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Semiclassical estimates of the cut-off resolvent
for trapping perturbations
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Abstract. This paper is devoted to the study of the cut-off resolvent of a semiclassical “black
box” operator P . We estimate the norm of '.P � z/�1', for any ' 2 C1

0
.Rn/, by the norm

of 1Ca;b
.P � z/�11Ca;b

where Ca;b D fx 2 RnI a < jxj < bg and a � 1. For z in
the unphysical sheet with �Mhj ln hj � Im z � 0, we prove that this estimate holds with a
constant h

j Im zj
eC j Im zj=h. We also study the resonant states u of the operator P and we obtain

bounds for k'uk by k1Ca;b
uk. These results hold without any assumption on the trapped set

nor any assumption on the multiplicity of the resonances.
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1. Introduction

In this paper, we prove estimates on the meromorphic extension across the real axis
of the cut-off resolvent of P , a semiclassical operator of “black box” type. This
abstract framework, introduced by Sjöstrand and Zworski [25] and described below,
allows one to develop the theory of resonances for many kinds of perturbations (poten-
tials, obstacles, metrics, …). In particular, the results stated below hold for arbitrary
dimension n � 1 and without any restriction on the geometry of the trapped set.

More precisely, we will estimate the norm of the cut-off resolvent '.P � z/�1',
for any ' 2 C1

0 .R
n/, by the norm of 1Ca;b

.P � z/�11Ca;b
where

Ca;b D fx 2 RnI a < jxj < bg:
Notice that, on the real axis, there is a big contrast between the behavior of these two
norms. Indeed, the resolvent truncated on rings Ca;b , with 1 � a < b, is always
bounded above by Ch�1. On the other hand, the norm of the resolvent, truncated
near the projection on Rn of the trapped set, depends on the geometry of this set and
can be much larger than h�1. For scattering outside a bounded obstacle K � Rn,
with n � 3 odd, a similar question has been investigated by Stoyanov and the second
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author [19]. Using the scattering theory of Lax and Phillips [15], they have proved
that the cut-off resolvent can be bounded by the norm of the scattering matrix (we
refer to Section 6 for more details).

In scattering theory, it is natural to consider the resolvent of P truncated in rings
Ca;b far away from the origin. Indeed, the operator 1Ca;b

.P � z/�11Ca;b
appears

in the representation of the scattering amplitude for compact perturbations. More
precisely, assume that P is a compactly supported perturbation of �h2� and denote
by S.zI h/ D I CK.zI h/ the associated scattering matrix at energy z. By definition,
the scattering amplitude a.z; !; !0I h/ is the distribution kernel of K.zI h/. The
standard formula (see for instance, Zworski and the second author [20]) gives

a.z; !; !0I h/ D c.zI h/hei
p
zhx;!i=h; Œh2�; �1�.P � z/�1Œh2�; �2�ei

p
zhx;!0i=hi;

(1.1)
where �1; �2 2 C1

0 .R
n/ are cut-off functions, !; !0 2 Sn�1 and

c.z; h/ D i�.2�h/�nz n�2
2 :

Moreover, we can take the functions �1; �2 equal to 1 on arbitrary large compact
sets containing the perturbation, and the scattering amplitude is independent of this
choice. Thus the estimation of 1Ca;b

.P � z/�11Ca;b
with 1 � a < b is essential for

the estimations of the scattering amplitude and for the norm of the Hilbert–Schmidt
operator K.zI h/.

We now give the precise assumptions on the semiclassical “black box” operatorP .
This was introduced by Sjöstrand and Zworski [25] (see also Sjöstrand [22], [23],
and [24] in the long range case). Let H be a complex Hilbert space with an orthogonal
decomposition

H D HR0
˚ L2.Rn n B.R0//;

with n � 1, R0 > 0 and B.R/ D fx 2 RnI jxj < Rg. In the sequel, we will identify
u 2 L2.Rn n B.R0// with 0 ˚ u 2 H . We consider a self-adjoint semiclassical
operator P W H �! H with domain D independent of h 2�0; 1�. We assume that

1RnnB.R0/D D H 2.Rn n B.R0//;
and conversely that any u 2 H 2.Rn n B.R0//, which vanishes near @B.R0/, is an
element of D . To treat the contribution of P in HR0

, we suppose that

1B.R0/.P C i/�1 is compact.

We also assume that, for all u 2 D , we have

1RnnB.R0/Pu D Q.ujRnnB.R0//;

where Q is a self-adjoint semiclassical differential operator on L2.Rn/

Q D
X

j˛j�2
a˛.xI h/.hDx/˛: (1.2)
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We suppose that the a˛’s are bounded in C1
b
.Rn/ (the space of smooth functions

which are bounded with all their derivatives) whenhvaries, and thata˛.xI h/ D a˛.x/

is independent of h for j˛j D 2. We further assume that Q is elliptic:X
j˛jD2

a˛.x/�
˛ & �2; (1.3)

and a long range perturbation of the Laplacian:X
j˛j�2

a˛.xI h/�˛ �! �2; (1.4)

as jxj ! C1 uniformly with respect to h. Finally, we assume that

a˛.xI h/ D a0˛.x/C ha1˛.xI h/; (1.5)

where a0˛; a
1
˛ 2 C1

b
.Rn/ uniformly with respect to h. We denote by

q.x; �/ D
X

j˛j�2
a0˛.x/�

˛; (1.6)

the semiclassical principal symbol of Q.
To define the resonances, we assume that the coefficients a˛.xI h/ extend holo-

morphically in x to the region

‡ D fx 2 CnI j Im xj � ıj Re xj and j Re xj � R1g; (1.7)

for some ı > 0 and R1 > R0, and that the relevant parts of (1.2)–(1.5) remain valid
in ‡ . Under these assumptions, it is possible to define the resonances by complex
distortion following the approach of Sjöstrand [23] (see also Aguilar and Combes [1],
Hunziker [14], Hellfer and Martinez [12] and Sjöstrand and Zworski [25] for more
references concerning the definition of the resonances by complex scaling). Let ��
be a maximally totally real manifold which coincides with Rn along B.R1/ and
with ei�Rn outside a compact set, and which satisfies some additional assumptions
described in [23], Section 3. For 0 � � � �0 with �0 > 0 small enough, the operator

P� D P j��
;

is well defined on D . Moreover, the spectrum of P� in

ƒ� D fz 2 CI �2� < arg z � 0g; (1.8)

is discrete and independent of � and of the choice of �� (in the sense that P� and P� 0

have the same eigenvalues with the same multiplicity in ƒ� \ ƒ� 0 ). By definition,
the resonances of P are the eigenvalues of P�0

in ƒ�0
.



