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The spectral function of a first order elliptic system

Olga Chervova, Robert J. Downes, and Dmitri Vassiliev

Abstract. We consider an elliptic self-adjoint first order pseudodifferential operator acting
on columns of complex-valued half-densities over a connected compact manifold without
boundary. The eigenvalues of the principal symbol are assumed to be simple but no assumptions
are made on their sign, so the operator is not necessarily semi-bounded. We study the following
objects: the propagator (time-dependent operator which solves the Cauchy problem for the
dynamic equation), the spectral function (sum of squares of Euclidean norms of eigenfunctions
evaluated at a given point of the manifold, with summation carried out over all eigenvalues
between zero and a positive �), and the counting function (number of eigenvalues between
zero and a positive �). We derive explicit two-term asymptotic formulae for all three. For
the propagator “asymptotic” is understood as asymptotic in terms of smoothness, whereas for
the spectral and counting functions “asymptotic” is understood as asymptotic with respect to
� ! C1.
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1. Main results

The aim of the paper is to extend the classical results of [5] to systems. We are
motivated by the observation that, to our knowledge, all previous publications on
systems give formulae for the second asymptotic coefficient that are either incorrect
or incomplete (i.e. an algorithm for the calculation of the second asymptotic coefficient
rather than an actual formula). The appropriate bibliographic review is presented in
Section 11.

Consider a first order classical pseudodifferential operator A acting on columns
v D .v1 : : : vm/

T of complex-valued half-densities over a connected compact
n-dimensional manifold M without boundary. Throughout this paper we assume
that m; n � 2 .

We assume the symbol of the operator A to be infinitely smooth. We also assume
that the operator A is formally self-adjoint (symmetric):Z

M

w�Av dx D
Z
M

.Aw/�v dx

for all infinitely smooth v; w W M ! Cm. Here and further on the superscript � in
matrices, rows and columns indicates Hermitian conjugation in Cm and

dx
defD dx1 : : : dxn;

where x D .x1; : : : ; xn/ are local coordinates on M .
Let A1.x; �/ be the principal symbol of the operator A. Here � D .�1; : : : ; �n/ is

the variable dual to the position variablex; in physics literature the � would be referred
to as momentum. Our principal symbol A1 is an m � m Hermitian matrix-function
on

T 0M defD T �M n f� D 0g;
i.e. on the cotangent bundle with the zero section removed.

Let h.j /.x; �/ be the eigenvalues of the principal symbol. We assume these eigen-
values to be nonzero (this is a version of the ellipticity condition) but do not make
any assumptions on their sign. We also assume that the eigenvalues h.j /.x; �/ are
simple for all .x; �/ 2 T 0M . The techniques developed in our paper do not work in
the case when eigenvalues of the principal symbol have variable multiplicity, though
they could probably be adapted to the case of constant multiplicity different from
multiplicity 1. The use of the letter “h” for an eigenvalue of the principal sym-
bol is motivated by the fact that later it will take on the role of a Hamiltonian, see
formula (1.13).

We enumerate the eigenvalues of the principal symbol h.j /.x; �/ in increasing
order, using a positive index j D 1; : : : ; mC for positive h.j /.x; �/ and a negative
index j D �1; : : : ;�m� for negative h.j /.x; �/. HeremC is the number of positive
eigenvalues of the principal symbol andm� is the number of negative ones. Of course,
mC Cm� D m.
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Under the above assumptions A is a self-adjoint operator, in the full functional
analytic sense, in the Hilbert space L2.M I Cm/ (Hilbert space of square integrable
complex-valued column “functions”) with domain H 1.M I Cm/ (Sobolev space of
complex-valued column “functions” which are square integrable together with their
first partial derivatives) and the spectrum ofA is discrete. These facts are easily estab-
lished by constructing the parametrix (approximate inverse) of the operator AC iI .

Let �k and vk D .vk1.x/ : : : vkm.x//
T be the eigenvalues and eigenfunctions of

the operator A. The eigenvalues �k are enumerated in increasing order with account
of multiplicity, using a positive index k D 1; 2; : : : for positive �k and a nonpositive
index k D 0;�1;�2; : : : for nonpositive �k . If the operatorA is bounded from below
(i.e. ifm� D 0) then the index k runs from some integer value to C1; if the operator
A is bounded from above (i.e. if mC D 0) then the index k runs from �1 to some
integer value; and if the operator A is unbounded from above and from below (i.e. if
mC ¤ 0 and m� ¤ 0) then the index k runs from �1 to C1.

We will be studying the following three objects.

Object 1. Our first object of study is the propagator, which is the one-parameter
family of operators defined as

U.t/
defD e�itA D

X
k

e�it�kvk.x/

Z
M

Œvk.y/�
�. � / dy; t 2 R: (1.1)

The propagator provides a solution to the Cauchy problem

wjtD0 D v (1.2)

for the dynamic equation

Dtw C Aw D 0; (1.3)

where

Dt
defD �i @

@t
:

Namely, it is easy to see that if the column of half-densities v D v.x/ is infinitely
smooth, then, setting

w
defD U.t/v;

we get a time-dependent column of half-densities w.t; x/ which is also infinitely
smooth and which satisfies the equation (1.3) and the initial condition (1.2). The use
of the letter “U ” for the propagator is motivated by the fact that for each t the operator
U.t/ is unitary.
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Object 2. Our second object of study is the spectral function, which is the real
density defined as

e.�; x; x/
defD

X
0<�k<�

kvk.x/k2; (1.4)

where kvk.x/k2 defD Œvk.x/�
�vk.x/ is the square of the Euclidean norm of the eigen-

function vk evaluated at the point x 2 M and � is a positive parameter (spectral
parameter).

Object 3. Our third and final object of study is the counting function

N.�/
defD

X
0<�k<�

1 D
Z
M

e.�; x; x/ dx : (1.5)

In other words, N.�/ is the number of eigenvalues �k between zero and �.

It is natural to ask the question: why, in defining the spectral function (1.4) and
the counting function (1.5), did we choose to perform summation over all positive
eigenvalues up to a given positive � rather than over all negative eigenvalues up to a
given negative �? There is no particular reason. One case reduces to the other by the
change of operator A 7! �A. This issue will be revisited in Section 10.

Further on we assume that mC > 0, i.e. that the operator A is unbounded from
above.

Our objectives are as follows.

Objective 1. We aim to construct the propagator (1.1) explicitly in terms of oscilla-
tory integrals, modulo an integral operator with an infinitely smooth, in the variables
t , x and y, integral kernel.

Objectives 2 and 3. We aim to derive, under appropriate assumptions on Hamilto-
nian trajectories, two-term asymptotics for the spectral function (1.4) and the counting
function (1.5), i.e. formulae of the type

e.�; x; x/ D a.x/ �n C b.x/ �n�1 C o.�n�1/; (1.6)

and

N.�/ D a�n C b�n�1 C o.�n�1/ (1.7)

as � ! C1. Obviously, here we expect the real constants a, b and real densities
a.x/, b.x/ to be related in accordance with

a D
Z
M

a.x/ dx; (1.8)
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and

b D
Z
M

b.x/ dx: (1.9)

It is well known that the above three objectives are closely related: if one achieves
Objective 1, then Objectives 2 and 3 follow via Fourier Tauberian theorems [5], [18],
[9], and [17].

We are now in a position to state our main results.

Result 1. We construct the propagator as a sum of m oscillatory integrals

U.t/
modC1D

X
j

U .j /.t / ; (1.10)

where the phase function of each oscillatory integral U .j /.t / is associated with the
corresponding Hamiltonian h.j /.x; �/. The symbol of the oscillatory integralU .j /.t /
is a complex-valued m � m matrix-function u.j /.t I y; �/, where y D .y1; : : : ; yn/

is the position of the source of the wave (i.e. this is the same y that appears in
formula (1.1)) and � D .�1; : : : ; �n/ is the corresponding dual variable (covector at
the point y). When j�j ! C1, the symbol admits an asymptotic expansion

u.j /.t I y; �/D u
.j /
0 .t I y; �/C u

.j /
�1 .t I y; �/C � � � (1.11)

into components positively homogeneous in �, with the subscript indicating degree
of homogeneity.

The formula for the principal symbol of the oscillatory integral U .j /.t / is known,
see [16] and [11], and reads as follows:

u
.j /
0 .t I y; �/D Œv.j /.x.j /.t I y; �/; �.j /.t I y; �//� Œv.j /.y; �/��

� exp
�

� i
Z t

0

q.j /.x.j /.� I y; �/; �.j /.� I y; �// d�
�
;

(1.12)

where v.j /.z; �/ is the normalised eigenvector of the principal symbol A1.z; �/ cor-
responding to the eigenvalue (Hamiltonian) h.j /.z; �/, .x.j /.t I y; �/; �.j /.t I y; �//
is the Hamiltonian trajectory originating from the point .y; �/, i.e. solution of the
system of ordinary differential equations (the dot denotes differentiation in t )

Px.j / D h
.j /

�
.x.j /; �.j //; P�.j / D �h.j /x .x.j /; �.j // (1.13)

subject to the initial condition .x.j /; �.j //jtD0 D .y; �/,

q.j / W T 0M �! R
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is the function

q.j /
defD Œv.j /��Asubv

.j / � i

2
fŒv.j /��; A1 � h.j /; v.j /g � i Œv.j /��fv.j /; h.j /g (1.14)

and

Asub.z; �/
defD A0.z; �/C i

2
.A1/z˛�˛

.z; �/ (1.15)

is the subprincipal symbol of the operator A, with the subscripts z˛ and �˛ indicating
partial derivatives and the repeated index ˛ indicating summation over ˛ D 1; : : : ; n.
Curly brackets in formula (1.14) denote the Poisson bracket on matrix-functions

fP;Rg defD Pz˛R�˛
� P�˛

Rz˛ (1.16)

and its further generalisation

fP;Q;Rg defD Pz˛QR�˛
� P�˛

QRz˛ : (1.17)

As the derivation of formula (1.12) was previously performed only in theses [16]
and [11], we repeat it in Sections 2 and 3 of our paper. Our derivation differs slightly
from that in [16] and [11].

Formula (1.12) is invariant under changes of local coordinates on the manifoldM ,
i.e. elements of the m � m matrix-function u.j /0 .t I y; �/ are scalars on R � T 0M .
Moreover, formula (1.12) is invariant under the transformation of the eigenvector of
the principal symbol

v.j / 7�! ei�
.j /

v.j /; (1.18)

where
�.j / W T 0M �! R (1.19)

is an arbitrary smooth function. When some quantity is defined up to the action
of a certain transformation, theoretical physicists refer to such a transformation as
a gauge transformation. We follow this tradition. Note that our particular gauge
transformation (1.18) and (1.19) is quite common in quantum mechanics: when �.j /

is a function of the position variable x only (i.e. when �.j / W M ! R) this gauge
transformation is associated with electromagnetism.

Both Y. Safarov [16] and W. J. Nicoll [11] assumed that the operator A is semi-
bounded from below but this assumption is not essential and their formula (1.12)
remains true in the more general case that we are dealing with.

However, knowing the principal symbol (1.12) of the oscillatory integral U .j /.t /
is not enough if one wants to derive two-term asymptotics (1.6) and (1.7). One needs
information aboutu.j /�1 .t I y; �/, the component of the symbol of the oscillatory integral
U .j /.t / which is positively homogeneous in � of degree �1, see formula (1.11), but
here the problem is that u.j /�1 .t I y; �/ is not a true invariant in the sense that it depends
on the choice of phase function in the oscillatory integral. We overcome this difficulty
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by observing thatU .j /.0/ is a pseudodifferential operator, hence, it has a well-defined
subprincipal symbol ŒU .j /.0/�sub. We prove that

trŒU .j /.0/�sub D �ifŒv.j /��; v.j /g (1.20)

and subsequently show that information contained in formulae (1.12) and (1.20) is
sufficient for the derivation of two-term asymptotics (1.6) and (1.7).

Note that the RHS of formula (1.20) is invariant under the gauge transforma-
tion (1.18) and (1.19).

