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1. Introduction

We consider a vector potential A 2 C
1.R2;R2/ and we consider the self-adjoint

operator defined by:

Lh;A D .�ihr C A/2;

where h > 0 is the semiclassical parameter: We are interested in the limit h ! 0:

This operator is gauge invariant. Indeed, for a smooth and real-valued function ', we

have

e�i'=h
Lh;Ae

i'=h D Lh;ACr' :

Therefore the spectrum of Lh;A only depends on the magnetic field ˇ D r � A:

Notation 1.1. We will denote by �n.h/ the n-th eigenvalue of Lh;A.
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The aim of this paper is to give asymptotic expansions of �n.h/ when h ! 0.

Let us notice that this regime is equivalent to the strong magnetic field limit which is

often involved in applications (superconductivity, Hall regime etc.).

Framework and state of the art. There are essentially four motivations to the

present analysis. The first one comes from the theory of superconductivity in which

the magnetic Laplacian appears in the study of the third critical field associated

with the Ginzburg-Landau functional (see [29], [30], and also the book [12] and the

references therein).

The second one is related to the papers of R. Montgomery [32], X-B. Pan and

K-H. Kwek [33] and B. Helffer and Y. Kordyukov [18] (see also [20] and [16])

where the authors analyze the spectrum of the magnetic Laplacian when the mag-

netic field vanishes along a smooth curve. In these papers, the main question is to

know if the cancellation of the magnetic field can be seen on the semiclassical ex-

pansion of the eigenpairs (until now only the first term of the asymptotics is known

for �n.h/, see [18], Corollary 1.1, when k D 1). Coming from geometrical moti-

vations, Montgomery was interested by the geometrical aspect of the magnetic field.

More precisely, the magnetic Hamiltonian is the Laplacian associated to a connec-

tion whose curvature is the magnetic field (see [32] for more details). Our results

complete these considerations in the sense that the asymptotics of [32] only gives the

leading term whereas our method will give the complete structure of the spectrum in

the semiclassical limit.

The third motivation appears in the recent paper [10] where the authors are con-

cerned with the “magnetic waveguides”. Among other questions they analyze the

case of a magnetic barrier, that is of a piecewise constant magnetic field in R
2. In

particular they investigate the case when the field takes two opposite values and en-

lighten the classical “snake orbits” along the jump through the semiclassical limit. It

turns out that the singularity (arising along a line) of the magnetic field in their paper

seems to play the role of a vanishing magnetic field. The main application is related

to new type of semi-conductor devices for which the transport caused by Quantum

Hall-effect (QHE) would be played by such magnetic phenomenons. The important

fact proved in [10] is that such phenomenons are intrinsic to the system (in the sense

that the transport is topologically quantized). For the physical counterpart of these

results one refers to [38] and [14].

The last motivation is to understand at which point there is an analogy between

the magnetic Laplacian and the Laplacian with electric potential (see the papers [24],

[25], and [15]). For instance, it is clear that if we translate the electric potential

by a constant, then the spectrum is translated by a constant; but if we translate the

magnetic field by a constant, we will see in this paper that the semiclassical analysis is

strongly changed. Moreover this paper also aims at enlightening that, at some point,

the magnetic Laplacian can be reduced to the electric Laplacian thanks to a local and

microlocal analysis and unitary transforms (as it is the case when the magnetic field is
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positive in [11] and [37]). Part of our analysis will use the Feshbach–Grushin method

(also called Lyapunov–Schmidt reduction and which is a resolvent approximation

result) and a homogenization process involving multiple-scale expansions (see for

instance the recent work [26] where the same philosophy appears in another context).

Let us now recall the nature of the known results concerning the asymptotic

expansion of the eigenvalues of the magnetic Laplacian. When the magnetic field

is constant in 2D, there are many results concerning the two terms asymptotics of

the lowest eigenvalue �1.h/ (see [2], [3], [9], and [21] in the case of a smooth and

bounded domain with the Neumann condition on the boundary); the asymptotics at

any order of all the lowest eigenvalues is proved in [11]. In the Neumann case, when

the magnetic field is generically non constant and positive, the one term asymptotics

is given in [29], the two terms asymptotics in [34] and at any order in [37]. For the

Dirichlet case, the complete asymptotics is done in [19]. When the magnetic field

cancels, the main results concern the one term asymptotics of the eigenvalues and

the eigenfunctions concentration near the zero locus of the magnetic field (see [32]

and [33]). In 3D, the two terms expansion is performed in [22] whereas in the variable

case this problem is analyzed in [35] and [36].

General Assumptions on ˇ. Let us describe the main frame of this paper. In order

Lh;A to have compact resolvent, we will assume that

ˇ.x/ ������!
jxj!C1

C1: (1.1)

As in [33] and [18], we will investigate the case when ˇ cancels along a closed and

smooth curve� in R
2. Let us notice that the assumption (1.1) could clearly be relaxed

so that one could also consider a smooth, bounded and simply connected domain of

R
2 with Dirichlet or Neumann condition on the boundary as far as the magnetic

field does not vanish near the boundary. Nevertheless we do not strive for maximum

generality the present “generic” case giving enough information when the magnetic

field “nicely” cancels (one could also make it to cancel at a higher order as in [18]).

We let

� D f.s/; s 2 Rg:
We assume that ˇ is non positive inside � and non negative outside. We introduce

the standard tubular coordinates .s; t / near � ,

ˆ.s; t / D .s/C t�.s/;

where �.s/ denotes the inward pointing normal to � at .s/. We let:

Q̌.s; t / D ˇ.ˆ.s; t //

so that:
Q̌.s; 0/ D 0:
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Heuristics and leading operator. Let us adopt first a heuristic point of view to

introduce the leading operator of the analysis presented in this paper. We want to

describe the operator Lh;A near the cancellation line of ˇ, that is near �: In a rough

approximation, near .s0; 0/, we can imagine that the line is straight (t D 0) and that

the magnetic field cancels linearly so that we can consider Q̌.s; t / D ı.s0/t where

ı.s0/ is the derivative of Q̌ with respect to t . Therefore the operator to which it seems

we are reduced at the leading order near s0 is

h2D2
t C

�

hDs � ı.s0/
t2

2

�2

:

1.1. The Montgomery operator. As in [32], [33], and [18], we will be led to

investigate the following operator (self-adjoint realization on R) with parameters

� 2 R and ı > 0,

H�;ı D D2
t C

�

� �C ı

2
t2

�2

; (1.2)

where we have used the notation:

Notation 1.2. If y is a variable, we let Dy D �i@y :

We can also refer to [22], Section 2.4, where this operator appears. In fact, this

operator is sometimes called Montgomery operator (see [32]). This operator is a

generic example of a larger class of anharmonic oscillators (see [23]). We will see

that it will be involved in the asymptotics at the first order whereas the second order

will be related to a harmonic oscillator.

The Montgomery operator has clearly compact resolvent and we can consider its

lowest eigenvalue denoted by �ı.�/. In fact, �ı is related to �1. Indeed, we can

perform a rescaling t D ı�1=3� so that H�;ı is unitarily equivalent to

ı2=3
�

D2
� C .��ı�1=3 C 1

2
�2/2

�

D ı2=3H�ı�1=3;1:

It is known (see [17] and [23]) that, for all ı > 0,

� 7! �ı.�/ admits a unique and non-degenerate minimum at a point �0: (1.3)

We may write

inf
�2R

�ı.�/ D ı2=3�1.�0/: (1.4)

Notation 1.3. We let H� D H�;1 and we denote by u� the L2-normalized and

positive eigenfunction associated with �1.�/.

For fixed ı > 0, the family .H�;ı/�2R is an analytic family of type .B/ so that

the eigenpair .�1.�/; u�/ has an analytic dependence on � (see [28]).
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Numerical computations of the �0 and ��0
are performed by V. Bonnaillie Noël

(see [23], Table 1) and give �0 � 0:35 and �1.�0/ � 0; 57. It is also proved that

lim j�j!C1�1.�/ D C1:

Feynman–Hellmann Theorem. Let us recall a few formulas justified by the per-

turbation theory of Kato and known as “Feynman–Hellmann” formulas.

Lemma 1.4. We have

.H�0
� �.�0//v�0

D �.@�H�/j�D�0
u�0

;

with v�0
D .@�u�/j�D�0

.

Proof. We write

H�u� D �.�/u� :

We have

.H� � �.�//@�u� D .�0.�/ � @�H�/u� : (1.5)

For � D �0, this becomes

.H�0
� �.�0//.@�u�/j�D�0

D �.@�H�/j�D�0
u�0

:

The next lemma is sometimes called “effective mass theorem” (see [26]).

Lemma 1.5. We have

.H�0
� �.�0//w�0

D .�00.�0/ � 2/u�0
� 2.@�H�/j�D�0

v�0
;

with w�0
D .@2

�u�/�D�0
. Moreover, we have

h.@�H�/j�D�0
v�0
; u�0

i D �00.�0/ � 2
2

:

Proof. Taking the derivative of (1.5) with respect to �, we obtain

.H�0
� �.�0//.@

2
�u�/�D�0

D .�00.�0/ � 2/u�0
� 2.@�H�/j�D�0

v�0
:

Then, we take the scalar product with u�0
.

