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On the limit behaviour of second order relative spectra
of self-adjoint operators
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Abstract. It is well known that the standard projection methods allow one to recover the whole
spectrum of a bounded self-adjoint operator but they often lead to spectral pollution, i.e. to
spurious eigenvalues lying in the gaps of the essential spectrum. Methods using second order
relative spectra are free from spectral pollution, but they have not been proven to approximate
the whole spectrum. L. Boulton ([3] and [4]) has shown that second order relative spectra
approximate all isolated eigenvalues of finite multiplicity. The main result of the present paper
is that second order relative spectra do not in general approximate the whole of the essential
spectrum of a bounded self-adjoint operator.
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1. Introduction

Let H be a Hilbert space and B.H / be the space of bounded linear operators on
H . Let L1 � L2 � � � � � Ll � LlC1 � � � � be an increasing sequence of finite
dimensional linear subspaces of H such that the corresponding orthogonal projections
Pl W H ! Ll converge strongly to the identity operator I . Let P.H / be the set of
all such sequences of subspaces.

Suppose T D T � 2 B.H / and denote the spectrum of PlT W Ll ! Ll by
Spec.T; Ll/. Then

lim
l!1

Spec.T; Ll/ � Spec.T /; (1)

where “lim” is defined in an appropriate way (see, e.g., [1] or [19]). Unfortunately
the left-hand side of (1) may be strictly larger than the right-hand side. This is called
spectral pollution (see, e.g., [3], [4], [10], [14], [15], [17], and [19]) which is a well
known phenomenon in numerical analysis: spurious “eigenvalues” may appear in the
gaps of the essential spectrum of T and as a result liml!1 Spec.T; Ll/ may contain
points that do not belong to Spec.T /.
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A possible way of dealing with spectral pollution is based on the notion of second
order relative spectra which was introduced by E.B. Davies in [9]:

Spec2.T; Ll/
defD f� 2 C W Pl .T � �I/2 W Ll ! Ll is not invertibleg:

Although the spectrum of a self-adjoint operator T is a subset ofR, the set Spec2.T; Ll/

may and usually does contain points from C n R. Since T � D T , it is easy to see that
Spec2.T; Ll/ is symmetric with respect to the real line:

� 2 Spec2.T; Ll/ () N� 2 Spec2.T; Ll/:

If � 2 Spec2.T; Ll/ then

Spec.T / \ ŒRe � � j Im �j; Re � C j Im �j� 6D ; (2)

([14] and [19]; see also [12]). This means that if a point of Spec2.T; Ll/ is close to
the real line, then it is close to Spec.T /, i.e. that, in a sense, second order relative
spectra do not pollute.

A natural question, which was first posed in [19] (see also [14] and [20]), is whether
Spec2.T; Ll/, .Ll /l2N 2 P.H / capture the whole spectrum of T , i.e. whether or
not

lim
l!1

Spec2.T; Ll/ � Spec.T /:

A partial answer to this question was obtained in [3] and [4]:

lim
l!1

Spec2.T; Ll/ � fisolated eigenvalues of T of finite multiplicityg:

The main result of the present paper is that Spec2.T; Ll/ do not in general approximate
the whole of the essential spectrum Spece.T / of T . In order to state the result, we
need the following notation. Let dH .F; G/ denote the Hausdorff distance between
two sets F; G � C:

dH .F; G/
defD maxf sup

x2F

inf
y2G

jx � yj; sup
y2G

inf
x2F

jx � yjg:

Let † � R be a compact set,

m
defD min †; M

defD max †; Œm; M� n † D
[
j

.mj ; Mj /;

.mj ; Mj / \ .ml ; Ml / D ; if j 6D l:

Define
Q.†/

defD BŒm; M� n [j B.mj ; Mj /;

where BŒc1; c2� and B.c1; c2/ denote the closed and the open disk with the diameter
Œc1; c2�.
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Theorem 1.1. Let

�1 < �.1/� < �
.1/
C < �.2/� < �

.2/
C < � � � < �.n/� < �

.n/
C < C1; n 2 N;

and let

F � Q
� n[

j D1

Œ�.j /� ; �
.j /
C �

�

be a compact set symmetric with respect to the real line and such that

F \ .�.j /� ; �
.j /
C / 6D ;; j D 1; : : : ; n: (3)

Then there exist T D T � 2 B.H / and .Ll / 2 P.H / such that

Spec.T / D
n[

j D1

Œ�.j /� ; �
.j /
C �

and
dH .Spec2.T; Ll/; F / �! 0 as l ! C1:

Note that [
.Ll /2P.H/

lim
l!C1

Spec2.T; Ll/ D Spec.T / [ Q.Spece.T //;

where T D T � 2 B.H / and where “lim” is defined in an appropriate way ([19]; see
also [8]).