Formula (1.20) plays a central role in our paper. Sections 2 and 3 provide aux-
iliary material needed for the proof of formula (1.20), whereas the actual proof of
formula (1.20) is given in Section 4.

Let us elaborate briefly on the geometric meaning of the RHS of (1.20) (a more
detailed exposition is presented in Section 5). The eigenvector of the principal symbol
is defined up to a gauge transformation (1.18) and (1.19) so it is natural to introduce a
U.1/ connection on T 0M as follows: when parallel transporting an eigenvector of the
principal symbol along a curve inT 0M we require that the derivative of the eigenvector
along the curve be orthogonal to the eigenvector itself. This is equivalent to the
introduction of an (intrinsic) electromagnetic field on T 0M , with the 2n-component
real quantity

i . Œv.j /��v.j /x˛ ; Œv
.j /��v.j /

��
/ (1.21)

playing the role of the electromagnetic covector potential. Our quantity (1.21) is a
1-form on T 0M , rather than on M itself as is the case in “traditional” electromag-
netism. The above U.1/ connection generates curvature which is a 2-form on T 0M ,
an analogue of the electromagnetic tensor. Out of this curvature 2-form one can con-
struct, by contraction of indices, a real scalar. This scalar curvature is the expression
appearing in the RHS of formula (1.20).

Observe now that
P
j U

.j /.0/ is the identity operator on half-densities. The
subprincipal symbol of the identity operator is zero, so formula (1.20) implies

X
j

fŒv.j /��; v.j /g D 0: (1.22)

One can check the identity (1.22) directly, without constructing the oscillatory inte-
grals U .j /.t /: it follows from the fact that the v.j /.x; �/ form an orthonormal basis,
see end of Section 5 for details. We mentioned the identity (1.22) in order to high-
light, once again, the fact that the curvature effects we have identified are specific to
systems and do not have an analogue in the scalar case.
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Results 2 and 3. We prove, under appropriate assumptions on Hamiltonian trajec-
tories (see Theorems 8.3 and 8.4), asymptotic formulae (1.6) and (1.7) with

a.x/ D
mCX
jD1

Z
h.j /.x;�/<1

μ � ; (1.23)

and

b.x/ D �n
mCX
jD1

Z
h.j /.x;�/<1

�
Œv.j /��Asubv

.j /

� i
2

fŒv.j /��; A1 � h.j /; v.j /g

C i

n � 1h
.j /fŒv.j /��; v.j /g

�
.x; �/ μ �;

(1.24)

and a and b expressed via the above densities (1.23) and (1.24) as (1.8) and (1.9).
In (1.23) and (1.24) μ � is shorthand for

μ �
defD .2	/�n d� D .2	/�n d�1 : : : d�n;

and the Poisson bracket on matrix-functions f � ; � g and its further generalisation
f � ; � ; � g are defined by formulae (1.16) and (1.17) respectively.

To our knowledge, formula (1.24) is a new result. Note that in [16] this formula
(more precisely, its integrated overM version (1.9)) was written incorrectly, without
the curvature terms � ni

n�1
R
h.j /fŒv.j /��; v.j /g. See also Section 11 where we give a

more detailed bibliographic review.
It is easy to see that the right-hand sides of (1.23) and (1.24) behave as densities

under changes of local coordinates on the manifold M and that these expressions are
invariant under gauge transformations (1.18) and (1.19) of the eigenvectors of the
principal symbol. Moreover, the right-hand sides of (1.23) and (1.24) are unitarily
invariant, i.e. invariant under the transformation of the operator

A 7�! RAR�; (1.25)

where

R W M �! U.m/ (1.26)

is an arbitrary smooth unitary matrix-function. The fact that the RHS of (1.24) is
unitarily invariant is non-trivial: the appropriate calculations are presented in Sec-
tion 9. The observation that without the curvature terms � ni

n�1
R
h.j /fŒv.j /��; v.j /g

(as in [16]) the RHS of (1.24) is not unitarily invariant was a major motivating factor
in the writing of this paper.



The spectral function of a first order elliptic system 325

Formula (1.24) is the main result of our paper. Note that even though the two-
term asymptotic expansion (1.6) holds only under certain assumptions on Hamiltonian
trajectories (loops), the second asymptotic coefficient (1.24) is, in itself, well-defined
irrespective of how many loops we have. If one wishes to reformulate the asymptotic
expansion (1.6) in such a way that it remains valid without assumptions on the number
of loops, this can easily be achieved, say, by taking a convolution with a function from
Schwartz space �.R/: see Theorem 7.1.

2. Algorithm for the construction of the propagator

We construct the propagator as a sum of m oscillatory integrals (1.10) where each
integral is of the form

U .j /.t / D
Z
ei'

.j /.t;xIy;�/ u.j /.t I y; �/ & .j /.t; xI y; �/ d'.j /.t; xI y; �/ . � / dy μ� :
(2.1)

Here we use notation from the book [18], only adapted to systems. Namely, the
expressions appearing in formula (2.1) have the following meaning.

� The function '.j / is a phase function, i.e. a function

'.j / W R �M � T 0M �! C

positively homogeneous in � of degree 1 and satisfying the conditions

'.j /.t; xI y; �/D .x � x.j /.t I y; �//˛ �.j /˛ .t I y; �/
CO.jx � x.j /.t I y; �/j2/;

(2.2)

Im '.j /.t; xI y; �/ � 0; (2.3)

and
det '.j /x˛�ˇ

.t; x.j /.t I y; �/I y; �/¤ 0: (2.4)

Recall that, according to Corollary 2.4.5 from [18], we are guaranteed to have
inequality (2.4) if we choose a phase function

'.j /.t; xI y; �/ D .x � x.j /.t I y; �//˛ �.j /˛ .t I y; �/

C 1

2
C
.j /

˛ˇ
.t I y; �/ .x � x.j /.t I y; �//˛ .x � x.j /.t I y; �//ˇ

CO.jx � x.j /.t I y; �/j3/
(2.5)

with complex-valued symmetric matrix-function C .j /
˛ˇ

satisfying the strict in-

equality ImC .j / > 0 (our original requirement (2.3) implies only the non-strict
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inequality ImC .j / � 0). Note that even though the matrix-function C .j /
˛ˇ

is

not a tensor, the inequalities ImC .j / � 0 and ImC .j / > 0 are invariant under
transformations of local coordinates x; see Remark 2.4.9 in [18] for details.

� The quantity u.j / is the symbol of our oscillatory integral, i.e. a complex-valued
m �m matrix-function R � T 0M ! Cm2

which admits the asymptotic expan-
sion (1.11). The symbol is the unknown quantity in our construction.

� The quantity d'.j / is defined in accordance with formula (2.2.4) from [18] as

d'.j /.t; xI y; �/ defD .det2'.j /x˛�ˇ
/1=4 D j det '.j /x˛�ˇ

j1=2 e i arg.det2'.j /

x˛�ˇ
/=4
: (2.6)

Note that, in view of (2.4), our d'.j / is well-defined and smooth for x close
to x.j /.t I y; �/. It is known [18] that under coordinate transformations d'.j /

behaves as a half-density in x and as a half-density to the power �1 in y.

In formula (2.6) we wrote .det2'.j /x˛�ˇ
/1=4 rather than .det '.j /x˛�ˇ

/1=2 in order to
make this expression truly invariant under coordinate transformations. Recall
that local coordinates x and y are chosen independently and that � is a covector
based at the point y. Consequently, det '.j /x˛�ˇ

changes sign under inversion of

one of the local coordinates x˛ , ˛ D 1; : : : ; n, or yˇ , ˇ D 1; : : : ; n, whereas
det2'.j /x˛�ˇ

retains sign under inversion.

The choice of (smooth) branch of arg.det2'.j /x˛�ˇ
/ is assumed to be fixed. Thus,

for a given phase function '.j / formula (2.6) defines the quantity d'.j / uniquely
up to a factor eik�=2, k D 0; 1; 2; 3. Observe now that if we set t D 0 and
choose the same local coordinates for x and y, we get '.j /x˛�ˇ

.0; yI y; �/ D I .

This implies that we can fully specify the choice of branch of arg.det2'.j /x˛�ˇ
/ by

requiring that d'.j / .0; yI y; �/D 1.

The purpose of the introduction of the factor d'.j / in (2.1) is twofold.

(a) It ensures that the symbol u.j / is a function on R�T 0M in the full differen-
tial geometric sense of the word, i.e. that it is invariant under transformations
of local coordinates x and y.

(b) It ensures that the principal symbol u.j /0 does not depend on the choice of
phase function '.j /. See Remark 2.2.8 in [18] for more details.

� The quantity & .j / is a smooth cut-off function R � M � T 0M ! R satisfying
the following conditions.
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(a) & .j /.t; xI y; �/D 0 on the set f.t; xI y; �/ W jh.j /.y; �/j � 1=2g.

(b) & .j /.t; xI y; �/ D 1 on the intersection of a small conic neighbourhood of
the set

f.t; xI y; �/ W x D x.j /.t I y; �/g (2.7)

with the set f.t; xI y; �/ W jh.j /.y; �/j � 1g.

(c) & .j /.t; xI y; ��/D & .j /.t; xI y; �/ for jh.j /.y; �/j � 1, � � 1.

� It is known (see Section 2.3 in [18] for details) that Hamiltonian trajectories
generated by a Hamiltonian h.j /.x; �/ positively homogeneous in � of degree 1
satisfy the identity

.x.j /� /˛ˇ �.j /˛ D 0; (2.8)

where .x.j /� /˛ˇ
defD @.x.j //˛=@�ˇ . Formulae (2.2) and (2.8) imply

'.j /� .t; x.j /.t I y; �/I y; �/D 0: (2.9)

This allows us to apply the stationary phase method in the neighbourhood of the
set (2.7) and disregard what happens away from it.

Our task now is to construct the symbols u.j /.t I y; �/, j D 1; : : : ; m, so that our
oscillatory integrals U .j /.t /, j D 1; : : : ; m, satisfy the dynamic equations

.Dt C A.x;Dx// U
.j /.t /

modC1D 0 (2.10)

and initial condition X
j

U .j /.0/
modC1D I ; (2.11)

where I is the identity operator on half-densities; compare with formulae (1.3)
and (1.2) and (1.10). Note that the pseudodifferential operator A in formula (2.10)
acts on the oscillatory integral U.t/ in the variable x; say, if A is a differential opera-
tor this means that in order to evaluate AU .j /.t / one has to perform the appropriate
differentiations of the oscillatory integral (2.1) in the variable x. Following the con-
ventions of Section 3.3 of [18], we emphasise the fact that the pseudodifferential
operator A in formula (2.10) acts on the oscillatory integral U.t/ in the variable x by
writing this pseudodifferential operator as A.x;Dx/, where

Dx˛
defD �i @

@x˛
:

We examine first the dynamic equation (2.10). We have

.Dt C A.x;Dx// U
.j /.t / D F .j /.t /;
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where F .j /.t / is the oscillatory integral

F .j /.t / D
Z
ei'

.j /.t;xIy;�/f .j /.t; xI y; �/ & .j /.t; xI y; �/d'.j /.t; xI y; �/. � / dyμ�

whose matrix-valued amplitude f .j / is given by the formula

f .j / D Dtu
.j / C .'