1.2. Local coordinates .s; t/. Before stating the main result of this paper, we shall

introduce some notation related to the geometry of the zero locus of ˇ. We use the

local coordinates .s; t /, where t .x/ is the algebraic distance between x and � and

s.x/ is the tangential coordinate of x. We choose a parametrization of �:

 W R=.j@�jZ/ �! �:
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We choose the orientation of the parametrization  to be counter-clockwise, so that

det. 0.s/; �.s// D 1:

The curvature k.s/ at the point .s/ is given in this parametrization by

 00.s/ D k.s/�.s/:

The map ˆ defined by

ˆ W R=.j�jZ/ � .�t0; t0/ �! R
2;

.s; t / 7�! .s/C t�.s/;
(1.6)

is clearly a diffeomorphism, when t0 is sufficiently small, with image

ˆ.R=.j�jZ/ � .�t0; t0// D fx 2 �jd.x; �/ < t0g D �t0 :

We let

zA1.s; t / D .1 � tk.s//A.ˆ.s; t // �  0.s/; zA2.s; t / D A.ˆ.s; t // � �.s/;
Q̌.s; t / D ˇ.ˆ.s; t //;

and we get

@s
zA2 � @t

zA1 D .1� tk.s// Q̌.s; t /:
The quadratic form becomes

zQh;A. / D
Z

.1�tk.s//j.�ih@t C zA2/ j2C.1�tk.s//�1j.�ih@s C zA1/ j2 dsdt:

In a (simply connected) neighborhood of .0; 0/, we can choose a gauge such that:

zA1.s; t / D �
Z t

0

.1 � t 0k.s// Q̌.s; t 0/dt 0; zA2 D 0: (1.7)

1.3. Assumptions and main result. We consider the normal derivative of ˇ on � ,

i.e. the function ı W s 7! @t
Q̌.s; 0/. We will assume that:

ı admits a unique, non-degenerate and positive minimum at x0: (1.8)

We let ı0 D ı.0/ and assume without loss of generality that x0 D .0; 0/. Let us state

the main result of this paper.

Theorem 1.6. We assume (1.8). For all n � 1, there exist a sequence .�n
j /j �0 and

h0 > 0 such that for h 2 .0; h0/, we have

�n.h/ � h4=3
X

j �0

�n
j h

j=6
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where

�n
0 D ı

2=3
0 �1.�0/;

�n
1 D 0;

�n
2 D ı

2=3
0 C0 C ı

2=3
0 .2n� 1/

�˛�.�0/�
00.�0/

3

�1=2

;

where we have let

˛ D 1

2
ı�1

0 ı00.0/ > 0 (1.9)

and

C0 D hLu�0
; u�0

iO� ; (1.10)

where

L D 2�.0/ı
�4=3
0

� O�2

2
� �0

�

O�3 C 2 O�ı�1=3
0 k.0/

�

� �0 C O�2

2

�2

;

and

�.0/ D 1

6
@2

t
Q̌.0; 0/ � k.0/

3
ı0:

Let us make a few remarks concerning our main theorem and give perspectives.

Remark 1.7. This theorem is mainly motivated by the paper of B. Helffer andY. Ko-

rdyukov [18] (see also [16], Section 5.2, where the result of this paper is presented as

a conjecture and the paper [20] where the case of discrete wells is analyzed) where the

authors prove a one term asymptotics for all the eigenvalues (see [18], Corollary 1.1).

Moreover, they also prove an accurate upper bound in [18], Theorem 1.4, thanks to

a Grushin type method (see [13]). In the present case (dimension 2 and the order

of cancellation is k D 1), our result is stronger in the sense that we get a complete

asymptotics (in the same spirit as [11]).

Remark 1.8. As mentioned in the previous remark, in comparison with [18], we only

deal with the case of dimension 2,k D 1 and when the metrics is flat. Nevertheless, the

different generalizations are technical adaptations. Indeed, when k D 1, in the case of

higher dimension and with a Riemannian metrics, the only additional (and technical)

point is the introduction of normal coordinates related to the Riemannian structure.

After such a choice (using the exponential map), we are essentially reduced to the

flat case (modulo error terms which are lower order) and our normal form technique

can be implemented exactly in the same way. For the case k � 1, the difference is

only the leading operator which is a higher order anharmonic oscillator (see [23]) and

our method can again be used under the same kind of generic assumptions (see (1.8)

where ı has to be replaced by s 7! @k
t ˇ.s; 0/). Let us finally mention that the case

k � 2 and the cancellation along a hypersurface in dimension greater than 2 are

maybe not the most generic situations.
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Remark 1.9. Theorem 1.6 can be seen as a semiclassical Birkhoff normal form for

the magnetic Laplacian (see the references [39], [6], and [40] concerning the Birkhoff

normal form).

In order to prove Theorem 1.6, it is enough to prove the two following theorems.

Theorem 1.10. We assume (1.8). For all n � 1, there exist a sequence .�n
j /j �0 such

that, for all J � 0, there exists h0 > 0 such that for h 2 .0; h0/, we have

d
�

h4=3

J
X

j D0

�n
j h

j=6; �.Lh;A/
�

� Ch4=3h.J C1/=6:

Moreover, we have

�n
0 D ı

2=3
0 �1.�0/;

�n
1 D 0;

�n
2 D ı

2=3
0 C0 C ı

2=3
0 .2n� 1/

�˛�.�0/�
00.�0/

3

�1=2

:

The second theorem provides the spectral gap between the eigenvalues.

Theorem 1.11. We assume (1.8). For all n � 1, there exists h0 > 0 such that for
h 2 .0; h0/, we have

�n.h/ � h4=3.�n
0 C h1=3�n

2 /C o.h5=3/:

1.4. Organization of the paper. In Section 2, we prove Theorem 1.10. The main

ingredients of the analysis are the Feynman–Hellmann theorem, the reduction of

Lh;A to a “normal form” and an expansion of the operator in power series which is an

alternative to the so-called Grushin procedure (see [13], [16], and [11]). In Section 3,

we prove localization and micro-localization estimates for the true eigenfunctions

thanks to theAgmon estimates and a repeated use of the IMS formula. More precisely

we will prove estimates of the eigenfunctions with respect to s and Ds in order to

reduce the symbol of the operator when acting on the eigenfunctions. In Section 4, we

use the localization results of Section 3 to estimate the Feshbach–Grushin projection

and reduce the operator to a Schrödinger operator with electric potential which is

in the Born–Oppenheimer form. Finally, we use the Born–Oppenheimer theory to

estimate the spectral gap between the eigenvalues of Theorem 1.11.

Acknowledgments. N. Dombrowski acknowledges the partial support of “Nucleo

Cientifico ICM P07-027-F: Mathematical Theory of Quantum and Classical Magnetic

Systems” and also Georgi Raykov for his support. N. Raymond would like to thank

F. Faure for giving the idea to write this paper and also B. Helffer for useful references.
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2. Construction of quasimodes

This section is devoted to the proof of Theorem 1.10.

2.1. Reduction to a normal form. Before starting the analysis, we shall use a few

unitary transformations to normalize Lh;A. Let us notice that these transformations

do not appear in [18] (or in the context of [11]) and permit to strongly simplify the

analysis.

We can write the operator near the cancellation line in the coordinates .s; t /

zLh;A D h2.1� tk.s//�1Dt .1� tk.s//Dt C .1� tk.s//�1 zP .1� tk.s//�1 zP ;

where
zP D ih@s C zA.s; t /

with

zA.s; t / D
Z t

0

.1 � k.s/t 0/ Q̌.s; t 0/dt 0:

In terms of the quadratic form, we can write

zQh;A. / D
Z

.jhDt j2 C .1� tk.s//�2j zP j2/m.s; t /dsdt;

with

m.s; t/ D .1 � tk.s//:

We consider the following operator onL2.dsdt/which is unitarily equivalent to zLh;A

(see [27], Theorem 18.5.9 and below):

L
new

h;A D m1=2 zLh;Am
�1=2 D P 2

1 C P 2
2 � h2k.s/2

4m2
;

with P1 D m�1=2.�hDs C zA.s; t //m�1=2 and P2 D hDt .

We wish to use a system of coordinates more adapted to the magnetic situation.

Let us perform a Taylor expansion near t D 0. We have

Q̌.s; t / D ı.s/t C @2
t

Q̌.s; 0/ t
2

2
CO.t3/:

This provides

zA.s; t / D ı.s/

2
t2 C �.s/t3 CO.t4/;

with

�.s/ D 1

6
@2

t
Q̌.s; 0/ � k.s/

3
ı.s/
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This suggests, as for the model operator, to introduce the new magnetic coordinates

in a fixed neighborhood of .0; 0/,

� D ı.s/1=3t; � D s:

The change of coordinates for the derivatives is given by

Dt D ı.�/1=3D� ; Ds D D� C 1

3
ı0ı�1�D� :

The space L2.dsdt/ becomes L2.ı.�/�1=3d�d�/. In the same way as previously,

we shall conjugate L
new

h;A
. We introduce the self-adjoint operator on L2.d�d�/

{Lh;A D ı�1=6
L

new

h;Aı
1=6:

We deduce
{Lh;A D h2ı.�/2=3D2

� C {P 2;

where

{P D ı�1=6 Lm�1=2
�

� hD� C {A.�; �/� h
1

3
ı0ı�1�D�

�

Lm�1=2ı1=6;

with
{A.�; �/ D zA.�; ı.�/�1=3�/:

A straight forward computation provides

{P D Lm�1=2
�

� hD� C {A.�; �/� h
1

6
ı0ı�1.�D� CD��/

�

Lm�1=2;

where we make the generator of dilations �D� CD�� to appear (and which is related

to the virial theorem). Up to a change of gauge, we can replace {P by

Lm�1=2
�

� hD� � �0.ı.�//
1=3h2=3 C {A.�; �/ � h1

6
ı0ı�1.�D� CD��/

�

Lm�1=2:

Normal form {L.h/. Therefore, the operator takes the form “à la Hörmander”

{L.h/ D P1.h/
2 C P2.h/

2 � h2k.�/2

4m.�; ı.�/1=3�/2
; (2.1)

where

P1.h/ D Lm�1=2
�

� hD� � �0.ı.�//
1=3h2=3

C {A.�; �/� h
1

6
ı0ı�1.�D� CD��/

�

Lm�1=2;

P2.h/ D hı.�/1=3D� :
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Computing a commutator, we can rewrite P1.h/ as

P1.h/ D Lm�1
�

�hD� ��0.ı.�//
1=3h2=3 C {A.�; �/�h1

6
ı0ı�1.�D� CD��/

�

CCh;

(2.2)

where

Ch D �h Lm�1=2.D� Lm�1=2/ � hı0ı�1

3
� Lm�1=2.D� Lm�1=2/:

Notation 2.1. The quadratic form corresponding to {L.h/ will be denoted by {Q.

