is said to satisfy a strong Legendre condition or a strong ellipticity condition if
there exists 	 > 0 so that

a
˛ˇ
ij .x/


˛
i 


ˇ
j � 	 j
j2; 
 2 Rm�n; a.e. x 2 �": (2.6)

We introduce the Lamé system as Lu D �div�.u/, where �.u/ denotes the stress
tensor defined by

�
ˇ
j .u/

defD a
˛ˇ
ij u

˛
i (2.7)

which is defined in terms of the Lamé moduli �.x/ and �.x/ by

a
˛ˇ
ij .x/

defD �.x/ıi˛ıjˇ C �.x/ıij ı˛ˇ C �.x/ıiˇıj˛; (2.8)

where �.x/ and �.x/ are both assumed to be bounded and measurable. Also, define
the strain tensor 
.u/ as


ij .u/
defD 1

2
.ui

j C u
j
i /: (2.9)



298 J. L. Taylor

Note that for the Lamé system,m D n and the Lamé parameters �.x/ and�.x/ given
in (2.8) satisfy the conditions

�.x/ � 0 and �.x/ � ı > 0: (2.10)

With these assumptions, the Lamé system satisfies the ellipticity condition

a
˛ˇ
ij u

˛
i u

ˇ
j � � j
.u/j2 ; u 2 H 1

0 .�"/ (2.11)

where � D 2ı. With Korn’s 1st Inequality, it is easy to see that for the Lamé system,
we have

�

2

Z
�"

jruj2 dy �
Z

�"

a
˛ˇ
ij u

˛
i u

ˇ
j dy; u 2 H 1

0 .�"/:

Thus, if u satisfies either the ellipticity condition (2.6), (2.11), or (2.4) with continuous
coefficients in x�, then we have Gårding’s inequality (2.5).

The well-known construction of eigenvalues and eigenfunctions for scalar func-
tions (which is the same for vector-valued functions) is taken from Gilbarg and
Trudinger [19], p. 212. If we define the bilinear form on H 1

0 .�"/ �H 1
0 .�"/ as

B".u; v/
defD

Z
�"

a
˛ˇ
ij u

˛
i v

ˇ
j dx (2.12)

and define the Rayleigh quotient R" as

R".u/
defD B".u; u/

kuk2
L2.�"/

(2.13)

for u ¤ 0, then we can construct an increasing sequence of eigenvalues, listed
according to multiplicity, f�kg1

kD1
such that for each corresponding eigenfunction

uk 2 H 1
0 .�"/, we have

min
w2fu1;:::;uk�1g?

R".w/ D R".uk/ D �k (2.14)

and
kukkL2.�"/ D 1 (2.15)

for any k. Furthermore, each eigenspace is finite-dimensional and the constructed
set of eigenfunctions forms an orthonormal basis in L2.�"/.

We now state the main result.

Theorem 2.1. Let

.Lu/ˇ D � @

@xj

�
a

˛ˇ
ij

@u˛

@xi

�
ˇ D 1; : : : ; m

satisfy one of the following conditions:
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(1) L has uniformly bounded coefficients and satisfies either the ellipticity condi-
tion (2.6) or the ellipticity condition (2.11);

(2) L has continuous coefficients and satisfies the ellipticity condition (2.4).

Also assume f�0
k
g1

kD1
and f�"

k
g1

kD1
are the Dirichlet eigenvalues of L with respect

to�0 and�" in increasing order numbered according to multiplicity. Then for each
J 2 N, we have the following estimate:

j�"
J � �0

J j � C"a

for 0 < " � "0.J /, where "0.J / depends on the multiplicity of �0
J . Moreover, the

rate a > 0 is independent of any eigenvalue and C only depends on the eigenvalue
�0

J and the distance from �0
J to nearby eigenvalues.

3. A reverse Hölder inequality

If

�
Z

E

jf .y/j dy
is defined to be the average of f onE, then recall that the maximal function is defined
for f 2 L1

loc
.Rn/ to be

M.f /.x/
defD sup

r>0

�
Z

Br .x/

jf .y/j dy

where Br.x/ is a ball of radius r centered at x. Also, define MR.f /.x/ to be

MR.f /.x/
defD sup

R>r>0

�
Z

Br .x/

jf .y/j dy:

We will need the following theorem from Giaquinta [17], p. 122, which uses the
technique introduced by Gehring [16], and refined by Giaquinta and Modica [18].