.j /
t C .d'.j //

�1.Dtd'.j / /C s.j // u.j /; (2.12)

where the matrix-function s.j /.t; xI y; �/ is defined as

s.j / D e�i'.j /

.d'.j //
�1A.x;Dx/ .ei'

.j /

d'.j / / : (2.13)

Theorem 18.1 from [19] gives us the following explicit asymptotic (in inverse
powers of �) formula for the matrix-function (2.13):

s.j / D .d'.j //
�1X

˛

1

˛Š
A.˛/.x; '.j /x / .D˛

z 

.j //jzDx ; (2.14)

where

.j /.t; z; xI y; �/D ei 

.j /.t;z;xIy;�/d'.j /.t; zI y; �/ (2.15)

and

 .j /.t; z; xI y; �/D '.j /.t; zI y; �/� '.j /.t; xI y; �/� '
.j /

xˇ .t; xI y; �/ .z � x/ˇ :
(2.16)

In formula (2.14)
� ˛

defD .˛1; : : : ; ˛n/ is a multi-index (note the bold font which we use to distinguish
multi-indices and individual indices),

˛Š
defD ˛1Š : : : ˛nŠ;

D˛
z

defD D
˛1

z1 : : :D
˛n

zn ;

and

Dzˇ

defD �i @

@zˇ
I

� A.x; �/ is the full symbol of the pseudodifferential operator A written in local
coordinates x;

� we set

A.˛/.x; �/
defD @˛

�A.x; �/;

@˛
�

defD @
˛1

�1
: : : @

˛n

�n
;

and

@�ˇ

defD @

@�ˇ
:
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When j�j ! C1 the matrix-valued amplitude f .j /.t; xI y; �/ defined by for-
mula (2.12) admits an asymptotic expansion

f .j /.t; xI y; �/D f
.j /
1 .t; xI y; �/C f

.j /
0 .t; xI y; �/C f

.j /
�1 .t; xI y; �/C � � � (2.17)

into components positively homogeneous in �, with the subscript indicating degree
of homogeneity. Note the following differences between formulae (1.11) and (2.17).

� The leading term in (2.17) has degree of homogeneity 1, rather than 0 as in (1.11).
In fact, the leading term in (2.17) can be easily written out explicitly

f
.j /
1 .t; xI y; �/ D .'

.j /
t .t; xI y; �/C A1.x; '

.j /
x .t; xI y; �/// u.j /0 .t I y; �/;

(2.18)
whereA1.x; �/ is the (matrix-valued) principal symbol of the pseudodifferential
operator A.

� Unlike the symbol u.j /.t I y; �/, the amplitude f .j /.t; xI y; �/ depends on x.

We now need to exclude the dependence on x from the amplitude f .j /.t; xI y; �/.
This can be done by means of the algorithm described in subsection 2.7.3 of [18].
We outline this algorithm below.

Working in local coordinates, define the matrix-function '.j /x� in accordance with

.'.j /x� /˛
ˇ defD '

.j /
x˛�ˇ

and then define its inverse .'.j /x� /�1 from the identity

.'.j //˛
ˇ Œ.'.j /x� /

�1�ˇ � D ı˛
� :

Define the “scalar” first order linear differential operators

L.j /˛
defD Œ.'.j /x� /

�1�˛ˇ .@=@xˇ /; ˛ D 1; : : : ; n: (2.19)

Note that the coefficients of these differential operators are functions of the position
variable x and the dual variable �. It is known, see the second part of Appendix E
in [18], that the operators (2.19) commute: L.j /˛ L

.j /

ˇ
D L

.j /

ˇ
L
.j /
˛ , ˛; ˇ D 1; : : : ; n.

Denote

L.j /˛

defD .L
.j /
1 /˛1 : : : .L.j /n /˛n ;

.�'.j /� /˛
defD .�'.j /�1

/˛1 : : : .�'.j /�n
/˛n ;

and, given an r 2 N, define the “scalar” linear differential operator

P
.j /
�1;r

defD i.d'.j //
�1 @

@�ˇ
d'.j /

�
1C

X
1�j˛j�2r�1

.�'.j /� /˛

˛Š .j˛j C 1/
L.j /˛

�
L
.j /

ˇ
; (2.20)
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where j˛j defD ˛1 C : : : C ˛n and the repeated index ˇ indicates summation over
ˇ D 1; : : : ; n.

Recall Definition 2.7.8 from [18]: the linear operator L is said to be positively
homogeneous in � of degree p 2 R if for any q 2 R and any function f positively
homogeneous in � of degree q the function Lf is positively homogeneous in � of
degree p C q. It is easy to see that the operator (2.20) is positively homogeneous in
� of degree �1 and the first subscript in P

.j /
�1;r emphasises this fact.

Let S.j /
0 be the (linear) operator of restriction to x D x.j /.t I y; �/,

S
.j /
0

defD . � /jxDx.j /.t Iy;�/ ; (2.21)

and let

S.j /�r
defD S

.j /
0 .P

.j /
�1;r /

r (2.22)

for r D 1; 2; : : : . Observe that our linear operators S
.j /�r , r D 0; 1; 2; : : :, are

positively homogeneous in � of degree �r . This observation allows us to define
the linear operator

S.j / defD
C1X
rD0

S.j /�r ; (2.23)

where the series is understood as an asymptotic series in inverse powers of �.
According to subsection 2.7.3 of [18], the dynamic equation (2.10) can now be

rewritten in the equivalent form

S.j /f .j / D 0 ; (2.24)

where the equality is understood in the asymptotic sense, as an asymptotic expan-
sion in inverse powers of �. Recall that the matrix-valued amplitude f .j /.t; xI y; �/
appearing in (2.24) is defined by formulae (2.12)–(2.16).

Substituting (2.23) and (2.17) into (2.24) we obtain a hierarchy of equations

S
.j /
0 f

.j /
1 D 0; (2.25)

S
.j /
�1f

.j /
1 C S

.j /
0 f

.j /
0 D 0; (2.26)

S
.j /
�2f

.j /
1 C S

.j /
�1f

.j /
0 C S

.j /
0 f

.j /
�1 D 0;

: : :

positively homogeneous in � of degree 1; 0;�1; : : : . These are the transport equa-
tions for the determination of the unknown homogeneous components u.j /0 .t I y; �/,
u
.j /
�1 .t I y; �/, u.j /�2 .t I y; �/, : : : , of the symbol of the oscillatory integral (2.1).

Let us now examine the initial condition (2.11). Each operator U .j /.0/ is a
pseudodifferential operator, only written in a slightly nonstandard form. The issues
here are as follows.
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� We use the invariantly defined phase function '.j /.0; xI y; �/ D .x � y/˛ �˛ C
O.jx � yj2/ rather than the linear phase function .x � y/˛ �˛ written in local
coordinates.

� When defining the (full) symbol of the operator U .j /.t / we excluded the vari-
able x from the amplitude rather than the variable y. Note that when dealing
with pseudodifferential operators it is customary to exclude the variable y from
the amplitude; exclusion of the variable x gives the dual symbol of a pseudod-
ifferential operator, see subsection 2.1.3 in [18]. Thus, at t D 0, our symbol
u.j /.0I y; �/ resembles the dual symbol of a pseudodifferential operator rather
than the “normal” symbol.

� We have the extra factor d'.j /.0; xI y; �/ in our representation of the operator
U .j /.0/ as an oscillatory integral.

The (full) dual symbol of the pseudodifferential operatorU .j / .0/ can be calculated
in local coordinates in accordance with the following formula which addresses the
issues highlighted above:

X
˛

.�1/j˛j

˛Š
.D˛

x @
˛
� u

.j /.0I y; �/ ei!.j /.xIy;�/ d'.j / .0; xI y; �//jxDy ; (2.27)

where !.j /.xI y; �/ D '.j /.0; xI y; �/� .x�y/ˇ �ˇ . Formula (2.27) is a version of
the formula from Section 2.1.3 of [18], only with the extra factor .�1/j˛j. The latter
is needed because we are writing down the dual symbol of the pseudodifferential op-
eratorU .j /.0/ (no dependence on x) rather than its “normal” symbol (no dependence
on y).

The initial condition (2.11) can now be rewritten in explicit form as

X
j

X
˛

.�1/j˛j

˛Š
.D˛

x @
˛
� u

.j /.0I y; �/ ei!.j /.xIy;�/ d'.j / .0; xI y; �//jxDy D I;

(2.28)
where I is them�m identity matrix. Condition (2.28) can be decomposed into com-
ponents positively homogeneous in � of degree 0;�1;�2; : : :, giving us a hierarchy
of initial conditions. The leading (of degree of homogeneity 0) initial condition reads

X
j

u
.j /
0 .0I y; �/ D I; (2.29)

whereas lower order initial conditions are more complicated and depend on the choice
of our phase functions '.j /.
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3. Leading transport equations

Formulae (2.21), (2.18), (2.2), (1.13) and the identity �˛h
.j /

�˛
.x; �/ D h.j /.x; �/

(consequence of the fact that h.j /.x; �/ is positively homogeneous in � of degree 1)
give us the following explicit representation for the leading transport equation (2.25):

ŒA1.x
.j /.t I y; �/; �.j /.t I y; �//� h.j /.x.j /.t I y; �/; �.j /.t I y; �//� u.j /0 .t I y; �/D 0:

(3.1)
Here, of course, h.j /.x.j /.t I y; �/; �.j /.t I y; �// D h.j /.y; �/.

Equation (3.1) implies that

u
.j /
0 .t I y; �/ D v.j /.x.j /.t I y; �/; �.j /.t I y; �// Œw.j /.t I y; �/�T ; (3.2)

where v.j /.z; �/ is the normalised eigenvector of the principal symbol A1.z; �/ cor-
responding to the eigenvalue h.j /.z; �/ and w.j / W R � T 0M ! Cm is a column-
function, positively homogeneous in � of degree 0, that remains to be found. Formu-
lae (2.29) and (3.2) imply the following initial condition for the unknown column-
function w.j /:

w.j /.0I y; �/ D v.j /.y; �/: (3.3)

We now consider the next transport equation in our hierarchy, equation (2.26).
We will write down the two terms appearing in (2.26) separately.

In view of formulae (2.18) and (2.20)–(2.22), the first term in (2.26) reads

S
.j /
�1f

.j /
1

D i
h
.d'.j //

�1 @

@�ˇ
d'.j /

�
1� 1

2
'.j /�˛

L.j /˛

�
.L
.j /

ˇ
.'
.j /
t C A1.x; '

.j /
x ///u

.j /
0

iˇ̌̌
xDx.j /

;

(3.4)

where we dropped, for the sake of brevity, the arguments .t I y; �/ in u.j /0 and x.j /,

and the arguments .t; xI y; �/ in '.j /t , '.j /x , '.j /� and d'.j / . Recall that the differential

operators L.j /˛ are defined in accordance with formula (2.19) and the coefficients of
these operators depend on .t; xI y; �/.

In view of formulae (2.12)–(2.17) and (2.21), the second term in (2.26) reads

S
.j /
0 f

.j /
0

D Dtu
.j /
0

C
h
.d'.j //

�1.Dt C .A1/�˛
Dx˛ /d'.j / C A0 � i

2
.A1/�˛�ˇ

C
.j /

˛ˇ

iˇ̌̌
xDx.j /

u
.j /
0

C ŒA1 � h.j /�u.j /�1 ;
(3.5)

where
C
.j /

˛ˇ

defD '
.j /

x˛xˇ jxDx.j / (3.6)
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is the matrix-function from (2.5). In formulae (3.5) and (3.6) we dropped, for the
sake of brevity, the arguments .t I y; �/ in u.j /0 , u.j /�1 , C .j /

˛ˇ
and x.j /, the arguments

.x.j /.t I y; �/; �.j /.t I y; �// in A0, A1, .A1/�˛
, .A1/�˛�ˇ

and h.j /, and the arguments

.t; xI y; �/ in d'.j / and '.j /
x˛xˇ .

Looking at (3.4) and (3.5) we see that the transport equation (2.26) has a com-
plicated structure. Hence, in this section we choose not to perform the analysis of
the full equation (2.26) and analyse only one particular subequation of this equation.
Namely, observe that equation (2.26) is equivalent to m subequations

Œv.j /�� ŒS.j /
�1f

.j /
1 C S

.j /
0 f

.j /
0 � D 0; (3.7)

Œv.l/�� ŒS.j /
�1f

.j /
1 C S

.j /
0 f

.j /
0 � D 0; l ¤ j; (3.8)

where we dropped, for the sake of brevity, the arguments .x.j /.t I y; �/; �.j /.t I y; �//
in Œv.j /�� and Œv.l/��. In the remainder of this section we analyse (sub)equation (3.7)
only.

Equation (3.7) is simpler than each of them� 1 equations (3.8) for the following
two reasons.

