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by examples
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Abstract. Asymptotic integration has turned out to be a powerful method to determine the
deficiency indices and spectra of higher order differential operators. Since the general method
is by now well established we shall only outline this method and illustrate typical results and
properties via examples. In addition to the calculation of deficiency indices, the location and
multiplicity of the absolutely continuous spectrum will be found as well as showing the absence
of singular continuous spectrum. Finite singular points will also be considered. For unbounded
coefficients new results arise from competing terms of the operators.
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1. Introduction

In several papers the authors have investigated the spectral theory of higher order
differential operators by means of asymptotic integration [2], [6], [3], [4], [8], [9],
and [10]. These papers amply demonstrate the power of this method when applied
to the analysis of the deficiency index, essential spectrum and absolutely continuous
spectrum. Results from the far better known and simpler case of Sturm–Liouville
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operators suggest that most results are close to optimal with respect to their demands
of smoothness and decay conditions.

This study is devoted to the spectral analysis of even order differential operators
of the form

Ly D w�1
n nX

kD0

.�1/k.pky
.k//.k/ � i

nX
j D1

.�1/j ..qjy
.j //.j �1/ C .qjy

.j �1//.j //
o
;

(1.1)
and their odd order counterparts

Ly D w�1
n
.�1/ni.qnC1.qnC1y

.n//0/.n/ C p0y C
nX

kD1

.�1/k..pky
.k/y.k//.k/

� i.qky
.k//.k�1/ C .qky

.k�1//.k//
o
:

(1.2)

These operators are supposed to act on the weighted L2-Hilbert spaces

L2
w D L2..0;1/; w/;

where the scalar product is defined with the weight functionw. We will also consider
the problem on L2..�1;1/; w/ by means of the decomposition method developed
in [8]. The coefficients are assumed to be real valued with a decomposition

f D f0 C f1 C f2 C f3; f D pk; qj ; (1.3)

where f0 is constant, f1 twice differentiable, and f2 once differentiable. In addition
we require f1; f2; f

0
1 D o.1/; f 00

1 ; f
0

2; f3 2 L1:

In our examples, however, we will hardly use the full generality of (1.3). For

unbounded coefficients (1.3) will be modified to conditions on f .k/

jf j ; k D 1; 2.
To give a complete overview of the spectral properties of higher order is a hopeless

task because of the multitude of cases [17] and [21]. Even the rather narrow class
of fourth order operators exhibits a variety of spectral phenomena [2] and [6]. Thus
we shall rather illustrate and interpret different spectral phenomena with the aid of
examples along with comments on the general situation.

2. The methods

The analysis in this paper will always follow the procedure developed in [2], [6], [3],
[4], [8], [9], and [10]. Thus we follow the steps: systems formulation, diagonalization
and transformations, analysis of the dichotomy condition, asymptotic integration, The
M-matrix, deficiency index, and spectra.
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2.1. Systems formulation. It is well known that higher order differential equations
can be converted into first order systems. This transformation preserves linearity. For
linear equations such as (1.1) or (1.2) it is most advantageous to employ quasideriva-
tives in order to minimize the demands on the differentiability of the coefficients. In
the even order case, (1.1) they are defined by [24] and [25]:

yŒk� D y.k/ for 0 � k � n � 1;
yŒn� D pny

.n/ � iqny
.n�1/;

yŒnC1� D �.y.n//0 C i.qn=pn/ y
Œn� C .pn�1 � .q2

n=pn//y
.n�1/ � iqn�1y

.n�2/;

yŒnCk� D �yŒnCk�1�0 C pn�ky
Œn�k� C i.qn�kC1y

.n�kC1/ � qn�ky
n�k�1/;

2 � k � n � 1:

(2.1)

As one can see, the higher derivatives are made up from pieces of the operator.
Then

wLy D �.yŒ2n�1�/0 C iq1y
0 C p0y:

For odd order equations the quasiderivatives and systems formulation is given
in [8]. So we restrict ourselves here to the even order case mainly. In order to
write (1.1) in systems form let

u D .yŒ0�; � � � ; yŒn�1�; yŒ2n�1�; � � � ; yŒn�/:

Then
Ly D zy

becomes

u0 D
 
A B

C �A�

!
u D Cu: (2.2)

The non zero matrix elements of the n by n matrices are given by

Ai;iC1 D 1; An;n D i
qn

pn

;

Bnn D p�1
n ;

C11 D p0 � zw;

Cn;n D pn�1 � q2
n

pn

;

Ci;i D pi�1; i D 2; : : : ; n� 1;
Cj;j C1 D �Cj C1;j D iqj :
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With the aid of the quasiderivatives the domain of the maximal operator T � is defined
by

DT � D fy 2 L2
w j yŒk� is absolutely continuous for 0 � k � 2n� 1; Ly 2 L2

wg:
(2.3)

The corresponding minimal operator T is then .T �/�; see [25], [17], and [21].
The minimal operator T is symmetric and its deficiency indices are defined by

def T D .dim NT ��i ; dim NT �Ci /; N D null space. (2.4)

If the deficiency indices agree, T will have selfadjoint extensions, which will
always be denoted byH . One obtains these extensions by restricting T � by boundary
conditions.

Hinton and Shaw [18] and Hinton and Schneider [19] have shown how to write
the Hilbert space theory of L or T or systems like (2.2) directly in terms of such
systems. In fact they study more general Hamiltonian systems:

Ju0.x/ D ŒzA.x/C B.x/�u.x/; J D
 
0 �1n

1n 0

!
: (2.5)

In the case (2.2) one has

B D
 

�C A�

A B

!

and A11 D w and Aij D 0 otherwise. In these papers [18] and [19] they show
that the Hilbert space theory for (1.1), respectively T; T �; is more or less identical
with the Hilbert space theory defined for such systems. For odd order equations (1.2)
the theory can be developed along the same lines, however, the Hamiltonian systems
formulation requires particular care [18]. But finally one is led again to a system of
the form

u0 D Cu:

2.2. The characteristic polynomial. The simplest higher order differential operator
is one with constant coefficients and w D 1 on L2.R/: In this case the Fourier
transform can be used to show that T is unitarily equivalent to multiplication by

P.�/ D
X

pk�
2k C 2

X
qj�

2j �1 (2.6)

in the case of (1.1). For odd order operators (1.2) T is unitarily equivalent to multi-
plication by

P.�/ D q2
nC1�

2nC1 C
X

pk�
2k C 2

X
qj�

2j C1: (2.7)
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We will therefore call P the characteristic polynomial of (1.1), respectively (1.2).
Thus the spectrum of T is given by the range of P on R. In this case the spectrum
�.T / of T is absolutely continuous �ac and the discrete spectrum �d.T / is empty, i.e.

�.T / D �ac.T / D range of P; �d.T / D ;: (2.8)

A little thought shows that the absolutely continuous spectrum of multiplicity k,
�ac.T; k/, is given by

�ac.T; k/ D fz 2 R j P.�/ � z D 0 has exactly k real rootsg: (2.9)

In (2.9) one has to disregard values z for which P.�/ � z D 0 and d
d�

P D 0

for some �. This defines the exceptional set E , which is finite. From a functional
analytic point of view T can be considered as a function of the elementary self-adjoint
operator of differentiation

T0 D i
d

dx
; T D P.T0/: (2.10)

From a differential equation point of view one knows that the eigenfunctions of T
are “plane waves” of the form exp i�x where � is a root of P, i.e.,

Ty D zy; z 2 R; y D
X

ai exp i�ix: (2.11)

Now consider the same constant coefficient operator on Œ0;1/. For (1.1) with all
qj D 0 the sine- or cosine- transform can be used as above. However, if nontrivial
qj are present, there is no easy way out. In fact for the even order operator T one
has def T D .n; n/, yet the Fourier transform does not lead anywhere. Even though
there is a direct way out of this impasse, we shall not pursue this here, because this
approach is bound to fail, when the coefficients are x dependent. For this reason we
shall pursue the analysis of the eigenfunctions of L, respectively T �, because there
is an intimate relationship between spectra and the associated eigenfunction. At least
for Sturm–Liouville, operators one knows the following properties.

Bounded generalized eigenfunctions are associated to the absolutely continuous
spectrum. Subordinate solutions with slow decay belong to the singular continuous
or dense point spectrum. The eigenfunctions of a system (2.2) or more generally

u0 D Cu (2.12)

will be determined by asymptotic integration. For this (2.12) will have to be trans-
formed into Levinson form:

v0 D .ƒ.x/CR.x//v; ƒ.x/ D diag.�1.x/; : : : ; �m.x//; R.x/ 2 L1: (2.13)

First (2.12) has to be diagonalized by determining the eigenvalues and eigenvectors
of C (2.12). Actually all this will only be based on the smooth part

Cs D C0 C C1 C C2
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of C (1.3). Here the part Ci is derived from the decomposition of the coefficients (1.3).
While the eigenvalues are determined by the characteristic polynomial

det.C.x; z/ � �/;
it is more advantageous to work with the characteristic Fourier polynomial

P.x; z; �/ D det.C.x; z/C i�I /: (2.14)

Expansion of the determinant yields with moderate effort in the even order case:

P.x; z; �/ D
nX

kD1

pk.x/�
2k C

nX
j D1

2qj .x/�
2j �1 C .p0 �wz/; (2.15)

respectively,

P.x; z; �/ D q2
nC1�

2nC1 C
nX

kD1

pk.x/�
2k C

nX
j D1

2qj .x/�
2j �1 C.p0 �wz/; (2.16)

in the odd order situation. In the remainder the discussion will be pursued only
for even order operators, because the odd order situation will be almost identical.
In addition define the limiting Fourier polynomial P0.z; �/ by (2.15) with pk ; qj

replaced by their limiting values.