Theorem 3.1. Let r > q > 1, and QR be a cube in Rn with sidelength R centered
at 0. Define

d.x/ D dist.x; @QR/:

If f and g are measurable functions such that f 2 Lr .QR/, g 2 Lq.QR/, f D
g D 0 outside QR, and with the added condition that

Md.x/
2

.jgjq/.x/ � bM q.g/.x/CM.jf jq/C aM.jgjq/.x/
for almost every x in QR where b � 0 and 0 � a < 1, then g 2 Lp.QR

2
/, for

p 2 Œq; q C "/ and
�

�
Z

QR=2

jgjp.y/ dy
� 1

p � C
h�

�
Z

QR

jgjq.y/ dy
� 1

q C
�

�
Z

QR

jf jp.y/ dy
� 1

p
i

(3.1)

where " and C depend on b, q, n, a, and r .
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The conclusion of this theorem is known as a reverse Hölder inequality. To
show that the gradient of eigenfunctions satisfy this inequality, we will need to prove
a Caccioppoli inequality. However, to show this Caccioppoli inequality, we first
need the following two well-known inequalities taken from Hebey [21], p. 44, and
Oleinik [27], p. 27.

Theorem 3.2 (Sobolev–Poincaré Inequality). Let 1 � p < n and 1
q

D 1
p

� 1
n

. Also,

let Br be any ball of radius r with u 2 W 1;p.Br /. Then, for S contained in Br with
jS j � c0r

n, Z
Br

ju.x/ � uS jq dx � C
� Z

Br

jrujp.x/ dx
� q

p
(3.2)

where uS D 1
jS j

R
S
u dy, for some constant C.n; p; c0/, independent of u.

Theorem 3.3 (Korn’s Inequality on a Ball). If u 2 H 1.Br / then

kruk2
L2.Br /

� C.k
.u/k2
L2.Br /

C 1

r2
kuk2

L2.Br /
/ (3.3)

where C only depends on n.

We now state and prove a Caccioppoli inequality for eigenfunctions.

Theorem 3.4. Let u be an eigenfunction with eigenvalue � associated to the operator
L satisfying either (2.6) or (2.11) with uniformly bounded coefficients or associated
to (2.4) with continuous coefficients. Extending u to be 0 outside �", there exists
r0 > 0 so that if r0 � r > 0, x 2 Rn, we have

�
Z

Br

jruj2 dy � C1

�
�
Z

B2r

jruj 2n
nC2 dy

� nC2
n

C C2j� j �
Z

B2r

juj2 dy C C3 �
Z

B2r

jruj2 dy
(3.4)

where Br is a ball with radius r centered at x, C3 < 1, and Cl > 0 only depends
on M D maxi;j;˛;ˇ ka˛ˇ

ij kL1.�"/, n, m, 	 , � , and C0. Furthermore, if L satisfies
either (2.6) or (2.11) with uniformly bounded coefficients, then the inequality holds
for any r > 0.

Proof. First, choose a ball Br and define a cutoff function � 2 C1
c .Rn/ to be so

that � D 1 in Br , � D 0 outside B2r , jr�j � Cn

r
, and 0 � � � 1, where Cn only

depends on n. Below, we will find an appropriate constant vector � 2 Rm, so that
�2.u � �/ 2 H 1

0 .�"/. By the weak formulation (2.3), we have
Z

�"

a
˛ˇ
ij u

˛
i Œ�

2.u� �/�
ˇ
j dy D �

Z
�"

u� Œ�2.u � �/�� dy:
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Then, performing the differentiations, we getZ
�"

a
˛ˇ
ij u

˛
i Œ2��j .u� �/ˇ C �2u

ˇ
j � dy D �

Z
�"

u��2.u � �/� dy: (3.5)

From this point, the argument depends on the ellipticity condition. We have three
cases.

Case 1: L satisfies the strong ellipticity condition (2.6). Using (2.6) and proper-
ties of �, we obtain the inequalityZ

B2r

�2a
˛ˇ
ij u

˛
i u

ˇ
j dy �

Z
B2r

2M
Cn

r
�jrujju � �j dy C

Z
B2r

j� jjujju � �j dy

which, for any constant ! > 0, then leads toZ
B2r

�2a
˛ˇ
ij u

˛
i u

ˇ
j dy �

Z
B2r

!�2jruj2
2

dy C C

!r2

Z
B2r

ju � �j2 dy

C C j� j
Z

B2r

juj2 dy
(3.6)

where C depends on M and Cn. Then choosing ! D 	 in .3.6/ gives

	

2

Z
B2r

�2jruj2 dy � C

	r2

Z
B2r

ju � �j2 dy C C j� j
Z

B2r

juj2 dy:

Then, multiplying both sides by 2
�

and using that � D 1 on Br givesZ
Br

jruj2 dy � 2C

	2r2

Z
B2r

ju � �j2 dy C 2C j� j
	

Z
B2r

juj2 dy: (3.7)

Now, for the term
Z

B2r

ju � �j2 dy, we must consider two subcases.

