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On spectral estimates for two-dimensional

Schrödinger operators
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Abstract. For the two-dimensional Schrödinger operator H˛V D �� � ˛V; V � 0; we

study the behavior of the number N�.H˛V / of its negative eigenvalues (bound states), as

the coupling parameter ˛ tends to infinity. A wide class of potentials is described, for which

N�.H˛V / has the semi-classical behavior, i.e. N�.H˛V / D O.˛/. For the potentials from

this class, the necessary and sufficient condition is found for the validity of the Weyl asymptotic

law.
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1. Introduction

1.1. Preliminaries. Let H˛V be a Schrödinger operator

H˛V D �� � ˛V (1.1)

on R
2. We suppose that V � 0, and ˛ > 0 is the coupling constant. We write

N�.H˛V / for the number of negative eigenvalues of H˛V , counted with multiplicities:

N�.H˛V / D #fj 2 N W �j .H˛V / < 0g:

As it is well known, the lowest possible (semi-classical) rate of growth of this function

is

N�.H˛V / D O.˛/; ˛ ! 1: (1.2)

This agrees with the Weyl-type asymptotic formula

lim
˛!1

˛�1N�.H˛V / D
1

4�

Z

R2

Vdx (1.3)

that is satisfied if the potential behaves fine enough.



506 A. Laptev and M. Solomyak

The exhaustive description of the classes of potentials on R
2, such that (1.2)

or (1.3) is satisfied, is unknown till now. This is in contrast with the case of dimensions

d > 2, where the celebrated Cwikel–Lieb–Rozenblum estimate describes the class of

potentials, for which both the estimate N�.H˛V / D O.˛d=2/ and theWeyl asymptotic

formula hold true.

In the forthcoming discussion, Psemi stands for the class of all potentials V � 0

on R
2, such that (1.2) is satisfied, and PWeyl stands for the class of all such potentials

that asymptotics (1.3) holds true. It is clear that

PWeyl � Psemi: (1.4)

The first results describing wide classes of potentials V 2 Psemi were obtained

in [10] and [1]. In the latter paper, this was done also for the class PWeyl. In particular,

it was shown there that the inclusion in (1.4) is proper. What is more, in [1] the general

nature of potentials V 2 Psemi n PWeyl was explained.

Some further estimates guaranteeing V 2 Psemi were obtained in the recent pa-

per [4]. We would like to mention also the paper [8] whose authors have obtained

some new results that give for N�.H˛V / the order of growth larger than O.˛/.

In the papers [5] and [3] the important case of radial potentials, V.x/ D F.jxj/,
was analyzed. For such potentials in [3] an integral estimate for N�.H˛V / was

obtained guaranteeing the inclusion V 2 Psemi (actually, it guarantees also that V 2

PWeyl). This result was strengthened in the recent paper [7] where for the radial

potentials the necessary and sufficient conditions for V 2 Psemi and for V 2 PWeyl

were established.

In the present paper we return to the study of general (that is, not necessarily

radial) potentials. We obtain an estimate that covers the main results of [1] and [4]. It

does not cover the estimate obtained in [10], however it has an important advantage

compared with the latter: it does not use the intricate Orlicz norms appearing in [10].

1.2. Formulation of the main result. Below .r; #/ stand for the polar coordinates

in R
2, and S stands for the unit circle r D 1. Given a function V , such that V.r; �/ 2

L1.S/ for almost all r > 0, we introduce its radial and non-radial parts

Vrad.r/ D
1

2�

Z

S

V.r; #/d#I Vnrad.r; #/ D V.r; #/ � Vrad.r/:

In our result the conditions will be imposed separately on the radial and on the

non-radial parts of a given potential V . For handling the radial part, we need some

auxiliary operator family on the real line, of the form

.M˛G'/.t/ D �'00.t / � ˛G.t/'.t/; '.0/ D 0; (1.5)

with the “effective potential”

G.t/ D GV .t / D e2jt jVrad.et/: (1.6)
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Due to the condition '.0/ D 0 in (1.5), for every ˛ the operator M˛G is the direct

sum of two operators, each acting on the half-line. The sharp spectral estimates for

M˛G can be given in terms of the number sequence (see eq. (1.13) in [7])

Oz.G/ D f��j .G/gj �0 W ��0.G/ D

Z

D0

G.t/dt;

��j .G/ D

Z

jt j2Dj

jt jG.t/dt .j 2 N/

(1.7)

where D0 D .�1; 1/ and Dj D .ej �1; ej / for j 2 N. For our purposes, it is

convenient to express properties of this sequence in terms of the “weak `q-spaces”

`q;1. Actually, in the main body of this paper we deal only with q D 1, and below

we remind the definition of `1;1. The definition of the weak `q-spaces with q ¤ 1

can be found, e.g., in [1], Section 1.4.