2.3. Diagonalization. If � is an eigenvalue of Cs , the corresponding eigenvector
can be determined easily form the system of quasiderivatives. One just has to replace
y.k/ by �k in the quasiderivatives. In addition the eigenvectors should be normalized
by the factor

M
� 1

2

j D @�P.x; z; �j /
� 1

2

so that the eigenvector �j for the eigenvalue �j is given by

�j .x; z/ D M
� 1

2

j .1; �j ; �
2
j ; : : :/: (2.17)

It is well known that the matrix T formed with the eigenvectors of Cs as columns
diagonalizes Cs , the smooth part of C ;

T �1CsT D diag.�1.x; z/; : : : ; �m.x; s// D ƒ.x; z/; T D .�1; : : : ; �m/; (2.18)

with m D 2n or 2nC 1.
Then the transformed system

T v D u (2.19)

satisfies
v0 D .ƒ � T �1T 0/v: (2.20)
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The term �T �1T 0 arises, because T depends on x. However, if T , respectively the
coefficients of (1.1) or (1.2), are slowly varying, T �1T 0 will be small. The assump-
tions (1.3) for example imply that the off-diagonal matrix elements of .ƒ� T �1T 0/
are square integrable. This is good, but generally not good enough. Thus a second
diagonalization of the differentiable part of .ƒ� T �1T 0/ finally leads to the desired
Levinson form (2.13). One should note that in this case the eigenvalues �i.x; z/may
be taken as the roots of the characteristic polynomial.

2.4. The dichotomy condition. Levinson’s Theorem states that the solutions of
the perturbed system (2.13) almost look like the solutions of the unperturbed sys-
tem, � 0 D ƒ� , if the eigenvalues satisfy the dichotomy condition. In its simplest
form it requires Re.�i .x; z/ � �j .x; z// to be of a constant sign for all x � a and
i ¤ j; i; j D 1; : : : ; m. This condition allows to estimate the solutions of the un-
perturbed system uniformly against each other. The actual dichotomy condition is
a little weaker [14]. In our case this condition has to hold uniformly in the spectral
parameter z for z 2 K . Here K D K".z0/ D fy 2 Cj Im z � 0; jz � z0j < "g
is a small set, which is to be analyzed with respect to its spectral properties for
T , respectively H . To be more precise fix a spectral value z0 2 R so that the
characteristic limiting Fourier polynomial P0 has 2n, respectively 2n C 1, roots.
In the even order case the roots are ˛1 ˙ iˇ; : : : ; ˛r ˙ iˇr ; �2rC1; : : : ; �2n with
˛; ˇ; � real. By continuity these extend to 2n distinct roots of P; ˛1.x; z/ ˙
iˇ1.x; z/; : : : ; ˛r.x; z/ ˙ iˇr .x; z/; �2rC1.x; z/; : : : ; �2n.x; z/. It is now easy to
see that the j̨ .x; z/C i ǰ .x; z/ lead to exponentially decaying and thus square in-
tegrable solutions. Thus the dichotomy condition has to be checked only for the
essentially real eigenvalues �k . Since in first order

�j .x; z0 C i�/ D �j .x; z0/C i.@�P.z0; �j //
�1w�; (2.21)

the dichotomy condition amounts to

@�P0.z0; �j / ¤ @�P0.z0; �k/ for j ¤ k; j; k D 2r C 1; : : : ; 2n: (2.22)

By invoking Bezout’s theorem, it can be shown that (2.22) is violated at most
in a countable set of spectral values z with finitely many accumulation points. For
spectral values z0 outside this exceptional set E Levinson’s theorem shows that the
solutions of the initial equation (2.12) have the form

uk.x; z/ D T .1CB/.ekCrk.x; z// exp

�Z x

a

i�k.t /dt

�
; k D 1; : : : ; 2n; (2.23)

with rk.x; z/ ! 0 as x ! 1 and z 2 K".z0/. Here .1 C B/ stands for the
second diagonalization and ek is the k-th unit vector. For the solutions of (1.1),
respectively (1.2), this implies

yk.x; z/ D M
1
2

k
.x; z/.1C rk.x; z// exp

�
i

Z x

a

�k.t /dt

�
: (2.24)



368 H. Behncke and D. B. Hinton

If the eigenvalues �k are of non real type � D j̨ C i ǰ , it can be shown that the
rk are even analytic in z for z 2 K". This in turn will prevent dense point spectrum
or the accumulation of eigenvalues.

2.5. The M-function. Once the eigenfunctions have been determined, a translation
device is needed that relates properties of the eigenfunctions of a selfadjoint operator
H to that of its spectrum �.H/. For Sturm–Liouville operators Weyl and Titchmarsh
have developed the theory of the m-function as such a tool. This was later extended
by Hinton and Shaw [18] and Hinton and Schneider [19] to Hamiltonian systems as
a theory of the M-matrix. For even order half line problems (1.1) with associated
operator T with defT D .n; n/, the M-matrix is defined as follows. Fix a boundary
condition ˛ D .˛1; ˛2/ at the left hand end point 0. The n by n boundary matrices
satisfy

˛1˛
�
1 C ˛2˛

�
2 D 1n and ˛1˛

�
2 D ˛2˛

�
1 ; (2.25)

and the selfadjoint extension H˛ of T is defined by the domain

D.H˛/ D fu 2 D.T �/ j .˛1; ˛2/u.0/ D 0/g: (2.26)

Let Y˛ be the fundamental matrix of (2.2) with initial conditions

Y˛.0; z/ D
 
˛�

1 �˛�
2

˛�
2 ˛�

1

!
:

Then there exists a unique matrix M˛.z/; Im z > 0; with

Y˛.x; z/

 
1

M˛.z/

!
2 L2

w.0;1/: (2.27)

It turns out that M˛.z/ is analytic in the upper half plane and ImM.z/ � 0, i.e.
M˛ is a matrix valued Herglotz function. In the one dimensional case such functions
are of the form

m.z/ D c1 C c2z C
Z

R
.	 � z/�1d
.	/; c1; c2 2 R; (2.28)

for some measure 
 and any Herglotz function arises in this way. Another form to
generate such functions is through matrix elements of resolvents .H � z/�1 of a
selfadjoint operator H ,

m.z/ D h.H � z/�1x; xi: (2.29)

If in this case x is cyclic for H , the representation (2.28) for m of (2.29) gives just
the spectral measure ofH . In the more general matrix case 
 will be a matrix valued
measure. The measure 
 in (2.28) can be recovered from M by


..a; b�/ D ��1 lim
ı!0C

lim
"!0C

Z �2Cı

�1Cı

Im.M.�C i"//d�: (2.30)
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The density of the absolutely continuous part is then

d
ac.�/ D ��1 lim
"!0C ImM.�C i"/ D ��1 ImM.�C/:

That the M-matrix from (2.29) is given almost by the matrix elements of the resol-
vent can be seen by computing the Greens-function (resolvent) of H . A more direct
way is presented in [22]. There Remling also shows with F˛.x; z/ D Y˛.x; z/

�
1

M

�
;

hF˛.�; z/; F˛.�; z/i D ImM.z/

Im z
; Im z > 0: (2.31)

Here the .i; j /-matrix element is obtained from the scalar product of the i -th
vector with the j -th vector. The systems scalar product in this case is of course
defined via the matrix A, which in our case is just A D diag.w; 0; : : : ; 0/: (2.31) can
be rewritten as

ImM.zC/ D lim
"!0C "hF˛.�; zC C i"/; F˛.�; zC C i"/i; z D zC 2 K \ R D I;

(2.32)
and the existence of finite limits implies already that the spectrum is absolutely contin-
uous in I , if there are not bound states. In this case 1

�
ImM.zC/would be the spectral

density ofH in I . TheF˛ , however, are not so easy to come by. If def T D .n; n/ and
Im z > 0, let V.x; z/ be the n by 2n system of square integrable solutions of (2.2).
Since there are exactly n square integrable solutions, there exists an invertible n by
n matrix C.z/ such that

F˛.x; z/ D Y˛.x; z/

 
1

M˛.x/

!
D V.x; z/C.z/: (2.33)

In this case (2.32) becomes

ImM.zC/ D lim
"!0C "C

�.z/hV.:; z/V .:; z/iC.z/; (2.34)

and the matrix elements on the right hand side should be computed with the function
from (2.24).

Now assume F1; : : : ; Fk are z uniformly square integrable. Then the upper left
hand k by k part in (2.32) vanishes. Since ImM is positive semi-definite only the
lower .n � k/ by .n � k/ block of this matrix can differ from 0. Thus the rank of
ImM.zC/ is n�k. This of course is just the multiplicity of the absolutely continuous
spectrum. In asymptotic integration one has to restrict computations and estimates
quite often to the interval Œa;1/with a large. Remling [22], however, has shown that
such spectral results extend directly to Œ0;1/.

2.6. Spectral results. We can now summarize the key facts. For equation (1.1),
respectively (1.2), determine the systems representation. Fix a set K" of spectral
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values z for which the characteristic polynomial P has only distinct eigenvalues
and for which the dichotomy condition holds. The eigenfunctions for z 2 K are
then given by (2.23). Assume the roots of P for z 2 K \ R are ˛1.x; z/ ˙
iˇ.x; z/; : : : ; ˛r.x; z/ ˙ iˇr .x; z/; �2rC1.x; z/; : : : ; �m.x; z/ with ˛; ˇ; � real and
m D 2n or 2nC 1. Then the j̨ C i ǰ and �k-eigenfunctions are square integrable
for z C i� if d�

dz
> 0. Thus with (1.3) we have the following two cases:

case (1.1): def T D .n; n/I case (1.2): def T D .nC 1; n/: (2.35)

As regards the spectrum we have that, if the square integrable eigenfunctions
uk.x; z/ depend continuously on z for y 2 K; then H has no absolutely continuous
spectrum in I D K \ R0 for z 2 K . Thus the z-uniformly square integrable eigen-
functions contribute at most to the discrete spectrum. Only .z C i�/-eigenfunctions
which lose their square integrability as � ! 0 will contribute to the absolutely con-
tinuous spectrum.

2.7. The decomposition method. Differential operators on R can be handled by
introducing Dirichlet boundary conditions of order 2n, respectively 2n C 1, at 0.
This allows us to consider the operator T1 D TC ˚ T�, where TC and T� are the
restrictions of T . Now TC and T� can be treated as above. One should note that
def T1 D .2n; 2n/ and that any two extensions of T1, of which H is one, have the
same absolutely continuous spectrum. It is also possible to interpret T1 as an operator
of order 4n, respectively 2.2n C 1/, on RC. This shows for the deficiency indices
that

def T D def TC C def T� � .m;m/; m D 2n or 2nC 1: (2.36)

This formula has been known for some time and goes back to Kodaira. As regards
the absolutely continuous spectrum of T , the multiplicity of it is given by the number
of square integrable z-eigensolutions, which lose their square integrability as Im z

tends to 0. So in a sense, the decomposition method applies to the spectrum as well.

3. Operators with bounded coefficients

The above results have the following consequences [3] and [8].