Subcase 1.A. If B2r � �", then let

�˛ D �
Z

B2r

u˛ dy:

Our condition on the support of � implies �2.u � �/ 2 H 1
0 .�"/. So, setting q D 2

and S D B2r in the Sobolev–Poincaré Inequality (3.2), we obtainZ
B2r

ju � �j2 dy � C
� Z

B2r

jruj 2n
nC2 dy

� nC2
n
:

Using this estimate with (3.7) givesZ
Br

jruj2 dy � C

r2

� Z
B2r

jruj 2n
nC2 dy

� nC2
n C C j� j

Z
B2r

juj2 dy:

Now, dividing through by rn gives the desired result with C3 D 0.
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Subcase 1.B. If B2r \ �c
" ¤ ;, then set � D 0, which, again, guarantees that

�2.u� �/ 2 H 1
0 .�"/. So setting q D 2 and S D B4r \�" in the Sobolev–Poincaré

Inequality (3.2), we have by our assumption on �c
" (2.2) that

Z
B4r

ju � �j2 dy � C
� Z

B4r

jruj 2n
nC2 dy

� nC2
n
:

From (3.7), we obtain

Z
Br

jruj2 dy � C

r2

� Z
B4r

jruj 2n
nC2 dy

� nC2
n C C j� j

Z
B4r

juj2 dy:

A simple covering argument gives the estimate with B4r replaced with B2r .

Case 2: L satisfies the ellipticity condition (2.11). From (2.11) and .3.6/, we have

Z
Br

� j
.u/j2 dy �
Z

B2r

!�2jruj2
2

dyC C

!r2

Z
B2r

ju��j2 dyCC j� j
Z

B2r

juj2 dy:

Also, by Korn’s inequality (3.3), we have

�

C

Z
Br

jruj2 dy � �

r2

Z
Br

ju � �j2 dy �
Z

Br

� j
.u/j2 dy:

This implies
Z

Br

jruj2 dy � C!

2�

Z
B2r

jruj2 dy C C
� 1

!� r2
C 1

r2

� Z
B2r

ju � �j2 dy

C C j� j
�

Z
B2r

juj2 dy:

This again leads to two subcases. We must choose � appropriately and use the
Sobolev–Poincaré inequality (3.2) as in case 1. Then, by taking ! sufficiently small,
we obtain the desired result.

Case 3: L satisfies the Legendre–Hadamard condition .2.4/ with continuous
coefficients in x�". We note that it suffices to study when u 2 C1

c .�"/ and first
consider when the coefficients are constant. We rewrite the left side of .3.5/ as

Z
�"

a
˛ˇ
ij ..u � �/˛�/i ..u � �/ˇ�/j dy

C
Z

�"

a
˛ˇ
ij Œ��ju

˛
i .u � �/ˇ � �i�.u � �/˛uˇ

j � �i�j .u� �/˛.u � �/ˇ � dy:
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This impliesZ
B2r

a
˛ˇ
ij ..u � �/˛�/i ..u � �/ˇ�/j dy

� C

Z
B2r

jr�jjr..u � �/�/jju � �j C ju � �j2jr�j2 C j� jjujju � �j dy:

We note that we may use the Fourier transform to get a lower bound for the left side
to achieve the estimateZ

B2r

jr..u � �/�/j2 dy � C

r2

Z
B2r

ju � �j2 dy C C j� j
Z

B2r

juj2 dy:

This implies the estimateZ
Br

jruj2 dy � C

r2

Z
B2r

ju � �j2 dy C C j� j
Z

B2r

juj2 dy: (3.8)

So, again, if we employ the Sobolev–Poincaré inequality (3.2), we get the desired
result in the case of constant coefficients. If the coefficients are continuous and non-
constant, then we freeze the coefficients atx. That is, from the weak formulation (2.3),
we haveZ

�"

a
˛ˇ
ij .x/u

˛
i ..u � �/�2/

ˇ
j dy C

Z
�"

.a
˛ˇ
ij � a˛ˇ

ij .x//u
˛
i ..u� �/�2/

ˇ
j dy

D �

Z
�"

u� ..u � �/�2/� dy:

(3.9)