Remark 2.2. The different transformations that we have used are allowed as soon as

the functions of which acts Lh;A are compactly supported near � . This will be the

case for the quasimodes that we will use. Moreover in the localization analysis of the

eigenfunctions, we will see that we will be able to truncate (with a rough support) the

eigenfunctions by loosing a remainder of order O.h1/.

Remark 2.3. As we will see in the analysis, the “normal form” given by (2.1) will

spare us many technical considerations (see [11] and [18]) involved in the construction

of quasimodes and also in the microlocal estimates.

2.2. Construction of quasimodes. We now enter in the proof of Theorem 1.10. The

main ingredient for the proof is to homogenize the operator LL and to use a formal

power series expansion.

2.2.1. The homogenized operator yL. We perform the scaling:

� D h1=3 O�; � D h1=6 O�: (2.3)

Notation 2.4. The operator h�4=3 {L will be denoted by yL in these new coordinates.

We expand the new operator in powers of h1=6 in the sense of formal power series

ı
�2=3
0

yL.h/ �
X

j �0

Ljh
j=6;

with

L0 D D2
O� C

�

��0 C 1

2
O�2

�2

;

L1 D �2D O�

�

��0 C 1

2
O�2

�

;

L2 D D2
O� C 2

3
˛ O�2

L0 C L;
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where ˛ D 1
2
ı�1

0 ı00.0/ > 0 and

L D 2�.0/ı.0/�4=3
� O�2

2
� �0

�

O�3 C 2 O�ı.0/�1=3k.0/
�

� �0 C O�2

2

�2

:

We look for quasi eigenpairs in the form

� � h4=3
X

j �0

�jh
j=6;

 �
X

j �0

 jh
j=6

so that, in the sense of formal power series

yL.h/ � � : (2.4)

2.2.2. Solving the formal system. Considering (2.4), we are led to solve an infinite

formal system of PDE’s which we will solve thanks a compatibility condition known

as the Fredholm alternative.

Term in h0. We solve the equation

L0 0 D �0 0:

This provides

�0 D �1.�0/

and

 0. O�; O�/ D g0. O�/u�0
. O�/:

Term in h1=6. We solve the equation

.L0 � �0/ 1 D .�1 � L1/ 0:

Using Lemma 1.4, we have

.L0 � �0/. 1 CD O�g0. O�/v�0
. O�// D �1 0:

The Fredholm alternative (the r. h. s. is orthogonal to u�0
for each O� ) implies

�1 D 0

and

 1 CD O�g0. O�/v�0
. O�/ D g1. O�/u�0

. O�/;
where g1 shall be determined in a next step.
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Term in h2=6. We solve the equation

.L0 � �0/ 2 D .�2 � L2/ 0 � L1 1: (2.5)

Using Lemmas 1.4 and 1.5, this equation rewrites

.L0 � �0/
�

 2 CD O�g1v�0
�D2

O�g0

w�0

2

�

D
�

�2g0 � �00.�0/

2
D2

O�g0 � 2

3
˛�1.�0/ O�2g0 � g0L. O�; @ O�/

�

u�0
:

The Fredholm condition implies that, for all O� ,

.H C C0/g0 D �2g0;

where C0 is defined in (1.10) and where H denotes the effective harmonic oscillator

(we recall (1.9) and that �00
1.�0/ > 0 by (1.3)):

H D �00.�0/

2
D2

O� C 2

3
˛ O�2: (2.6)

If we denote by .�n/n�1 the increasing sequence of the eigenvalues of H , we have

by scaling

�n D .2n� 1/
�˛�00

1 .�0/

3

�1=2

:

Anyway we choose

�2 D �n C C0

and for g0, we take g.n/ a corresponding L2-normalized eigenfunction. With theses

choices, we determine a unique function  ?
2 which is solution of (2.5) and satisfying

h ?
2 ; u�0

iO� D 0 so that  2 can be written as

 2 D  ?
2 �D O�g1v�0

CD2
O�g0

w�0

2
C g2. O�/u�0

. O�/;

where g2 has to be determined in a next step.

Further terms (“Grushin procedure”). Let J � 2. Let us assume that  0; : : : ;

 J �2 are determined as functions in the Schwartz class, that �0; : : : ; �J are deter-

mined and that  J �1 and  J are in the form

 k D  ?
k �D O�gk�1v�0

C gku�0
; k D J � 1; J;

where  ?
k

is a determined function in the Schwartz class which satisfies
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h ?
k ; u�0

iO� D 0;

for all O� . Let us write the equation of order J C 1:

.L0 � �0/ J C1 D �J C1 0 C
J

X

j D2

�j J C1�j �
J C1
X

j D1

Lj J C1�j :

This equation can be put in the form

.L0 � �0/ J C1 D �J C1 0 C �2 J �1 � L1 J � L2 J �1 C FJ ;

where FJ is a determined function in the Schwartz class by recursion. We now use

the explicit form of  J �1 and  J and, using Lemmas 1.4 and 1.5, we deduce

.L0 � �0/
�

 J C1 CD O�gJ v�0
�D2

O�gJ �1

w�0

2

�

D �J C1 0 C .�2gJ �1 � �00.�0/

2
D2

O�gJ �1 � 2

3
˛ O�2gJ �1 � gJ �1L/u�0

C zFJ :

Taking the scalar product with u�0
with respect to the variable O� , we find the equation

.H C C0/gJ �1 � �2gJ �1 D �J C1g.n/ C h zFJ ; u�0
iO� ;

where H is given in (2.6). The Fredholm condition determines a unique pair .�J C1;

gJ �1/ with gJ �1 in the Schwartz class and such that hgJ �1; g.n/i O� D 0:

Proof of Theorem 1.10. Let us introduce a smooth cutoff function �0 supported in

a fixed neighborhood of x0 D .0; 0/. For J � 0 and n � 1, we let

 
ŒJ;n�

h
D �0

J
X

j D0

 j .h
�1=6s; h�1=3t /hj=6;

and

�
ŒJ;n�

h
D ı

2=3
0 h4=3

J
X

j D0

�jh
j=6:

Using the fact the  j are in the Schwartz class, we deduce that

k. {L.h/ � �ŒJ;n�

h
/ 

ŒJ;n�

h
k � C.J /h4=3h.J C1/=6

and the spectral theorem provides the conclusion.



Semiclassical Analysis with Vanishing Magnetic Fields 437

3. Local and microlocal estimates

This section deals with a priori estimates satisfied by the eigenfunctions of Lh;A.

3.1. A rough estimate for the eigenvalues. Let us first state an elementary lemma

the proof of which can be found in [32], Theorem 5.

Lemma 3.1. For all ' 2 C
1
0 .R2/, we have

Qh;A.'/ �
ˇ

ˇ

ˇ

ˇ

Z

R2

ˇ.x/j'j2 dx
ˇ

ˇ

ˇ

ˇ

:

This lemma is interesting when the sign of ˇ does not change on the support of '.

Proposition 3.2. For all n � 1, there exists h0 > 0 such that, for h 2 .0; h0/:

�n.h/ � ı
2=3
0 �1.�0/h

4=3 � Ch4=3C2=15:

Proof. We use a partition of unity with balls of size h�

X

j

�2
j;h D 1

and such that
X

jr�j;hj2 � Ch�2�:

We will denote

Bj;h D supp�j;h:

We have the IMS formula (cf. [8])

X

j

Qh;A.�j;h / � h2kr�j;h k2 D �k�j;h k2:

We distinguish between the balls which intersect t D 0 and the others so that we

introduce

J1.h/ D fj W Bj;h \ � ¤ ;g and J2.h/ D fj W Bj;h \ � D ;g:

If j 2 J2.h/ , we use the inequality of Lemma 3.1,

Qh;A.�j;h / � h

ˇ

ˇ

ˇ

ˇ

Z

ˇ.x/j�j;h j2 dx
ˇ

ˇ

ˇ

ˇ

� ch1C�k�j;h k2:

If j 2 J1.h/, we write

Qh;A.�j;h / � .1� Ch�/

Z

jh@t .�j;h /j2 C j.ih@s C zA/.�j;h /j2 dsdt;
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where we have
ˇ

ˇ

ˇ

zA.s; t / � ı.sj /t
2

2

ˇ

ˇ

ˇ � C.t3 C js � sj jt2/:

We infer, for all " 2 .0; 1/,

Qh;A.�j;h /

� .1� Ch�/

�

.1 � "/
Z

jh@t .�j;h /j2 C j.ih@s

C ı.sj /t
2

2
/.�j;h /j2 dsdt � Ch6�

"
k�j;h k2

�

;

and we deduce, with (1.4),

Qh;A.�j;h / � .1� Ch�/..1� "/h4=3�1.�0/ı
2=3
j k�j;h k2 � "�1Ch6�k�j;h k2/:

Optimizing with respect to ", we choose

" D h3�� 2
3 :

Then, we take � such that

2 � 2� D 3�C 2

3

and we deduce

� D 4

15
:

Jointly with Theorem 1.10, we infer the following result.