Theorem 3.1. Consider the operators T (1.1) or (1.2) on Œ0;1/ for which the coef-
ficients satisfy the regularity assumptions (1.3). In the even order case the singular
continuous spectrum �sc.H/ ofH is empty and the absolutely continuous spectrum of
H agrees with that of the limiting constant coefficient operator. In particular z 2 R
belongs to the a.c. spectrum H of multiplicity k if the characteristic polynomial
P0 � z has 2k real roots. Odd order operators on R are essentially selfadjoint. They
have no singular continuous spectrum and their absolute continuous spectrum can
be determined by the decomposition method, T D TC ˚T�, and � 2 �ac.H; k/ if TC
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and T� have altogether k independent zC i� eigenfunctions which lose their square
integrability as � ! 0C. Then for even order operators on Œ0;1�; def T D .n; n/

while for odd operators def T D .nC 1; n/ or .n; nC 1/ depending on the sign of
qnC1.

For operators on R use the decomposition method. Note that the coefficients on
RC and R� need not have the same limits. By using the K.L.-transform [7] this result
can be extended considerably [3].

Example 1 (The step potential on L2.R/: Ly D .�1/ny.2n/ C a�Œ0;1/y). The
characteristic polynomial ofTC is�2nCa D z:Only real roots of� of this polynomial
contribute to the absolutely continuous spectrum for which also @

@�
P.�1/ > 0. Thus

the a.c. part of TC is Œa;1/. For T� the same argument applies. Thus �ac.H; 2/ D
Œa;1/ and �ac.H; 1/ D Œ0; a/ if a > 0. For a < 0 one has �ac.H; 1/ D Œa; 0/ and
�ac.H; 2/ D Œ0;1/: For odd order operators Ly D .�1/niy.2nC1/ C a�Œ0;1/y a
similar analysis shows �ac.H; 1/ D R.

Example 2 (The bump potential). In quantum mechanics the bump potential is studied
in connection with the tunnel effect. There it is shown that a plane wave solution will
have a reflected and transmitted part. In the more general case of

Ly D .�1/ny.2n/ C b�Œ�1;1�y; b > 0; on L2.R/; (3.1)

this is not different. A detailed form can be computed for n D 2 for example. In
this case H � 0 so �.H/ � Œ0;1/: The decomposition method shows �ac.H; 2/

D Œ0;1/ and �sc.H/ D ;. We now show H has no eigenvalues. Suppose � is an
eigenvalue ofH with eigenfunction :Forx < �1 orx > 1 the function will decay
exponentially at ˙1 since it is in L2.R/ and satisfies a differential equation with
constant coefficients. In the following calculations the exponential decay justifies the
integrations by parts. First of all we have

hH ; i D
Z 1

�1
Œ. .n//2 C b�Œ�1;1� 

2� dt D �

Z 1

�1
 2 dt: (3.2)

Secondly, we have by multiplication of .�1/n .2n/ Cb�Œ�1;1� D � by t 0.t /
that Z 1

�1
Œ. .n//.t 0/.n/ C b�Œ�1;1�t  

0� dt D �

Z 1

�1
t  0 dt: (3.3)

Integration by parts yields from (3.3) thatZ 1

�1
Œ.n� 1

2
/. .n//2 C b�Œ�1;1�t  

0� dt D ��
2

Z 1

�1
 2 dt: (3.4)

This shows thatZ 1

�1
b�Œ�1;1�t  

0 dt D b

2

�
 .1/2 C  .�1/2 �

Z 1

�1

 2 dt

�
:
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Adding (3.2) to twice (3.4) gives

.2n/

Z 1

�1
. .n//2 dt C bŒ .1/2 C  .�1/2� D 0:

From this we conclude that is the zero function. This contradiction showsH has no
eigenvalues. The derivation above can be generalized and leads to the virial theorem,
which will be discussed in a future publication by the authors.

This result will most likely be true also for more general compactly supported
bumps.

Example 3. Consider the compact support potential

Ly D .�1/ny.2n/ C q.t/y on L2.R/;

where q 2 L.R/ and has compact support with
R1

�1 q.t/ dt < 0: The decomposition
method shows �ac.H; 2/ D Œ0;1/ and �sc.H/ D ;:We now show thatH must have
at least one negative eigenvalue under these conditions. Suppose H has no negative
eigenvalues. Then we have �.H/ D Œ0;1/; and hH ; i � 0 for all  in the
domain of H . Let now ' be a C1 function on R with support Œ�2; 2� and '.t/ D 1

on Œ�1; 1�. Define, for b > 0;  .t/ D '.bt/: Then  has support Œ�2=b; 2=b� and
 is in the domain of H . Thus

hH ; i D
Z 1

�1
Œ. .n/.t //2 C q.t/ 2.t /� dt

D
Z 2

�2

b2n�1.'.n/.x//2 dx C
Z 2=b

�2=b

q.t/'2.bt/ dt:

(3.5)

Now
R 2=b

�2=b q.t/'
2.bt/ dt ! R1

�1 q.t/ dt < 0 as b ! 0. Hence hH ; i is
negative for b sufficiently small which is contrary to hH ; i � 0 for all  in the
domain of H . This contradiction shows H has a negative eigenvalue.

In quantum mechanics a student will generally study the square well potential,
because it serves as a model for deuterium. The higher order cases do not have such
a nice application, but the next example shows that a very negative well may have a
large number of bound states.

Example 4. Consider the 2n-th order square well

Ly D .�1/ny.2n/ � a2n�Œ�1;1�y; a > 0; on L2.R/:

Then �ac.H; 2/ D Œ0;1/; �sc.H/ D ;. Example 3 shows that H has at least one
negative eigenvalue. For n D 2 it can be shown by a direct calculation that there are
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no embedded bound states in the continuum spectrum. For n > 2 we conjecture that
there are also no embedded bound states in the continuum spectrum.

In order to analyze the general case, we could use perturbation methods. Write

A D .�1/n
� d
dx

	2n

and
B D �Œ�1;1�:

Then Ly D �y for � < 0 can be rewritten as

.1 � a2n.A � �/� 1
2B.A� �/� 1

2 /y D 0

or a�2n 2 �.B.A � �/�1B/. Since B.A � �/�1B is non finite rank trace class, it
will have an arbitrary large number of bound states which accumulate at 0. More
definitive statements can be made however.

For n D 2 one can show by direct, albeit cumbersome, computation, the eigen-
values of odd bound states of Ly D �y, which lie in �a4 < � < 0; satisfy the
transcendental equation,

e�2ˇ ˇ
2 � p

2˛ˇ C ˛2

ˇ2 C p
2˛ˇ C ˛2

D �A tan ˇ � B
B tan ˇ C A

;

where ˛ D j�j1=4; ˇ D j�Ca4j1=4; A D ˇ2 �p
2˛ˇC˛2; B D ˇ2 Cp

2˛ˇC˛2:

Further analysis shows the number N.a4/ of eigenvalues in the interval �a4 <

� < 0; satisfies N.a4/=a ! 1=� as a ! 1. A similar formula holds for the
even eigenfunctions. This equation gives a method to approximate the eigenvalues
accurately, but becomes unwieldy for higher order equations.

However, an asymptotic formula for the number of eigenvalues can be obtained
by operator methods. As noted above, �ac.H; 2/ D Œ0;1/; �sc.H/ D ;. So it
remains to determine the negative eigenvalues. Since H is an even and real operator
the eigenfunctions will be either even or odd and may be chosen real valued. We
will consider the restriction of H to the even (odd) eigenfunctions where the results
for the odd eigenfunctions will be given in brackets. Let L00 be the operator L with
Dirichlet boundary conditions at �1 and 1, i.e. y.k/.˙1/ D 0; 0 � k � 2n� 1: L00

has deficiency index 4n: It has a selfadjoint even (odd) extension L1 defined by the
even (odd) boundary conditions y.2kC1/.˙1/ D 0; 0 � k � n � 1 .y.2k/.˙1/ D
0; 0 � k � n�1/ so thatL1 decomposes into a direct sumL1 D L11 CL12 CL13 of
the corresponding operators on .�1;�1�; Œ�1; 1�; respectively Œ1;1/:This shows in
particular from Behncke [1] for the number of bound statesN.a2n/ ofH respectively,
N1.a

2n/ of L1, that ˇ̌
N.a2n/ � N1.a

2n/
ˇ̌ � 2n (3.6)

because the resolvents are perturbations of rank 2n of each other. Now L13 D Ln
03

where L03 D �d2=dx2 with the boundary condition y0.1/ D 0: Clearly L03 and
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thus L13 has no bound states. This holds likewise for L11. Obviously we have then

N1.a
2n/ D number of bound states of L12;

D number of bound states of Ln0 � a2n;

D number of bound states of L10 � a2;

(3.7)

where Ln0 D .�d2=dx2/n with even (odd) boundary conditions. One can easily
determine the eigenfunctions ofL10 even (odd). They are cos

�
nC 1

2

�
�x .sin n�x/

and thus, adding both even and odd eigenvalues,

N1.a
2n/ D

j a
�

� 1

2

k
C
j a
�

k
where b�c is the greatest integer function.

Remark 3.2. The method of proof can be extended to more general deep wells. It
can be shown by direct calculations that the third order square-well has no bound
states. This will hold most likely also for the .2nC 1/-st order square well.

In the theory developed above we had w D 1 so that in the case of bounded
coefficients the spectral term zw could be used to enforce the dichotomy condition
outside the exceptional set E . If this is not valid any more the dichotomy condition
has to be assumed, but it can be enforced by a variation of p0.

Example 5. We consider now the situation pn D 1 D jp0j; w D o.1/ where all
coefficients are constant modulo integrable terms.

pk.x/ � ck ; qj .x/ � dj 2 L1 k D 0; � � � ; n� 1; j D 1; � � � ; n:
Moreover assume that the limiting Fourier polynomial

P.�/ D
X

�2kck C 2
X

dj�
2j �1

has 2n distinct roots. Let 
1; : : : ; 
2k denote the real roots and ˛r ˙ iˇr ; r D
1; : : : ; n � k the non real roots. Assume w > 0 is non-integrable. The dichotomy
condition now requires Re @�P.
/ ¤ Re @�P. Q
/ if 
 and Q
 are roots of P with
Re
 D Re Q
. Then def T D .n; n/ and �.H; k/ D R, because k square integrable
functions lose their square integrability as Im z ! 0C. This is shown as in [10]. If
w is integrable def T D .n C k; n C k/ and �.H/ is discrete, because all square
integrable eigenfunctions are z-uniformly square integrable.