402 J. F. Bony and V. Petkov

As a matter of fact, the resolvent

.P � z/�1 W Hcomp �! Dloc;

admits a meromorphic continuation from the upper complex half-plane fIm z > 0g to
ƒ�0

and the poles of this extension are the resonances. Moreover, if a cut-off function
' 2 C1

0 .R
n/ is supported in the set where �� coincides with Rn, then

'.P � z/�1' D '.P� � z/�1': (1.9)

We refer to Helffer and Martinez [12] for the equivalence of various definitions of the
resonances.

For two functions f; g, we will use the notation f � g if g D 1 in a neighborhood
of the support of f . Since we work with operators of “black box” type, the different
cut-off functions appearing in the sequel will be assumed to be constant near B.R0/.
In the following, k 	 k will denote the norm of the Hilbert space H and the operator
norm on H . Finally, .P � z/�1 will designate the meromorphic extension of the
resolvent from the upper half-plane to ƒ�0

(and not the inverse of P � z). Our first
theorem yields a link between the cut-off resolvents with two cut-off functions � and
an arbitrary cut-off '.

Theorem 1.1. Let ŒE0; E1� ��0;C1Œ. There exists a0 > R0 such that, for all
M > 0 and �; ' 2 C1

0 .R
n/ with 1B.a0/ � �, there exists C > 0 such that

k'.P � z/�1'k � CeC j Im zj=hk�.P � z/�1�k;
for z 2 ŒE0; E1� � i Œ0;Mhj ln hj� not a resonance and h small enough.

On the real axis, such a result was essentially obtained by Robert and Tamura [21],
page 437, to prove the well-known resolvent estimate in non-trapping semiclassi-
cal situations (see also Bruneau and the second author [4], Proposition 3, for trap-
ping perturbations). The next theorem is our main result. We obtain an estimate of
'.P � z/�1' by the norm of the cut-off resolvent 1Ca;b

.P � z/�11Ca;b
.

Theorem 1.2. Let ŒE0; E1� ��0;C1Œ. There exists a0 > R0 such that, for all
a0 < a < b, M > 0 and ' 2 C1

0 .R
n/, there exists C > 0 such that

k'.P � z/�1'k � C
h

j Im zje
C j Im zj=hk1Ca;b

.P � z/�11Ca;b
k;

for z 2 ŒE0; E1� � i Œ0;Mhj ln hj� not a resonance and h small enough.

In particular, both Theorem 1.1 and Theorem 1.2 hold for any a0 large enough.
The above theorem gives no information on the real axis due to the factor j Im zj�1
in the right hand side. This is in agreement with already known results, which say
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that the behavior of the resolvent truncated near the trapped set can be very different
from its behavior truncated in rings far away from the origin. Indeed, under some
additional assumptions on the operator P , Burq [6] and Cardoso and Vodev [8] have
proved that

sup
z2ŒE0;E1�

k1Ca;b
.P � z/�11Ca;b

k . h�1;

without hypothesis on the trapped set. On the other hand,

sup
z2ŒE0;E1�

k'.P � z/�1'k;

can be of order h�1 in the non-trapping case (see Robert and Tamura [21]) or greater
than e"=h, with " > 0, as in the well in an island situation (see e.g. Helffer and
Sjöstrand [13] or Nakamura, Stefanov and Zworski [17]). For Im z D �Ah, our
result implies the following

Corollary 1.3. Under the assumptions and notations of Theorem 1.2 and for A > 0,
we have

k'.P � z/�1'k . k1Ca;b
.P � z/�11Ca;b

k;
for z 2 ŒE0; E1� � iAh not a resonance.

In particular, if in addition ' does not vanish near B.a0/, the norms of the
operators '.P � z/�1' and 1Ca;b

.P � z/�11Ca;b
are equivalent for z 2 ŒE0; E1��

iAh not a resonance.

The term eC j Im zj=h appearing in Theorem 1.1 and Theorem 1.2 cannot be re-
moved in general. To show this, it is enough to consider the distribution kernel of
.�h2� � z/�1 in dimension n D 1 which is given by

iei
p
zjx�yj=h

2h
p
z

:

Note also that the constant C > 0 in the term eC j Im zj=h depends necessarily on
a; b; '.

Remark 1.4. If P has no resonance in ŒE0 � "; E1 C "� � i Œ0; Ah�, " > 0, and if
the norm of 1Ca;b

.P � z/�11Ca;b
is controlled in ŒE0 � "; E1 C "� � iAh, one can

exploit Corollary 1.3 combined with a priori bounds on the cut-off resolvent (see
e.g. Burq and Zworski [7]) and the semiclassical maximum principle (see Tang and
Zworski [27]) to establish a bound of the cut-off resolvent '.P � z/�1' without
j Im zj�1 in the band ŒE0; E1�� i Œ0; Ah�.

In the proof of the previous results, we will use the following lower bound which
can have an independent interest.
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Proposition 1.5. Let ŒE0; E1� ��0;C1Œ. There exists a0 > R0 such that, for all
' 2 C1

0 .R
n/ satisfying supp ' \ B.a0/c ¤ ;, there exists C > 0 such that

k'.P � z/�1'k � Ch�1e�j Im zj=h;

for z 2 .ŒE0; E1� � i Œ0; 1�/\ƒ�0=2 not a resonance and h small enough.

The second question we deal with in this paper is that of estimating resonant
states. Let z be a resonance of P . Then, from the general theory of resonances, we
can write, for 	 in a neighborhood of z,

.P � 	/�1 D …N

.z � 	/N C 	 	 	 C …1

z � 	 C A.	/; (1.10)

as operators from Hcomp to Dloc, where A.	/ is an operator-valued function holo-
morphic near z and the…j ’s are finite rank operators satisfying Im…j � Im…1 and
…1 ¤ 0.