Corollary 3.3. For all n � 1, we have

�n.h/ D ı
2=3
0 �1.�0/h

4=3 CO.h4=3C2=15/:

3.2. Normal estimates ofAgmon. In this subsection, we aim at proving localization

estimates of Agmon type (cf. [1] and also [20], Section 5, and [22], Section 7, where

the same ideas are used).

Proposition 3.4. Let .�;  / be an eigenpair of Lh;A. There exist h0 > 0, C > 0 and
"0 > 0 such that, for h 2 .0; h0/,

Z

e2"0jt.x/jh�1=3j j2 dx � Ck k2 (3.1)

and
Qh;A.e

"0jt.x/jh�1=3

 / � Ch4=3k k2: (3.2)
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Proof. Let us consider an eigenpair .�;  / of Ph A. We begin to write the IMS

formula:

Qh;A.e
ˆ / D �k k2 C h2krˆeˆ k2: (3.3)

We use a partition of unity with balls of size Rh1=3

X

j

�2
j;h D 1

and such that
X

jr�j;hj2 � CR�2h�2=3:

We may assume that the balls which intersect the line t D 0 have their centers on it.

Using again the IMS formula, we get the decomposition into local “energies”
X

j

Qh;A.�j;he
ˆ / � �k�j;he

ˆ k2 � h2k�j;hrˆeˆ k2 � h2kr�j;he
ˆ k2 D 0:

We distinguish between the balls which intersect t D 0 and the others:

J1.h/ D fj W Bj;h \ � ¤ ;g; J2.h/ D fj W Bj;h \ � D ;g:

If j 2 J2.h/, we use Lemma 3.1 combined with the non-degeneracy of the cancella-

tion of ˇ (see (1.8) in which we just use the positivity of the minimum) and 1.1. We

get the existence of c > 0 and h0 > 0 such that, for h 2 .0; h0/,

Qh;A.�j;he
ˆ / � h

ˇ

ˇ

ˇ

ˇ

Z

ˇ.x/j�j;he
ˆ j2 dx

ˇ

ˇ

ˇ

ˇ

� cRh4=3k�j;he
ˆ k2:

If j 2 J1.h/, we write, in the same way as in the proof of Proposition 3.2,

Qh;A.�j;he
ˆ / � .1� CRh1=3/..1� "/h4=3�1.�0/ı

2=3
j � "�1Ch2kj�j;he

ˆ k2/:

We take " D h1=3. We use Corollary 3.3 to get an upper bound on �. We are led to

choose ˆ.x/ D "0jt .x/jh�1=3 so that

h2jrˆj2 � h4=3"2
0:

Taking "0 small enough and R large enough, we infer the existence of Qc > 0; C > 0

and h0 > 0 such that, for h 2 .0; h0/,

Qch4=3
X

j 2J1.h/

Z

e2ˆj�j;h j2 dx � Ch4=3
X

j 2J2.h/

Z

e2ˆj�j;h j2 dx:

Then, due to the support of �j;h when j 2 J2.h/ ,we infer

X

j 2J2.h/

Z

e2ˆj�j;h j2 dx � zC
X

j 2J2.h/

Z

j�j;h j2 dx:

We deduce (3.1). Finally, (3.2) follows from (3.1) and (3.3).
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3.3. Rough localization. This subsection is devoted to the proof of localization

estimates near and on the cancellation line of the magnetic field.

Proposition 3.5. Let .�;  / be an eigenpair of Lh;A. There exist h0 > 0, C > 0 and
"0 > 0 such that, for h 2 .0; h0/,

Z

e2�.t.x//js.x/jh�1=15 j j2 dx � Ck k2 (3.4)

and
Qh;A.e

�.t.x//js.x/jh�1=15

 / � Ch4=3k k2; (3.5)

where � is a fixed smooth cutoff function being 1 near 0.

Proof. Let us consider an eigenpair .�;  / of Ph;A. We begin to write the IMS

formula

Qh;A.e
ˆ / D �k k2 C h2krˆeˆ k2: (3.6)

We use a partition of unity with balls of size h4=15

X

j

�2
j;h D 1

and such that
X

jr�j;hj2 � Ch�8=15:

We take

ˆ D �.t.x//js.x/jh�1=15:

In particular, we have

jrˆj � Ch�1=15:

We write

X

j

Qh;A.�j;he
ˆ / � �k�j;he

ˆ k2 � h2k�j;hrˆeˆ k2 � h2kr�j;he
ˆ k2 D 0:

Let us defined the two subsets of index

J1.h/ D fj W Bj;h \ � ¤ ;g and J2.h/ D fj W Bj;h \ � D ;g:

As previously, we can write, for the balls with index j 2 J2.h/,

Qh;A.�j;he
ˆ / � h

ˇ

ˇ

ˇ

ˇ

Z

ˇ.x/j�j;he
ˆ j2 dx

ˇ

ˇ

ˇ

ˇ

� ch1C4=15k�j;he
ˆ k2:

For the balls of index j 2 J1.h/, we have

Qh;A.�j;he
ˆ / � .h4=3�1.�0/ı

2=3
j � Ch4=3C2=15/k�j;he

ˆ k2;
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where ıj D ı.sj / (.sj ; 0/ is the center of the ball). Gathering the estimates, we

deduce

.ch1C4=15 � h4=3�1.�0/ı
2=3
0 /

X

j 2J2.h/

k�j;he
ˆ k2

C
X

j 2J1.h/

.h4=3�1.�0/.ı
2=3
j � ı2=3

0 / � Ch4=3C2=15/k�j;he
ˆ k2

� 0:

(3.7)

Then, we fix "0 > 0 and D > 0 and we write

J1.h/ D J1;1.h/ [ J1;2.h/ [ J1;3.h/;

where

J1;1.h/ D fj 2 J1.h/ W jsj j � Dh1=15g;

J1;2.h/ D fj 2 J1.h/ W Dh1=15 < jsj j � "0g;

J1;3.h/ D fj 2 J1.h/ W jsj j � "0g:
For j 2 J1;3.h/, there exist c."0/ > 0 and h0 > 0 such that, for h 2 .0; h0/,

h4=3�1.�0/.ı
2=3
j � ı2=3

0 / � Ch4=3C2=15 � c."0/h
4=3:

For j 2 J1;2.h/, from the assumption 1.8, there exists Qc."0/ > 0 such that

h4=3�1.�0/.ı
2=3
j � ı

2=3
0 / � Ch4=3C2=15 � h4=3 Qc."0/s

2
j � Ch4=3C2=15:

We notice that

h4=3 Qc."0/s
2
j � Ch4=3C2=15 � h4=3. Qc."0/D

2 � C/h2=15:

We choose D so that

Qc."0/D
2 � C > 0:

We notice that, for j 2 J1;1.h/,

k�j;he
ˆ k � Ck k:

We now deduce from (3.7)
X

j 2J1;2.h/

k�j;he
ˆ k2 � Ck k2

and then
X

j 2J1;3.h/

k�j;he
ˆ k2 � Ck k2;

X

j 2J2.h/

k�j;he
ˆ k2 � Ck k2:

This provides (3.4) and the identity (3.6) implies (3.5).
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Introduction of cutoff functions. From Propositions 3.4 and 3.5, we are led to

introduce a cutoff function living near x0. We take  > 0 and we let

�h;.x/ D �.h�1=3C t .x//�.h�1=15Cs.x//:

where� is a fixed smooth cutoff function supported near 0. Moreover, we will denote

by L the function �h; .x/ .x/ in the coordinates .�; �/. In particular, we have

k L k D .1CO.h1//k k:

As a consequence of Proposition 3.4 we have the following corollary.

Corollary 3.6. Let .�;  / be an eigenpair of Lh;A. For all n 2 N, there exist h0 > 0,
C > 0 and "0 > 0 such that, for h 2 .0; h0/,

Z

�nj L j2 d�d� � Ch2n=3k L k2;

and
Z

�n.jhD�
L j2 C jhD�

L j2/ d�d� � Ch2n=3h4=3k L k2:

3.4. Order of the second term. From the normal estimates of Agmon, we deduce

the following proposition.