Acknowledgements. I am grateful to Michael Strauss and to the anonymous referee
for very helpful comments and suggestions.

2. Auxiliary results

Proposition 2.1. Let B; M 2 B.H /, B� D B , M � D M � 0. There exist a Hilbert
space H0 � H and T D T � 2 B.H0/ such that B D P T jH , M D P T 2jH , where
P W H0 ! H is the orthogonal projection, if and only if

B2 � M: (4)

Proof. Suppose such H0 and T exist. Then

.B2x; x/ D kBxk2 D kP T xk2;

.Mx; x/ D .P T 2x; x/ D .T 2x; x/ D kT xk2;
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for all x 2 H . Hence .B2x; x/ � .Mx; x/, for all x 2 H , i.e. (4) holds (cf. [18],
Appendix).

Suppose now (4) holds. Then M � B2 � 0 has a nonnegative square root
.M � B2/1=2. Let

H0
defD H

M
H ;

let
P W H0 �! H

be the projection onto the first component, and let

T
defD
 

B .M � B2/1=2

.M � B2/1=2 0

!
W

H

˚
H

!
H

˚
H

D H0: (5)

Then T � D T , P T jH D B ,

T 2 D
0
@ M B.M � B2/1=2

.M � B2/1=2B M � B2

1
A

and P T 2jH D M .

Lemma 2.2. For any �� < �C 2 R, r 2 .��; �C/ and ı; " > 0 there exist N 2 N
and Hermitian matrices B; R 2 CN �N such that kRk < ", Spec.B/ � Œ��; �C�,
the distance from any point of Œ��; �C� to Spec.B/ is less than ı, and all roots of the
equation

det.�2I � 2�B C B2 C R2/ D 0 (6)

belong to the vertical interval f� 2 C W Re � D r; j Im �j < "g.

Proof. It is sufficient to prove the lemma for �˙ D ˙� , � > 0 as the general case
can be reduced to this one by dealing with B � ��C�C

2
I instead of B .

Let "0 be a small positive number to be specified later and let w be a conformal
mapping of the unit disk onto the ellipse with the axes

Œ��; �� C i
"0

2
and i Œ0; "0�;

such that Re w.0/ D r .
Let b 2 C.T / and a 2 C.T / be the boundary values of Re w and Im w respec-

tively. Then b.T / D Œ��; �� and a.T / D Œ0; "0�.
For any n 2 N, the n 	 n Toeplitz matrix Tn.b/ with the symbol b is Hermitian

and
kTn.b/k � kT .b/k D kbk1 D �;
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where T .b/ W l2 ! l2 is the corresponding Toeplitz operator. Hence

Spec.Tn.b// � Œ��; ��:

It follows from Szegö’s theorem (see, e.g., Theorem 5.10 in [2]) that the distance
from any point of Œ��; �� to Spec.TN .b// is less than ı provided N is sufficiently
large. Fix such an N and set

B
defD TN .b/

and

A
defD p

2�"0I C TN .a/ D A�:

Since b C ia is the boundary value of the function w analytic in the unit disk,
B C iA D i

p
2�"0I C TN .b C ia/ is a lower triangular matrix with the diagonal

entries equal to i
p

2�"0 C b0 C ia0, where

b0
defD 1

2�

Z 2�

0

Re w.eit/dt D Re w.0/ D r;

and

a0
defD 1

2�

Z 2�

0

Im w.eit/dt D Im w.0/ 2 .0; "0/:

Hence

Spec.B C iA/ D fr C i.
p

2�"0 C a0/g; (7)

and

Spec.B � iA/ D Spec..B C iA/�/ D fr � i.
p

2�"0 C a0/g:
Consider the matrix polynomial

.�I � .B C iA//.�I � .B � iA// D �2I � 2�B C B2 � i ŒB; A� C A2;

where the square brackets denote the commutator. The Hermitian matrix

�i ŒB; A� C A2

is nonnegative. Indeed,

i ŒB; A� D i ŒB; TN .a/� � .2kBkkTN .a/k/I � 2�"0I � A2;

where the last inequality follows from the non-negativity of the Toeplitz matrix TN .a/

with the symbol a � 0.
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Let R be the nonnegative square root of �i ŒB; A� C A2. Then

det.�2I � 2�B C B2 C R2/ D det..�I � .B C iA//.�I � .B � iA///

D det..�I � .B C iA/// det..�I � .B � iA///:

Hence it follows from (7) that all roots of (6) belong to the interval f� 2 C W Re � D
r; j Im �j < "g provided

p
2�"0 C "0 < ".