Power coefficients have been quite popular with mathematicians with differential
operators. For this reason we will call a function f to be of approximate power type
if

f D f0x f̨ .1C hf /; hf 2 Fl ; (3.8)

where
Fl D ff j f .k/ D o.x�k/; 0 � k � lg: (3.9)
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The scope of the preceding results can be enlarged considerably, if one also con-
siders transformations, which leave the form of the operators invariant. The most
useful of these is the Kummer–Liouville (KL) transformation. It is based on

y.x/ D 
.x/z.t/; t 0.x/ D �.x/ > 0: (3.10)

The .�; 
/-KL transform maps

pk �! pk

2�2k�1 C � � � D Qpk C � � � ;

qj �! qj

2�2j �2 C � � � D Qqj C � � � ;

Qw D w
2��1:

(3.11)

Here, of course, the Qpj and Qqj are just the leading parts if the transformation is
sufficiently smooth [7].

For Sturm–Liouville equations Ly D �y00 C p0y one knows that the spectrum
is discrete if p0.x/ ! 1. The extension to higher order operators of degree 2n is as
follows.

Assume p0=w ! 1. Apply a KL transform which standardizes pn;s and p0;s,

i.e. � D �
p0s

pns

� 1
2n and p0;s


2 D � ; see [7]. Assume the transformed coefficients

satisfy (1.3) and that the Fourier polynomial zP based on the transformed coefficients
satisfies

lim inf
x!1 .min

�

zP.�; x; 0// > 0: (3.12)

ThenH is bounded below and has a compact resolvent. In particularH has a discrete
spectrum.

Note that no dichotomy condition is required for zP, because the z-uniform di-
chotomy condition is only needed for real roots of zP. By assumption, however, zP
has no real roots. It is fairly obvious that this result can easily be generalized to more
general classes of coefficients. Sturm–Liouville operators have all of R as absolutely
continuous spectrum if p0 tends to �1, but not faster than �x2. As an extension
consider the following example.

Example 6. Consider an even order operator (1.1) with coefficients of approximate
power type with l D 3. Assume

pn D w D 1

and
p0 D �p00.1� h0/x

ˇ ; p00 > 0; ˇ > 0:

Then

˛� D ˇ

2n
and ˛�2 D �ˇ

�
1 � 1

2
n
	
:
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Moreover, assume that the transformed intermediate coefficients vanish asymptoti-
cally, i.e.

p̨k
� ˇ C ˇ

2k

2n
; ˛qj � ˇ C ˇ

2j � 1
2n

< 0; k D 1; : : : ; n� 1; j D 1; : : : ; n:

Then
�ac.H; 1/ D R

if the transformed weight function x
�ˇ.2n�1/

2n is not integrable, i.e. ˇ < 2n
.2n�1/

. If
this term is integrable the spectrum is discrete and def T D .2n; 2n/.

Proof. The characteristic Fourier polynomial is �2n � 1 D 0 and only the root � D 1

will generate absolutely continuous spectrum.
It is quite obvious that this example can be extended in many ways to more

general coefficients. For n D 1we obtain the well known result that Sturm–Liouville
operators are limit circle if the potential is more singular at infinity than �cx2. The
quantum mechanical interpretation of this is that in this case a particle could escape
to infinity in finite time.

For the following example a transformation to a bounded coefficient form is
likewise needed.

Example 7. The Everitt–Markett 6th order Bessel type equation on Œ0;1/, see [16],
as corrected in [15], is

L.y/ D w�1f�.p3y
000/000 C .p2y

00/00 � .p1y
0/0 C p0gy

withw D p3 D x3; p2 D 33x; p1 D 225=x�96=Mx3;M > 0 andp0 D 0. At first
we consider only the problem on Œ1;1/ and perform a standard KL transform. With

 D x� 3

2 and � D 1 we get for the transformed coefficients: w D 1; zp3 D 1; zp2 D
c2=x

2; zp1 D �96=M C c1=x
4; zp0 D c0=x

2 C c0
0=x

6 where the ci are constants.
Thus the theory above can be applied. Now the absolutely continuous spectrum can
be read off from the graph of the limiting Fourier polynomial,

Q.�/ D �6 � 96

M
�2:

Thus L restricted to Œ1;1/ has no singular continuous spectrum and

�ac.H; 2/ D
h

�
� 32
M

	 3
2
.
p
3 � 1/; 0

	
; �ac.H; 1/ D Œ0;1/:

For the equation restricted to .0; 1�we use the Frobenius theory, because 0 is a weakly
singular point. The indicial equation is

�2.� � 1/2 C 33�.� � 1/2.� � 2/225�.� � 2/ D 0:
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The roots are (see also [16]) � D 0; 2; 6; 4;�4;�2. Thus there are four uni-
formly square integrable solutions and the deficiency index of the Everitt–Markett
Bessel operator is .4; 4/. By Theorem 3.1 applied to the transformed operator on
Œ1;1/ and the decomposition method, H has no singular continuous spectrum. The
corresponding fourth order Bessel equation is

.xy00/00 �
��q
x

C 8

M
x
	
y0	0 D zxy; x > 0;M > 0: (3.13)

A transformation as above with � D 1 and 
2 D x�1 leads to Qp2 D Qw D 1 and
Qp1 D p1x

�1 �1=x2. Thus the limiting polynomial is �4 C8=M�2 D z which gives
rise to �ac.H; 1/ D Œ0;1/ for the operator restricted to Œ1;1/. The indicial equation
is �.� � 2/..� � 1/2 � 9/ D 0 and thus def T D .3; 3/.

Above we had always assumed that the conditions for asymptotic integration
automatically hold for all of RnE where E is discrete. The following example shows
that this need not be the case.

Example 8 (Ly D .�1/ny.2n/ C .A cosx˛/y; A > 0; 0 < ˛ < 1). For real z with
jzj > A the corresponding system can be transformed into Levinson form in two
steps if ˛ < 1=2. For 1 > ˛ � 1=2 more steps are needed. Then our methods give
�ac.H; 1/ � .A;1/: Since T � �A there can at most be n bound states below �A.
It is now easy to construct for any z 2 .�A;A/ approximate z eigenfunctions located
in large x-domains where jA cos x˛ � zj is small. Thus Œ�A;A� 2 �ess.H/. Most
likely the spectrum is singular continuous or dense discrete in Œ�A;A�. For obvious
reasons asymptotic integration as used above cannot be applied for j Re zj < A.

More generally one can show for operators of the type (1.1) or (1.2) with (1.3)
replaced by

f D f1 C f2 C f3 and f1 bounded, f
02

1 ; f 00
1 ; f

0
2; f3 2 L1; (3.14)

the existence of a constant K > 0 with

ŒK;1/ � �ac.H; 1/ for even order operators on Œ0;1/;

.�1;�K�[ .K;1/ � �ac.H; 1/ for odd order operators in R:
(3.15)

Physicists have always assumed that the essential spectrum on the half line for
Sturm–Liouville operators is automatically absolutely continuous. Likewise they
assume that bound state energies have to be negative. So the example of Wigner and
von Neumann, which leads to a bound state embedded in the continuum came as a real
surprise. The higher order analog are operators (1.1) or (1.2) with p0 D ax�ˇ sin x
and the only other non-trivial coefficient pn D 1 or qnC1 D 1.

Example 9 (Wigner–von Neumann potential). In the even order case the operator
amounts to

Ly D .�1/ny.2n/ � p0y � zy p0 D ax�˛ sin x; 1 � ˛ > 2=3: (3.16)
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We will treat p0 as a perturbing term and diagonalize the main part of the corre-
sponding system. The roots of the characteristic Fourier polynomial are the 2n roots
�k D jzj1=2neiˇ=2nC2�ki=2n with ˇ D 0 if z > 0 and ˇ D � if z < 0. The k-th
eigenvector is then [3] with 
k D i�k the k-th root (2.17),

wk D .2n
2k�1
k /�1=2.1; 
k; : : : ; 


n�1
k ; .�1/n�1


.2n�1/

k
; : : : ; 
n

k/;

and the T D .w1; : : : ; w2n/ transformed system T � D u has the form

� 0 D .diag.
j /C .T �1C4T //� D .ƒC S/�: (3.17)

The only nontrivial matrix element of C4 is .C4/1;nC1 D p0:With [3], eq. (3.13),
we get .T �1C4T /jk D �.2n/�1


.2n�1/=2

k



.2n�1/=2
j p0 D Sjk . To (3.17) apply a

(1+Q)-transform, .1CQ/�1 D � with Q ! 0. Then

� 0
1 D ŒƒC .1CQ/�1.�Q0 CƒQ �QƒC C4 C C4Q/��1:

We are looking for a matrix Q with Q ! 0 and Q0
ij D .ƒQ �QƒC C4/ij ;

Q0
jk D .
j � 
k/Qjk C Sjk: (3.18)

If Re.
j � 
k/ ¤ 0 a Qjk with Qjk D O.x�˛/ can be found. For such
index pairs the corresponding contribution of QC4 will be integrable and may be
neglected by Levinson’s theorem. Now Re
k D Re
j implies sin

�
ˇ
2n

C 2�k
2n

� D
sin
�

ˇ
2n

C 2�j
2n

�
. Assume k < j; n then n�ˇ=� D .j C k/ or 3n�ˇ=� D .j C k/.

Even if Re.
j � 
k/ D 0, equation (3.18) will have a solution Qjk D O.x�˛/ if
Im.
j � 
k/ ¤ ˙1, the frequency of the sine. For simplicity assume now z > 0 or
ˇ D 0. Then we have resonance between the sine and 
j � 
k if

2 cos
2�

2n
j � jzj1=2n D ˙1: (3.19)

For each z > 0 there are therefore at most two possible resonance pairs. If z is
nonresonant the matrix Q can be constructed for all pairs of indices and all solutions
of (3.16) look approximately like the solutions of the unperturbed system. Now
assume that z > 0 is resonant. Then the corresponding two dimensional resonant
subsystem has the form

u0 D
 

k bp0

bp0 
j

!
u (3.20)

with


k D ˙ i

2
� z1=2n sin

2�

2n
k;

b D �1
2n
z

2n�1
2n ei�.2n�1/=2;
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and


j D 	i � z1=2n sin
2�

2n
k;

for 0 < k < n. Factoring out diag.exp
kt; exp
j t /, we finally reduce (3.20) to

� 0 D
 
0 c1

c2 0

!
�; ci D e˙2ixbp0; (3.21)

which can be solved by asymptotic integration giving rise to solutions of the form p
c1

˙p
c2

!
.1C o.1// exp

�
˙
Z x

a

p
c1c2 dt

�
: (3.22)

Thus in this case (3.20) has two square integrable solutions, which decay at in-
finity exponentially. Whether these are proper eigenfunctions, depends of course
on the boundary condition. The case n < k < j leads to exponentially increasing
eigenfunctions.