Proposition 3.7. For all n � 1, there exist h0 > 0 and C > 0 such that, for
h 2 .0; h0/,

�n.h/ � ı
2=3
0 �1.�0/h

4=3 � Ch5=3:

Proof. We consider an eigenpair .�n.h/;  n;h/ and we use the IMS formula

{Q. L n;h/ D �n.h/k L n;hk2 CO.h1/k L n;hk2:

We have (cf. (2.1)),

{Q. L n;h/

�
Z

Lm�2






�

� hD� � �0ı
1=3h2=3

C {A � h

6
ı0ı�1.�D� CD��/C Ch

�

L n;h

ˇ

ˇ

ˇ

2

d�d�

C h2ı2=3kD�
L n;hk2 � Ch2k L n;hk2:

Let us deal with the terms involving Ch in the double product produced by the ex-

pansion of the square. We have to estimate

hj Rehı0ı�1.�D� CD��/ L n;h; Ch
L n;hij:
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We have

kCh
L n;hk D o.h/k L n;hk

and, with the estimates of Agmon (and the fact that 0 is a critical point of ı),

kı0ı�1.�D� CD��/ L n;hk D o.1/k L n;hk:

Moreover, we have in the same way

hj Reh {A L n;h; Ch
L n;hij D o.h5=3/k L n;hk2:

Then, we have the control

hj Reh LhD�
L n;h; Ch

L n;hij D o.h5=3/k L n;hk2;

where we have used the rough estimate

khD�
L n;hk � Ch2=3k L n;hk:

We have

{Q. L n;h/

�
Z

Lm�2
ˇ

ˇ

ˇ

�

� hD� � �0ı
1=3h2=3 C {A � h

6
ı0ı�1.�D� CD��/

�

L n;h

ˇ

ˇ

ˇ

2

d�d�

C h2ı
2=3
0 kD�

L n;hk2 C o.h5=3/k L n;hk2:

(3.8)

We now deal with the term involving �D� CD�� . With the estimates of Agmon, we

have

hj Rehı0ı�1.�D� CD��/ L n;h; .�hD� ��0ı
1=3h2=3 C {A/ L n;hij D o.h5=3/k L n;hk2:

This implies

{Q. L n;h/

� ı
2=3
0 h2kD�

L n;hk2 C
Z

Lm�2j.�hD� � �0ı
1=3h2=3 C {A/ L n;hj2 d�d�

C o.h5=3/k L n;hk2:

With the same arguments, it follows

{Q. L n;h/

� h2ı
2=3
0 kD�

L n;hk2

C
Z

Lm�2
ˇ

ˇ

ˇ

�

� hD� � �0ı
1=3h2=3 C ı1=3 �

2

2

�

L n;h

ˇ

ˇ

ˇ

2

d�d�

CO.h5=3/k L n;hk2

(3.9)
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and

{Q. L n;h/

� h2ı
2=3
0 kD�

L n;hk2 C
Z

ˇ

ˇ

ˇ

�

� hD� � �0ı
1=3h2=3 C ı1=3 �

2

2

�

L n;h

ˇ

ˇ

ˇ

2

d�d�

CO.h5=3/k L n;hk2:

(3.10)

We get

{Q. L n;h/

� h2ı
2=3
0 kD�

L n;hk2 C
Z

ı
2=3
0

ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3 C �2

2

�

L n;h

ˇ

ˇ

ˇ

2

d�d�

CO.h5=3/k L n;hk2:

Then, we write

ı�1=3D� D ı�1=6D�ı
�1=6 C i.ı�1=6/0

and deduce

{Q. L n;h/

� h2ı
2=3
0 kD�

L n;hk2

C
Z

ı
2=3
0

ˇ

ˇ

ˇ

�

� hı�1=6D�ı
�1=6 � �0h

2=3 C �2

2

�

L n;h

ˇ

ˇ

ˇ

2

d�d�

CO.h5=3/k L n;hk2:

We can apply the functional calculus to the self-adjoint operator ı�1=6D�ı
�1=6 and

the following lower bound follows:

{Q. L n;h/ � h4=3ı
2=3
0 �1.�0/CO.h5=3/k L n;hk2:

From this analysis, we infer that, for all n � 1, there exist h0 > 0 and C > 0

such that, for all h 2 .0; h0/ W

j�n.h/ � ı2=3
0 �1.�0/h

2=3j � Ch5=3: (3.11)

Introduction of the space generated by the truncated eigenfunctions. For all

N � 1, let us consider L2-normalized eigenpairs .�n.h/;  n;h/1�n�N such that

h n;h;  m;hi D 0 if n ¤ m. We consider the N dimensional space defined by:

EN .h/ D span
1�n�N

L n;h:

Remark 3.8. The estimates ofAgmon of Corollary 3.6 are satisfied by all the elements

of EN .h/.
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3.5. Localization with respect to � and D� . This subsection is devoted the analysis

of the behavior of the eigenfunctions with respect to� andD� . In particular the crucial

propositions that we prove are Propositions 3.9 and 3.12. We will see that these local

and microlocal controls will be enough to estimate the spectral gap between the

eigenvalues (we do not need higher order controls, i.e. estimates of �m and Dm
� ,

even if they could be proved).

3.5.1. Localization with respect to � . This subsection deals with the proof of the

following proposition.

Proposition 3.9. There exist h0 > 0, C > 0 such that, for h 2 .0; h0/ and for all
L 2 EN .h/,

k� L k � Ch1=6k L k:

Proof. We only have to prove the wished inequality for L D L n;h, the extension to
L 2 EN .h/ being an easy consequence. We consider .�;  / an eigenpair of Lh;A.

We can write
{Q. L / D �k L k2 CO.h1/k L k2:

We have
{Q. L / D kP1.h/ L k2 C kP2.h/ L k2 CO.h2/k L k2:

We can write

kP1.h/ L k2

D k Lm�1.�hD� � �0.ı.�//
1=3h2=3

C {A.�; �/� h
1

6
ı0ı�1.�D� CD��/ L C Ch

L k2;

with

Ch D ih Lm�1=2@� Lm�1=2 � hı0

6ı
Œ�D� CD��; Lm�1=2�:

Let us first erase the term involving C.h/. From the estimates of Agmon, it follows

kP1.h/ L k2

� k Lm�1.�hD� � �0.ı.�//
1=3h2=3 C {A.�; �/� h1

6
ı0ı�1.�D� CD��/ L k2

� Ch2k L k2:

(3.12)

Then, we use again the normal Agmon estimates to replace Lm by 1:

kP1.h/ L k2

� k.�hD� � �0.ı.�//
1=3h2=3 C {A.�; �/ � h1

6
ı0ı�1.�D� CD��/ L k2

� Ch5=3k L k2:

(3.13)
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From the non-degeneracy assumption on ı, we infer that there exist c > 0 and h0 > 0

such that, for h 2 .0; h0/,

{Q. L /

� ı
2=3
0 �1.�0/h

4=3k L k2 C ckhD�� L k2

C c

Z

�2
ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3

C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

L 
ˇ

ˇ

ˇ

2

d�d�

� Ch2k L k2;

(3.14)

with

Rh D �.�/ı�4=3�3 CO.�4/:

We must analyze

Z

�2
ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3 C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

L 
ˇ

ˇ

ˇ

2

d�d�

D
Z

ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3

C �2

2
C Rh � hı0

6ı4=3
.�D� CD��/

�

� L � ihı�1=3 L 
ˇ

ˇ

ˇ

2

d�d�:

We shall estimate the double product

2

Z

Re
n

i
�

.ihı�1=3@� C �0h
2=3

C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

� L hı�1=3 L 
o

d�d�

D 2h

Z

Re
n

i
�

ihı�1=3@� � hı0

6ı4=3
.�D� CD��/

�

� L ı�1=3 L 
o

d�d�:

We have

� 2h2

Z

Refı�1=3@�.� L / L g d�d�

D O.h2/k L k2 � h2

Z

ı�1=3@� j L j2 d�d�

D O.h2/k L k2:

Then, we write, thanks to the estimates of Agmon,

�2h2

Z

�ı�1=3ı0

6ı4=3
Ref..�@� C @��// L L g d�d� D O.h2/k L k2:
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We infer that

Z

�2
ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3 C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

L 
ˇ

ˇ

ˇ

2

d�d�

D
Z

ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3 C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

� L 
ˇ

ˇ

ˇ

2

d�d�

CO.h2/k L k2:

(3.15)

We have to control the following double product:

2

6
h2 Re

�Z

iı�1=3@� .� L /ı�4=3ı0.�D� CD��/ L d�d�
�

We use the rough control (see Corollary 3.6),

kh@�
L k � h2=3k L k;

and the estimates of Agmon to get

h2 Re

�Z

iı�1=3@�.� L /ı�4=3ı0.�D� CD��/ L d�d�
�

D o.h5=3/k L k2:

The other terms in the double product can be estimated in the same way so that

Z

ˇ

ˇ

ˇ

�

ihı�1=3@� C �0h
2=3 C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

� L 
ˇ

ˇ

ˇ

2

d�d�

D
Z

ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3 C �2

2
C �.0/�3

�

� L 
ˇ

ˇ

ˇ

2

d�d� C o.h5=3/k L k2:

We can also erase the term in �3:

Z

ˇ

ˇ

ˇ

�

ihı�1=3@� C �0h
2=3 C �2

2
CRh � hı0

6ı4=3
.�D� CD��/

�

� L 
ˇ

ˇ

ˇ

2

d�d�

D
Z

ˇ

ˇ

ˇ

�

.ihı�1=3@� C �0h
2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d� CO.h5=3/k L k2:

Finally, one will need a last technical detail. We write

Z

ˇ

ˇ

ˇ

�

ihı�1=3@� C �0h
2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d�

D
Z

ˇ

ˇ

ˇ

�

.ihı�1=6@�ı
�1=6 � ih.ı�1=6/0 C �0h

2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d�

(3.16)



448 N. Dombrowski and N. Raymond

so that we make the self-adjoint operator ı�1=6D�ı
�1=6 to appear. We deal with the

double products as previously to deduce

Z

ˇ

ˇ

ˇ

�

ihı�1=6@�ı
�1=6 � ih.ı�1=6/0 C �0h

2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d�

D
Z

ˇ

ˇ

ˇ

�

.ihı�1=6@�ı
�1=6 C �0h

2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d� C o.h5=3/k L k2:

We have now a nicer lower bound. There exist c > 0 and h0 > 0 such that, for

h 2 .0; h0/.