It remains to estimate the norm of R:

kRxk2 D .R2x; x/ D ..�i ŒB; A� C A2/x; x/ � 2kBkkTN .a/k C kAk2

� 2�"0 C .
p

2�"0 C "0/2;

for all x 2 CN with kxk D 1. Choosing "0 > 0 such that the right-hand side is less
than "2 we get kRk < ".

Remark 2.3. Let

T
defD
�

B R

R 0

�
W C2N �! C2N :

Then the set of the roots of (6) is equal to Spec2.T; CN /. Since

kT �
�

B 0

0 0

�
k D kRk < ";

Spec.T / � Œ�� � "; �C C "� (see, e.g., Theorem V.4.10 in [13]).

Lemma 2.4. Let %�; %C 2 R and let T 2 Cn�n be a Hermitian matrix such that
Spec.T / � Œ%�; %C�. Then for any �� < %�, any �C > %C and any r 2 .��; �C/,
ı; " > 0, one can choose N and B in Lemma 2.2 in such a way that N � 2n and

B D
�

T S

S� K

�
with kSkCN�n!Cn < ı.

Proof. Let �1; : : : ; �n be the eigenvalues of T repeated according to their multiplic-
ities and let N � 2n, B 0; R0 satisfy the conditions in Lemma 2.2 with ı0=.2n/ in
place of ı, where ı0 D minfı; %� � ��; �C � %Cg. The distance between any two
consecutive distinct eigenvalues of B 0 is less than ı0=n as otherwise the distance
from the centre of the interval between the eigenvalues to Spec.B 0/ would have been
greater than or equal to ı0=.2n/. Since the multiplicity of each �k is at most n, there
exist distinct eigenvalues of B 0 which we denote by �˙k , k D 1; : : : ; n and which
satisfy the conditions

��k � �k � �k and �k � ��k < 2ı:
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Then there exist tk 2 Œ0; 1� such that �k D .1 � tk/��k C tk�k . Let um 2 CN ,
m D ˙1; : : : ; ˙n be a normalized eigenvector of B 0 corresponding to �m and set

vk
defD
p

1 � tku�k C p
tkuk and v�k

defD �p
tku�k C

p
1 � tkuk :

Since fu˙kgn
kD1

is an orthonormal set, kvkk D 1 D kv�kk,

.vk; v�k/ D �
p

1 � tk
p

tk C p
tk
p

1 � tk D 0;

and .vm; vj / D 0 if m; j D ˙1; : : : ; ˙n, m 6D ˙j . Hence fv˙kgn
kD1

is an orthonor-
mal set. Further,

.B 0vk; vk/ D .
p

1 � tk��ku�k C p
tk�kuk ;

p
1 � tku�k C p

tkuk/

D .1 � tk/��k C tk�k D �k;

.B 0vk; v�k/ D .
p

1 � tk��ku�k C p
tk�kuk ; �p

tku�k C
p

1 � tkuk/

D .�k � ��k/
p

1 � tk
p

tk 2 Œ0; ı/;

(8)

since 0 � p
1 � tk

p
tk � 1=2. It is also clear that

.B 0vk; vm/ D 0; m 6D ˙k: (9)

Let U 2 CN �N be a unitary matrix such that

U.0; : : : ; 0; 1„ ƒ‚ …
k

; 0; : : : ; 0/T D
8<
:vk; k D 1; : : : ; n;

vn�k; k D n C 1; : : : ; 2n:

Then

U �B 0U D
 

diagf�1; : : : ; �ng S 0

.S 0/� K

!
;

where S 0 D .skj /n�.N �n/, jskj j < ı if j D n C k, skj D 0 if j 6D n C k, k D
1; : : : ; n, j D nC1; : : : ; N (see (8) and (9)). It is easy to see that kS 0kCN�n!Cn < ı.