Given a sequence of real numbers x D fxj gj 2N, such that xj ! 0, we denote

n."; x/ D #fj W jxj j > "g; " > 0:

The sequence x belongs to `1;1, if

kxk1;1
def

D sup
">0

."n."; x// < 1:

This is a linear space, and the functional k � k1;1 defines a quasinorm in it. The

latter means that, instead of the standard triangle inequality, this functional satisfies

a weaker property:

kx C yk1;1 � c.kxk1;1 C kyk1;1/;

with some constant c > 1 that does not depend on the sequences x; y. This quasinorm

defines a topology in `1;1; there is no norm compatible with this topology.

The space `1;1 is non-separable. Consider its closed subspace `B
1;1 in which

the sequences x with only a finitely many non-zero terms form a dense subset. This

subspace is separable, and its elements are characterized by the property

x 2 `B
1;1 () " n."; x/ �! 0; " ! 0:

The (non-linear) functionals

�1.x/ D lim sup
"!0

." n."; x//; ı1.x/ D lim inf
"!0

." n."; x// (1.8)

are well-defined on the space `1;1, and

ı1.x/ � �1.x/ � kxk1;1:

It is clear that `B
1;1 D fx 2 `1;1 W �1.x/ D 0g.
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The conditions on Vnrad will be given in terms of the space L1.RC; Lp.S//, with

an arbitrarily chosen p > 1. This is the function space on R
2, with the following

norm:

kf kL1.RC;Lp.S// D

Z

RC

�Z

S

jf .r; #/jpd#

�1=p

rdr: (1.9)

This is a separable Banach space, and the bounded functions whose support is a

compact subset in R
2 n f0g are dense in it. The space L1.RC; Lp.S// was used in the

paper [6], and its results are one of the basic tools in our proof below.

Here is the main result of the paper.

Theorem 1.1. Let a potential V � 0 be such that Oz.GV / 2 `1;1, and

Vnrad 2 L1.RC; Lp.S// with some p > 1: (1.10)

Then V 2 Psemi, and the estimate is satisfied

N�.H˛V / � 1 C C.p/.kVnradkL1.RC;Lp.S// C kOz.GV /k`1;1
/: (1.11)

Moreover, the following equalities hold true:
8
ˆ̂̂
<
ˆ̂̂
:

lim sup
˛!1

˛�1N�.H˛V / D
1

4�

Z
Vdx C lim sup

˛!1
˛�1N�.M˛GV

/;

lim inf
˛!1

˛�1N�.H˛V / D
1

4�

Z
Vdx C lim inf

˛!1
˛�1N�.M˛GV

/:

(1.12)

In particular, under assumption (1.10) the condition Oz.GV / 2 `B
1;1 is necessary

and sufficient for V 2 PWeyl.

In (1.12), and later on, the integral with no domain specified always means
R

R2 .

Formula (1.12), and especially, its proof in Subsection 3.3, show that, in a certain

sense, the parts Vrad and Vnrad contribute to the asymptotic behavior of N�.H˛V /

independently. It may also happen that the contribution of Vrad is stronger than that of

Vnrad, and “screens” the latter. This situation is described by the following statement,

that complements our main theorem.

Proposition 1.2. Let a potential V � 0 be such that Oz.GV / 2 `q;1 with some q > 1,

and (1.10) is satisfied. Then
8
<̂

:̂

lim sup
˛!1

˛�qN�.H˛V / D lim sup
˛!1

˛�qN�.M˛GV
/;

lim inf
˛!1

˛�qN�.H˛V / D lim inf
˛!1

˛�qN�.M˛GV
/:

This is an analog of statement (b) in Theorem 5.1 of the paper [1]. Its proof is

basically the same, and we do not reproduce it here. In the same paper one finds also

examples that illustrate the situation described by Proposition 1.2.
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2. Auxiliary material

The proof of Theorem 1.1 mainly follows the line worked out in [1] and [10]. The

same approach was used in [7], and the material below, in part, duplicates the contents

of its Section 2. We systematically use the variational description of the spectrum.