� Firstly, the term ŒA1�h.j /�u.j /�1 from (3.5) vanishes after multiplication by Œv.j / ��

from the left. Hence, equation (3.7) does not contain u.j /�1 .
� Secondly, if we substitute (3.2) into (3.7), then the term with

@Œd'.j /w
.j /.t I y; �/�T=@�ˇ

vanishes. This follows from the fact that the scalar function

Œv.j /��.'.j /t C A1.x; '
.j /
x //v.j /

has a second order zero, in the variable x, at x D x.j /.t I y; �/. Indeed, we haveh @

@x˛
Œv.j /��.'.j /t C A1.x; '

.j /
x //v.j /

iˇ̌̌
xDx.j /

D Œv.j /��Œ.'.j /t C A1.x; '
.j /
x /

�
x˛ �jxDx.j /v

.j /

D Œv.j /��.�h.j /x˛ � C .j /
˛ˇ
h
.j /

�ˇ
C .A1/x˛ C C

.j /

˛ˇ
.A1/�ˇ

/v.j /

D Œv.j /��.A1/x˛v.j / � h.j /x˛ C C
.j /

˛ˇ
.Œv.j /��.A1/�ˇ

v.j / � h.j /
�ˇ
/

D 0;

where in the last two lines we dropped, for the sake of brevity, the arguments
.x.j /.t I y; �/; �.j /.t I y; �// in .A1/x˛ , .A1/�ˇ

, h.j /x˛ , h.j /
�ˇ

, and the argument

.t I y; �/ in C .j /
˛ˇ

(the latter is the matrix-function from formulae (2.5) and (3.6)).

Throughout the above argument we used the fact that our
�
v.j /

��
and v.j / do

not depend on x: their argument is .x.j /.t I y; �/; �.j /.t I y; �//.
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Substituting (3.4), (3.5), and (3.2) into (3.7) we get

.Dt C p.j /.t I y; �// Œw.j /.t I y; �/�T D 0 ; (3.9)

where

p.j / D i Œv.j /��
h @

@�ˇ

�
1 � 1

2
'.j /�˛

L.j /˛

�
.L
.j /

ˇ
.'
.j /
t C A1.x; '

.j /
x ///v.j /

iˇ̌̌
xDx.j /

� i Œv.j /��fv.j /; h.j /g C Œ.d'.j //
�1.Dt C h

.j /

�˛
Dx˛/d'.j / �jxDx.j /

C Œv.j /��
�
A0 � i

2
.A1/�˛�ˇ

C
.j /

˛ˇ

�
v.j /:

(3.10)

Note that the ordinary differential operator in the LHS of formula (3.9) is a
scalar one, i.e. it does not mix up the different components of the column-function
w.j /.t I y; �/. The solution of the ordinary differential equation (3.9) subject to the
initial condition (3.3) is

w.j /.t I y; �/ D v.j /.y; �/ exp

�
�i
Z t

0

p.j /.� I y; �/ d�
�
: (3.11)

Comparing formulae (3.2) and (3.11) with formula (1.12) we see that in order to prove
the latter we need only to establish the scalar identity

p.j /.t I y; �/D q.j /.x.j /.t I y; �/; �.j /.t I y; �// ; (3.12)

where q.j / is the function (1.14). In view of the definitions of the quantities p.j /

and q.j /, see formulae (3.10) and (1.14), and the definition of the subprincipal sym-
bol (1.15), proving the identity (3.12) reduces to proving the identity

fŒv.j /��; A1 � h.j /; v.j /g.x.j /; �.j //
D �2Œv.j /.x.j /; �.j //��

h @

@�ˇ

�
1 � 1

2
'.j /�˛

L.j /˛

�

.L
.j /

ˇ
.'
.j /
t C A1.x; '

.j /
x ///v.j /.x.j /; �.j //

iˇ̌̌
xDx.j /

C 2Œ.d'.j //
�1.@t C h

.j /

�˛
@x˛/d'.j / �jxDx.j /

C Œv.j /.x.j /; �.j //��..A1/x˛�˛
C .A1/�˛�ˇ

C
.j /

˛ˇ
/v.j /.x.j /; �.j //:

(3.13)

Note that the expressions in the LHS and RHS of (3.13) have different structure. The
LHS of (3.13) is the generalised Poisson bracket fŒv.j /��; A1�h.j /; v.j /g, see (1.17),
evaluated at z D x.j /.t I y; �/, � D �.j /.t I y; �/, whereas the RHS of (3.13) involves
partial derivatives (in �) of v.j /.x.j /.t I y; �/; �.j /.t I y; �// (Chain Rule). In writ-
ing (3.13) we also dropped, for the sake of brevity, the arguments .t; xI y; �/ in '.j /t ,
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'
.j /
x , '.j /� , d'.j / and the coefficients of the differential operators L.j /˛ and L.j /

ˇ
, the

arguments .x.j /; �.j // in h.j /
�˛

, .A1/x˛�˛
and .A1/�˛�ˇ

, and the arguments .t I y; �/ in

x.j /, �.j / and C .j /
˛ˇ

.
Before performing the calculations that will establish the identity (3.13) we make

several observations that will allow us to simplify these calculations considerably.
Firstly, our function p.j /.t I y; �/ does not depend on the choice of the phase

function '.j /.t; xI y; �/. Indeed, if p.j /.t I y; �/ did depend on the choice of phase
function, then, in view of formulae (3.2) and (3.11) the principal symbol of our
oscillatory integral U .j /.t / would depend on the choice of phase function, which
would contradict Theorem 2.7.11 from [18]. Here we use the fact that operators
U .j /.t / with different j cannot compensate each other to give an integral operator
whose integral kernel is infinitely smooth in t , x andy because all ourU .j /.t /oscillate
in t in a different way: '.j /t .t; x.j /.t I y; �/I y; �/D �h.j /.y; �/ and we assumed the
eigenvalues h.j /.y; �/ of our principal symbol A1.y; �/ to be simple.

Secondly, the arguments (free variables) in (3.13) are .t I y; �/. We fix an arbitrary
point .Qt I Qy; Q�/ 2 R � T 0M and prove formula (3.13) at this point. Put

.�.j /� /˛
ˇ defD @.�.j //˛=@�ˇ :

According to Lemma 2.3.2 from [18] there exists a local coordinate system x such
that det.�.j /� /˛

ˇ ¤ 0. This opens the way to the use of the linear phase function

'.j /.t; xI y; �/D .x � x.j /.t I y; �//˛ �.j /˛ .t I y; �/ (3.14)

which will simplify calculations to a great extent. Moreover, we can choose a local
coordinate system y such that

.�.j /� /˛
ˇ .Qt I Qy; Q�/ D ı˛

ˇ (3.15)

which will simplify calculations even further.
The calculations we are about to perform will make use of the symmetry

.x.j /� /�˛.�.j /� /�
ˇ D .x.j /� /�ˇ .�.j /� /�

˛ (3.16)

which is an immediate consequence of formula (2.8). Formula (3.16) appears as
formula (2.3.3) in [18] and the accompanying text explains its geometric meaning.
Note that at the point .Qt I Qy; Q�/ formula (3.16) takes the especially simple form

.x.j /� /˛ˇ .Qt I Qy; Q�/ D .x.j /� /ˇ˛.Qt I Qy; Q�/: (3.17)

Our calculations will also involve the quantity '.j /�˛�ˇ
.Qt ; QxI Qy; Q�/ where

Qx defD x.j /.Qt I Qy; Q�/:
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Formulae (3.14), (2.8), (3.15), and (3.17) imply

'.j /�˛�ˇ
.Qt ; QxI Qy; Q�/ D �.x.j /� /˛ˇ .Qt I Qy; Q�/: (3.18)

Further on we denote
Q� defD �.j /.Qt I Qy; Q�/:

With account of all the simplifications listed above, we can rewrite formula (3.13),
which is the identity that we are proving, as

fŒv.j /��; A1 � h.j /; v.j /g. Qx; Q�/
D �2Œ Qv.j /��

h @2

@x˛@�˛
.A1.x; �

.j // � h.j /. Qy; �/

� .x � x.j //�h.j /x� .x
.j /; �.j /// v.j /.x.j /; �.j //

iˇ̌̌
.x;�/D. Qx; Q�/

� . Qx.j /� /˛ˇ Œ Qv.j /��
h @2

@x˛@xˇ
.A1.x; �

.j // � h.j /. Qy; �/
� .x � x.j //�h.j /x� .x

.j /; �.j /// v.j /.x.j /; �.j //
iˇ̌̌
.x;�/D. Qx; Q�/

C Œ Qv.j /��. zA1/x˛�˛
Qv.j / � Qh.j /

x˛�˛
� Qh.j /

x˛xˇ . Qx.j /� /˛ˇ ;

(3.19)

where Qv.j / D v.j /. Qx; Q�/, Qx.j /� D x
.j /
� .Qt I Qy; Q�/, . zA1/x˛�˛

D .A1/x˛�˛
. Qx; Q�/, Qh.j /

x˛�˛
D

h
.j /

x˛�˛
. Qx; Q�/, Qh.j /

x˛xˇ D h
.j /

x˛xˇ . Qx; Q�/, x.j / D x.j /.Qt I Qy; �/, and �.j / D �.j /.Qt I Qy; �/.
Note that the last two terms in the RHS of (3.19) originate from the term with

d'.j / in (3.13): we used the fact that d'.j / does not depend on x and that

Œ.d'.j / /
�1@td'.j / �j.t;xIy;�/D.Qt ; QxI Qy; Q�/ D �1

2
. Qh.j /
x˛�˛

C Qh.j /
x˛xˇ . Qx.j /� /˛ˇ /: (3.20)

Formula (3.20) is a special case of formula (3.3.21) from [18].
Note also that the term �h.j /. Qy; �/ appearing (twice) in the RHS of (3.19) will

vanish after being acted upon with the differential operators @2

@x˛@�˛
and @2

@x˛@xˇ

because it does not depend on x.
We have

Œ Qv.j /��
h @2

@x˛@�˛
.A1.x; �

.j //

� .x � x.j //�h.j /x� .x
.j /; �.j /// v.j /.x.j /; �.j //

iˇ̌̌
.x;�/D. Qx; Q�/

D Œ Qv.j /��. zA1/x˛�˛
Qv.j / � Qh.j /

x˛�˛
� Qh.j /

x˛xˇ . Qx.j /� /˛ˇ

C Œ Qv.j /��.. zA1/x˛ � Qh.j /x˛ /. Qv.j /�˛
C Qv.j /

xˇ . Qx.j /� /˛ˇ /;

(3.21)
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and

Œ Qv.j /��
h @2

@x˛@xˇ
.A1.x; �

.j //

� .x � x.j //�h
.j /
x� .x

.j /; �.j /// v.j /.x.j /; �.j //
iˇ̌̌
.x;�/D. Qx; Q�/

D Œ Qv.j /��. zA1/x˛xˇ Qv.j / ;

(3.22)

where . zA1/x˛ D .A1/x˛. Qx; Q�/, Qh.j /x˛ D h
.j /
x˛ . Qx; Q�/, Qv.j /

�˛
D v

.j /

�˛
. Qx; Q�/, and Qv.j /

xˇ D
v
.j /

xˇ . Qx; Q�/. We also have

Œ Qv.j /��.. zA1/x˛ � Qh.j /x˛ / Qv.j /xˇ C Œ Qv.j /��.. zA1/xˇ � Qh.j /
xˇ / Qv.j /x˛

D Qh.j /
x˛xˇ � Œ Qv.j /��. zA1/x˛xˇ Qv.j /:

(3.23)

Using formulae (3.23) and (3.17) we can rewrite formula (3.21) as

Œ Qv.j /��
h @2

@x˛@�˛
.A1.x; �

.j //

� .x � x.j //�h.j /x� .x
.j /; �.j /// v.j /.x.j /; �.j //

iˇ̌̌
.x;�/D. Qx; Q�/

D Œ Qv.j /��. zA1/x˛�˛
Qv.j / � Qh.j /

x˛�˛
C Œ Qv.j /��	. zA1/x˛ � Qh.j /x˛

� Qv.j /
�˛

� 1

2

	
Œ Qv.j /��. zA1/x˛xˇ Qv.j / C Qh.j /

x˛xˇ

�
. Qx.j /� /˛ˇ :

(3.24)

Substituting (3.24) and (3.22) into (3.19) we see that all the terms with . Qx.j /� /˛ˇ cancel
out and we get

fŒv.j /��; A1 � h.j /; v.j /g. Qx; Q�/
D �Œ Qv.j /��.. zA1/x˛�˛

� Qh.j /
x˛�˛

/ Qv.j / � 2Œ Qv.j /��.. zA1/x˛ � Qh.j /x˛ / Qv.j /�˛
:

(3.25)

Thus, the proof of the identity (3.13) has been reduced to the proof of the iden-
tity (3.25).