Definition 1.6. A resonant state u is an element of Im…1 which satisfies

.P � z/u D 0:

In particular, resonant states are in Dloc but, in general, they are not in H . In the
same spirit as in Theorem 1.2, we obtain the following

Theorem 1.7. Let ŒE0; E1� ��0;C1Œ. There exists a0 > R0 such that, for all
a0 < a < b, M > 0 and ' 2 C1

0 .R
n/, there exists C > 0 such that

k'uk � C

s
h

j Im zje
C j Im zj=hk1Ca;b

uk; (1.11)

for any resonant state u associated to a resonance z 2 ŒE0; E1�� i Œ0;Mhj ln hj� and
h small enough.

Thus, this theorem gives a lower bound of the resonant states on the ring Ca;b .
In a certain sense, it can be seen as an effective unique continuation result for the
resonant states. However, we not consider the behavior at infinity of the resonant
states.

Remark 1.8. i) Note that, under some assumptions and for resonances satisfying
j Im zj . h, Stefanov [26] and Michel and the first author [3] have shown that

k1Ca;b
uk .

r j Im zj
h

k1B.b/uk:

Thus, the estimate given in Theorem 1.7 is sharp in this case.
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ii) Note also that one can use the known results concerning the resonant states to
refine Theorem 1.7. For instance, it is known that the resonant states are outgoing.
This means that they vanish microlocally in the incoming region

��.Re z/ D f.x; �/ 2 q�1.Re z/I exp.tHq/.x; �/ ! 1 as t ! �1g:
We refer to Michel and the first author [3] for a precise result. Thus, it can be possible,
under some assumptions, to replace u by ‰u in the right hand side of (1.11) where
‰ is a pseudodifferential operator which microlocalizes near the complement of the
incoming region.

iii) For Schrödinger operators P D �h2� C V.x/ and for simple resonances,
Theorem 1.7 can be deduced from Theorem 1.2. Indeed, letting the spectral parameter
go to z in Theorem 1.2, we get

k'…1'k � C
h

j Im zje
C j Im zj=hk1Ca;b

…11Ca;b
k:

Therefore (1.11) follows since, for Schrödinger operators, we can write …1 D
cuh Nu; 	i for some c 2 C n f0g.

iv) Theorem 1.7 shows that the resonant states associated to resonances at dis-
tance h from the real axis cannot be localized near the trapped set to first order. More
precisely, let u.h/ be a family of resonant states, with ku.h/kB.b/ D 1, whose corre-
sponding resonances z.h/ verify h=A � � Im z.h/ � Ah. Then, every semiclassical
measure 
 associated to u.h/ has the property


.Ca;b 
 Rn/ > 0: (1.12)

Note that, for differential operators (i.e. P D Q), one could obtain (1.12) by using
the propagation properties of the semiclassical measures associated to the resonant
states (see e.g. Theorem 4 of Nonnenmacher and Zworski [18]).

Example 1.9. The estimates given in Theorem 1.7 and Remark 1.8 i/ are already
known in the well in an island situation. In dimension n D 1 and at the bottom of the
well, Helffer and Sjöstrand [13], Proposition 11.1, have proved that the imaginary
part of the first resonance satisfies

Im z D �.˛ C o.1//h1=2e�2S0=h;

where S0 > 0 is the Agmon distance between the well and the sea and ˛ ¤ 0 is
explicit (see also Harrell and Simon [11]). On the other hand, the resonant state u
(normalized on B.b/) verifies

k1B.b/uk D 1 and k1Ca;b
uk D .ˇ C o.1//h�1=4e�S0=h;

with ˇ ¤ 0. This is in agreement with Theorem 1.7 and Remark 1.8i).
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Note that the well in an island situation in the multidimensional case has been
treated in [13], Theorem 10.12. We also refer to Fujiié, Lahmar-Benbernou and Mar-
tinez [10] for potentials which are only C1 in a compact set. In all these works, the
authors prove precise asymptotics of the resonant states and they obtain the imagi-
nary part of the resonances by a formula similar to (5.2) which is used in the proof
of Theorem 1.7.

Example 1.10. The resonant states have also been computed for barrier-top res-
onances. In [2], Theorem 4.1, Fujiié, Ramond, Zerzeri and the first author have
proved that, for simple resonances with j Im zj . h, the resonant states u are classi-
cal Lagrangian distributions whose Lagrangian manifold ƒC is the stable outgoing
Lagrangian manifold at the critical point. Moreover, the principal symbol of u does
not vanish almost everywhere on ƒC.

In particular, since the spatial projection of ƒC is the whole space Rn, we get

k'uk . k1Ca;b
uk . k'uk;

for all 0 ¤ ' 2 C1
0 .R

n/. On the other hand, in this context, the imaginary part of a
resonance satisfies Im z D �	hC o.h/ where 	 ¤ 0 is given by the eigenvalues of
the Hessian of the potential at its maximum. This is in agreement with Theorem 1.7
and Remark 1.8 i).

By our arguments, we can also study the generalized resonant states.

Definition 1.11. A generalized resonant state u is an element of Im…1. The order
of u is the smallest integer J � 1 such that .P � z/Ju D 0.

Note that, using the notations of (1.10), the order of a generalized resonant state is
bounded byN because .P �z/…N D 0 and .P �z/…j D …jC1 for 1 � j � N �1.
As a consequence of Theorem 1.7, we have the following result on the generalized
resonant states of bounded order.

Proposition 1.12. Let ŒE0; E1� ��0;C1Œ. There exists a0 > R0 such that, for all
a0 < a < b, M > 0, J 2 N n f0g and ' 2 C1

0 .R
n/, there exists C > 0 such that

k'uk � C

s
h

j Im zje
C j Im zj=h

J�1X
jD0

1

j Im zjj k1Ca;b
.P � z/juk;

for any generalized resonant state u of order less than J associated to a resonance
z 2 ŒE0; E1�� i Œ0;Mhj ln hj� and h small enough.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1
by constructing an auxiliary non-trapping operator which coincides withP at infinity.
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Section 3 is devoted to the proof of Theorem 1.2. The main idea is to exploit the
formula

h�.P � z/u; �ui � h�u; �.P � z/ui D hŒ�2; P �u; ui � 2i Im zk�uk2;
which is generally used to compute imaginary parts of resonances (see e.g. Helffer
and Sjöstrand [13], page 155). Proposition 1.5 is proved in Section 4 by building a
well-chosen quasimode. The estimates concerning the resonant states are obtained in
Section 5 using ideas similar to those of Section 3. In Section 6, we apply our results
to the case of obstacle scattering and we make the link with the work of Stoyanov
and the second author [19]. Finally, we give some basic properties of the generalized
resonant states in Appendix A.