In particular, we often define a self-adjoint operator via its corresponding Rayleigh

quotient.

2.1. Classes †1; †B

1
of compact operators. If T is a linear compact operator in a

Hilbert space, then, as usual, fsj .T/g stands for the sequence of its singular numbers,

i.e. for the eigenvalues of the non-negative, self-adjoint operator .T�T/1=2. By n."; T/

we denote the distribution function of the singular numbers,

n."; T/ D #fj W sj > "g; " > 0:

We say that T belongs to the class †1 if and only if fsj .T/g 2 `1;1, and to the

class †B
1 if and only if fsj .T/g 2 `B

1;1. These are linear, quasinormed spaces with

respect to the quasinorm kTk1;1 induced by this definition. The space †1 is non-

separable, and †B
1 is its separable subspace in which the finite rank operators form a

dense subset. Similarly to (1.8), we define the functionals

�1.T/ D �1.fsj .T/g/; ı1.T/ D ı1.fsj .T/g/:

Note that

ı1.T/ � �1.T/ � kTk1;1:

See [2], Section 11.6, for more detail about these spaces, and about similar spaces

†q; †B
q for any q > 0.

2.2. Reduction of the main problem to compact operators. Let us introduce two

subspaces in C 1
0 .R2/:

F0 D ff 2 C 1
0 W f .x/ D '.r/; '.1/ D 0g;

F1 D ff 2 C 1
0 W

Z 2�

0

f .r; #/d# D 0; r > 0g:

They are orthogonal to each other both in the L2-metric and in the metric of the

Dirichlet integral. The Hardy inequalities have a different form on F0 and on F1:

Z
jf .x/j2

jxj2 ln2 jxj
dx �

1

4

Z
jrf .x/j2dx; f 2 F0I (2.1)

Z
jf .x/j2

jxj2
dx �

Z
jrf .x/j2dx; f 2 F1: (2.2)
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For proving (2.1), one substitutes r D jxj D et , and then applies the standard

Hardy inequality in dimension 1. The proof of (2.2) is quite elementary, it can be

found, e.g., in [10], or in [1].

Let us consider the completions H
1
0 ; H

1
1 of the spaces F0; F1 in the metric of the

Dirichlet integral. It follows from Hardy inequalities (2.1) and (2.2) that these are

Hilbert function spaces, embedded into the weighted L2, with the weights defined

by these inequalities. Consider also their orthogonal sum

H
1 D H

1
0 ˚ H

1
1 : (2.3)

An independent definition of this Hilbert space is

H
1 D

�
f 2 H 1

loc.R
2/ W

Z 2�

0

f .1; #/d# D 0; jrf j 2 L2.R2/

�
;

with the metric of the Dirichlet integral.

We also define the spaces H 1
0 ; H 1

1 which are the completions of F0 ; F1 in H 1.R2/,

and

zH 1 D H 1
0 ˚ H 1

1 D

�
f 2 H 1.R2/ W

Z 2�

0

f .1; #/d# D 0

�
:

This is a subspace in H 1.R2/ of codimension 1.

Finally, we need the spaces G0; G1 which are the completions of F0; F1 in the

L2-metric. Note that the condition '.1/ D 0, occurring in the description of F0,

disappears for general f 2 G0.

Suppose that V � 0 is a measurable function, such that

bV Œu�
def

D

Z
V juj2dx � C

Z
jruj2dx; u 2 H

1: (2.4)

Under assumption (2.4) the quadratic form bV defines a bounded self-adjoint operator

BV � 0 in H
1. If (and only if) this operator is compact, then, by the Birman–

Schwinger principle, the quadratic form
Z

.jruj2 � ˛V juj2/dx (2.5)

with the form-domain zH 1 is closed and bounded from below for each ˛ > 0, the

negative spectrum of the associated self-adjoint operator zH˛V on L2.R2/ is finite,

and the following equality for the number of its negative eigenvalues holds true:

N�.zH˛V / D n.˛�1; BV /; ˛ > 0: (2.6)

Now, let us withdraw the rank one condition
R 2�

0 u.1; #/d# D 0 from the de-

scription of the form-domain. Then the resulting quadratic form corresponds to the

Schrödinger operator H˛V as in (1.1). Hence,

N�.zH˛V / � N�.H˛V / � N�.zH˛V / C 1;
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and, by (2.6),

n.˛�1; BV / � N�.H˛V / � n.˛�1; BV / C 1:

Thus, the study of the quantity N�.H˛V / for all ˛ > 0 is reduced to the investigation

of the “individual” operator BV , which is nothing but the Birman–Schwinger operator

for the family of operators in L2.R2/ associated with the family of quadratic forms

in (2.5). Note that the Birman–Schwinger operator for the original family in (1.1) is

ill-defined, since the completion of the space H 1.R2/ in the metric of the Dirichlet

integral is not a space of functions on R
2.

3. Proof of Theorem 1.1

3.1. Decomposition of the quadratic form bV .. Given a function u 2 H
1, we

agree to standardly denote its components in decomposition (2.3) by '.r/; v.r; #/.

Along with the quadratic form bV , we consider its “parts” in the subspaces H
1
0 ; H

1
1 :

bV;0Œu� D bV Œ'�; bV;1Œu� D bV Œv�:

Let BV;j ; j D 0; 1; stand for the corresponding self-adjoint operators in H
1

j . Using

orthogonal decomposition (2.3), we see that

bV Œu� D bV;0Œ'� C bV;1Œv� C 2

Z
V.x/ Re.'.jxj/v.x//dx: (3.1)

For the radial potentials the last term vanishes, and this considerably simplifies the

reasoning, see [7]. For the general potentials this is no more true. Still, the following

inequality is always valid:

bV Œu� � 2.bV Œ'� C bV Œv�/; (3.2)

and it shows that for estimation of kBV k1;1 it suffices to evaluate the quasinorms in

†1 of the operators BV;0; BV;1 separately.

The estimation of kBV;0k1;1 will be based upon the following result on the op-

erators FG on real line, whose Rayleigh quotient is

Z

R

G.t/j!.t/j2dt

Z

R

j!0.t /j2dt

; !.0/ D 0: (3.3)

Clearly, this is the Birman–Schwinger operator for the family M˛G given by (1.5).

Proposition 3.1. Let a function G 2 L1;loc.R/; G � 0; be given. Define the

corresponding number sequence Oz.G/ as in (1.7), and suppose that Oz.G/ 2 `1;1.
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Then the operator FG is well-defined, belongs to the class †1, and the estimate is

satisfied,

kFGk1;1 � C kOz.G/k1;1: (3.4)

If Oz.G/ 2 `B
1;1, then Oz.G/ 2 †B

1.

For the proof, see Section 4 in the paper [1]. There the operators on the half-line

were considered, however the passage to the case of the whole line is straightforward,

due to the condition !.0/ D 0 in (3.3). In this respect, see also a discussion in [7],

Section 3.

Now we turn to the operator BV;1. The estimation of its quasinorm in †1 uses a

result that is a particular case (for l D 1) of Theorem 1.2 in the paper [6]. We present

its equivalent formulation, more convenient for our purposes. Namely, we formulate it

for the Birman–Schwinger operator, rather than for the original Schrödinger operator,

as it was done in [6].

Proposition 3.2. Let V � 0; V 2 L1.RC; Lp.S//, with some p > 1. Then the

operator yBV , whose Rayleigh quotient is
Z

V.x/juj2dx

Z
.jruj2 C jxj�2juj2/dx

; u 2 H
1
1 ; (3.5)

belongs to the class †1, and

kyBV k1;1 � C.p/kV kL1.RC;Lp.S//: (3.6)

We recall that the norm appearing in (3.6) was defined in (1.9).

3.2. Proof of (1.11). As it was explained in the previous subsection, we have to

estimate the quasinorms of the operators BV;0; BV;1 in the space †1.