So, if we define the modulus of continuity to be

M.x0; R/ D max
y2BR.x0/

i;j;˛;ˇ

ja˛ˇ
ij .y/ � a˛ˇ

ij .x0/j

then we have thatZ
B2r

.a
˛ˇ
ij � a˛ˇ

ij .x//u
˛
i ..u � �/�2/

ˇ
j dy

� M.x; 2r/

Z
B2r

�2jruj2 dy C 2M.x; 2r/

Z
B2r

�jr�jjrujju � �j dy

� C.M.x; 2r/CM.x; 2r/2/

Z
B2r

jruj2 dy C C

r2

Z
B2r

ju � �j2 dy:

Also, by the uniform continuity of the coefficients on x�", for any c < 1, there exists
r0 depending on c, so that if C.x0; R/ D C.M.x0; 2R/CM.x0; 2R/

2/ and r � r0,
then

C.x0; r/ � c
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for all x0 2 x�". So, now moving the second term on the left side of .3.9/ to the
right and using the constant coefficient case (3.8), we obtain that for any c < 1, there
exists r0 so that if r � r0,Z

Br

jruj2 dy � C

r2

Z
B2r

ju � �j2 dy C C j� j
Z

B2r

juj2 dy C c

Z
B2r

jruj2 dy:

We again choose � appropriately and apply the Sobolev–Poincaré inequality (3.2) to
get the desired result.

As stated earlier, our proof of Theorem 2.1 relies on the gradient of an eigenfunc-
tion satisfying the reverse Hölder inequality, as in our next theorem.

Theorem 3.5. There exists "1 > 0 so that if u is an eigenfunction with eigenvalue � ,
then

�
Z

�"

jruj Qp dy � C
h�

�
Z

�"

jruj2 dy
� Qp

2 C j� j Qp
2 �

Z
�"

juj Qp dy
i

(3.10)

where 2 � Qp < 2C "1, and "1 and C are independent of " and any eigenvalue.

Proof. Now if u is an eigenfunction with eigenvalue � , we have u 2 H 1
0 .�"/, and

thus we may employ the Sobolev inequality to get that juj 2 Lr.�"/ for some r > 2.
If L satisfies either (2.6) or (2.11) with uniformly bounded coefficients, then we may
choose a cube QR, centered at 0, with sidelength R such that �" � QR

2
, uniformly

in ", and set g D jruj 2n
nC2 , f D .C3j� j/ n

nC2 juj 2n
nC2 , q D nC2

n
, and u D 0 outside

�", we may conclude by (3.4) and (3.1) that

�
�
Z

�"

jruj 2np
nC2 dy

� 1
p � C

h�
�
Z

�"

jruj2 dy
� n

nC2 C j� j n
nC2

�
�
Z

�"

juj 2np
nC2 dy

� 1
p

i

where nC2
n

� p � nC2
n

C ", which, from Theorem 3.4 is independent of " and
any eigenvalue. So, setting Qp D 2np

nC2
, we have the result. If L satisfies (2.4) with

continuous coefficients, then since we only have Theorem 3.4 true for small r , we
must cover �" with a fixed number of cubes and apply (3.1) to each cube to obtain
the result.

4. Stability of eigenvalues

From this point, let �"
k

be the kth eigenvalue with respect to �", and '"
k

be its
corresponding eigenfunction with '"

k
D 0 outside �" for " � 0. We also fix an

eigenvalue �0
J with multiplicity mJ where �0

J �1 < �0
J if J � 2. We will consider

the family f�"
J g as " > 0 tends to 0. We begin with the following proposition taken

from Anné [2], pp. 2595–2596.
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Lemma 4.1. Let .q;D/ be a closed non-negative quadratic form with form domain D

in the Hilbert space .H ; h�; �i/. Define the associated norm kf k2
1 D kf k2

H
C q.f /,

and the spectral projector …I for any interval I D .˛; ˇ/ for which the boundary
does not meet the spectrum.

(1) Suppose f 2 D and � 2 I satisfy

jq.f; g/� �hf; gij � ıkf kkgk1; g 2 D :

Then there exists a constant C > 0, which depends on I , such that if a is less
than the distance of ˛ or ˇ to the spectrum of q,

k…I .f / � f k1 D k…I c .f /k1 � Cı

a
kf k:

(2) Suppose the spectral spaceE.I / has dimensionm and f1; :::; fm is an orthonor-
mal family which satisfies

k…I c .fj /k1 � ı; j D 1; : : : ; m:

Also let E be the space spanned by the fj ’s. Then,

dist.E.I /; E/ � Cı

where the distance is measured as the distance between the two orthogonal
projectors.