Acknowledgments. The authors would like to thank the referee for helpful com-
ments, making the paper more understandable.

2. Proof of Theorem 1.1

First, we construct a non-trapping operator by planingQ in a large compact set. This
idea has been used by Robert and Tamura [21] (see also Bruneau and the second
author [4] for trapping situations) to estimate the weighted resolvent on the real axis
in non-trapping situations. Secondly, we recall the standard estimate of the cut-off
resolvent associated to this new auxiliary operator. Let �; � 2 C1.RnI Œ0; 1�/ be such
that

1B.1=2/ � � � 1B.1/;

and �2 C �2 D 1 on Rn. For a > 0, we define

Ra D �
�x
a

�
Q�

�x
a

�
� �

�x
a

�
h2��

�x
a

�
;

a differential operator of order 2 whose semiclassical principal symbol is

ra.x; �/ D q.x; �/�2
�x
a

�
C �2�2

�x
a

�
:

In particular, �2=C �C � ra � C�2 CC uniformly for a > 0. Moreover, using the
assumption (1.4), a direct computation yields

fra; x 	 �g D f�2; x 	 �g C
n
.q � �2/�2

�x
a

�
; x 	 �

o
D 2�2 C oa!C1.h�i2/ D 2ra C oa!C1.h�i2/ � E0=2 > 0;

(2.1)

for ra.x; �/ 2 ŒE0=2; 2E1� and a > a0 with a0 > R0 sufficiently large. This implies
that, for a > a0, the symbol ra.x; �/ is non-trapping on r�1

a .E/ for all energies E
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lying in the interval ŒE0=2; 2E1�. Then, we can apply a result of Nakamura, Stefanov,
and Zworski [17] (see also Martinez [16]) which yields the following resolvent esti-
mate.

Lemma 2.1. For all j 2 N, s 2 R, M > 0 and ' 2 C1
0 .R

n/, there exists C > 0

such that

k'.Ra � z/�j'k
H s

h
!H

sC2
h

� C
eC j Im zj=h

hj
;

for z 2 ŒE0; E1� � i Œ0;Mhj ln hj� and h small enough. Here,

H s
h.R

n/ D fu 2 � 0.Rn/I hhDxisu 2 L2.Rn/g;
is the semiclassical Sobolev space equipped with the norm kukH s

h
D khhDxisukL2 .

Proof. Since the operatorRa is non-trapping on the energies in ŒE0=2; 2E1�, we have

k'.Ra � z/�1'kL2!L2 � C
eC j Im zj=h

h
;

for z 2 ŒE0; E1� � i Œ0;Mhj ln hj� C B.h/. This estimate follows from Proposition
3.1 of Nakamura, Stefanov, and Zworski [17] and (1.9) for Im z � 0 and from the
usual Mourre theory (see e.g. Vasy and Zworski [28]) for Im z > 0. In particular, for
z 2 ŒE0; E1�� i Œ0;Mhj ln hj�, it yields

k'.Ra � 	/�1'kL2!L2 � C
eC j Im zj=h

h
;

for all 	 2 z C B.h/. Then, the Cauchy formula implies

'.Ra � z/�j' D 1

.j � 1/Š@
j�1
z '.Ra � z/�1'

D 1

2i�

I
zC@B.h/

'.Ra � 	/�1' d	

.	 � z/j ;

and then

k'.Ra � z/�j'kL2!L2 � C
eC j Im zj=h

hj
: (2.2)

It remains to bound this operator fromH s
h

toH sC2
h

. SinceRa is an elliptic differential
operator of order 2, we have

kukH2k
h

' k.Ra C i/kukL2 ;

for all k 2 Z. Thus, performing multiple commutations between Ra C i and
'.Ra � 	/�j' and using (2.2), a standard argument gives

k'.Ra � z/�j'k
H2k

h
!H

2kC2
h

� Ck
eC j Im zj=h

hj
;

for all k 2 Z. And the lemma follows from an interpolation argument.
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We now prove Theorem 1.1. Assume that 1B.a/ � �with a > a0 where a0 > R0
is given by Proposition 1.5 and Lemma 2.1. Let �1; �2 2 C1

0 .R
n/ be such that

1B.a/ � �1 � �2 � �: (2.3)

In particular, P.1 � ��/ D Ra.1 � ��/. For Im z > 0 and then for z 2 ƒ�0
by

meromorphic extension, we can write

'.P � z/�1'

D '1RnnB.R0/.Ra � z/�1.1� �1/' C '�1.P � z/�1�2'
C '�1.P � z/�1ŒP; �2�.Ra � z/�11RnnB.R0/'

� '1RnnB.R0/.Ra � z/�1ŒP; �1�.P � z/�1�2'
� '1RnnB.R0/.Ra � z/�1ŒP; �1�.P � z/�1ŒP; �2�.Ra � z/�11RnnB.R0/':

(2.4)

To prove this identity for Im z > 0, the cut-off function ' can be omitted and it is
enough to expand the commutator ŒP; �2� and then the commutator ŒP; �1�, and to
use the formula ŒP; ��� D .P � z/.�� � 1/� .�� � 1/.P � z/. The properties of the
��’s given in (2.3) imply that

ŒP; ��� D �.x/hhrihO.1/�.x/; (2.5)

where the O.1/ denotes an operator bounded uniformly in h on L2.Rn/. Combining
Lemma 2.1, (2.4) and (2.5) (with its adjoint), we finally obtain

k'.P � z/�1'k
. k'.Ra � z/�1'k C k�.P � z/�1�k

C hk�.P � z/�1�k k�.Ra � z/�1'kL2!H1
h

C hk�.P � z/�1�k k'.Ra � z/�1�kH�1
h

!L2

C h2k�.P � z/�1�k k'.Ra � z/�1�kH�1
h

!L2k�.Ra � z/�1'kL2!H1
h

. eC j Im zj=h

h
C k�.P � z/�1�k.1C e2C j Im zj=h/:

To complete the proof of Theorem 1.1, it is enough to use Proposition 1.5.