{Q. L /

� ı
2=3
0 �1.�0/h

4=3k L k2 C ckhD�� L k2

C c

Z

ˇ

ˇ

ˇ

�

ihı�1=6@�ı
�1=6 C �0h

2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d� CO.h5=3/k L k2:

Using the functional calculus applied to ı�1=6D�ı
�1=6, we infer that

{Q. L / � ı
2=3
0 �1.�0/h

4=3k L k2 C c�1.�0/h
4=3k� L k2 CO.h5=3/k L k2:

Jointly with the upper bound on �, we deduce the result.

Proposition 3.10. There exist h0 > 0, C > 0 such that, for h 2 .0; h0/ and for all
L 2 EN .h/,

{Q.� L / � Ch5=3k L k:

In particular, we have

khD� .� L /k2 � Ch5=3k L k2 and khD�.� L /k2 � Ch5=3k L k2:

Proof. Let .�;  / be an eigenpair of Lh;A. By the IMS formula, we can write

{Q.� L / D �k� L k2 C kŒP2.h/; �� L k2:

An immediate computation provides

kŒP2.h/; �� L k2 � Ch2k L k2:

It remains to use Proposition 3.9.

3.5.2. An improved lower bound. As a consequence of the localization estimates

with respect to � and of the localization with respect to � given by Proposition 3.9,

we have a lower bound for LQ.
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Proposition 3.11. There exists h0 > 0 such that for h 2 .0; h0/ and L 2 EN .h/

{Q. L /

� ı
2=3
0

Z

.1C 2k0�ı
�1=3
0 /

ˇ

ˇ

ˇ

�

ı�1=6ih@�ı
�1=6 C �0h

2=3

C �2

2
C ı

�4=3
0 �.0/�3

�

L 
ˇ

ˇ

ˇ

2

d�d�

C
Z

ı
2=3
0 jhD�

L j2 d�d� C 2

3
ı

2=3
0 ˛�1.�0/h

4=3k� L k2 C o.h5=3/k L k2:

Proof. The proof is essentially based on the same estimates as in the proof of Propo-

sition 3.7. Let us recall (3.8)

{Q. L / �




 Lm.�hD� � �0.ı.�//
1=3h2=3 C {A.�; �/ � h1

6
ı0ı�1.�D� CD��/ L 







2

C kı1=3hD�
L k2 C o.h5=3/k L k2:

We transform a little bit (3.9):

{Q. L / �
Z

Lm�2
ˇ

ˇ

ˇ

�

� hD� � �0ı
1=3h2=3 C ı1=3 �

2

2
C �.0/ı�1

0 �3
�

L 
ˇ

ˇ

ˇ

2

d�d�

C h2kı1=3D�
L k2 C o.h5=3/k L k2:

We improve now (3.10) by replacing Lm by 1 � k0ı
1=3
0 � thanks to the estimates of

Agmon with respect to � and using the support of L with respect to � :

{Q. L /

�
Z

.1C 2k0ı
1=3
0 �/

ˇ

ˇ

ˇ

�

� hD� � �0ı
1=3h2=3 C ı1=3 �

2

2
C �.0/ı�1

0 �3
�

L 
ˇ

ˇ

ˇ

2

d�d�

C h2kı1=3D�
L k2 C o.h5=3/k L k2:

It follows

{Q. L /

�
Z

ı2=3.1C 2k0ı
1=3
0 �/

ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3

C �2

2
C ı

�4=3
0 �.0/�3

�

L 
ˇ

ˇ

ˇ

2

d�d�

C h2kı1=3D�
L k2 C o.h5=3/k L k2:

We use now the Taylor expansion:

ı2=3 D ı
2=3
0

�

1C 2

3
˛�2

�

CO.�3/:
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One of the terms which we can neglect is
Z

j� j3jhD�
L j2 d�d� � Ch2=15

Z

j� j2jhD�
L j2 d�d� D o.h5=3/k L k2;

where we have used Proposition 3.10. In the same way, we can write
Z

j� j3j.1C 2k0ı
1=3
0 �/j

ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3

C �2

2
C ı

�4=3
0 �.0/�3

�

L 
ˇ

ˇ

ˇ

2

d�d�

D o.h5=3/k L k2:

It remains to analyze

2˛

3
ı

2=3
0

Z

�2
ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3 C �2

2
C ı

�4=3
0 �.0/�3

�

L 
ˇ

ˇ

ˇ

2

d�d�:

This can be done in the same way as in the proof of Proposition 3.9, see (3.15):

2˛

3
ı

2=3
0

Z

�2
ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3 C �2

2
C ı

�4=3
0 �.0/�3

�

L 
ˇ

ˇ

ˇ

2

d�d�

D 2˛

3
ı

2=3
0

Z

ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3 C �2

2

�

� L 
ˇ

ˇ

ˇ

2

d�d� C o.h5=3/k L k2:

We deduce

{Q. L / �
Z

ı
2=3
0

�

jhD�
L j2 C .1C 2k0�ı

�1=3
0 /

ˇ

ˇ

ˇ

�

ı�1=3ih@� C �0h
2=3

C �2

2
C ı

�4=3
0 �.0/�3

�

L 
ˇ

ˇ

ˇ

2�

d�d�

C 2

3
ı

2=3
0 ˛�1.�0/h

4=3k� L k2 C o.h5=3/k L k2:

We replace ı�1=3@� by ı�1=6@�ı
�1=6 as in (3.16) and the conclusion follows.

3.5.3. Localization with respect to D� . In this subsection, we investigate a micro-

localization property with respect to D� .

Proposition 3.12. There exist h0 > 0, C > 0 such that, for h 2 .0; h0/ and for all
L 2 EN .h/,

kD�
L k � Ch�1=6k L k:

We introduce a new coordinate

& D f .�/ D
Z �

0

ı.�/1=3 d�:
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The space L2.d�d�/ becomes L2.ı�1=3d&d�/. We can write

@� D ı1=3.�/@& :

Notation 3.13. We will denote by L' the function L in the coordinates .&; �/.

Fourier transform. We are led to introduce a weighted Fourier transform

Fı. L'/.�/ D F .ı�1=6 L'/: (3.17)

A straight forward computation provides

Fı..ı
1=6ih@&ı

�1=6/ L'/.�/ D ��Fı. L'/.�/

and

D�Fı. L'/.�/ D �Fı.& L'/.�/:
Using the Parseval formula, we see that Fı is unitary from L2.ı�1=3d&d�/ to

L2.d�d�/:We can now prove a microlocal estimate with respect to ı�1=6D�ı
�1=6

which implies Proposition 3.12.

Proposition 3.14. There exist h0 > 0, C > 0 such that, for h 2 .0; h0/ and for all
L 2 EN .h/,

kı1=6D&ı
�1=6 L'kL2.ı�1=3d&d�/ � Ch�1=6k L k:

To prove the proposition we need the following lemma.

Lemma 3.15. We have

khD� ..ı
�1=6@�ı

�1=6/ L /k2 � Ch4=3k.ı�1=6@�ı
�1=6/ L k2 C Ch4=3k L k2 (3.18)

and

khD�..ı
�1=6@�ı

�1=6/ L /k2 � Ch4=3k.ı�1=6@�ı
�1=6/ L k2 C Ch4=3k L k2: (3.19)

Proof. Let .�;  / be an eigenpair of Lh;A. We use the IMS formula and we get

{Q..ı�1=6@�ı
�1=6/ L /

D �k.ı�1=6@�ı
�1=6/ L k2 � kŒP1.h/; .ı

�1=6@�ı
�1=6/� L k2

� kŒP2.h/; .ı
�1=6@�ı

�1=6/� L k2 CO.h2/k L k2:

A computation of the commutators provides

kŒP1.h/; .ı
�1=6@�ı

�1=6/� L k2 � Ch4=3k L k2
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and

kŒP2.h/; .ı
�1=6@�ı

�1=6/� L k2 � Ch4=3k L k2:

This implies

{Q..ı�1=6@�ı
�1=6/ L / � �k.ı�1=6@�ı

�1=6/ L k2 C Ch4=3k L k2:

We immediately deduce (3.18). For the proof of (3.19), we write

kP1.h/.ı
�1=6@�ı

�1=6/ L k2 � �k.ı�1=6@�ı
�1=6/ L k2 C Ch4=3k L k2:

It remains to investigate the sizes of the different terms appearing in P1.h/. We

observe (see Corollary 3.6) that

k�2.ı�1=6@�ı
�1=6/ L k2 � Ch4=3k.ı�1=6@�ı

�1=6/ L k2 C Ch4=3k L k2:

and

khı0.�D� CD��/.ı
�1=6@�ı

�1=6/ L k2

� CkhD� .ı
�1=6@�ı

�1=6/ L k2 C Ckhı0.ı�1=6@�ı
�1=6/ L k2

� Ch4=3k.ı�1=6@�ı
�1=6/ L k2 C Ch4=3k L k2;

where we have used (3.18).