A particular role is played by k D 0; j D n, because in this case the exponential
factor in (3.20) vanishes and the solutions behave like exp

�˙ R x

a

p
c1c2 dt

�
. Thus

for ˛ < 1 one of them is square integrable and the other not. The case ˛ D �1,
which gives the original Wigner–von Neumann situation, leads to solutions with
power behavior and an eigenstate if the amplitude a is large enough. The case z < 0
is similar.

Summing up we have: for the Wigner–von Neumann problem (3.16) we have
�ac.H; 1/ D Œ0;1/. There are finitely many z-values, z ¤ 0, where the solutions
oscillate in resonance with the sine, i.e., the frequency or energy is fixed. There are
at most two square integrable solutions for a given resonance value z. These may
give rise to eigensolutions if the boundary conditions fit. In particular a change in the
boundary condition will destroy the eigenfunctions. For odd order operators we will
consider

.�1/niy.2nC1/ C .1C jxj/�˛.sin x/y on R: (3.23)

Now the sign of z is irrelevant and we may assume z > 0. The eigenvalues are

k D i jzj1=2n exp 2�i

2kC1
k; 0 � k � 2n and the same procedure as above leads again

to the situation sin 2�j
2nC1

D sin 2�k
2nC1

for 0 < k < j; n. This, however, would lead
to .2n C 1/� D 2�.j C k/, which is impossible. Thus in this case there are no
embedded bound states.

Example 10 (Rapidly oscillating potentials). In [3] it was shown that the perturbation
of the coefficients f D pk ; qj by terms of the form f4 with

Of .x/ D
Z 1

x

f .t/dt 2 L1 (3.24)
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does not alter the spectral properties of the Hamiltonian H . For this reason consider
more singular terms. Again we consider only a very simple case

Ly D .�1/ny.2n/ C .�1/k.pky
.k//.k/ (3.25)

with

pk D h.x/ sin g.x/; g; h 2 C2; g0 % 1; h � g0�1 bounded. (3.26)

Rewrite (3.25) in systems form (2.2) and denote the perturbing oscillatory term
by C4, .C4/k�1;nCk�1 D pk :Apply to

u0 D .C C C4/u

a simple .1 C Q/-transform, i.e. let Qk�1;nCk�1 D Opk with Op0
k

D pk , and let
.1CQ/� D u. Then

� 0 D .C C .1 �Q/.CQ �QC//�:

Assume now 0 � k < n � 1 and� h
g0
	00
.g0/�2; ..g0/�1/0 2 L1;

� h
g0
	
;
� h
g0
	0

bounded. (3.27)

Then two .1CQ/-transformations turn the oscillatory terms into Levinson terms.
For k D n�1, however, a term � Op2

n�1 arises in the position of pn�1. All other terms
can be removed by further .1CQ/-transformations. Now we have

Opk D � h

g0 cosg C
� h
g0
	0 1
g0 sin g mod L1: (3.28)

The nonoscillatory part of Op2
k

is 1
2

�
h
g0

�2
. Thus if h D ag0 the characteristic

polynomial is altered to

P D �2n � 1

2
a2�2.n�1/ � z:

This leads to a different absolutely continuous spectrum. In this case we have

�ac.H; 2/ D
h

� 1

n

a2

2

�1
2
a2n � 1

n

	2n�1

; 0
i

and �ac.H; 1/ D Œ0;1/:

Now consider a perturbation by an odd order term qj ; j < n � 1; qj D h sin g.
Then BC4 D BQ4 D 0 and two (1+Q)-transformations effectively remove all os-
cillatory terms if (3.27) holds. A term qn�1 D h sin g leads to a nonoscilla-
tory term 1

2

�
h
g0

�2
in the pn�1-position. A perturbation by an oscillatory qn term

plays a particular role, because the qn term appears in the diagonal of C (2.2),
Cnn D �q2

n D �h2 sin2 g D �1
2
h2 C 1

2
h cos 2g and Ann D �iqn. In this case

the oscillatory terms can be removed by two (1+Q)-transformations if h
g0

2 L2 so

that only the non-oscillatory term �1
2
h2 remains in the position of pn�1.
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Example 11. As a final example consider the perturbation of odd order operators by
a highly oscillatory term. Thus we are looking at

Ly D .�1/iy.2nC1/ C i.�1/kC1..qky
.k//k�1 C .qky

.k�1//.k//: (3.29)

With k � n � 1 and qk D h sin g as above the (1+Q)-transforms will convert the
oscillatory terms into Levinson terms if the conditions (3.27) hold. A perturbation
by qn of the form (3.26) leads after one .1CQ/-transform to a nonoscillatory term
1
2

�
h
g0

�2
. All other terms can be removed effectively by further .1 C Q/-transform.

thus in this case the situation is identical with that of example 10. In particular a term
with h D ag0 can be used to modify the spectrum.

Remark 3.3. These examples exhibit the inertia exerted by differential equations.
Generally solutions will ignore rapid oscillations. Only if their amplitude h exceeds
the frequency .g0/�1 will one have an observable effect. The effect itself is quadratic
and results from the interaction of the solution – first .1CQ/-transform – with the
potential pn�1 respectively qn. Lower order perturbations will have no effect.

4. Operators with unbounded coefficients

With unbounded coefficients a number of things change in the analysis of higher
order operators. Now it is not any more possible to estimate lower order terms
against higher order ones. For this reason the analysis of higher order operators with
unbounded coefficients has been restricted mostly to operators with few terms. On
the other hand new and interesting phenomena arise from competing terms. The most
obvious of these effects is the change in the deficiency index. However, even there
the emphasis has been to construct examples which demonstrate the range of the
deficiency index or the existence of non limit point operators with essential spectrum
For asymptotic integration unbounded coefficients do not any more allow to enforce
the dichotomy condition via the spectral parameter. Thus it has to be postulated in
general. Secondly the remainder term in Levinson’s theorem competes with small
spectral values or is multiplied by large terms, so that estimates are difficult to come
by. Chapter 3.8 ff in Eastham’s book shows clearly some of the problems arising.
Finally the back transformation may be problematic. A number of these problems
have been solved recently by more precise estimates of the remainder [11]. Though
z-uniform estimates still present a formidable problem.

For this reason we begin with a rather general class of examples for which the
difficulties in asymptotic integration are minimal and which nonetheless exhibit a
wide range of phenomena.

4.1. Power class operators. One of the main obstacles in the understanding of
higher order differential operators is our lack of understanding and control of higher
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order polynomials. For this reason we will introduce here a class of differential
operators with power coefficients where these problems are minimized. Of course
operators with power coefficients have been studied before, but never in a systematic
fashion with the spectral theory in view. Previously this class has been introduced
in [11]. Our starting point in the characteristic Fourier polynomial

P.x; �; z/ D
mX
0

rk.x/�
k � zw D

mX
0

ckx
˛k�k � zw; cm D 1: (4.1)

To translate P into an operator on Œ1;1/ let pk D r2k and qj D r2j �1. Thus we
handle odd and even operators simultaneously. Our class of examples is based on the
concept of pivot coefficients ki .

m D kl > kl�1 > : : : > k1 > k0 D 0; ckj
¤ 0; j D 1; : : : ; l: (4.2)

The idea is to assign to the j -th interval Ij D fkj �1; : : : ; kj g a polynomial Pj , the
j -th segmental polynomial,

Pj .x; �/ D
X
k2Ij

ckx
˛k�k

D
X
k2Ij

.ckx
˛k�˛

j̨ �1�k�kj �1/x
˛kj �1�kj �1

D zPjx
˛kj �1�kj �1 ;

(4.3)

so that the reduced segmental polynomial zPj has roots � of the form 
xˇj D �.x/

with 
 a root of yPj D P
k2Ij

ck

k�kj �1 . This requires

˛k D ˛kj �1
� .k � kj �1/ ǰ : (4.4)

In addition the roots should be sufficiently distinct. Therefore we demand

ˇl > ˇl�1 > ˇl�2 > : : : > ˇ1 and w D xˇ1 or wˇ1�"; " > 0: (4.5)

It follows from (4.4) that ˛kj
D ˛kj �1

� .kj � kj �1/ ǰ and thus

˛kj
D �.kj � kj �1/ ǰ � .kj �1 � kj �2/ ǰ �1 � � � � � .k1 � k0/ˇ1 C ˛0:

For the repeated diagonalizations and for the nonintegrability of the coefficients we
also need

˛0; ˇ1 > �1: (4.6)

The typical size of an eigenvalue from segment j is thus xˇj , so that its contri-
bution at the k-th element is ckx

˛k � xkˇj . For k 2 Ij this is by (4.4)

ckx
˛kj �1

�.k�kj �1/ˇj � x.k�kj �1/ˇj Ckj �1ˇj :
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Apart from the factor ck this is independent of the index k 2 Ij . Since ckj
¤ 0

all roots of QPj are different from 0. A root � D 
xˇj evaluated at some term
rk�

k for some k … Ij contributes at most the x�ı part of the Ij contribution, where
ı D min. ǰ C1 � ǰ /: To see this it suffices to consider neighboring segments only
and to evaluate the expressions at the bordering pivot coefficients. See also [11].
Now write the characteristic Fourier polynomial P as

P.x; �; z/ D Pj .x; �; z/C Rj .x; �; z/;

and let � D 
xˇj be a root of Pj . Then, as we have seen R.x; 
xˇj ; z/ D o.x�ı/.
Thus a Pj root is asymptotically almost a root of P. Standard perturbation theory
now shows that there is a root �0 of P with j�.x/ � �0.x/j D o.x�ı/. If all roots of
class j are distinct these roots give rise to .kj � kj �1/ distinct roots of P. Thus if all
segmental polynomials have distinct roots, this exhausts all roots of P. Summing up
we have shown the following result.