3. Proof of Theorem 1.2

We will first estimate�1.P�z/�1�1 for a particular cut-off function�1 adapted to the
ring Ca;b and then apply Theorem 1.1 to estimate '.P � z/�1' for all ' 2 C1

0 .R
n/.

Let �1; �2; �3; �4 2 C1
0 .R

n/ be such that 1B.a/ � �1 � �2 � �3 � �4 � 1B.b/.
We also consider  1;  2;  3;  4 2 C1

0 .R
n/ such that r�1 �  1 �  2 � �21Ca;b

,
r�3 �  3 �  4 � �41Ca;b

and �2 4 D 0. We begin with the following estimates.
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Lemma 3.1. For f 2 Hcomp and z 2 ƒ�0
with j Im zj � 1, we have

k�3.P � z/�1f k2 . 1

j Im zj2 k�4f k2 C h

j Im zjk 4.P � z/�1f k2; (3.1)

k�1.P � z/�1�
f k2 . 1

j Im zj2 k�2f k2 C h

j Im zjk 2.P � z/�1�
f k2: (3.2)

Proof. For u 2 Dloc, we have

h�3.P � z/u; �3ui � h�3u; �3.P � z/ui D hŒ�23; P �u; ui � 2i Im zk�3uk2:

Taking u D .P � z/�1f yields

j Im zjk�3.P � z/�1f k2 . k�3.P � z/�1f kk�3f k
C kŒ�23; P �.P � z/�1f kk 4.P � z/�1f k: (3.3)

Moreover, combining (2.5), the ellipticity of P and the properties of the support of
the cut-off functions, we obtain

Œ�23; P �.P � z/�1f D Œ�23; P �.P C i/�1.P C i/ 3.P � z/�1f
D Œ�23; P �.P C i/�1

�
 3.P C i/C ŒP;  3�

�
.P � z/�1f

D Œ�23; P �.P C i/�1 3f
C Œ�23; P �.P C i/�1

�
.i C z/ 3 C ŒP;  3�

�
.P � z/�1f

D O.h/k�4f k C O.h/k 4.P � z/�1f k: (3.4)

Combining (3.3) and (3.4), we obtain

j Im zjk�3.P � z/�1f k2 � j Im zj
2

k�3.P � z/�1f k2 C C

j Im zjk�3f k2

C Chk�4f k2 C Chk 4.P � z/�1f k2

. 1

j Im zjk�4f k2 C hk 4.P � z/�1f k2:

This implies (3.1). The estimate for the adjoint operator (3.2) can be proved by the
same argument using .P � z/�1� D .P � Nz/�1.
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We can now prove Theorem 1.2. Recall that, for simplicity, we use the notation
k 	 k for the norm of the space H and the operator norm on H . To be more precise,
in the rest of this section k 	 k denotes the norm of H only when f or u appears in
the expression. From (3.1), we can write

k�1.P � z/�1�1f k2 � k�3.P � z/�1�1f k2

. 1

j Im zj2 k�4�1f k2 C h

j Im zj k 4.P � z/�1�1f k2

� 1

j Im zj2 kf k2 C h

j Im zjk�1.P � z/�1�
 4k2kf k2:

Using now (3.2) and �2 4 D 0, we get

k�1.P � z/�1�1f k2

. 1

j Im zj2 kf k2 C h

j Im zj kf k2 sup
kukD1

k�1.P � z/�1�
 4uk2

. 1

j Im zj2 kf k2 C h

j Im zj kf k2 sup
kukD1

� 1

j Im zj2 k�2 4uk2

C h

j Im zjk 2.P � z/�1�
 4uk2

�

D 1

j Im zj2 kf k2 C h2

j Im zj2 k 4.P � z/�1 2k2kf k2:

Combining with  � � 1Ca;b
yields

k�1.P � z/�1�1k . 1

j Im zj C h

j Im zjk1Ca;b
.P � z/�11Ca;b

k:

We now apply Theorem 1.1 and assume that a � a0. Since 1B.a0/ � �1, Theorem 1.1
together with the previous estimate gives

k'.P � z/�1'k . h

j Im zje
C j Im zj=h.k1Ca;b

.P � z/�11Ca;b
k C h�1/: (3.5)

To conclude the proof of Theorem 1.2, it is enough to apply Proposition 1.5.

4. Proof of Proposition 1.5

To prove this result, we construct a quasimode of order h. Since the semiclassical
principal symbol q.x; �/ of Q converges to �2 at infinity, there exists a0 > R0 such
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that, for all jxj � a0, we have q.x; 0/ � E0=2. Let now ' 2 C1
0 .R

n/ and jx0j � a0
be such that '.x0/ ¤ 0.

Using q.x0; 0/ < E0 and the form of q.x0; 	/ given in (1.6), one can con-
struct �0.	/ 2 C1 such that q.x0; �0.	// D 	 and @�1

q.x0; �0.	// ¤ 0 for all
	 2 ŒE0; E1�. Solving the Hamilton–Jacobi equation by the usual method (see e.g.
Dimassi and Sjöstrand [9], Theorem 1.5), there exists a phase function .x; 	/ 2 C1
defined for x in a neighborhood of x0 and for 	 2 ŒE0; E1�, and such that

q.x;rx .x; 	// D 	;

for all 	 2 ŒE0; E1�. Let now

u.x; z/ D �.x/ei .x;Rez/=h;

where 0 ¤ � 2 C1
0 .R

n/ is supported in the intersection of W D fxI j'.x/j �
j'.x0/j=2g and the set where  is defined.

Let P� be the operator P distorted outside the support of ' by a fixed angle
0 < � � �0 large enough. A standard computation by the method of stationary phase
gives

.P� � z/u D .P � z/u D .Q � z/u

D .Op.q/ � Re z/uC hQ1u � i Im z u

D .q.x;rx .x;Re z// � Re z/uC O.hC j Im zj/
D O.hC j Im zj/; (4.1)

where Op.q/ is any semiclassical quantization of q andQ1 is a h-differential operator
of order two with coefficients uniformly bounded with respect to h. Using that
.P� � z/u D .Q � z/u is supported in W , we so can write

.P� � z/u D 'v;

where
kv.x; z/k . hC j Im zj: (4.2)

Then, using that .P� � z/�1 is invertible and the equality (1.9), we get

'u D '.P� � z/�1'v D '.P � z/�1'v:
Finally, combining the previous equation with (4.2) and k'uk & 1, we obtain

k'.P � z/�1'k & 1

hC j Im zj � h�1e�j Im zj=h;

and the proposition follows.
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5. Estimates for the resonant states

In this part, we prove the estimates for the (generalized) resonant states given is
Section 1.