This lemma will give us the results we need for the convergence of eigenvalues. We
will prove estimates on eigenfunctions using the reverse Hölder inequality (3.10),
which will allow us to use this lemma. We start with the following proposition which
follows immediately from the construction of eigenvalues.

Proposition 4.1. We have for any " > 0, and any k 2 N,

�"
k � �0

k : (4.1)

This proposition gives us the easy half of the inequality in our theorem. To prove the
second half of the inequality, we will need a few items.

Proposition 4.2. For any " > 0, and k � 1, if ' D '"
k

, then we have
Z

�"

jr'j Qp dy � C (4.2)

where Qp > 2 is from .3.10/, and C depends on j�0j and n, with order, for n � 3,

O.j�0
k
j 2 QpCn. Qp�2/

4 / or, for n D 2, O.j�0
k
j q QpC2. Qp�q/

2q /, where 2 � 
 < q < 2 for small

. Furthermore, Qp and C are independent of " and if n D 2, C blows up as q ! 2.
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Proof. Now, from .3.10/, we have

Z
�"

jr'j Qp dy � C
h
j�"j 2� Qp

2

� Z
�"

jr'j2 dy
� Qp

2 C j�"
k j Qp

2

� Z
�"

j'j Qp dy
�i

(4.3)

where Qp > 2 is from .3.10/. Recall that by Gårding’s inequality (2.5) and since ' is
an eigenfunction, we have

C1

Z
�"

jr'j2 dy �
Z

�"

a
˛ˇ
ij '

˛
i '

ˇ
j dy C C2

Z
�"

j'j2 dy

� C.1C j�"
kj/

Z
�"

j'j2 dy

� C.1C j�"
kj/;

the last line owing to the normalization of the eigenfunctions. Next, we will consider
n � 3 and estimate Z

�"

j'j Qp dy:

Using Sobolev’s inequality and (4.4), we have

� Z
�"

j'j 2n
n�2 dy

� n�2
2n � C

� Z
�"

jr'j2 dy
� 1

2 � C.1C j�"
k j 1

2 /: (4.4)

Also, by Hölder’s inequality, we have

� Z
�"

j'j Qp dy
� 1

Qp �
� Z

�"

j'j2 dy
� 1�t

2
� Z

�"

j'j 2n
n�2 dy

� t.n�2/
2n

where t satisfies
1

Qp D 1 � t
2

C t .n� 2/

2n
:

From this inequality and (4.4), it follows that

� Z
�"

j'j Qp dy
� 1

Qp � C.1C j�"
k j t

2 / D C.1C j�"
k j n. Qp�2/

4 Qp /:

Now, using this inequality along with (4.3), (4.4), and (4.1), we obtain
Z

�"

jr'j Qp dy � C Œ.1C j�0
k j/ Qp

2 C j�0
k j Qp

2 .1C j�0
k j n. Qp�2/

4 /�

� C Œj�0
k j 2 QpCn. Qp�2/

4 C j�0
k j Qp

2 C 1�:

This completes the proof for n � 3.
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If n D 2, then from Sobolev’s inequality, Hölder’s inequality, and (4.4), we have

� Z
�"

j'jq�

dy
� 1

q� � C

.2� q/ 1
2

� Z
�"

jr'jq dy
� 1

q

� C

.2� q/ 1
2

� Z
�"

jr'j2 dy
� 1

2 j�"j
1

q�

� C

.2� q/ 1
2

.1C j�"
k j 1

2 /;

where q� D 2q
q�2

is the Sobolev conjugate of q. Then, again applying Hölder’s
inequality, we obtain

� Z
�"

j'j Qp dy
� 1

Qp � C

.2� q/ t
2

.1C j�"
k j t

2 / D C

.2 � q/ . Qp�q/
Qpq

.1C j�"
k j . Qp�q/

Qpq /:

Now using (4.3), (4.4), and (4.1), we obtain

Z
�"

jr'j Qp dy � C

.2 � q/ . Qp�q/
q

h�
1C j�0

k j
� Qp

2 C j�0
k j Qp

2

�
1C j�0

k j . Qp�q/
q

�i

� C

.2 � q/ . Qp�q/
q

hˇ̌
ˇ�0

k

ˇ̌
ˇ

q QpC2. Qp�q/
2q C

ˇ̌
ˇ�0

k

ˇ̌
ˇ

Qp
2 C 1

i
:

Lemma 4.2. For the eigenfunction '"
k

, J � k � J CmJ �1, and anyw 2 H 1
0 .�0/,

we have the following estimate:

ˇ̌
ˇ̌Z

�0

a
˛ˇ
ij .�"'

"
k/

˛
i w

ˇ
j dy � �"

k

Z
�0

.�"'
"
k/

˛w˛ dy

ˇ̌
ˇ̌ � C"

n. Qp�2/
2 Qp kwk1 (4.5)

where kwk1 is from Lemma 4.1 with

q.f; g/ D
Z

�0

a
˛ˇ
ij f

˛
i g

ˇ
j dy;

and C only depends on j�0j, n, �0
J , and is independent of ".
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Proof. First, recall that w is extended to be 0 outside �0 and '"
k

is extended to be 0
in .B" [ QB"/ \�c

" . We have
ˇ̌
ˇ̌Z

�0

a
˛ˇ
ij .�"'

"
k/

˛
i w

ˇ
j dy � �"

k

Z
�0

.�"'
"
k/

˛w˛ dy

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌Z

�0

a
˛ˇ
ij Œ.�"/i .'

"
k/

˛w
ˇ
j � .�"/j .'

"
k/

˛wˇ � dy

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z

�"

a
˛ˇ
ij .'

"
k/

˛
i .�"w/

ˇ
j dy � �"

k

Z
�"

.'"
k/

˛.�"w/
˛ dy

ˇ̌
ˇ̌

D jI C IIj C jIII C IVj :
First, since '"

k
is an eigenfunction with eigenvalue �"

k
, we have that III C IV D 0.

Also, by Hölder’s inequality and Poincaré’s inequality, we have

jI C IIj � C

"
k'"

kkL2.B"[ QB"/.krwkL2.B"[ QB"/ C kwkL2.B"[ QB"//

� Ckr'"
kk

L2.B"[ QB"/
kwk1

where we have used Gårding’s inequality (2.5) on the last line for w. Thus, from
Hölder’s inequality and Proposition 4.2,

jI C IIj � C"
n. Qp�2/

2 Qp kr'"
kkL Qp.�"/kwk1

� C"
n. Qp�2/

2 Qp kwk1:

Since �0
k

D �0
J , the proof of the lemma is concluded.

If we choose an interval I around �0
k

such that �"
k

2 I , and let

q.f; g/ D
Z

�0

a
˛ˇ
ij f

˛
i g

ˇ
j dy

and f D �"'
"
k

, we aim to satisfy the hypotheses for Part 1 of Lemma 4.1. In order
to do this, we need k�"'

"
k
kL2.�0/ to be bounded away from 0. To achieve this, we

start with the following well-known proposition.

Proposition 4.3. If A is an N �N matrix and v is aN � 1 vector such that Av D 0

and
NX

i¤l

jAli j < jAl l j; l D 1; : : : ; N;

then v D 0.
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The next proposition shows that the functions f�"'
"
k
gJ CmJ �1

kDJ
are almost orthonor-

mal.

Proposition 4.4. For any " > 0 and l; k 2 N, .J � l; k � J CmJ �1/, if 'k D '"
k

,
we have the following estimates:

Z
�"

�2
" j'k j2 dy � 1 � C"d. Qp�2/

Qp (4.6)

and
ˇ̌
ˇ̌Z

�"

�2
"'k � 'l dy

ˇ̌
ˇ̌ � C"

d. Qp�2/
Qp if k ¤ l; (4.7)

where C only depends on j�0j, n, and �0
J , and is independent of ".

Proof. We start by showing (4.6). Since the eigenfunctions are normalized, we obtain
for each k,

1 �
Z

�"

�2
" j'k j2 dy D

Z
�"

.1 � �2
"/j'k j2 dy

D
Z

T"[B"[ QB"

.1� �2
" /j'k j2 dy

� kr'kk2
L Qp.�"/

jT" [ B" [ QB"j
Qp�2

Qp

� Ck"
d. Qp�2/

Qp

where, from (4.2), Ck depends on �0
k

. Again, since �0
k

D �0
J , we have .4.6/.