Proof of Proposition 3.14. Let .�;  / be an eigenpair of Lh;A.

Microlocal estimate near the minimum. We have (see Proposition 3.11 jointly with

Corollary 3.6)

{Q. L / �
Z

ı
2=3
0

�

jhD�
L j2 C

ˇ

ˇ

ˇ

�

ı�1=6ih@�ı
�1=6 C �0h

2=3 C �2

2

�

L 
ˇ

ˇ

ˇ

2�

d�d�

� Ch5=3k L k2:

This becomes

{Q. L / �
Z

ı
2=3
0

�

jhD�
L j2 C

ˇ

ˇ

ˇ

�

� h�C �0h
2=3 C �2

2

�

Fı. L'/
ˇ

ˇ

ˇ

2�

d�d�

� Ch5=3k L k2:

We infer

{Q. L / �
Z

h4=3ı
2=3
0 �1.�0 � h1=3�/jFı. L'/j2 d�d� � Ch5=3k L k2:

Let us fix "0 > 0 small enough to have, for jh1=3�j � "0,

�1.�0 � h1=3�/ � �1.�0/C �00.�0/

4
h2=3�2:
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For this value of "0, there exists c0 > 0 such that, for jh1=3�j � "0

�1.�0 � h1=3�/ � �1.�0/C c0:

Let us recall that {Q. L / � .� C O.h1//k L k2 and that � satisfies (3.11). Then, it

remains to split the integrals on jh1=3�j � "0 and jh1=3�j � "0 and we infer

Z

jh1=3�j�"0

jFı. L'/j2 d�d� � Ch1=3k L k2;

and
Z

jh1=3�j�"0

j�Fı. L'/j2 d�d� � Ch�1=3k L k2: (3.20)

Microlocal estimate away from the minimum. Then, we want to obtain a control of

Z

jh1=3�j�"0

j�Fı. L'/j2 d�d�:

For that purpose, we will use Lemma 3.15. Let us first write

{Q..ı�1=6@�ı
�1=6/ L /

� kP1.h/.ı
�1=6@�ı

�1=6/ L k2 C h2kı1=3D� .ı
�1=6@�ı

�1=6/ L k2

� Ch2k.ı�1=6@�ı
�1=6/ L k2:

We have immediately

h2kı1=3D�.ı
�1=6@�ı

�1=6/ L k2 � ı
2=3
0 h2kD� .ı

�1=6@�ı
�1=6/ L k2:

Then, we write

kP1.h/.ı
�1=6@�ı

�1=6/ L k2 � k. Lm�1P C Ch/.ı
�1=6@�ı

�1=6/ L k2:

where

P D �hD� � �0.ı.�//
1=3h2=3 C {A.�; �/� h

6
ı0ı�1.�D� CD��/:

Expanding the square, we are led to estimate the following term:

Reh Lm�1P.ı�1=6@�ı
�1=6/ L ;Ch.ı

�1=6@�ı
�1=6/ L i

We have

kCh.ı
�1=6@�ı

�1=6/ L k � Chk.ı�1=6@�ı
�1=6/ L k

and

k Lm�1P.ı�1=6@�ı
�1=6/ L k � CkP.ı�1=6@�ı

�1=6/ L k:
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We get

kP.ı�1=6@�ı
�1=6/ L k � Chkı0.�D� CD��/.ı

�1=6@�ı
�1=6/ L k

and

kı0.�D� CD��/.ı
�1=6@�ı

�1=6/ L k

� Chk.ı�1=6@�ı
�1=6/ L k C Ckı0�D� .ı

�1=6@�ı
�1=6/ L k:

(3.21)

Using the support of L , we deduce

kı0�D� .ı
�1=6@�ı

�1=6/ L k � Ch1=3kD� .ı
�1=6@�ı

�1=6/ L k: (3.22)

Therefore, with (3.18), we infer

kP1.h/.ı
�1=6@�ı

�1=6/ L k2

� k. Lm�1P /.ı�1=6@�ı
�1=6/ L k2 � Ch5=3k.ı�1=6@�ı

�1=6/ L k2 � Ch5=3k L k2:

We write

k. Lm�1P /.ı�1=6@�ı
�1=6/ L k2 � ı

2=3
0 k. Lm�1ı�1=3P /.ı�1=6@�ı

�1=6/ L k2:

We shall again expand the square and control the term

k�2.ı�1=6@�ı
�1=6/ L k � Ch2=3.k.ı�1=6@�ı

�1=6/ L k C k L k/:
With (3.21), (3.22), (3.18) and (3.19), it follows that

kP1.h/.ı
�1=6@�ı

�1=6/ L k2

� ı
2=3
0





 Lm�1
�

� hı�1=3D� � �0h
2=3 C

{A
ı1=3

�

.ı�1=6@�ı
�1=6/ L 







2

� Ch5=3k.ı�1=6@�ı
�1=6/ L k2 � Ch5=3k L k2:

With the same arguments and using the Taylor expansion of {A, we find

kP1.h/.ı
�1=6@�ı

�1=6/ L k2

� ı
2=3
0





 Lm�1
�

� hı�1=3D� � �0h
2=3 C �2

2

�

.ı�1=6@�ı
�1=6/ L 







2

� Ch5=3k.ı�1=6@�ı
�1=6/ L k2 � Ch5=3k L k2:

Let us notice that, see (3.19),
Z

j� j
ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3 C �2

2

�

.ı�1=6@�ı
�1=6/ L 

ˇ

ˇ

ˇ

2

d�d�

� Ch1=3�

Z

ˇ

ˇ

ˇ

�

� hı�1=3D� � �0h
2=3 C �2

2

�

.ı�1=6@�ı
�1=6/ L 

ˇ

ˇ

ˇ

2

d�d�

� Ch5=3�k.ı�1=6@�ı
�1=6/ L k2 C Ch5=3�k L k2:

(3.23)
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Using the Taylor expansion of Lm and (3.23), we find

{Q..ı�1=6@�ı
�1=6/ L /

�
Z

ı
2=3
0

�

jhD�
L j2

C
ˇ

ˇ

ˇ

�

ı�1=3ih@� C �0h
2=3 C �2

2

�

.ı�1=6@�ı
�1=6/ L 

ˇ

ˇ

ˇ

2�

d�d�

� Ch5=3�k.ı�1=6@�ı
�1=6/ L k2 � Ch5=3�k L k2:

Replacing ı�1=3@� by ı�1=6@�ı
�1=6 (modulo error terms which can be controlled

with the same arguments), we deduce

{Q..ı�1=6@�ı
�1=6/ L /

�
Z

ı
2=3
0

�

jhD�
L j2

C
ˇ

ˇ

ˇ

�

ı�1=6ih@�ı
�1=6 C �0h

2=3 C �2

2

�

.ı�1=6@�ı
�1=6/ L 

ˇ

ˇ

ˇ

2�

d�d�

� Ch5=3�k.ı�1=6@�ı
�1=6/ L k2 � Ch5=3�k L k2:

We infer

{Q. L / �
Z

h4=3ı
2=3
0 �1.�0 � h1=3�/j�Fı. L'/j2 d�d�

� Ch5=3�k.ı�1=6@�ı
�1=6/ L k2 � Ch5=3�k L k2:

It follows

Z

jh1=3�j�"0
j�Fı L'j2d�d� � Ch1=3�k�Fı L'k2 C Ch1=3�k L k2:

Combining this last estimate with (3.20) , we get the conclusion.

4. Approximation by tensor products

We can now prove an approximation result for the eigenfunctions. Let us recall the

rescaled coordinates (see (2.3)):

� D h1=6 O� and � D h1=3 O�: (4.1)

Notation 4.1. yL.h/ denotes h�4=3 {L.h/ in the coordinates . O�; O�/. The corresponding

quadratic form will be denoted by OQ. We will use the notation yEN .h/ to denote

EN .h/ after rescaling.
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We introduce the Feshbach–Grushin projection

…0' D h'; u�0
iO�u�0

. O�/:

We will need to consider the quadratic form

OQ0.'/ D ı
2=3
0

Z

jD O�'j2 C
ˇ

ˇ

ˇ

�

� �0 C O�2

2

�

'
ˇ

ˇ

ˇ

2

d O�d O�:

Proposition 4.2. There exist h0 > 0 and C > 0 such that for h 2 .0; h0/ and
O 2 yEN .h/:

0 � yQ0. O / � ı
2=3
0 �1.�0/k O k2 � Ch1=6k O k2 (4.2)

and

k…0
O � O k � Ch1=12k O k;

kD O� .…0
O � O /k � Ch1=12k O k;

kO�2.…0
O � O /k � Ch1=12k O k:

(4.3)

Proof. Let us consider O 2 OEN .h/ which is associated with a rescaled eigenvalue O�.

We have
yQ. O / � . O�CO.h1//k O k2

and

k yP1.h/ O k2 C k yP2.h/ O k2 � .�1.�0/C Ch1=3/k O k2:

We now use Proposition 3.11 to get (the term in �3 and the term associated with Lm
are controlled by the estimates of Agmon)

OQ. O /

�
Z

ı
2=3
0

�

jD O�
O j2

C
ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0 C O�2

2

�

O 
ˇ

ˇ

ˇ

2�

d O�d O� C o.h1=3/k O k2:

We wish to make the term Oı�1=6ih1=6@ O�
Oı�1=6 to disappear modulo some error term.