Proposition 4.1. Let P be a polynomial with real power coefficients satisfying (4.2),
(4.5) and (4.6). Moreover assume that all segmental polynomials Pj have distinct
roots. Then to each root � D �.x; z/ of P there corresponds a unique segment j and
root Q� of the segmental polynomial Pj , the shadow root, with

j�.x; z/ � Q�.x; z/j D o.x�ı/: (4.7)

Proof. It is easy to see that all these terms differ at most in their factors ck . It has
been shown in [11], Lemma 3.2, that for k … Ij ;

.rkx
kˇj /.rkj

xkj ˇj /�1 D O.x�ı/; ı D min.ˇi � ˇi�1/: (4.8)

This implies that the Pj -eigenvalues contribute essentially to terms in Ij and that
the contribution from the remaining terms is at best O.x�ı/. Straight forward per-
turbation theory implies then that to any root of Pj there is a corresponding root of
P. Since this holds for any segment, and since all these segmental roots account for
.kl � kl�1/C .kl�1 � kl�2/C � � � C .k1 � k0/ D m roots, we can turn the argument
around.

Since we have to deal with eigenvalues for z values slightly off the real axis, we
will need estimates for @�P.�/, because

�j .x; z C i�/ 
 �j .x; z/C i�w.@�P.x; �j .z///
�1: (4.9)

Since eigenvalues � with i-shadow eigenvalues Q� attain their essential values at
cluster j , it is not surprising that in this case @�P.x; �j ; z/ can be estimated by

j.@�P/.x; �; z/j D O.Mj /; Mj D x
˛kj

Cˇj .kj �1/
: (4.10)
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Moreover, one has

Mj �1 D O.x�ıMj /; j D l; : : : ; 1: (4.11)

These results reduce the determination and analysis of the roots of P to that of the
segmental polynomials. It remains to check the z-uniform dichotomy conditions. As
noted before it suffices to check it only for the eigenvalues �.x; z C i�/, for which
�.x; z/ is real, z 2 K" \ R. Those we will call essentially real. We can now state
the dichotomy conditions needed for our analysis.

D1 The eigenvalues of each segmental polynomial are distinct and the essentially
real eigenvalues �i and �j of segment k satisfy

@�
zPk.�i/ ¤ @�

zPk.�j / ¤ 0:

D2 sign Im.�i .x/ � �j .x// and sign Im �i .x/ is constant mod L1 for each cluster
and eigenvalues�i ; �j associated to it. Ifw D o.p0/ these conditions are not required
for the lowest segment.

Once these conditions are met the eigenfunctions are given by (2.21):

uk.x; z/ D T .1C B/.ek C rk.x; z// exp

�Z x

a

i�k.t; z/dt

�
: (4.12)

Here T1l D M
� 1

2

l
; and B arises from the second, third, …diagonalization while rk

is the remainder term from the last asymptotic integration. We will call the term
T .1CB/.ek Crk/ the form factor. In order to avoid interference between the growth
of the form factor and the exponential we will demand

wMj � x�1C" or wMj � x�1�" for " > 0: (4.13)

In order to analyze this with respect to the deficiency index and spectral properties,

assume that �k has a shadow eigenvalue in segment j . Then the factorM.�/
� 1

2

k
may

be replaced byM
� 1

2

j . Let ˛1.x; z/˙iˇ1.x; z/; : : : ; ˛r.x; z/˙ˇr.x; z/; �2rC1.x; z/;

: : : ; �l.x; z/with l D kj �kj �1 and˛; ˇ; � real be the eigenvalues ofP corresponding

to all eigenvalues of zPj . Then the eigenvalues ˛m.x; z/C iˇm.x; z/; m D 1; : : : ; r

correspond to z-uniformly square integrable eigenfunctions. They contribute .r; r/ to
the deficiency index and otherwise only to the discrete spectrum. For the essentially
real eigenvalues write for z 2 K" \ R as in (4.9),

�.x; z C i�/ 
 �.x; z/C i�w.@�P.�//
�1:
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Thus the exponential factor determines an exponentially decreasing eigenfunction if

w.@�P.�; x//
�1 > 0;

and if w@�P
�1 is not integrable. In particular if

jw�1@�P.�; x/j � cx1�" for some c > 0; " > 0;

no logarithmic terms will arise in the exponents and (4.12) defines a square integrable
eigenfunctions, which loses its square integrability if � ! 0. These are the eigen-
functions that contribute to the absolutely continuous spectrum. They contribute to
the deficiency index if @�P.x; �; z/ > 0. The segments contribute individually to the
deficiency index

def T D
lX

j D1

.def T /j ; (4.14)

and if wM�1
j is not integrable one gets

.def T /j D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

� l
2
;
l

2

	
if l D kj � kj �1 is even and ck > 0

or l is odd and ck < 0;� l C 1

2
;
l � 1

2

	
if l is even and ck < 0

or l is odd and ck > 0:

(4.15)

The most problematic case arises ifw@�P.x; �/
�1 D O.wM�1

j / is integrable. In
this case the square integrability of u (4.12) is independent of z and depends entirely

on the first factor T .1 C B/.ek C rk/. Of these Tek D M
� 1

2

k
is again w-square

integrable, but in principle nothing is known about the square integrability of

M
� 1

2

l
Blk or M

� 1
2

l
.rk/l :

For very general coefficients this represents a rather serious problem. Fortunately
enough one can show in our situation the following result.

Lemma 4.2. If k 2 Ij and if wM�1
j is integrable, then M

� 1
2

l
Blk andM�1

l
.rk/l are

square integrable. In this case the deficiency index .def T /j is given by .l � r; l � r/:

Remark 4.3. In particular the last term requires sharp z-uniform estimates of the
remainder.

The proof for this Lemma depends on a detailed analysis of the remainder terms
in asymptotic integration [11].
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Thus the solution uk , see (4.12), is z-uniformly square integrable if �k is not
essentially real with Im �k > 0 or if wM�1

j is integrable. If wM�1
j is not integrable

the eigenfunctions uk.x; z0 C i�/ are square integrable as long as � > 0 and

�k.x; z0 C i�/ 
 �.x; z0/C iM.�/�1w�; M.�/ > 0:

Such eigenfunctions which lose their square integrability will be called LSI eigen-
functions. They are generally responsible for the absolutely continuous spectrum.
Let us now summarize the results obtained so far.

Theorem 4.4. a) Let T denote the minimal differential operator associated to the
Fourier polynomialP, see (4.1), satisfying (4.2), (4.3), (4.5), (4.6), and (4.13), and D1
and D2. Then the segments Ij contribute independently to the deficiency index (4.14).
Let ˛1 ˙ iˇ1; : : : ; ˛r ˙ iˇr ; �2rC1; : : : ; �s; s D kj � kj �1 be the roots with shadows
in segment Ij . Then

.def T /j D

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

.s � r; s � r/ if wM�1
j is integrable,� s

2
;
s

2

	
if wM�1

j is not integrable and s even,

�s C 1

2
;
s � 1
2

	
if wM�1

j is not integrable, s is odd, and ckj
> 0;

�s � 1
2

;
s C 1

2

	
if wM�1

j is not integrable, s is odd, and ckj
< 0:

(4.16)
b) There exists a critical index j0 so that wM�1

j is integrable for j > j0.

c) If the deficiency indices are equal, then the multiplicity of the absolutely con-
tinuous spectrum is given by the number of LSI eigenfunctions from all classes. Then
LSI eigenfunctions from segments Ij ; j � 2 will generate R as absolutely continuous
spectrum. For the lowest class I1 the results of [3] apply.

Proof. a) Equation (4.14) follows from the fact that the square integrability of a
�-eigenfunction is determined by the �-shadow. Now if wM�1

j is integrable and
if (4.13) holds all essentially real eigenvalues lead to (uniformly square integrable)
USI-eigenfunctions, while this holds only for half of the others. If wM�1

j is non-
integrable half of the non-essentially real eigenvalues give rise to USI-eigenfunctions.
An essentially real eigenvalue � gives rise to an LSI-eigenfunction if wM�1

j is not
integrable and if w@�P.x; �/ > 0. This, however, holds if @�Pj .x; Q�/ > 0, where
Q� is the shadow eigenvalue of � . This reduces the analysis to yPj .

b) Follows from the fact that Mj � Mj �1. To see this evaluate Mj at kj �1. We

get Mj D x
˛kj �1

C.kj �1�1/ˇj � x˛kj �1C.kj �1�1/ˇj �1 D Mj �1.

c) It follows from the general theory [3] and [11] that only LSI eigenfunctions
will contribute to the absolutely continuous spectrum. Since for all classes j > 1,
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P.x; �; z/ D Pj .x; �/C Rj .x; �; z/ the eigenfunctions will not depend critically
on z so that in this case all of R arises as absolutely continuous spectrum.

Remark 4.5. It is obvious that Theorem 4.4 can be extended in many ways. The
growth functions xˇi can be chosen fairly arbitrarily as long as the order relation (4.5)
and (4.6) hold. The reduced polynomials zPj could be weakly x-dependent and (4.13)
could be abandoned at the cost of other technical conditions. However, the uniform
estimates of the form factors require some form of monotonicity of the growth factors.
All this, however, would not alter the underlying structure of the operators consider-
ably. Likewise it is obvious that the power behaviour has to hold only for large x.
This is important for operators on R, which can be patched together smoothly near
an arbitrarily chosen point.

Example 12. For even order operators of order 2n all deficiency indices .d; d/; n �
d � 2n can be realized. There are examples with n � d � 2n � 1 for which the
absolutely continuous spectrum is nontrivial.

As an example let the pivot indices be 0 < 2 < 4 < : : : < 2n. Let j0 be the
critical index (Theorem 4.4b). Now choose the constants c2k so that all

zPj D c2jx
�2ˇj �2 � c2.j �1/

have real roots, i.e. sign c2k ¤ sign c2.k�1/. Then

def T D 2.n� j0/C j0:

If j0 � 1 let ˇ1 D 0; p0 D 0 and w D 1. Then

P1 D c2�
2 � z

so that the contribution of the lowest class to the absolutely continuous spectrum is
Œ0;1/ if c2 > 0 and .�1; 0� if c2 < 0.

Here is a two segment example with the same result.