Observe now that formula (3.25) no longer has Hamiltonian trajectories present
in it. This means that we can drop all the tildes and rewrite (3.25) as

fŒv.j /��; A1 � h.j /; v.j /g
D �Œv.j /��.A1 � h.j //x˛�˛

v.j / � 2Œv.j /��.A1 � h.j //x˛v
.j /

�˛
;

(3.26)

where the arguments are .x; �/. We no longer need to restrict our consideration to
the particular point .x; �/ D . Qx; Q�/: if we prove (3.26) for an arbitrary .x; �/ 2 T 0M
we will prove it for a particular . Qx; Q�/ 2 T 0M .



338 O. Chervova, R. J. Downes, and D. Vassiliev

The proof of the identity (3.26) is straightforward. We note that

Œv.j /��.A1 � h.j //x˛�˛
v.j /

D �Œv.j /��.A1 � h.j //x˛v
.j /

�˛
� Œv.j /��.A1 � h.j //�˛

v
.j /
x˛

(3.27)

and substituting (3.27) into (3.26) reduce the latter to the form

fŒv.j /��; A1 � h.j /; v.j /g
D Œv.j /��.A1 � h.j //�˛

v
.j /
x˛ � Œv.j /��.A1 � h.j //x˛v

.j /

�˛
:

(3.28)

But we have

Œv.j /��.A1 � h.j //x˛ D �Œv.j /x˛ �
�.A1 � h.j //; (3.29)

and

Œv.j /��.A1 � h.j //�˛
D �Œv.j /

�˛
��.A1 � h.j //: (3.30)

Substituting (3.29) and (3.30) into (3.28) we get

fŒv.j /��; A1 � h.j /; v.j /g D Œv
.j /
x˛ �

�.A1 � h.j //v.j /
�˛

� Œv.j /
�˛
��.A1 � h.j //v.j /x˛ ;

which agrees with the definition of the generalised Poisson bracket (1.17).

4. Proof of formula (1.20)

In this section we prove formula (1.20). Our approach is as follows.
We write down explicitly the transport equations (3.8) at t D 0, i.e.

Œv.l/��ŒS.j /
�1f

.j /
1 C S.j /

0 f
.j /
0 �jtD0 D 0; l ¤ j: (4.1)

We use the same local coordinates for x and y and we assume all our phase functions
to be linear, i.e. we assume that for each j we have (3.14). Using linear phase
functions is justified for small t because we have .�.j /� /˛

ˇ .0I y; �/ D ı˛
ˇ and, hence,

det '.j /x˛�ˇ
.t; xI y; �/ ¤ 0 for small t . Writing down equations (4.1) for linear phase

functions is much easier than for general phase functions (2.2).
Using linear phase functions has the additional advantage that the initial condi-

tion (2.28) simplifies and reads now
P
j u

.j /.0I y; �/ D I . In view of (1.11), this
implies, in particular, that X

j

u
.j /
�1 .0/ D 0: (4.2)

Here and further on in this section we drop, for the sake of brevity, the arguments
.y; �/ in u.j /�1 .
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Of course, the formula we are proving, formula (1.20), does not depend on our
choice of phase functions. It is just easier to carry out calculations for linear phase
functions.

We will show that (4.1) is a system of complex linear algebraic equations for the
unknowns u.j /�1 .0/. The total number of equations (4.1) ism2�m. However, for each
j and l the LHS of (4.1) is a row of m elements, so (4.1) is, effectively, a system of
m.m2 �m/ scalar equations.

Equation (4.2) is a single matrix equation, so it is, effectively, a system of m2

scalar equations.
Consequently, the system (4.1)–(4.2) is, effectively, a system of m3 scalar equa-

tions. This is exactly the number of unknown scalar elements in the m matrices
u
.j /
�1 .0/.

In the remainder of this section we write down explicitly the LHS of (4.1) and
solve the linear algebraic system (4.1) and (4.2) for the unknowns u.j /�1 .0/. This will
allow us to prove formula (1.20).

Before starting explicit calculations we observe that equations (4.1) can be equiv-
alently rewritten as

P .l/ŒS
.j /
�1f

.j /
1 C S

.j /
0 f

.j /
0 �jtD0 D 0; l ¤ j; (4.3)

where

P .l/
defD Œv.l/.y; �/� Œv.l/.y; �/��

is the orthogonal projection onto the eigenspace corresponding to the (normalised)
eigenvector v.l/.y; �/ of the principal symbol. We will deal with (4.3) rather than
with (4.1). This is simply a matter of convenience.

4.1. Part 1 of the proof of formula (1.20). Our task in this subsection is to calculate
the LHS of (4.3). In our calculations we use the explicit formula (1.12) for the
principal symbol u.j /0 .t I y; �/ which was proved in Section 3.

At t D 0 formula (3.4) reads

ŒS
.j /
�1f

.j /
1 �jtD0

D i
h @2

@x˛�˛
.A1.x; �/ � h.j /.y; �/� .x � y/�h.j /y� .y; �//P

.j /.y; �/
iˇ̌̌
xDy

which gives us

ŒS
.j /
�1f

.j /
1 �jtD0 D i Œ.A1 � h.j //y˛�˛

P .j / C .A1 � h.j //y˛P .j /�˛
�: (4.4)

In the latter formula we dropped, for the sake of brevity, the arguments .y; �/.
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At t D 0 formula (3.5) reads

ŒS
.j /
0 f

.j /
0 �jtD0

D �ifv.j /; h.j /gŒv.j /�� C
�
A0 � q.j / C i

2
h
.j /
y˛�˛

�
P .j / C ŒA1 � h.j /�u.j /�1 .0/;

(4.5)

where q.j / is the function (1.14) and we dropped, for the sake of brevity, the arguments
.y; �/. Note that in writing down (4.5) we used the fact that

Œ.d'.j //
�1@td'.j / �j.t;xIy;�/D.0;yIy;�/ D �1

2
h
.j /
y˛�˛

.y; �/;

compare with formula (3.20).
Substituting formulae (4.4) and (4.5) into (4.3) we get

.h.l/ � h.j //P .l/u
.j /
�1 .0/C P .l/B

.j /
0 D 0; l ¤ j; (4.6)

where

B
.j /
0 D

�
A0�q.j /� i

2
h
.j /
y˛�˛

C i.A1/y˛�˛

�
P .j /� ih.j /�˛

P
.j /
y˛ C i.A1/y˛P .j /�˛

: (4.7)

The subscript in B.j /0 indicates the degree of homogeneity in �.

4.2. Part 2 of the proof of formula (1.20). Our task in this subsection is to solve
the linear algebraic system (4.6) and (4.2) for the unknowns u.j /�1 .0/.

It is easy to see that the unique solution to the system (4.6) and (4.2) is

u
.j /
�1 .0/ D

X
l¤j

P .l/B
.j /
0 C P .j /B

.l/
0

h.j / � h.l/ : (4.8)

Summation in (4.8) is carried out over all l different from j .

4.3. Part 3 of the proof of formula (1.20). Our task in this subsection is to calculate
ŒU .j /.0/�sub.

We have

ŒU .j /.0/�sub D u
.j /
�1 .0/ � i

2
P
.j /
y˛�˛

: (4.9)

Here the sign in front of i
2

is opposite to that in (1.15) because the way we write
U .j /.0/ is using the dual symbol.
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Substituting (4.8) and (4.7) into (4.9) we get

ŒU .j /.0/�sub

D � i
2
P
.j /
y˛�˛

C
X
l¤j

1

h.j / � h.l/ .P
.l/Œ.A0 C i.A1/y˛�˛

/P .j / � ih.j /�˛
P
.j /
y˛ C i.A1/y˛P .j /�˛

�

C P .j /Œ.A0 C i.A1/y˛�˛
/P .l/

� ih.l/�˛
P
.l/
y˛ C i.A1/y˛P .l/�˛

�/

D
X
l¤j

P .l/AsubP
.j / C P .j /AsubP

.l/

h.j / � h.l/
C i

2

�
� P .j /y˛�˛

C
X
l¤j

Gjl

h.j / � h.l/
�
;

(4.10)

where

Gjl
defD P .l/Œ.A1/y˛�˛

P .j / � 2h.j /�˛
P
.j /
y˛ C 2.A1/y˛P .j /�˛

�

C P .j /Œ.A1/y˛�˛
P .l/ � 2h.l/�˛

P
.l/
y˛ C 2.A1/y˛P .l/�˛

�:

We have

Gjl D 2P .l/fA1; P .j /g C 2P .j /fA1; P .l/g
C P .l/Œ.A1 � h.j //y˛�˛

P .j / C 2.A1 � h.j //�˛
P
.j /
y˛ �

C P .j /Œ.A1 � h.l//y˛�˛
P .l/ C 2.A1 � h.l//�˛

P
.l/
y˛ �

D 2P .l/fA1; P .j /g C 2P .j /fA1; P .l/g
� P .l/fA1 � h.j /; P .j /g � P .j /fA1 � h.l/; P .l/g
C P .l/Œ.A1 � h.j //y˛�˛

P .j / C .A1 � h.j //�˛
P
.j /
y˛ C .A1 � h.j //y˛P .j /�˛

�

C P .j /Œ.A1 � h.l//y˛�˛
P .l/ C .A1 � h.l//�˛

P
.l/
y˛ C .A1 � h.l//y˛P .l/�˛

�

D P .l/fA1 C h.j /; P .j /g C P .j /fA1 C h.l/; P .l/g
� P .l/.A1 � h.j //P .j /y˛�˛

� P .j /.A1 � h.l//P .l/y˛�˛

D P .l/fA1 C h.j /; P .j /g C P .j /fA1 C h.l/; P .l/g

� P .l/.h.l/ � h.j //P
.j /
y˛�˛

� P .j /.h.j / � h.l//P .l/y˛�˛

D P .l/fA1 C h.j /; P .j /g C P .j /fA1 C h.l/; P .l/g
C .h.j / � h.l//.P .l/P .j /y˛�˛

� P .j /P .l/y˛�˛
/;
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so formula (4.10) can be rewritten as

ŒU .j /.0/�sub

D i

2
.�P .j /y˛�˛

C
X
l¤j

.P .l/P
.j /
y˛�˛

� P .j /P .l/y˛�˛
//

C 1

2

X
l¤j

�P .l/.2AsubP
.j / C ifA1 C h.j /; P .j /g/
h.j / � h.l/

C P .j /.2AsubP
.l/ C ifA1 C h.l/; P .l/g/
h.j / � h.l/

�
:

(4.11)

ButX
l¤j

.P .l/P
.j /
y˛�˛

� P .j /P .l/y˛�˛
/ D

� X
l¤j

P .l/
�
P
.j /
y˛�˛

� P .j /
� X
l¤j

P .l/
�
y˛�˛

D .I � P .j //P .j /y˛�˛
� P .j /.I � P .j //y˛�˛

D P
.j /
y˛�˛

;

so formula (4.11) can be simplified to read

ŒU .j /.0/�sub

D 1

2

X
l¤j

�P .l/.2AsubP
.j / C ifA1 C h.j /; P .j /g/
h.j / � h.l/

C P .j /.2AsubP
.l/ C ifA1 C h.l/; P .l/g/
h.j / � h.l/

�
:

(4.12)

4.4. Part 4 of the proof of formula (1.20). Our task in this subsection is to calculate
trŒU .j /.0/�sub.

Formula (4.12) implies

trŒU .j /.0/�sub D i

2
tr
X
l¤j

P .l/fA1; P .j /g C P .j /fA1; P .l/g
h.j / � h.l/ : (4.13)

Put A1 D P
k h

.k/P .k/ and observe that

� terms with the derivatives of h vanish and

� the only k which may give nonzero contributions are k D j and k D l .
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Thus, formula (4.13) becomes

trŒU .j /.0/�sub

D i

2
tr
X
l¤j

1

h.j / � h.l/
.h.j /ŒP .l/fP .j /; P .j /g

C P .j /fP .j /; P .l/g�C h.l/ŒP .l/fP .l/; P .j /g
C P .j /fP .l/; P .l/g�/:

(4.14)

We claim that

tr.P .l/fP .j /; P .j /g/ D tr.P .j /fP .j /; P .l/g/
D � tr.P .l/fP .l/; P .j /g/
D � tr.P .j /fP .l/; P .l/g/
D Œv.l/��fv.j /; Œv.j /��gv.l/

D .Œv.l/��v.j /y˛ /.Œv
.j /
�˛
��v.l// � .Œv.l/��v.j /�˛

/.Œv
.j /
y˛ �

�v.l//:
(4.15)

These facts are established by writing the orthogonal projections in terms of the
eigenvectors and using, if required, the identities

Œv
.l/
y˛ �

�v.j / C Œv.l/��v.j /y˛ D 0;

Œv.l/�˛
��v.j / C Œv.l/��v.j /�˛

D 0;

Œv
.j /
y˛ �

�v.l/ C Œv.j /��v.l/y˛ D 0;

Œv.j /�˛
��v.l/ C Œv.j /��v.l/�˛

D 0:

In view of the identities (4.15) formula (4.14) can be rewritten as

trŒU .j /.0/�sub D i tr
X
l¤j

P .l/fP .j /; P .j /g

D i tr.fP .j /; P .j /g � P .j /fP .j /; P .j /g/
D �i tr.P .j /fP .j /; P .j /g/:

(4.16)
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It remains only to simplify the expression in the RHS of (4.16). We have

tr.P .j /fP .j /; P .j /g/
D fŒv.j /��; v.j /g

C Œ.Œv.j /��v.j /y˛ /.Œv
.j /��v.j /�˛

/ � .Œv.j /��v.j /�˛
/.Œv.j /��v.j /y˛ /�

C Œ.Œv
.j /
y˛ �

�v.j //.Œv.j /�˛
��v.j // � .Œv.j /�˛

��v.j //.Œv.j /y˛ �
�v.j //�

C Œ.Œv.j /��v.j /y˛ /.Œv
.j /
�˛
��v.j // � .Œv.j /��v.j /�˛

/.Œv
.j /
y˛ �

�v.j //�

D fŒv.j /��; v.j /g C Œ.Œv.j /��v.j /y˛ /.Œv
.j /
�˛
��v.j // � .Œv.j /��v.j /�˛

/.Œv
.j /
y˛ �

�v.j //�

D fŒv.j /��; v.j /g � Œ.Œv.j /��v.j /y˛ /.Œv
.j /��v.j /�˛

/ � .Œv.j /��v.j /�˛
/.Œv.j /��v.j /y˛ /�

D fŒv.j /��; v.j /g:
(4.17)

Formulae (4.16) and (4.17) imply formula (1.20).

5. U.1/ connection

In the preceding Sections 2–4 we presented technical details of the construction of
the propagator. We saw that the eigenvectors of the principal symbol, v.j /.x; �/,
play a major role in this construction. As pointed out in Section 1, each of these
eigenvectors is defined up to a U.1/ gauge transformation (1.18) and (1.19). In the
end, the full symbols (1.11) of our oscillatory integrals U .j /.t / do not depend on
the choice of gauge for the eigenvectors v.j /.x; �/. However, the effect of the gauge
transformation (1.18) and (1.19) is not as trivial as it may appear at first sight. We
will demonstrate in this section that the gauge transformation (1.18) and (1.19) shows
up, in the form of invariantly defined curvature, in the lower order terms u.j /�1 .t I y; �/
of the symbols of our oscillatory integrals U .j /.t /. More precisely, we will show
that the RHS of formula (1.20) is the scalar curvature of a connection associated with
the gauge transformation (1.18) and (1.19). Further on in this section, until the very
last paragraph, the index j enumerating eigenvalues and eigenvectors of the principal
symbol is assumed to be fixed.

Consider a smooth curve � � T 0M connecting points .y; �/ and .x; �/. We write
this curve in parametric form as .z.t/; �.t //, t 2 Œ0; 1�, so that .z.0/; �.0// D .y; �/

and .z.1/; �.1// D .x; �/. Put

w.t/
defD ei�.t/v.j /.z.t/; �.t // ; (5.1)

where � W Œ0; 1� ! R is an unknown function which is to be determined from the
condition

iw� Pw D 0 (5.2)
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with the dot indicating the derivative with respect to the parameter t . Substituting (5.1)
into (5.2) we get an ordinary differential equation for � which is easily solved, giving

�.1/ D �.0/C
Z 1

0

. Pz˛.t / P˛.z.t/; �.t //C P�� .t /Q�.z.t/; �.t /// dt

D �.0/C
Z
	

.P˛dz
˛ CQ�d�� / ;

(5.3)

where
P˛

defD i Œv.j /��v.j /z˛ ; Q� defD i Œv.j /��v.j /
��
: (5.4)

Note that the 2n-component real quantity .P˛; Q� / is a covector field (1-form) on
T 0M . This quantity already appeared in Section 1 as formula (1.21).

Put

f .y; �/
defD ei�.0/;

f .x; �/
defD ei�.1/;

and rewrite formula (5.3) as

f .x; �/ D f .y; �/ ei
R

� .P˛dz
˛CQ�d�� /: (5.5)

Let us identify the group U.1/ with the unit circle in the complex plane, i.e. with
f 2 C, jf j D 1. We see that formulae (5.5) and (5.4) give us a rule for the parallel
transport of elements of the group U.1/ along curves in T 0M . This is the natural U.1/
connection generated by the normalised field of columns of complex-valued scalars

v.j /.z; �/ D .v
.j /
1 .z; �/ : : : v

.j /
m .z; �//

T : (5.6)

Recall that the � appearing in formula (5.5) is a curve connecting points .y; �/
and .x; �/, whereas the v.j /.z; �/ appearing in formulae (5.4) and (5.6) enters our
construction as an eigenvector of the principal symbol of our m �m matrix pseudo-
differential operator A.

In practice, dealing with a connection is not as convenient as dealing with the
covariant derivative r. The covariant derivative corresponding to the connection (5.5)
is determined as follows. Let us view the .x; �/ appearing in formula (5.5) as a variable
which takes values close to .y; �/, and suppose that the curve � is a short straight (in
local coordinates) line segment connecting the point .y; �/ with the point .x; �/. We
want the covariant derivative of our function f .x; �/, evaluated at .y; �/, to be zero.
Examination of formula (5.5) shows that the unique covariant derivative satisfying
this condition is

r˛ defD @=@x˛ � iP˛.x; �/ and r� defD @=@�� � iQ� .x; �/: (5.7)
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We define the curvature of our U.1/ connection as

R
defD �i

 r˛rˇ � rˇr˛ r˛rı � rır˛
r�rˇ � rˇr� r�rı � rır�

!
: (5.8)

It may seem that the entries of the .2n/� .2n/matrix (5.8) are differential operators.
They are, in fact, operators of multiplication by “scalar functions”. Namely, the more
explicit form of (5.8) is

R D

0
BBB@
@P˛

@xˇ
� @Pˇ

@x˛
@P˛

@�ı
� @Qı

@x˛

@Q�

@xˇ
� @Pˇ

@��

@Q�

@�ı
� @Qı

@��

1
CCCA : (5.9)

The .2n/ � .2n/ - component real quantity (5.9) is a rank 2 covariant antisymmetric
tensor (2-form) on T 0M . It is an analogue of the electromagnetic tensor.

Substituting (5.4) into (5.9) we get an expression for curvature in terms of the
eigenvector of the principal symbol

R D i

0
@Œv.j /xˇ �

�v.j /x˛ � Œv.j /x˛ �
�v.j /
xˇ Œv

.j /

�ı
��v.j /x˛ � Œv.j /x˛ �

�v.j /
�ı

Œv
.j /

xˇ �
�v.j /
��

� Œv.j /
��
��v.j /

xˇ Œv
.j /

�ı
��v.j /

��
� Œv.j /

��
��v.j /

�ı

1
A : (5.10)

Examination of formula (5.10) shows that, as expected, curvature is invariant under
the gauge transformation (1.18) and (1.19).

It is natural to take the trace of the upper right block in (5.8) which, in the nota-
tion (1.16), gives us

� i.r˛r˛ � r˛r˛/ D �ifŒv.j /��; v.j /g: (5.11)

Thus, we have shown that the RHS of formula (1.20) is the scalar curvature of our
U.1/ connection.

We end this section by proving, as promised in Section 1, formula (1.22) without
referring to microlocal analysis. In the following arguments we use our standard
notation for the orthogonal projections onto the eigenspaces of the principal symbol,
i.e. we write P .k/

defD v.k/Œv.k/��. We have trfP .j /; P .j /g D 0 and
P
l P

.l/ D I

which implies

0 D
X
l;j

tr.P .l/fP .j /; P .j /g/

D
X
j

tr.P .j /fP .j /; P .j /g/C
X

l;j W l¤j
tr.P .l/fP .j /; P .j /g/:

(5.12)
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But, according to formula (4.15), for l ¤ j we have

tr.P .l/fP .j /; P .j /g/ D � tr.P .j /fP .l/; P .l/g/;
so the expression in the last sum in the RHS of (5.12) is antisymmetric in the indices
l; j , which implies that this sum is zero. Hence, formula (5.12) can be rewritten asX

j

tr.P .j /fP .j /; P .j /g/ D 0:

It remains only to note that, according to formula (4.17), tr.P .j /fP .j /; P .j /g/ D
fŒv.j /��; v.j /g.

6. Singularity of the propagator at t D 0

Following the notation of [18], we denote by

F�!t Œf .�/� D Of .t/ D
Z
e�it�f .�/ d�

the one-dimensional Fourier transform and by

F �1
t!�Œ

Of .t/� D f .�/ D .2	/�1
Z
eit� Of .t/ dt

its inverse.
Suppose that we have a Hamiltonian trajectory .x.j /.t I y; �/; �.j /.t I y; �// and a

real number T > 0 such that x.j /.T I y; �/ D y. We will say in this case that we have
a loop of length T originating from the point y 2 M .

Remark 6.1. There is no need to consider loops of negative length T because, given
a T > 0, we have x.j /.T I y; �C/ D y for some �C 2 T 0

yM if and only if we have

x.j /.�T I y; ��/ D y for some �� 2 T 0
yM . Indeed, it suffices to relate the �˙ in

accordance with �� D �.j /.˙T I y; �˙/.

Denote by T .j / � R the set of lengths T > 0 of all possible loops generated
by the Hamiltonian h.j /. Here “all possible” refers to all possible starting points
.y; �/ 2 T 0M of Hamiltonian trajectories. It is easy to see that 0 62 T .j /. We put

T.j /
defD
8<
:

inf T .j / if T .j / ¤ ;;
C1 if T .j / D ;:
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In the Riemannian case (i.e. the case when the Hamiltonian is a square root of
a quadratic polynomial in �) it is known, see [14], and [12], that there is a loop
originating from every point of the manifold M and, moreover, there is an explicit
estimate from above for the number T.j /. We are not aware of similar results for
general Hamiltonians.