Next, to show .4.7/, we have

ˇ̌
ˇ̌Z

�"

�2
"'k � 'l dy

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌Z

B"[ zB"

�2
"'k � 'l dy

ˇ̌
ˇ̌ C

ˇ̌
ˇ̌Z

�0n.B"[ zB"/

�2
"'k � 'l dy

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z

B"[ zB"

�2
"'k � 'l dy

ˇ̌
ˇ̌ C

ˇ̌
ˇ̌Z

�0n.B"[ zB"/

'k � 'l dy �
Z

�"

'k � 'l dy

ˇ̌
ˇ̌

�
Z

B"[ zB"

j'k � 'l j dy C
Z

T"[B"[ zB"

j'k � 'l j dy;
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the second inequality following since the set of eigenfunctions form an orthogonal
set in L2.�"/. So, next by Hölder’s inequality, we get

ˇ̌
ˇ̌Z

�"

�2
"'k � 'l dy

ˇ̌
ˇ̌ �

� Z
B"[ zB"

j'k j2 dy
� 1

2
� Z

B"[ zB"

j'l j2 dy
� 1

2

C
� Z

T"[B"[ zB"

j'k j2 dy
� 1

2
� Z

T"[B"[ zB"

j'l j2 dy
� 1

2

D I C II.

Now, from Poincaré’s inequality and .4.2/, we get

I �
h� Z

B"[ zB"

j'k j Qp dy
� 2

Qp jB" [ QB"j
Qp�2

Qp

i 1
2

h� Z
B"[ QB"

j'l j Qp dy
� 2

Qp jB" [ QB"j
Qp�2

Qp

i 1
2

� kr'kkL Qp.�"/"
n. Qp�2/

2 Qp kr'lkL Qp.�"/"
n. Qp�2/

2 Qp

� Ck"
n. Qp�2/

2 Qp Cl"
n. Qp�2/

2 Qp

where Ck again depends on �0
k

and Cl depends on �0
l

. Thus, we have

I � C"
n. Qp�2/

Qp (4.8)

where C depends only on j�0j, n, and �0
J . Similarly,

II � C"
d. Qp�2/

Qp ; (4.9)

so that the proposition is proved.

Note that with the aid of Lemma 4.2 and Proposition 4.4, if " is small enough, we
have satisfied the hypotheses for Part 1 of Lemma 4.1 with

q.f; g/ D
Z

�0

a
˛ˇ
ij f

˛
i g

ˇ
j dy

and f D �"'
"
k

. Here, we relabel "1 to be small enough to achieve this for any " � "1,
and note that "1 only depends on fixed parameters. To satisfy the hypotheses for
Part 2 of Lemma 4.1, we need an orthonormal basis. The next proposition shows that
for small ", we have a basis.

Proposition 4.5. The set f�"'
"
k
gN

kDJ
forms a linearly independent set for anyN � J ,

for 0 < " � "0.N /, where "0.N / depends on N .
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Proof. Assume CJ �"'
"
J C � � � C CN�"'

"
N D 0. Then, multiplying this equation by

�"'
"
l
, we obtain

NX
kDJ

Ckh�"'
"
k ; �"'

"
l iL2.�"/ D 0; l D J; : : : ; N:

So, if Akl D h�"'
"
k
; �"'

"
l
iL2.�"/, we obtain by .4.6/ and .4.7/ that

jAkk j � 1� C"
d. Qp�2/

Qp > C"
d. Qp�2/

Qp �
NX

kDJ

k¤l

jAkl j

if " � ".N/, where ".N/ depends onN due to applying .4.7/ N �J times. Thus, we
may use Proposition 4.3 to see that by setting C D .CJ ; : : : ; CN /

t , we have C D 0,
so that the proposition is proved.

Now we define
J0 W L2.�"/ �! L2.�0/

to be given by
J0f D �"f

and, similarly, we define

J" W L2.�0/ �! L2.�"/

to be such that

J"f .x/ D
8<
:
f .x/ if x 2 �0;

0 if x 2 �"n�0:

Let

I D
�
�0

J �M"
n. Qp�2/

4 Qp ;
�0

J C �0
J CmJ

2

�

for M > 0 to be chosen later. Also, let … be the projector onto the space spanned
by the eigenfunctions corresponding to the eigenvalues, f�"

k
gN

kDJ
, in I . We first

consider " D "1. By Proposition 4.1, we may choose M D M."1/ so that �"
k

is in
I for J � k � N , where N � J CmJ � 1, and where N depends on "1. We next
note that as " gets smaller, we may choose M D M."/ so that the set of eigenvalues
in I , f�"

k
gN0

kDJ
, will have index N0 in the range J C mJ � 1 � N0 � N since our

family f�"g is nested. Our aim is to show that for " small, N0 D J CmJ � 1.
We apply Proposition 4.5 to get the existence of "0.N / � "1 so that f�"'

"
k
gN0

kDJ
is

a linearly independent set for " � "0.N / and for any N0 in the range J CmJ � 1 �
N0 � N . Then, we choose M D M.".N// so that f�"'

"
k
gN0

kDJ
is also a basis for the
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range of J0…J". Thus, we may apply the Gram–Schmidt process to this basis. That
is, define

fJ D �"'
"
J ;

:::

fk D �"'
"
k � h�"'

"
k
; fJ i

kfJ k2
fJ � � � � � h�"'

"
k
; fk�1i

kfk�1k2
fk�1;

:::

We have the following lemma.