Expanding the square, we are led to estimate the double product

2Re
D�

� �0 C O�2

2

�

O ; Oı�1=6ih1=6@ O�
Oı�1=6 O 

E

:

We have






�

� �0 C O�2

2

�

O 




 � Ck O k
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and, with Proposition 3.12,

kOı�1=6ih1=6@ O�
Oı�1=6 O k � Ch1=6k@ O�

Oı�1=6 O k � Ch1=6k O k:

It follows

yQ. O / � yQ0. O / � Ch1=6k O k2:

We deduce (4.2). We get (4.3) as a consequence of (4.2) in a standard way (using

that the second eigenvalue of yQ0 is strictly larger than the first one).

Proposition 4.3. There exist h0 > 0 and C > 0 such that for h 2 .0; h0/ and
O 2 OEN .h/:

yQ. O / �
Z

ı
2=3
0

�

jD O�
O j2 C

ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0 C O�2

2

�

O 
ˇ

ˇ

ˇ

2�

d O�d O�

C 2

3
ı

2=3
0 ˛�1.�0/k O� O k2 C C0h

1=3k O k2 C o.h1=3/k O k2;

where C0 is defined in (1.10).

Proof. We use Proposition 3.11 to write

yQ. O /

� ı
2=3
0

Z

�

jhD O�
O j2

C
ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0

C O�2

2
C ı

�4=3
0 �.0/h1=3 O�3

�

O 
ˇ

ˇ

ˇ

2�

d O�d O�

C 2h1=3k0ı
�1=3
0

Z

O�
ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0

C O�2

2
C ı

�4=3
0 �.0/h1=3 O�3

�

O 
ˇ

ˇ

ˇ

2

d O�d�

C 2

3
ı

2=3
0 ˛�1.�0/k O� O k2 C o.h1=3/k O k2:

(4.4)

With the estimates of Agmon and Proposition 3.12, we get on the one hand

Z

O�
ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0 C O�2

2
C ı

�4=3
0 �.0/h1=3 O�3

�

O 
ˇ

ˇ

ˇ

2

d O�d�

D h1=3

Z

O�
�

� �0 C O�2

2

�2

j O j2 d O�d O� C o.h1=3/k O k2

(4.5)
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and on the other hand
Z

ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0 C O�2

2
C ı

�4=3
0 �.0/h1=3 O�3

�

O 
ˇ

ˇ

ˇ

2

d O�d O�

D
Z

ˇ

ˇ

ˇ

�

Oı�1=6ih1=6@ O�
Oı�1=6 � �0 C O�2

2

�

O 
ˇ

ˇ

ˇ

2

d O�d O�

C 2ı
�4=3
0 �.0/h1=3

Z

�

� �0 C O�2

2

�

O�3j O j2 O�d� C o.h1=3/k O k2:

(4.6)

It remains to approximate the quantities
Z

O�
�

� �0 C O�2

2

�2

j O j2 d O�d O�

and
Z

�

� �0 C O�2

2

�

O�3j O j2 O�d�:

Let us analyze the first one. We consider
ˇ

ˇ

ˇ

ˇ

Z

O�
�

� �0 C O�2

2

�2

.j O j2 � j…0
O j2/ d O�d O�

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

Z

O�
�

� �0 C O�2

2

�2

.j O j � j…0
O j/.j O j C j…0

O j/ d O�d O�
ˇ

ˇ

ˇ

ˇ

�
Z

ˇ

ˇ

ˇ

ˇ

O�
�

� �0 C O�2

2

�2
ˇ

ˇ

ˇ

ˇ

.j O �…0
O j/.j O j C j…0

O j/ d O�d O�

� k O �…0
O k

�Z

O�2
�

� �0 C O�2

2

�4

.j O j C j…0
O j/2 d O�d O�

�1=2

�
p
2k O �…0

O k
�Z

O�2
�

� �0 C O�2

2

�4

.j O j2 C j…0
O j2/ d O�d O�

�1=2

:

We infer
�Z

O�2
�

� �0 C O�2

2

�4

.j O j2 C j…0
O j2/ d O�d O�

�1=2

�
�Z

O�2
�

� �0 C O�2

2

�4

j O j2 d O�d O�
�1=2

C
�Z

O�2
�

� �0 C O�2

2

�4

j…0
O j2 d O�d O�

�1=2

:

Using the fact that u�0
is in the Schwartz class, we get

Z

O�2
�

� �0 C O�2

2

�4

j…0
O j2 d O�d O� � C

Z

h O ; u�0
i2

O� d O� � Ck O k2:
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With the estimates of Agmon, we get

Z

O�2
�

� �0 C O�2

2

�4

.j O j2 C j…0
O j2/ d O�d O� � Ck O k2:

We deduce

ˇ

ˇ

ˇ

ˇ

Z

O�
�

� �0 C O�2

2

�2

.j O j2 � j…0
O j2/ d O�d O�

ˇ

ˇ

ˇ

ˇ

� Ch1=12k O k2:

In the same way, we get

ˇ

ˇ

ˇ

ˇ

Z

�

� �0 C O�2

2

�

O�3.j O j2 � j…0
O j2/ d O�d O�

ˇ

ˇ

ˇ

ˇ

� Ch1=12k O k2:

Then, we can write

Z

O�
�

� �0 C O�2

2

�2

j…0
O j2 d O�d O�

D
�Z

O�
�

� �0 C O�2

2

�2

ju�0
j2 d O�

��Z

h O ; u�0
i2

O�d O�
�

:

We get

Z

h O ; u�0
i2

O�d O� D
“

u2
�0

h O ; u�0
i2

O�d O�d O� D k…0
O k2 D .1C o.1//k O k2:

We infer

Z

O�
�

� �0 C O�2

2

�2

j…0
O j2 d O�d O�

D
�Z

O�
�

� �0 C O�2

2

�2

ju�0
j2 d O�

�

.1C o.1//k O k2:

(4.7)

In the same way, we get

Z

O�3
�

� �0 C O�2

2

�

j…0
O j2 d O�d O�

D
�Z

O�3
�

� �0 C O�2

2

�

ju�0
j2 d O�

�

.1C o.1//k O k2:

(4.8)

Gathering (4.4), (4.5), (4.6), (4.7), and (4.8) and the definition of C0 in (1.10), we get

the lower bound.

After rescaling, we deduce the following corollary.
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Corollary 4.4. There exist h0 > 0,C > 0 such that, for h 2 .0; h0/ and L 2 EN .h/,

{Q. L / �
Z

ı
2=3
0

�

jhD�
L j2 C

ˇ

ˇ

ˇ

�

ı�1=6ih@�ı
�1=6 � �0h

2=3 C �2

2

�

L 
ˇ

ˇ

ˇ

2�

d�d�

C 2

3
ı

2=3
0 ˛�1.�0/h

4=3k� L k2 C C0h
5=3k L k2 C o.h5=3/k L k2:

We use the weighted Fourier transform defined in (3.17) and we infer the following

result.

Corollary 4.5. There exist h0 > 0,C > 0 such that, for h 2 .0; h0/ and L 2 EN .h/,

{Q. L / �
Z

ı
2=3
0

�

jhD� L'j2 C j.�h� � �0h
2=3 C �2

2
/ L'j2

�

d�d�

C 2

3
ı

2=3
0 ˛�1.�0/h

4=3kD� L'k2 C C0h
5=3k L'k2 C o.h5=3/k L'k2;

with L' D Fı
L :

Conclusion: proof of Theorem 1.11. Let us introduce the operator

2

3
ı

2=3
0 ˛�1.�0/h

4=3D2
� C ı

2=3
0

�

h2D2
� C

�

� h�� �0h
2=3 C �2

2

�2�

CC0h
5=3 (4.9)

on L2.R2; d�d�/. We denote by Q�n.h/ its n-th eigenvalue. From Corollary 4.5 and

the min-max principle, we deduce

�n.h/ � Q�n.h/C o.h5=3/: (4.10)

The Born–Oppenheimer approximation (see [7] and [31]) provides the following

estimate for Q�n.h/:

Q�n.h/ D �n
0 h

4=3 C �n
2 h

5=3 C o.h5=3/: (4.11)

The estimates (4.10) and (4.11) provide the conclusion. Let us recall the spirit of the

Born–Oppenheimer approximation (see the historical reference [5]) without going

into the details. The principle consists of replacing, for fixed �, the operator

h2D2
� C

�

� h� � �0h
2=3 C �2

2

�2

by its lowest eigenvalue h4=3�1.�0 C �h1=3/ and to analyze the spectrum of the

“Born–Oppenheimer approximation” defined by

h4=3ı
2=3
0

�2

3
˛�1.�0/D

2
� C �1.�0 C �h1=3/

�

:
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This (semiclassical) analysis can be done through standard techniques (see [24], [25],

and [15]). We can also refer two our recent works [4] and [37] where this idea appears.

It can be proved (through Agmon estimates with respect to� and a Feshbach–Grushin

type argument) that the investigation reduces to the harmonic oscillator

h4=3ı
2=3
0

�2

3
˛�1.�0/D

2
� C �1.�0/C h2=3 �

00
1 .�0/

2
�2

�

and the estimate (4.11) follows.
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