We also define
T

defD min
jD1;:::;mC

T.j /:

Remark 6.2. Note that negative eigenvalues of the principal symbol, i.e. Hamilto-
nians h.j /.x; �/ with negative index j D �1; : : : ;�m�, do not affect the asymp-
totic formulae we are about to derive. This is because we are dealing with the case
� ! C1 rather than � ! �1.

Denote by
u.t; x; y/

defD
X
k

e�it�kvk.x/Œvk.y/�
� (6.1)

the integral kernel of the propagator (1.1). The quantity (6.1) can be understood as a
distribution in the variable t 2 R depending on the parameters x; y 2 M .

The main result of this section is the following

Lemma 6.1. Let O� W R ! C be an infinitely smooth function such that

supp O� � .�T;T/; (6.2)

O�.0/ D 1; (6.3)

O�0.0/ D 0: (6.4)

Then, uniformly over y 2 M , we have

F �1
t!�Œ O�.t/ tr u.t; y; y/� D n a.y/ �n�1 C .n� 1/ b.y/ �n�2 CO.�n�3/ (6.5)

as � ! C1. The densities a.y/ and b.y/ appearing in the RHS of formula (6.5)
are defined in accordance with formulae (1.23) and (1.24).

Proof. Denote by .S�
yM/.j / the .n� 1/-dimensional unit cosphere in the cotangent

fibre defined by the equation h.j /.y; �/ D 1 and denote by d.S�
yM/.j / the surface

area element on .S�
yM/.j / defined by the condition d� D d.S�

yM/.j / dh.j /. The
latter means that we use spherical coordinates in the cotangent fibre with the Hamil-
tonian h.j / playing the role of the radial coordinate, see Section 1.1.10 of [18] for
details. In particular, as explained in Section 1.1.10 of [18], our surface area element
d.S�

yM/.j / is expressed via the Euclidean surface area element as

d.S�
yM/.j / D

� nX
˛D1

.h.j /�˛
.y; �//2

��1=2 � Euclidean surface area element.
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Denote also
μ.S�

yM/.j /
defD .2	/�n d.S�

yM/.j /:

According to Corollary 4.1.5 from [18] we have uniformly over y 2 M
F �1
t!�Œ O�.t/ tr u.t; y; y/�

D
mCX
jD1

.c.j /.y/ �n�1 C d .j /.y/ �n�2 C e.j /.y/ �n�2/CO.�n�3/;
(6.6)

where

c.j /.y/ D
Z

.S�
yM/.j /

tr u.j /0 .0I y; �/ μ.S�
yM/.j /; (6.7)

d .j /.y/

D .n � 1/
Z

.S�
yM/.j /

tr
�

� i Pu.j /0 .0I y; �/

C i

2
fu.j /0 jtD0 ; h.j /g.y; �/

�
μ.S�

yM/.j /;

(6.8)

and

e.j /.y/ D
Z

.S�
yM/.j /

trŒU .j /.0/�sub.y; �/μ.S
�
yM/.j /: (6.9)

In the previous equations, u.j /0 .t I y; �/ is the principal symbol of the oscillatory

integral (2.1) and Pu.j /0 .t I y; �/ is its time derivative. Note that in writing the term
with the Poisson bracket in (6.8) we took account of the fact that Poisson brackets
in [18] and in the current paper have opposite signs.

Observe that the integrands in formulae (6.7) and (6.8) are positively homogeneous
in � of degree 0, whereas the integrand in formula (6.9) is positively homogeneous
in � of degree �1. In order to have the same degree of homogeneity, we rewrite
formula (6.9) in equivalent form

e.j /.y/ D
Z

.S�
yM/.j /

.h.j / trŒU .j /.0/�sub/.y; �/ μ.S
�
yM/.j /: (6.10)

Switching from surface integrals to volume integrals with the help of eq. (1.1.15)
from [18], we rewrite formulae (6.7) and (6.8) and (6.10) as

c.j /.y/ D n

Z
h.j /.y;�/<1

tr u.j /0 .0I y; �/ μ�; (6.11)
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d .j /.y/

D n.n � 1/
Z

h.j /.y;�/<1

tr
�

� i Pu.j /0 .0I y; �/C i

2
fu.j /0 jtD0 ; h.j /g.y; �/

�
μ�;

(6.12)

and

e.j /.y/ D n

Z
h.j /.y;�/<1

.h.j / trŒU .j /.0/�sub/.y; �/ μ�: (6.13)

Substituting formulae (1.12) and (1.14) into formulae (6.11) and (6.12) we get

c.j /.y/ D n

Z
h.j /.y;�/<1

μ�; (6.14)

and

d .j /.y/

D �n.n � 1/
Z

h.j /.y;�/<1

�
Œv.j /��Asubv

.j /

� i

2
fŒv.j /��; A1 � h.j /; v.j /g

�
.y; �/ μ�:

(6.15)

Substituting formula (1.20) into formula (6.13) we get

e.j /.y/ D �n i
Z

h.j /.y;�/<1

.h.j /fŒv.j /��; v.j /g/.y; �/ μ�: (6.16)

Substituting formulae (6.14)–(6.16) into formula (6.6) we arrive at (6.5).

Remark 6.3. The proof of Lemma 6.1 given above was based on the use of Corol-
lary 4.1.5 from [18]. In the actual statement of Corollary 4.1.5 in [18] uniformity in
y 2 M was not mentioned because the authors were dealing with a manifold with a
boundary. Uniformity reappeared in the subsequent Theorem 4.2.1 which involved
pseudodifferential cut-offs separating the point y from the boundary.

7. Mollified spectral asymptotics

Theorem 7.1. Let � W R ! C be a function from Schwartz space �.R/ whose Fourier
transform O� satisfies conditions (6.2)–(6.4). Then, uniformly over x 2 M , we have

Z
e.��; x; x/ �./ d D a.x/ �n C b.x/ �n�1 C

8<
:
O.�n�2/ if n � 3;

O.ln �/ if n D 2;
(7.1)
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as � ! C1. The densities a.x/ and b.x/ appearing in the RHS of formula (7.1)
are defined in accordance with formulae (1.23) and (1.24).

Our spectral function e.�; x; x/ was initially defined only for � > 0, see for-
mula (1.4). We extend the definition to the whole real line by setting

e.�; x; x/
defD 0 for � � 0:

Proof. Denote by e0.�; x; x/ the derivative, with respect to the spectral parameter, of
the spectral function. Here “derivative” is understood in the sense of distributions.
The explicit formula for e0.�; x; x/ is

e0.�; x; x/ D
C1X
kD1

kvk.x/k2 ı.� � �k/: (7.2)

Formula (7.2) gives usZ
e0.� � ; x; x/ �./ d D

C1X
kD1

kvk.x/k2 �.� � �k/: (7.3)

Formula (7.3) implies, in particular, that, uniformly over x 2 M , we haveZ
e0.� � ; x; x/ �./ d D O.j�j�1/ as � ! �1; (7.4)

where O.j�j�1/ is shorthand for “tends to zero faster than any given inverse power
of j�j”.

Formula (7.3) can also be rewritten asZ
e0.� � ; x; x/ �./ d D F �1

t!�Œ O�.t/ tr u.t; x; x/��
X
k�0

kvk.x/k2 �.� � �k/;
(7.5)

where the distribution u.t; x; y/ is defined in accordance with formula (6.1). Clearly,
we have X

k�0
kvk.x/k2 �.� � �k/ D O.��1/ as � ! C1: (7.6)

Formulae (7.5) and (7.6) and Lemma 6.1 imply that, uniformly over x 2 M , we haveZ
e0.� � ; x; x/ �./ d

D n a.x/ �n�1 C .n � 1/ b.x/ �n�2 CO.�n�3/ as � ! C1:

(7.7)

It remains to note that

d

d�

Z
e.� � ; x; x/ �./ d D

Z
e0.� � ; x; x/ �./ d : (7.8)

Formulae (7.8), (7.4), and (7.7) imply (7.1).
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Theorem 7.2. Let � W R ! C be a function from Schwartz space �.R/ whose Fourier
transform O� satisfies conditions (6.2)–(6.4). Then we have

Z
N.� � / �./ d D a �n C b �n�1 C

8<
:
O.�n�2/ if n � 3;

O.ln �/ if n D 2;
(7.9)

as � ! C1. The constants a and b appearing in the RHS of formula (7.9) are
defined in accordance with formulae (1.8), (1.23), (1.9), and (1.24).

Proof. Formula (7.9) follows from formula (7.1) by integration over M , see also
formula (1.5).

In stating Theorems 7.1 and 7.2 we assumed the mollifier � to be complex-valued.
This was done for the sake of generality but may seem unnatural when mollifying
real-valued functions e.�; x; x/ andN.�/. One can make our construction look more
natural by dealing only with real-valued mollifiers �. Note that if the function � is
real-valued and even then its Fourier transform O� is also real-valued and even and,
moreover, condition (6.4) is automatically satisfied.

8. Unmollified spectral asymptotics

In this section we derive asymptotic formulae for the spectral function e.�; x; x/
and the counting function N.�/ without mollification. The section is split into two
subsections: in the first we derive one-term asymptotic formulae and in the second
two-term asymptotic formulae.

8.1. One-term spectral asymptotics.

Theorem 8.1. We have, uniformly over x 2 M ,

e.�; x; x/ D a.x/ �n CO.�n�1/ (8.1)

as � ! C1.

Proof. The result in question is an immediate consequence of formulae (7.8), (7.7),
and Theorem 7.1 from the current paper and Corollary B.2.2 from [18].

Theorem 8.2. We have
N.�/ D a�n CO.�n�1/ (8.2)

as � ! C1.

Proof. Formula (8.2) follows from formula (8.1) by integration over M , see also
formula (1.5).
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8.2. Two-term spectral asymptotics. Up till now, in Section 7 and subsection 8.1,
our logic was to derive asymptotic formulae for the spectral function e.�; x; x/ first
and then obtain corresponding asymptotic formulae for the counting function N.�/
by integration over M . Such an approach will not work for two-term asymptotics
because the geometric conditions required for the existence of two-term asymptotics
of e.�; x; x/ and N.�/ will be different: for e.�; x; x/ the appropriate geometric
conditions will be formulated in terms of loops, whereas for N.�/ the appropriate
geometric conditions will be formulated in terms of periodic trajectories.

Hence, in this subsection we deal with the spectral function e.�; x; x/ and the
counting function N.�/ separately.

In what follows the point y 2 M is assumed to be fixed.

Denote by ….j /
y the set of normalised (h.j /.y; �/ D 1) covectors � which serve

as starting points for loops generated by the Hamiltonian h.j /. Here “starting point”
refers to the starting point of a Hamiltonian trajectory .x.j /.t I y; �/; �.j /.t I y; �//
moving forward in time (t > 0), see also Remark 6.1.

The reason we are not interested in large negative t is that the refined Fourier
Tauberian theorem we will be applying, Theorem B.5.1 from [18], does not require
information regarding large negative t . And the underlying reason for the latter is the
fact that the function we are studying, e.�; x; x/ (and, later, N.�/), is real-valued.
The real-valuedness of the function e.�; x; x/ implies that its Fourier transform,
Oe.t; x; x/, possesses the symmetry Oe.�t; x; x/ D Oe.t; x; x/.

The set ….j /
y is a subset of the .n � 1/-dimensional unit cosphere .S�

yM/.j / and
the latter is equipped with a natural Lebesgue measure, see proof of Lemma 6.1. It
is known, see Lemma 1.8.2 in [18], that the set ….j /

y is measurable.

Definition 8.1. A point y 2 M is said to be nonfocal if for each j D 1; : : : ; mC the
set ….j /

y has measure zero.

With regards to the range of the index j in Definition 8.1, as well as in subsequent
Definitions 8.2–8.4, see Remark 6.2.

We call a loop of length T > 0 absolutely focused if the function

jx.j /.T I y; �/� yj2

has an infinite order zero in the variable �, and we denote by .…a
y/
.j / the set of

normalised (h.j /.y; �/ D 1) covectors � which serve as starting points for absolutely
focused loops generated by the Hamiltonian h.j /. It is known, see Lemma 1.8.3
in [18], that the set .…a

y/
.j / is measurable and, moreover, the set….j /

y n .…a
y/
.j / has

measure zero. This allows us to reformulate Definition 8.1 as follows.