Lemma 4.3. Let I be as defined above. For each k, J � k � J CmJ � 1, we have

k…I c .fk/k1 � C"
d. Qp�2/

4 Qp

M
;

for " � ".N/, and where M only depends on �0
J , �0

J �1, and ".N/.

Proof. Following the previous arguments, when " D ".N/, we find M D M.".N//

so that f�"'
"
k
gN0

kDJ
is a basis for the range of J0…J", and then apply the Gram–

Schmidt process to this basis. We note the dependence on �0
J and �0

J �1 is so that we
only have 1 eigenvalue (with respect to �0) in I . So, defining

q.f; g/ D
Z

�0

a
˛ˇ
ij f

˛
i g

ˇ
j dy;

we may apply Lemma 4.2, Proposition 4.4, and then Lemma 4.1 (Part 1) to obtain

k…I c .fJ /k1 � C".N/
d. Qp�2/

4 Qp

M.".N//

whereC depends on j�0j,n,�0
J , and�0

J CmJ
. Then, from Proposition 4.4, Lemma 4.2,

and properties of the norm, we get the result for ".N/ and J � k � J C mJ � 1.
Then, for " � ".N/, we may repeat this argument to get the result with ".N/ replaced
with " and M.".N/ replaced with M."/. But, since M.".N// � M."/, we obtain
the desired result for " � ".N/.

We now let E D spanf'"
k
gJ CmJ �1

kDJ
. Also, let …I be the spectral projector corre-

sponding to the eigenvalue �0
J and …E be the spectral projector onto E.

Corollary 4.1. We have

k…I � J0…EJ"kLfL2.�0/g � C"
d. Qp�2/

4 Qp

M
;
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for " � ".N/, where M only depends on �0
J , �0

J �1, and ".N/. Consequently, for
some ".J /, N0 D J CmJ � 1 when " � ".J /.

Proof. Again, we first show for " D ".N/. Normalize the fk’s and observe that

1

kfkk � 1

1� C".N/
d. Qp�2/

2 Qp

:

Then apply Lemma 4.1 (Part 2) to the normalized functions. Then for general " �
".N/, we note that since Lemma 4.3 is true with a uniform M , we obtain

k…I � J0…EJ"kLfL2.�0/g � C"
d. Qp�2/

4 Qp

M
:

We next note that if N0 > J CmJ � 1 for all " � ".N/, then we may find another
projector …A so that

k…I � J0…AJ"kLfL2.�0/g � C"
d. Qp�2/

4 Qp

M
:

But this would mean

kJ0…EJ" � J0…AJ"kLfL2.�0/g � C"
d. Qp�2/

4 Qp

M
:

Therefore, for some ".J /, N0 D J CmJ � 1, when " � ".J /.

Proof of Theorem 2.1. We first prove for J D 1. By Corollary 4.1, for " � ".1/, we

obtain m1 D N0. This implies that j�"
k

� �0
k
j � C"

d. Qp�2/
4 Qp only for k, 1 � k � m1,

and hence, the result for J D 1. The result for J D 1 implies that not only may
we choose M so that all eigenvalues f�"

k
gm1Cm2

kDm1C1
are in the interval corresponding

to the next highest eigenvalue �0
m1C1, but also that �0

1 is not in this interval. Thus,
we apply the same reasoning here to get the result for �0

m1C1. Then, by an induction
argument, we get the result for each J 2 N, satisfying �0

J > �0
J �1. We note here

that since C depends on ".J /, it depends on the multiplicity J .

We note that this paper introduces the use ofLp-estimates obtained by the reverse
Hölder technique to the study of spectral problems for elliptic operators. Thus, this
technique may be useful in studying spectral problems in situations where we do not
know if higher regularity of solutions is true. We close by listing some open problems.

� If we have some additional regularity on the domain, can we use the methods
from this work to get convergence of Neumann eigenvalues for general elliptic
systems?
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� For elliptic systems on a symmetric dumbbell region with a straight tube, can
we achieve upper and lower bounds on the splitting between the smallest eigen-
values?

� Can we investigate this problem further to see if a better rate of convergence
exists?
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