Example 13. Let 2n; 2 and 0 be the pivot indices and let ˇ2 D ˇ > 0 D ˇ1 be the
exponents. Then

˛k D .k � 2/ˇ; ˛1; ˛0 D 0

while
M2 D x�.n�2/ˇC.2n�1/ˇ D x.nC1/ˇ

and
M1 D 1:

Assume ˇ > 1
nC1

then M�1
2 w is integrable and

def T D .2n� 1 � r; 2n� 1 � r/
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where 2r is the number of non-real roots of zP2. Again the absolutely continuous
spectrum is as above. If ˇ < 1

nC1
we have

def T D .n; n/

and

�ac.H; n� r/ D Œ0;1/

and

�ac.H; n� r � 1/ D .�1; 0/

if c2 > 0 and c0 D 0.

The next example is again an even order operator, but which behaves almost like
an odd order operator.

Example 14. Let pn D r2n D 1 and let rk D ckx
ˇk ; 0 < ˇ < 1; k < 2n, w D 1,

c0 D 0. In first order the large eigenvalue �1 is given by the root of P2,

�1 
 �r2n�1

with

Im �1 
 Im z:.@�P.�1//
�1 
 Im z � .�c2n�1

2n�1x
.2n�1/2ˇ /�1:

Thus if ˇ.2n� 1/2 < 1 and c2n�1 > 0.c2n�1 < 0/, then

.def T /2 D .0; 1/ ..def T /2 D .1; 0//:

The roots of zP1 are of the form 
x�ˇ where 
 is a root of

zP1 D c2n�1�
2n�1 C : : :C .c0 � z/:

For c2n�1 > 0 this polynomial will have 2r non-real roots and .2n � 1/ � 2r real
roots. Of these .2n�2�2r/

2
C 1 satisfy

@�
yP1.�/ > 0:

Thus

def T D .def T /2 C .def T /1 D .0; 1/C .n; n� 1/ D .n; n/

and T is limit point. This is also true for c2n�1 < 0 by the same reasoning. With
the z-value as above the multiplicity of the absolutely continuous spectrum would be
.n� r/. This, however, is z-dependent. Thus we have islands of higher �ac-multi-
plicity in a sea of multiplicity 1.
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Example 15. Consider a 2-segment operator with k2 D 2n; k1 D 2k C 1; w D 1

so that M�1
2 is integrable and M�1

1 non-integrable. Then P2 is of odd degree. Let

˛1 ˙ iˇr ; : : : ; ˛r ˙ iˇr ; �2rC1; : : : ; �s; s D 2n� .2kC 1/ be the roots of zP2. Then

.def T /2 D .r C .s � 2r/; r C .s � 2r//

while
.def T /1 D .k C 1; k/ or .def T /1 D .k; k C 1/

depending on the sign of c2kC1. Thus T does not have equal deficiency indices. The
lowest order for this to occur is 4.

Odd order operators on a half line generally have unequal deficiency indices.
With unbounded coefficients, however this need not be the case. Again we take a two
segment example.

Example 16. For this class of examples letm D 2nC 1 D k2 and k1 D 2k. Choose
w D 1; ˇ1 D 0 and choose ˇ D ˇ2 so that M�1

2 is integrable. Then

.def T /2 D .s; s/

and
.def T /1 D .k; k/

with s D .2nC 1/ � 2k � 2r if P2 has 2r nonreal roots. The simplest example of
such an operator is 3, e.g. r3 D x�ˇ ; r2 D 1; r1 D 0 D r0; w D 1 with ˇ > 1. Then
def T D .2; 2/ and �ac.H; 1/ D Œ0;1/.

We will not present here operators with unbounded coefficients on R because
the decomposition theory takes care of that. The final class of examples we want
to consider are a form of hybrid models. Again we consider only the simplest two
segment models.

Example 17 (k2 D 2n; k1 D 2; ˇ2 D ˇ > 0; ˇ1 D 0; w D 1; pk D ckx
�2.k�1/ˇ ;

1 � k � n; c2n D c2 D 1). Only p0 will not be of power type. We assume p0 to be
bounded, l-times differentiable function with p.k/

0 2 L
l
k ; p

.k/
0 D o.1/; k � l . Then

with 0 < ˇ < 1
2.n�1/

we have

def T D .n; n/

and
�ac.H/ D .�ac.H//1 C .�ac.H//2

with .�ac.H; k//2 D R if the segmental polynomial P2 has 2k real roots. .�ac.H//1
depends only on the second order operator arising from P1. The sum should be
understood additive with respect to the multiplicities. As a special case consider
again p0 D A cos x˛; 0 < ˛ < 1

2
. As before one can now show that the spectrum

is a superposition of �.H/2 and �.H/1. So even if �.H/2 is discrete we still have
�ess.H/ D Œ�jAj;1/ and �ac.H; 1/ D ŒjAj;1/:
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4.2. The singular case. For differential operators of segmental type as they were
considered above or in [11] the second diagonalization by a matrix of the form .1CB/,
with Bij D .�i � �j /

�1.T �1T 0/ij breaks down if B does not vanish at infinity. In
examples with coefficients of approximate power type one has

.T �1T 0/ij D O.x�1/; respectively .T �1T /ij D O.x�1�ı/; (4.17)

if i and j are from the same, respectively different, segments. In this case, which
was called the singular case in [6], it is advantageous to diagonalize the subsystems
matrix associated to the troublesome classes first and then proceed as before with
further diagonalizations or with .1CQ/-transforms. In this critical case the lowest
segment submatrix has the form

x�1.diag.x�i /CRij / D x�1Dij ; Rij D �x.T �1T 0/ij : (4.18)

The matrixD is again of approximate power type and if its eigenvalues are distinct
one can find a diagonalizing transformation S1 with xkS�1S 0k D o.1/. Let S2

be a diagonalizing transformation for the higher classes then T1 D S1 ˚ S2 will
transform the system into Levinson form, because the off-segment matrix elements
areO.x�1�ı/ and thus integrable. This form of T1 is of course due to the decoupling
of all segments in this class of operators. The eigenvalues of the lowest segment
part of the systems matrix are essentially derived from the segmental polynomial
P1, because the contribution from the other classes is O.x�1�ı/ at most. Thus the
spectral part can be computed from P1 alone.

For the remaining discussion assume the operator to be in standard form, i.e.
pn D w D 1. For ˇ1 < �1 we have wM�1

1 D xˇl . Thus all terms wM�1
j ,

j D 2; : : : ; l are integrable. This shows the following result

Proposition 4.6. Assume T has equal deficiency indices and ˇ1 < �1. Then the
spectrum of H is discrete.

In this case wM�1
j is integrable j D 1; : : : ; l . Proposition 4.6 holds more gener-

ally ifwjpk1
.x/j�1=k1 is integrable. The borderline case arises whenwjpk1

.x/j�1=k1

is barely nonintegrable. Typical for this is pk.x/ D O.xk/ for k in the lowest class.
Thus if one is looking for absolutely continuous spectrum, it suffices to consider
the lowest class alone, i.e. P D P1. With some mild reindexing we are led to the
characteristic Fourier polynomial in the even order case,

P D
2nX

kD0

.ck C hk/x
k�k � z; c2n D 1 D w: (4.19)

The corresponding operator L on L2.Œ1;1// thus has the coefficients pk D
.c2k C h2k/x

2k and qj D 1=2.c2j �1 C h2j �1/x
2j �1. For the perturbing terms we

assume
hk ; xh

0
k; x

2h00
k D o.1/; x�1hk; h

0
k 2 L2; xh00

k 2 L1: (4.20)
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In order to transform the system associated to L into Levinson form we proceed as
outlined in Section 2.3. The roots �i of P are clearly of the form

�i D x�1.
i C 'i / (4.21)

with .
i C 'i / a root of
P
.ck C hk/


k , and the dichotomy condition requires the
roots of

Q.
/ D
X

ck

k (4.22)

to be distinct with distinct real parts. Here we have again absorbed the spectral
parameter into p0. By looking at the discriminant of Q it is easy to see that for all
but finitely many z 2 R the polynomial Q has distinct roots. This exceptional set
will be ignored henceforth. Since the roots of Q are distinct the correction terms 'i

are analytic in h1; : : : ; h2n. The matrix elements of .T �1T 0/ij , as they appear in the
first diagonalization are explicitly computed in [3] and [8]. One finds

.T �1T 0/ij D x�1.tij C ij /; ij D o.1/; tij constant, i ¤ j; (4.23)

where ij arises from the hk; xh
0
k
; k D 1; : : : ; 2n. The tij depend only on the

coefficients c1; : : : ; c2k . Their precise value, however, is not important for us at
the moment. If the constant matrix D D .diag.
i /C tij / has distinct eigenvalues 	i ,
i D 1; : : : ; 2n, this also holds for the matrix zD D .diag.
i C 'i / C tij /, at least
for large x. Thus there exists an almost constant matrix T3, which diagonalizes zD.
Then �T �1T 0 is made up from terms h0

k
, because the 'i are analytic in the hk . The

transformed system has the form

� 0 D x�1.diag.	i C  i /CR/�: (4.24)

The constant values 	i are the eigenvalues ofD while the .	i C i / are the roots
of zD. Again the  i are analytic in the hk , without constant terms. R is made up
from �T �1

3 T 0
3 as well as the ij . Thus R is analytic in x�1hk ; h

0
k
. In particular

we have Rij 2 L2; Ri i D 0. A further diagonalization transforms this system into
Levinson form. This diagonalization is achieved by a matrix of the form .1 C B/

with Bij D .�j � �i /
�1Rij . Thus the contribution to the diagonal is integrable and

thus negligible.
Since the factors Mj D .@�P.�//.�j / satisfy Mj 
 x the eigenfunctions of L

have the form

yi D x� 1
2 .1C r1.x// exp

Z x

1

.	i C  i /dt; ri D o.1/; (4.25)

provided the dichotomy condition can be shown.
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In order to determine the eigenvalues 	i we use the fact that the differential equation
Ly D zy is an Euler equation for hk D 0. With the Ansatz x� we get the indicial
equation

0 D
X

c2kPk.�/C i
X

c2j �1Qj .�/ D zQ.�/ (4.26)

where

Pk.�/x
� D .x2k.x�/.k/

D �.� � 1/ � � � .� � k C 1/.� C k/ � � � .� C 1/x�

and

Qj .�/x
� D 1

2
.x2j �1.x�/.j //.j �1/ C .xj .x�/.j �1//.j //x�

D 1

2
x�Œ�.� � 1/ : : : .� � j C 1/.� C j � 1/ � � � .� C 1/C �.� � 1/

� � � .� � j C 2/.� C j / � � � .� C 1/�:

As noted above, we may, excepting finitely many z values, assume that this polynomial
has distinct roots. Thus no additional factors appear and all eigenfunctions of Ly D
zy have the solutions x� , with � a root of the indicial equation. We are looking for
solutions, which are square integrable and barely square integrable. For this reason

write � D 	 � 1
2

. This also takes care of the factor x� 1
2 arising from M

� 1
2

1 . Now

Pk

�
	 � 1

2

	
D
�
	 � k C 1

2

	�
	 � k C 3

2

	
� � �
�
	 C k � 1

2

	
;

Qj

�
	 � 1

2

	
D
�
	 � j C 3

2

	�
	 � j C 5

2

	
� � �
�
	 � j � 3

2

	
:

(4.27)

Note that the even (odd) order terms go with real (purely imaginary) coefficients,
turning zQ�i	 � 1

2

�
for z 2 R into a polynomial with real coefficients. This of course

has its parallel with the Fourier polynomial introduced above (2.15) and (2.16). If 	
is a root of Q.	/ D zQ�	 � 1

2

� D 0, the corresponding solution has the form

x� 1
2x� D cx� 1

2 exp
Z x

1

	

t
dt:

This corresponds exactly to (2.24). Thus the eigenvalues of the matrix .diag
i C tij /

are just the 	i , the roots of Q.	/ D 0.
The corresponding Fourier polynomial Q.i	/ has for z 2 R real coefficients.