Definition 8.2. A point y 2 M is said to be nonfocal if for each j D 1; : : : ; mC the
set .…a

y/
.j / has measure zero.
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In practical applications it is easier to work with Definition 8.2 because the set
.…a

y/
.j / is usually much thinner than the set ….j /

y .
In order to derive a two-term asymptotic formula for the spectral function e.�; x; x/

we need the following lemma (compare with Lemma 6.1).

Lemma 8.1. Suppose that the pointy 2 M is nonfocal. Then for any complex-valued
function O� 2 C1

0 .R/ with supp O� � .0;C1/ we have

F �1
t!�Œ O�.t/ tr u.t; y; y/� D o.�n�1/ (8.3)

as � ! C1.

Proof. The result in question is a special case of Theorem 4.4.9 from [18].

The following theorem is our main result regarding the spectral functione.�; x; x/.

Theorem 8.3. If the point x 2 M is nonfocal then the spectral function e.�; x; x/
admits the two-term asymptotic expansion (1.6) as � ! C1.

Proof. The result in question is an immediate consequence of formula (7.7), Theo-
rem 7.1 and Lemma 8.1 from the current paper and Theorem B.5.1 from [18].

We now deal with the counting function N.�/.
Suppose that we have a Hamiltonian trajectory .x.j /.t I y; �/; �.j /.t I y; �// and

a real number T > 0 such that .x.j /.T I y; �/; �.j /.T I y; �// D .y; �/. We will
say in this case that we have a T -periodic trajectory originating from the point
.y; �/ 2 T 0M .

Denote by .S�M/.j / the unit cosphere bundle, i.e. the .2n� 1/-dimensional sur-
face in the cotangent bundle defined by the equationh.j / .y; �/ D 1. The unit cosphere
bundle is equipped with a natural Lebesgue measure: the .2n�1/-dimensional surface
area element on .S�M/.j / is dy d.S�

yM/.j / where d.S�
yM/.j / is the .n�1/-dimen-

sional surface area element on the unit cosphere .S�
yM/.j /, see proof of Lemma 6.1.

Denote by ….j / the set of points in .S�M/.j / which serve as starting points for
periodic trajectories generated by the Hamiltonian h.j /. It is known, see Lemma 1.3.4
in [18], that the set ….j / is measurable.

Definition 8.3. We say that the nonperiodicity condition is fulfilled if for each j D
1; : : : ; mC the set ….j / has measure zero.

We call a T -periodic trajectory absolutely periodic if the function

jx.j /.T I y; �/� yj2 C j�.j /.T I y; �/� �j2

has an infinite order zero in the variables .y; �/, and we denote by .…a/.j / the set of
points in .S�M/.j / which serve as starting points for absolutely periodic trajectories
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generated by the Hamiltonian h.j /. It is known, see Corollary 1.3.6 in [18], that the
set .…a/.j / is measurable and, moreover, the set ….j / n .…a/.j / has measure zero.
This allows us to reformulate Definition 8.3 as follows.

Definition 8.4. We say that the nonperiodicity condition is fulfilled if for each j D
1; : : : ; mC the set .…a/.j / has measure zero.

In practical applications it is easier to work with Definition 8.4 because the set
.…a/.j / is usually much thinner than the set ….j /.

In order to derive a two-term asymptotic formula for the counting function N.�/
we need the following lemma.

Lemma 8.2. Suppose that the nonperiodicity condition is fulfilled. Then for any
complex-valued function O� 2 C1

0 .R/ with supp O� � .0;C1/ we haveZ
M

F �1
t!�Œ O�.t/ tr u.t; y; y/� dy D o.�n�1/ (8.4)

as � ! C1.

Proof. The result in question is a special case of Theorem 4.4.1 from [18].

The following theorem is our main result regarding the counting function N.�/.

Theorem 8.4. If the nonperiodicity condition is fulfilled then the counting function
N.�/ admits the two-term asymptotic expansion (1.7) as � ! C1.

Proof. The result in question is an immediate consequence of formulae (1.5) and (7.7),
Theorem 7.1, and Lemma 8.2 from the current paper and Theorem B.5.1 from [18].

9. U.m/ invariance

We prove in this section that the RHS of formula (1.24) is invariant under unitary
transformations (1.25), and (1.26) of our operatorA. The arguments presented in this
section bear some similarity to those from Section 5, the main difference being that
the unitary matrix-function in question is now a function on the base manifold M
rather than on T 0M .

Fix a point x 2 M and an index j (index enumerating the eigenvalues and
eigenvectors of the principal symbol) and consider the expressionZ

h.j /.x;�/<1

�
Œv.j /��Asubv

.j / � i

2
fŒv.j /��; A1 � h.j /; v.j /g

C i

n � 1
h.j /fŒv.j /��; v.j /g

�
.x; �/ d�;

(9.1)
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compare with (1.24). We will show that this expression is invariant under the trans-
formation (1.25) and (1.26).

The transformation (1.25) and (1.26) induces the following transformation of the
principal and subprincipal symbols of the operator A:

A1 7�! RA1R
�; (9.2)

Asub 7�! RAsubR
� C i

2
.Rx˛ .A1/�˛

R� �R.A1/�˛
R�
x˛/: (9.3)

The eigenvalues of the principal symbol remain unchanged, whereas the eigenvectors
transform as

v.j / 7�! Rv.j /: (9.4)

Substituting formulae (9.2)–(9.4) into the RHS of (9.1) we conclude that the increment
of the expression (9.1) isZ
h.j /.x;�/<1

� i
2
Œv.j /��.R�Rx˛ .A1/�˛

� .A1/�˛
R�
x˛R/v

.j /

� i

2
.Œv.j /��R�

x˛R.A1 � h.j //v.j /
�˛

� Œv.j /
�˛
��.A1 � h.j //R�Rx˛v.j //

C i

n � 1
h.j /.Œv.j /��R�

x˛Rv
.j /

�˛
� Œv.j /

�˛
��R�Rx˛v.j //

�
.x; �/ d�;

which can be rewritten as

� i

2

Z
h.j /.x;�/<1

�
h
.j /

�˛
.Œv.j /��R�

x˛Rv
.j / � Œv.j /��R�Rx˛v.j //

� 2

n � 1h
.j /.Œv.j /��R�

x˛Rv
.j /

�˛
� Œv.j /

�˛
��R�Rx˛v.j //

�
.x; �/ d�:

In view of the identity R�R D I the above expression can be further simplified, so
that it reads now

i

Z
h.j /.x;�/<1

�
h
.j /

�˛
Œv.j /��R�Rx˛v.j /

� 1

n � 1h
.j /.Œv.j /��R�Rx˛v

.j /

�˛
C Œv

.j /

�˛
��R�Rx˛v.j //

�
.x; �/ d�:

(9.5)

Denote
B˛.x/

defD �iR�Rx˛

and observe that this set of matrices, enumerated by the tensor index˛ running through
the values 1; : : : ; n, is Hermitian. Denote also

b˛.x; �/
defD Œv.j /��B˛v.j /
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and observe that these b˛ are positively homogeneous in � of degree 0. Then the
expression (9.5) can be rewritten as

�
Z

h.j /.x;�/<1

�
h
.j /

�˛
b˛ � 1

n � 1 h
.j / @b˛

@�˛

�
.x; �/ d�:

Lemma 4.1.4 and formula (1.1.15) from [18] tell us that this expression is zero.

10. Spectral asymmetry

In this section we deal with the special case when the operator A is differential (as
opposed to pseudodifferential). Our aim is to examine what happens when we change
the sign of the operator. In other words, we compare the original operator A with the
operator

zA defD �A:
In theoretical physics the transformation A 7! �A would be interpreted as time
reversal, see equation (1.3).

It is easy to see that for a differential operator the numberm (number of equations
in our system) has to be even and that the principal symbol has to have the same
number of positive and negative eigenvalues. In the notation of Section 1 this fact
can be expressed as m D 2mC D 2m�.

It is also easy to see that the principal symbols of the two operators, A and zA, and
the eigenvalues and eigenvectors of the principal symbols are related as

A1.x; �/ D zA1.x;��/; (10.1)

h.j /.x; �/ D Qh.j /.x;��/; (10.2)

and

v.j /.x; �/ D Qv.j /.x;��/; (10.3)

whereas the subprincipal symbols are related as

Asub.x/ D � zAsub.x/: (10.4)

Formulae (1.23), (1.24), (1.17), (1.16), and (10.1)–(10.4) imply

a.x/ D Qa.x/ and b.x/ D � Qb.x/: (10.5)

Substituting (10.5) into (1.8) and (1.9) we get

a D Qa and b D � Qb: (10.6)
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Formulae (1.7) and (10.6) imply that the spectrum of a generic first order differ-
ential operator is asymmetric about � D 0. This phenomenon is known as spectral
asymmetry, see [1], [2], [3], and [4].

If we square our operator A and consider the spectral problem A2v D �2v, then
the terms ˙b�n�1 cancel out and the second asymptotic coefficient of the counting
function (as well as the spectral function) of the operator A2 turns to zero. This is in
agreement with the known fact that for an even order semi-bounded matrix differential
operator acting on a manifold without boundary the second asymptotic coefficient of
the counting function is zero, see Section 6 of [20] and [15].

11. Bibliographic review

To our knowledge, the first publication on the subject of two-term spectral asymptotics
for systems was Ivrii’s 1980 paper [6] in Section 2 of which the author stated, without
proof, a formula for the second asymptotic coefficient of the counting function. In a
subsequent 1982 paper [7] Ivrii acknowledged that the formula from [6] was incorrect
and gave a new formula, labelled (0.6), followed by a “proof”. In his 1984 Springer
Lecture Notes [8] Ivrii acknowledged on page 226 that both his previous formulae
for the second asymptotic coefficient were incorrect and stated, without proof, yet
another formula.

Roughly at the same time Rozenblyum [13] also stated a formula for the second
asymptotic coefficient of the counting function of a first order system.

The formulae from [6], [7], and [13] are fundamentally flawed because they are
proportional to the subprincipal symbol. As our formulae (1.9) and (1.24) show, the
second asymptotic coefficient of the counting function may be nonzero even when
the subprincipal symbol is zero. This illustrates, yet again, the difference between
scalar operators and systems.

The formula on page 226 of [8] gives an algorithm for the calculation of the
correction term designed to take account of the effect described in the previous para-
graph. This algorithm requires the evaluation of a limit of a complicated expression
involving the integral, over the cotangent bundle, of the trace of the symbol of the
resolvent of the operatorA constructed by means of pseudodifferential calculus. This
algorithm was revisited in Ivrii’s 1998 book, see formulae (4.3.39) and (4.2.25) in [9].

The next contributor to the subject was Safarov who, in his 1989 DSc Thesis [16],
wrote down a formula for the second asymptotic coefficient of the counting function
which was “almost” correct. This formula appears in [16] as formula (2.4). As ex-
plained in Section 1, Safarov lost only the curvature terms � ni

n�1
R
h.j /fŒv.j /��; v.j /g.

Safarov’s DSc Thesis [16] provides arguments which are sufficiently detailed and we
were able to identify the precise point (page 163) at which the mistake occurred.

In 1998 Nicoll rederived [11] Safarov’s formula (1.12) for the principal symbols
of the propagator, using a method slightly different from [16], but stopped short of
calculating the second asymptotic coefficient of the counting function.
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In 2007 Kamotski and Ruzhansky [10] performed an analysis of the propagator of
a first order elliptic system based on the approach of Rozenblyum [13], but stopped
short of calculating the second asymptotic coefficient of the counting function.

One of the authors of this paper, Vassiliev, considered systems in Section 6 of
his 1984 paper [20]. However, that paper dealt with systems of a very special type:
differential (as opposed to pseudodifferential) and of even (as opposed to odd) order.
In this case the second asymptotic coefficients of the counting function and the spectral
function vanish, provided the manifold does not have a boundary.
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