Proof of Theorem 1.7. Choose cut-off functions �; Q� 2 C1
0 .R

n/ so that

1B.a/ � � � 1B.b/ and r� � Q� � 1Ca;b
: (5.1)

Let u be a resonant state associated to a resonance z 2 ŒE0; E1� � i Œ0;Mhj ln hj�.
We first estimate �u. Since u 2 Dloc and .P � z/u D 0, we have

0 D h�.P � z/u; �ui � h�u; �.P � z/ui
D ˝
Œ�2; P �u; u

˛� 2i Im zk�uk2:
(5.2)

Thus we obtain

k�uk2 � 1

2j Im zj
ˇ̌˝
Œ�2; P � Q�u; Q�u˛ˇ̌: (5.3)

To estimate the action of Œ�2; P � on Q�u, we write

Œ�2; P � Q�u D Œ�2; P �.P C i/�1.P C i/ Q�u
D Œ�2; P �.P C i/�1. Q�.P C i/uC ŒP; Q��u/
D Œ�2; P �.P C i/�1. Q�.z C i/1Ca;b

uC ŒP; Q��1Ca;b
u/:

(5.4)

The operator Œ�2; P �.P C i/�1 Q� W L2 ! L2 is bounded by O.h/, while the operator

Œ�2; P �.P C i/�1ŒP; Q�� W L2 ! L2;

is bounded by O.h2/. Thus, combining (5.3) and (5.4), we deduce

k�uk � C

s
h

j Im zj k1Ca;b
uk: (5.5)

We now estimate 'u for all ' 2 C1
0 .R

n/. Let P� (resp. Ra;� ) be a complex
distortion ofP (resp. ofRa which is defined in Section 2) by a fixed angle0 < � � �0.
We also assume that the scaling occurs only outside of supp ' [ B.b/. Then, from
Lemma A.6, there exists u� 2 D such that .P� � z/u� D 0,

1B.b/u� D 1B.b/u and 'u� D 'u: (5.6)

On the other hand, the definition ofRa and 1B.a/ � � implyRa;� .1��/ D P� .1��/.
Thus, we can write

.Ra;� � z/.1 � �/u� D .P� � z/.1� �/u� D �ŒP; ��u� :
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This yields
.1� �/u� D �.1� O�/.Ra;� � z/�1ŒP; ��u� ;

where O� 2 C1
0 .R

n/, with 1B.R0/ � O� � �, is an artificial cut-off function used to
identify .1 � O�/H and .1� O�/L2. Finally, we get

'u D 'u� D '�u� � '.1� O�/.Ra;� � z/�1ŒP; ��u�
D '�u� .1 � O�/'.Ra � z/�1 Q�ŒP; ��1Ca;b

u:
(5.7)

To complete the proof of Theorem 1.7, it is enough to use (5.5) and

k.1� O�/'.Ra � z/�1 Q�ŒP; ��kH!H . k'.Ra � z/�1 Q�kH�1
h

!L2kŒP; ��kL2!H�1
h

. eC j Im zj=h

h

 h � C

s
h

j Im zje
C j Im zj=h;

which follows from Lemma 2.1.

Proof of Proposition 1.12. We will prove this result by induction over the order J of
the generalized resonant state u. For J D 1, Proposition 1.12 is a direct consequence
of Theorem 1.7. Now assume that Proposition 1.12 holds true for generalized resonant
states of order less than J � 1 for some J � 2. Let u be a generalized resonant state
of order J . Following the analysis of (5.2), we have

h�.P � z/u; �ui � h�u; �.P � z/ui D hŒ�2; P �u; ui � 2i Im zk�uk2;
which implies

k�uk2 � 1

2j Im zj jhŒ�
2; P �u; uij C 1

j Im zjk�ukk�.P � z/uk

� 1

2j Im zj jhŒ�
2; P �u; uij C 1

2
k�uk2 C 1

2j Im zj2 k�.P � z/uk2

� 1

j Im zj jhŒ�
2; P � Q�u; Q�uij C 1

j Im zj2 k�.P � z/uk2:

(5.8)

As in (5.4), we can write

Œ�2; P � Q�u D Œ�2; P �.P C i/�1.P C i/ Q�u
D Œ�2; P �.P C i/�1 Q�.P � z/u

C Œ�2; P �.P C i/�1. Q�.z C i/1Ca;b
uC ŒP; Q��1Ca;b

u/;

which yields

kŒ�2; P � Q�uk . hk1Ca;b
.P � z/uk C hk1Ca;b

uk:
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Then, (5.8) becomes

k�uk .

s
h

j Im zj k1Ca;b
uk C

s
h

j Im zj k1Ca;b
.P � z/uk C 1

j Im zjk�.P � z/uk:

Now we remark that .P � z/u 2 …1 is a generalized resonant state whose order is
J � 1. Then, applying the recurrence assumption, the previous equation gives

k�uk .

s
h

j Im zje
C j Im zj=h

J�1X
jD0

1

j Im zjj k1Ca;b
.P � z/juk: (5.9)

Next will now obtain a formula similar to (5.7) to control 'u for ' 2 C1
0 .R

n/.
As in (5.6), let P� (resp. Ra;� ) be a complex distortion of P (resp. Ra) by a fixed
angle 0 < � � �0. Assume also that the scaling occurs only outside of supp '[B.b/.
Then, from Lemma A.6, there exists u� 2 DJ such that .P� � z/Ju� D 0,

1B.b/u� D 1B.b/u and 'u� D 'u:

We also have Ra;� .1 � �/ D P� .1� �/. A direct computation gives

.Ra;� � z/J .1� �/u� D .P� � z/J .1� �/u� D �
J�1X
jD0

�
adJ�j
P �

�
.P � z/ju;

where ad0P � D � and adjC1
P � D ŒP; adjP ��. Thus, mimicking the proof of (5.7),

we get

'u D '�u � .1� O�/'.Ra � z/�J Q�
J�1X
jD0

�
adJ�j
P �

�
1Ca;b

.P � z/ju:

Using (5.9), Lemma 2.1 and k adjP �k
H s

h
!H

s�j

h

D O.hj /, the previous equation

gives

k'uk .

s
h

j Im zje
C j Im zj=h

J�1X
jD0

1

j Im zjj k1Ca;b
.P � z/juk

C eC j Im zj=h
J�1X
jD0

1

hj
k1Ca;b

.P � z/juk

.

s
h

j Im zje
C j Im zj=h

J�1X
jD0

1

j Im zjj k1Ca;b
.P � z/juk;

since h�1 . j Im zj�1ej Im zj=h. Thus Proposition 1.12 holds for generalized resonant
states of order J and the proof is complete.
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6. Scattering by obstacles

Let K � fx 2 RnI jxj � R0g, n � 2, be a bounded domain with smooth boundary
such that
 D Rn n xK is connected. Let ��D be the Dirichlet Laplacian in
which
is a self-adjoint operator on H D L2.
/ with domain D D H 1

0 .
/ \H 2.
/. For
Im 	 > 0 the resolvent .��D � 	2/�1 is a bounded operator from H to D and,
for all ' 2 C1

0 .
/, the cut-off resolvent '.��D � 	2/�1' admits a meromorphic
continuation in C forn odd and in CniR� for n even. For non-trapping perturbations,
we have an estimate

k'.��D � 	2/�1'k . h	i�1;
for 	 2 R, j	j � 1, while for trapping perturbations and 	 2 R, j	j � 1 this cut-off
resolvent is bounded by eC j�j (see Burq [5]).

Since we will use the Lax–Phillips theory [15], we consider in
 the wave equation

@2t u ��Du D 0; (6.1)

with Dirichlet boundary condition on @
. Let HD.
/ be the closure of C1
0 .
/ for

the norm kr 	 kL2.�/. We introduce the energy space H D HD.
/ ˚ L2.
/ and
the unitary group e�itG W H �! H with generator �iG, where

G D i

 
0 I

�D 0

!
;

is a self-adjoint operator on H (see Lax and Phillips [15]). As usual, the solutions
of (6.1) are given by  

u.t/

@tu.t/

!
D e�itG

 
u.0/

@tu.0/

!
: (6.2)

To apply the results for semiclassical operators established in Section 1, we con-

sider the scaling 	 D
p
z

h
and write

.��D � 	2/�1 D h2.P � z/�1; (6.3)

where P D �h2�D satisfies the general assumptions of Section 1. We want to
estimate the cut-off resolvent of ��D in the region

� D ˚
	 2 CI Re 	 � 1 and 0 � Im 	 � �M ln.Re	/

�
:

It is then enough to consider the situation

	 2 �h D �
h�1; 2h�1� � i�0;M.j ln hj C ln 2/

�
;

since the union of �h over 0 < h � 1 covers � . For 	 2 �h, we have
p
z 2 Œ1; 2�� i�0; hM.j ln hj C ln 2/

�
;
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and finally
z 2 Œ1=2; 4�� i Œ0; 5Mhj ln hj�;

for h small enough. Applying Theorem 1.2 in this region to the operator P and using
the relation (6.3), we obtain, for 	 2 �h with h small enough,

k'.��D � 	2/�1'k D kh2'.P � z/�1'k

� C
h

j Im zje
C j Im zj=hkh21Ca;b

.P � z/�11Ca;b
k

� C
eC j Im�j

j Im 	j k1Ca;b
.��D � 	2/�11Ca;b

k;

since j Im zj=h behaves like j Im 	j in �h. Note also that such relation holds true in
any compact set (with a constantC depending on the compact set). This follows from
Corollary A.4 near the resonances and from the fact that 1Ca;b

.��D � 	2/�11Ca;b

does not vanish (because � D .��D � 	2/�1.��D � 	2/�) away from the reso-
nances. Summing up, we have proved the following

Theorem 6.1. There exists a0 > R0 such that, for all a0 < a < b, M > 0 and
' 2 C1

0 .R
n/, there exists C > 0 such that

k'.��D � 	2/�1'k � C
eC j Im�j

j Im 	j k1Ca;b
.��D � 	2/�11Ca;b

k; (6.4)

for 	 not resonance with Re	 � 1 and 0 � Im 	 � �M ln.Re	/.

For n � 3, n odd, there is a link between the cut-off resolvent '.��D � 	2/�1'
and the contraction semigroup Z�.t / D P

�
Ce�itGP �� D etB

� W H �! H , t � 0,
with generator B�, introduced by Lax and Phillips [15]. Here, P �˙ are the orthogonal
projections on the orthogonal complements of the Lax–Phillips spacesD�

˙, � > R0.
The spectrum of iB� coincides with the resonances and is then independent on the
choice of � > R0. Given ' 2 C1

0 .
/, we may fix � > R0 so that 'P �˙ D ' D P
�
˙'.

In the sequel, we drop the indexes � in the notations and write B;P˙ instead of
B�; P

�
˙. For Im 	 > 0, we have

�'.B C i	/�1' D
Z 1

0

ei�t'PCe�itGP�'dt D �i'.G � 	/�1';

and, by analytic continuation, this equality holds true for 	 not resonance with Im 	 �
0. Moreover, one can see that

k'.G � 	/�1'kH!H � Ck'	.��D � 	2/�1'kL2.�/!L2.�/;

for 	 not resonance with j	j � 1. Thus (6.4) implies

k'.BCi	/�1'kH!H � C
j	j

j Im 	je
C j Im�jk1Ca;b

.��D�	2/�11Ca;b
kL2.�/!L2.�/:

(6.5)
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Note that, in odd dimension n � 3, it is possible to estimate the cut-off resolvent
in term of scattering quantities. This was done by Stoyanov and the second author
in [19] using the Lax–Phillips theory. More precisely, consider the scattering matrix
S.	/ D I C K.	/ W L2.Sn�1/ �! L2.Sn�1/, associated to the Dirichlet problem
for the wave equation in 
 given in (6.1). This operator is defined for Im 	 � 0 and
it is unitary for 	 2 R. The operator K.	/ is a Hilbert–Schmidt operator with kernel
a.	; !; !0/, called scattering amplitude. The scattering matrix S.	/ (as the scattering
amplitude a.	; !; !0/) has a meromorphic continuation from Im 	 � 0 to the half
plane Im 	 < 0 and the poles coincide with the resonances. Of course, the form of
the scattering operator S.	/ depends on the outgoing and incoming representations
of the energy space H (see [15]) and to have the formula (1.1) for the scattering
amplitude we must have an appropriate outgoing/incoming representation.