Again, excepting finitely many z values it has distinct roots of the form ˛1 ˙
iˇ1; : : : ; ˛r ˙ iˇr ; �2rC1; : : : ; �zn with ˛i ; ˇi ; �j real. By analyticity and stability of
the root pattern this presentation extends to the eigenvalues of QD.

For spectral values z C i� off the real axis the roots are approximately given by

�.z C i�/ D �.z/C i�.@�Q/
�1.�.z//: (4.28)
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Thus the z-uniform dichotomy condition amounts to show that for any two roots
	1; 	2 of Q one has Re 	1 ¤ Re 	2. Actually, because of [5] it suffices to show this
only for the purely imaginary roots i�2rC1.z/; : : : ; i�2n.z/. For this it suffices that

@�Q.�i/ ¤ @�Q.�2/; �j D i�j .z/; (4.29)

for all z, which do not correspond to multiple roots. If these conditions were violated
for z with an accumulation point, analyticity would give @�Q.�2.z// orQ.�1.z// D
Q.�2.z/ C C for some constant C . By Bezout’s theorem this is only possible
for �1 D �2. Thus the z-uniform dichotomy conditions hold outside a spectrally
irrelevant set E . This shows the following result.

Theorem 4.7. The minimal differential operator T of order 2n on Œ1;1/ with co-
efficients defined by (1.1) satisfying (4.20) and (4.21) is limit point, def T D .n; n/,
at infinity. For any selfadjoint extension H one has: H has no singular continuous
spectrum and z belongs to the absolutely continuous spectrum of multiplicity k, ifQ
has 2k purely imaginary roots.

Proof. For the proof fix a spectral interval I D Œz0 �"; z0 C"� outside the exceptional
set E . Then for any z C i�; j�j < " suitably small, the z C i� eigenfunction is given
by

yj .x; z C i�/ D x� 1
2 .ej C rj .x// exp

�Z x

1

t�1.	j .z C i�/C  j .t //dt

�
:

If  j D i. j̨ C i ǰ / with ǰ .z C i�/ > 0 the corresponding eigenfunction is
z-uniformly square integrable. For essentially imaginary eigenvalues i�j , however,
we have

i�j .z C i�/ D i�j .z/ � �.@�Q.�//
�1

so that the eigenfunction is square integrable (not square integrable) if @�Q.�/ > 0

(@�Q.�/ < 0). SinceQ is an even polynomial there are r uniformly square integrable
solutions and .n� r/ solutions, which are square integrable for � > 0, but lose their
square integrability as � ! 0C.

For odd order operators the analysis can proceed along the same lines. For
c2nC1 D 1, however, one has def T D .nC 1; n/.

4.3. Singular differential operators on bounded intervals. So far asymptotic in-
tegration has essentially been used to study the behavior of solutions on semi-infinite
intervals. The following class of problems is devoted to differential operators with
unbounded coefficients on bounded intervals. By using the decomposition method
this can be reduced to the problem of one singularity. Thus we study the operator

Ly D w�1
� nX

iD0

.pk.t /y
.k/.t //.k/

	
; pn D 1; (4.30)
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on the interval .0; 1� and allow a regular singularity of the coefficients at 0, i.e.

jt2.n�k/pk.t /j �! 0 as t ! 0: (4.31)

Otherwise we assume the coefficients to be differentiable. Replacing p0 � zw by p0

as usual with the systems vector u D .yŒ0�; yŒ1�; : : : ; yŒn�; yŒnC1�; : : : ; yŒ2n�1�/, we
get

u0.t / D C.t/u; (4.32)

where the non-zero matrix elements of C are given by

Ci;iC1 D 1; i D 1; : : : ; n;

Ci;iC1 D �1; i D nC 1; : : : ; 2n;

CnC1;n�.i�1/ D pn�iC1:

Transform this system to Œ1;1/ by x D 1
t
. Then

du

dx
D .R � x�2E/u.x/; (4.33)

where the non-zero matrix elements of R and E are given by

R2n�j;j C1 D �x�2pj .x
�1/; 0 � j � n � 1;

Ej;j C1 D 1; j D 1; : : : ; n;

and

Ej;j C1 D �1; nC 1 � j < 2n� 1:

This system is almost a Jordan type system analyzed in [14], Section 1.10. Now let

D D diag.1; x�1; : : : ; x�.2n�1// and '.x/ D exp.x�1E/: (4.34)

Then
'0.x/ D x�2E'.x/ and D�1ED D x�1E: (4.35)

The latter relation implies
D�1eED D ': (4.36)

The transformation u D 'z easily gives

z0 D '�1R'z: (4.37)

The further transformation Dz D w finally yields with (4.36), see Section 1.10.15
of [14],

w0 D .D0D�1 C e�EDRD�1eE/w: (4.38)
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This system is in Levinson form. The dichotomy condition is satisfied likewise,
because

D0D�1 D �x�1 diag..i � 1//:
Thus, if

.DRD�1/ 2 L1; (4.39)

the solution of (4.38) are essentially the integrals of

w0 D �x�1.i � 1/w or w D ci � x�.i�1/

by Levinson’s Theorem. More precisely one has

u D 'D�1w D D�1eEw: (4.40)

The matrix expE is upper triangular with matrix elements

.eE /k;kCl D 1

lŠ
.�1/kCl�1�n

if k C l � 1 > n otherwise the value is just .lŠ/�1. Thus the k-th solution is up to a
sign just [14], Section 1.10.8,

uk.x/ D
�x�.k�1/

.k � 1/Š C o.x�.k�1//;
x�.k�2/

.k � 2/Š
C o.x�.k�2//; : : : ;

1C o.1/; o.x/; o.x2/; : : : ; o.x2n�k/
	
:

For our original solution this means

uk.t / D .tk�1 C o.tk�1/; .k � 1/t .k�2/ C o.tk�2/; : : : ;

1C o.1/; o.t�1/; : : : ; o.t2n�k//:
(4.41)

Surprising about this is the fact that the higher quasiderivatives are of the order
o.t�l/. This means these terms are rather imprecisely known. This in turn has
consequences in the implementation of the boundary conditions at 0. The operator
is limit circle at 0, thus T on .0; 1� has deficiency index def T D .2n; 2n/ and the
spectrum of any selfadjoint extension is discrete. In general the boundary conditions
at 0 will have to be realized with the aid of solutions T �y D iy [19]. For Dirichlet
boundary conditions, however, only y2n�1; : : : ; yn qualify.

Remark 4.8. The above approach can be generalized in many ways. Obviously the
analysis extends to systems with first superdiagonals of the form .t r1 ; t r2; : : : ; t r2n�1/,
ri � 0. Secondly further transformations may weaken the demands on R; see [14],
Section 10.
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Even though the above analysis is rather complete, we shall consider a particular
example in order to understand the strange o.t�l/ terms, which also appear with the
solutions of an Euler equation.

Example 18 (.�1/ny.2n/ C ct�˛y.t/ D zy; ˛ < 2n). Following the above analysis
we are led to the equation

w0 D .�x�1 diag.i � 1/C S/w (4.42)

where

Sij D .e�EDRD�1eE /ij

D .e�E/i;2n

� 1
x2
p0

� 1
x

		
eE

ij x
�.2n�1/;

D Cij cpo

� 1
x

	
x�2n�1;

where Cjk D ˙..2n � i/Š/�1..j � 1/Š/�1 is a combinatorial factor. In order to
determine the k � th solution w of (12) consider the neutralized solution

Qw D w exp
k.t /

with


k.x/ D �
Z x

1

.k � 1/x�1 D �.k � 1/lnx

and the associated integral equation for its j -th component Qwj ,

Qwj .x/ D

8̂̂̂
<
ˆ̂̂:
ıjk C

Z x

a

.s=x/j �k
X

l

cjlcs
˛�.2nC1/ Qwl.s/ds; j � k;

�
Z 1

x

.x=s/k�j
X

l

cjlcs
�.2nC1/C˛ Qwl.s/ds; j < k:

(4.43)

This system will be solved by iteration with starting vector Qwj .x/ D ıjk . Then the
first iteration gives

Qwj .x/ D
8<
:
ıjk C ccjk.˛ � 2nC .j � k//�1xk�j t˛�2nC.j �k/jxa ; j � k;

D cjkc.˛ � 2nC .j � k//�1x�2nC˛ ; j < k:

(4.44)

These terms may also be taken as estimates of the o(1) terms in (4.42), because
the order of Sj i is independent of the indices and because Levinson’s Theorem,
respectively the iteration procedure, guarantees Qwj .x/ D o.1/ for j ¤ k with (1.3).
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Example 19. Consider an operator L0 of the form (1.1) on .0;1/ and let

L D L0 C
nX

lD1

cl jx � xl j�˛; ˛ < 2n; 0 < x1 < x2; : : : < xk : (4.45)

Then the associated minimal operator T has deficiency index

def T D .2nk C n; 2nk C n/

and the absolutely continuous spectrum of H is given by the absolutely continuous
spectrum of L0.
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