Consider first the operator BV;0. The corresponding Rayleigh quotient is

Z

R2

V.r; #/j'.r/j2rdrd#

Z

R2

j'0.r/j2rdrd#

D

Z 1

0

Vrad.r/j'.r/j2rdr

Z 1

0

j'0.r/j2rdr

: (3.7)

The standard substitution r D et ; '.r/ D !.t/I t 2 R, reduces it to the form
Z

R

GV .t /j!.t/j2dt

Z

R

j!0.t /j2dt

; !.0/ D 0:
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where the potential GV is given by (1.6). Now, Proposition 3.1 applies, and we arrive

at the estimate

kBV;0k1;1 � C kOz.G/k1;1:

The Rayleigh quotient for the operator BV;1 is given by

Z
V.x/juj2dx

Z
jruj2dx

; u 2 H
1
1 :

Due to Hardy inequality (2.2), on the subspace H
1
1 the norm of the Dirichlet integral

is equivalent to the norm generated by the quadratic form in the denominator of (3.5).

Hence, estimate (3.6) applies to this operator, with some other constant factor C 0.p/.

So, we have

kBV;1k1;1 � C 0.p/kV kL1.RC;Lp.S//: (3.8)

Estimates (3.4) and (3.8), together with inequality (3.2), imply the desired (1.11).

3.3. Proof of (1.12). First of all, we are going to show that

lim
"!0

." n."; BV;1// D
1

4�

Z

R2

Vdx: (3.9)

For V 2 C 1
0 .R2 n f0g/, Theorem 5.1 in [1] yields that

N�.H˛V / � .4�/�1˛

Z
Vdx; ˛ ! 1:

By the Birman–Schwinger principle, this is equivalent to

n."; BV / � .4�"/�1

Z
Vdx; " ! 0:

The spectrum of BV;1 has the same asymptotic behavior, since for such potentials the

subspace H
1
0 does not contribute to the asymptotic coefficient.

Now, let V � 0 be an arbitrary potential from L1.RC; Lp.S//. Then, approx-

imating it by the functions from C 1
0 and taking into account the continuity of the

asymptotic coefficients in the metric of †1 (see [2], Theorem 11.6.6), we extend the

formula to all such V . So, (3.9) is established.

Return to the study of the operator BV . Along with it, let us consider the direct

orthogonal sum BV D BV;0 ˚ BV;1. Evidently,

n."; BV / D n."; BV;0/ C n."; BV;1/:
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Hence, for justifying asymptotic formulae (1.12) it suffices to show that the off-

diagonal term in (3.1) generates an operator of the class †B
1. To this end, we first of

all note that Z
V Re.' Nv/dx D

Z
Vnrad Re.' Nv/dx; (3.10)

since v is orthogonal (in L2) to all functions depending only on jxj.

Suppose now that the function Vnrad has a compact support in R
2 n f0g. Then

the integral in the right-hand side of (3.10) is actually taken over some annulus

a � r � a�1; a < 1. Hence,

2

ˇ̌
ˇ̌
Z

Vnrad Re.' Nv/dx

ˇ̌
ˇ̌ � ı

Z a�1

a

rdr

Z

S

jVnrad.r; #/jjv.r; #/j2d#

C ı�1

Z a�1

a

rdr

Z

S

jVnrad.r; #/jj'.r/j2d#:

The first term on the right generates an operator on H
1
1 , say, T1, to which estimate (3.8)

applies, and it gives

kT1k1;1 � C 0.p/ı:

The second term generates an operator on H
1
0 , say, T0. Its Rayleigh quotient is of

the (3.7) but with the integration over a compact subset in .0; 1/. It follows that the

spectrum of T0 obeys Weyl’s asymptotic law, �j .T0/ � c�2, and hence, T0 2 †B
1.

Taking ı arbitrarily small, we conclude that asymptotics (1.12) is satisfied in the case

where Vnrad is compactly supported.

Finally, we approximate the function Vnrad by compactly supported functions

in metric (1.9), and again apply Theorem 11.6.5 from the book [2]. This extends

asymptotic formula (1.12) to all potentials, that meet the conditions of Theorem 1.1,

and thus, concludes the proof.

Added in Proof. Estimate (1.11) can be replaced by a stronger estimate

N�.H˛V / � 1 C C.p/˛.kVnradkL1.RC;B.S// C kOz.GV /k`1;1
/;

where B.Sq/ is the Orlicz space L log L on the unit circle. This improvement became

possible due to the recent result of Shargorodsky [9] (see Section 6 there).
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