By using the link between k.B C i	/�1kH!H and the inner representation of
the scattering operator S1.	/ established in [15], Chapter IV, it is proved in [19],
Section 4, that

k.B C i	/�1kH!H � 3

2

eˇ j Im�j

j Im 	j kS.	/kL2.Sn�1/!L2.Sn�1/; (6.6)

for some ˇ � 0 given by the inner representation of the scattering operator. Using
that the Hilbert–Schmidt norm of an operator is the L2 norm of its kernel, the last
estimate yields

k.B C i	/�1kH!H � 3

2

eˇ j Im�j

j Im 	j
		Z

Sn�1�Sn�1

ˇ̌
a.	; !0; !/

ˇ̌2
d! d!0


1=2
C 1



:

(6.7)
Now, we can handle the integral over Sn�1
Sn�1 using the representation (1.1) with
h D 1, z D 	2 and P D ��D. Choosing the functions �j 2 C1

0 .
/, j D 1; 2 so
that r�j � 1Ca;b

, the formula (1.1) and the estimate (6.7) give an analog of (6.5)
with a possible polynomial loss in h	i.

Appendix A. Properties of the generalized resonant states

In this part, we collect some basic properties of the generalized resonant states. Being
for the most part in the folklore of the theory of resonances, we only give them for a
reason of completeness.

Let z 2 ƒ�0
be a resonance of P . Since .P � 	/�1 W Hcomp �! Dloc is an

operator-valued meromorphic function, we can write, for 	 in a neighborhood of z,

.P � 	/�1 D …N

.z � 	/N C 	 	 	 C …1

z � 	 C A.	/;
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as operators from Hcomp to Dloc, where A.	/ is holomorphic near z and the…j ’s are
finite rank operators. Let P� be a complex distortion by an angle arctan

� j Im zj
j Re zj

�
<

� � �0. Then, for 	 in a neighborhood of z, we have

.P� � 	/�1 D …�
N�

.z � 	/N�
C 	 	 	 C …�

1

z � 	 C A.	/;

as operators from H to D , where A.	/ is holomorphic near z and the …�
j ’s are

finite rank operators. Moreover, if the distortion occurs outside of the support of
' 2 C1

0 .R
n/, it follows from (1.9) that

'…j' D '…�
j '; (A.1)

for all j � 1.

Lemma A.2. Let ' 2 C1
0 .R

n/ be such that 1B.R1/ � '. Then, the multiplication by
' is injective on Im…j (resp. Im…�

j ) for all 1 � j � N (resp. 1 � j � N� ).

Proof. Let u� 2 Im…�
j be such that 'u� D 0. Using .P� � z/…�

N�
D 0 and

.P� � z/…�
k

D …�
kC1, we get

.P� � z/.P� � z/N� �1u� D .P� � z/N�u� D 0:

From Lemma 3.1 of Sjöstrand and Zworski [25], we deduce that .P� � z/N� �1u� is
(outside ofB.R1/) the restriction to �� of a holomorphic function in‡ . On the other
hand, .P� � z/N� �1u� D 0 on the support of ' since 'u� D 0. Therefore,

.P� � z/.P� � z/N� �2u� D .P� � z/N� �1u� D 0:

Then, performing an induction argument, we get u� D 0. The fact that the multipli-
cation by ' is injective on Im…j is similar.

Remark A.3. Using .P � 	/�1� D .P � N	/�1 (resp. .P� � 	/�1� D .P�� � N	/�1),
we can prove the same way that Im…j' D Im…j (resp. Im…�

j ' D Im…�
j ).

Combining (A.1), Lemma A.2 and Remark A.3, we get

CorollaryA.4. Let' 2 C1
0 .R

n/ be such that 1B.R1/ � ' and such that the distortion
occurs outside of the support of '. Then, we have N D N� and, for all 1 � j � N ,

Rank…j D Rank '…j' D Rank '…�
j ' D Rank…�

j :

In particular,
Im '…j D Im '…j' D Im '…�

j ' D Im '…�
j : (A.2)
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Lemma A.5. For all 1 � j � N , we have Im…j � Im…1 and Im…�
j � Im…�

1 .

Proof. Since the resolvent of P� acts from L2.Rn/ to itself, a standard argument
gives Im…�

j � Im…�
1 . Consider now u 2 Im…j . Let ' 2 C1

0 .R
n/ be such that

1B.R1/ � ' andP# be a complex distortion outside the support of'. Then, from (A.2),
there exists u# 2 Im…#

j such that 'u D 'u# . Therefore, using Im…#
j � Im…#

1

together with (A.2), there exists u' 2 Im…1 such that

'u D 'u' :

Let now  2 C1
0 .R

n/ be such that ' �  . From the previous construction, 'u D
' u D ' u D 'u D 'u' and u' � u 2 Im…1. Then, Lemma A.2 implies
u' D u . In other words, for all  2 C1

0 .R
n/, we have

 u D  u' :

This implies u D u' 2 Im…1.

Lemma A.6. Let ' 2 C1
0 .R

n/ be such that 1B.R1/ � ' and such that the distortion
occurs outside of the support of '. Then, for all u 2 Im…1, there exists a unique
u� 2 Im…�

1 such that 'u D 'u� . Moreover, .P � z/Ju D 0 if and only if
.P� � z/Ju� D 0.

Proof. Let u 2 Im…1. From (A.2), there exists u� 2 Im…�
j such that 'u D 'u� .

Thanks to Lemma A.2, this u� is unique. Lemma A.5, .P � z/…j D …jC1 and
.P� � z/…�

j D …�
jC1 imply .P � z/Ju 2 Im…1 and .P� � z/Ju� 2 Im…�

1 . Then,

from Lemma A.2, .P � z/Ju D 0 if and only if '.P � z/Ju D '.P� � z/Ju� D 0

if and only if .P� � z/Ju� D 0.
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