Let U0 2 Cn�n be a unitary matrix such that

U0T U �
0 D diagf�1; : : : ; �ng;

i.e.
U �

0 diagf�1; : : : ; �ngU0 D T;

and let

U1
defD
 

U0 0

0 IN �n

!
:



542 E. Shargorodsky

Then U1 is a unitary matrix and

U �
1 U �B 0U U1 D

 
U �

0 diagf�1; : : : ; �ngU0 U �
0 S 0

.S 0/�U0 K

!
D
 

T S

S� K

!
;

where S
defD U �

0 S 0. It is clear that kSkCN�n!Cn D kS 0kCN�n!Cn < ı.
Let

B
defD V �B 0V; R

defD V �R0V;

where V
defD U U1 is a unitary matrix. Then B� D B , R� D R, Spec.B/ D Spec.B 0/,

kRk D kR0k < ", and all zeros of the polynomial

det.�2I � 2�B C B2 C R2/ D det.V �.�2I � 2�B 0 C .B 0/2 C .R0/2/V /

D det.�2I � 2�B 0 C .B 0/2 C .R0/2/

belong to the interval f� 2 C W Re � D r; j Im �j < "g.

Let T 2 Cn�n and m � n, m 2 N. Then for any " > 0 there exists �.T; m; "/ > 0

such that for any D 2 Cm�m with kDk < �.T; m; "/ the Hausdorff distance between
the set of roots of the equation

det.Pm.�I � T /2jCm C D/ D 0

and Spec2.T; Cm/ is less than " (see, e.g., Theorem 4.10c in [11]).
We will use the following notation

`2.N /
defD fx D .xk/k2N 2 `2 W xk D 0; k > N g Š CN

and will identify vectors .x1; : : : ; xN / 2 CN with

.x1; : : : ; xN ; 0; 0; : : : / 2 `2.N / � `2:

Lemma 2.5. For any �� < �C 2 R, r 2 .��; �C/ and any sequence ˛l 2 .0; 1/,
l 2 N converging to 0 there exist a self-adjoint operator T 2 B.`2/ and Nl 2 N,
l 2 N such that Spec.T / D Œ��; �C�, Nl " C1 as l " C1, and

Spec2.T; `2.Nl // � f� 2 C W j� � r j < ˛lg; l 2 N: (10)

Proof. Similarly to the proof of Lemma 2.2 we can assume that Œ��; �C� D Œ�2; 2�

as the general case can be reduced to this one by dealing with

4

�C � ��

�
T � �� C �C

2
I
�

instead of T .
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Let �0 D %0 D 0, ˛0 D ı0 D "0 D 1=4, N0 D 1, B0 D 0, and T0 D�
0 0
0 0

�
2�2

. The main idea of the proof is to use Lemmas 2.2 and 2.4 and Remark 2.3
to successively construct matrices

: : : �! Tl

#
BlC1 D

 
Tl Sl

S�
l

Kl

!
�! TlC1 D

 
BlC1 RlC1

RlC1 0

!
#
: : :

in such a way that the spectra of Tl converge to Œ�2; 2�, the second order relative
spectra of Tl converge to r , while Sl and Rl have small norms. A most important
feature of the construction is that each of the Tl and Bl matrices goes into the top
left corner of the next one: � � � ,! Tl ,! BlC1 ,! TlC1 ,! BlC2 ,! � � � . To make
the construction work, one needs to choose the numbers "; ı; % and � in Lemmas 2.2
and 2.4 at each step in an appropriate way. More precisely, we successively construct
Nl , ıl D "l , Bl , Tl such that B�

l
D Bl W `2.Nl / ! `2.Nl /, T �

l
D Tl W `2.2Nl / !

`2.2Nl /,

Tl
defD
 

Bl Rl

Rl 0

!
;

kRlk < "l , Spec.Bl/ � Œ��l ; �l �, the distance from any point of Œ��l ; �l � to
Spec.Bl/ is less than ıl , �l D 2 � 2�l ,

ıl D "l <
1

2
minf

p
�.Tl�1; Nl�1; ˛l�1=2/; ˛l ; "l�1g; (11)

Spec2.Tl ; `2.Nl // � f� 2 C W j� � r j < "lg
� f� 2 C W j� � r j < ˛l=2g;

BlC1 D
 

Tl Sl

S�
l

Kl

!
;

kSlk < ılC1, and Spec.Tl / � Œ�.�l C"l /; �l C"l � � Œ�%l ; %l �, %l D 2�3 �2�l�2 <

�lC1. The last inclusion follows from (11) as

"l <
"l�1

2
< � � � <

"0

2l
D 2�l�2; (12)

and

�l C "l < 2 � 2�l C 2�l�2 D 2 � 3 � 2�l�2 D %l < 2 � 2�l�1 D �lC1:

Note that the restriction ıl D "l < 1
2

p
�.Tl�1; Nl�1; ˛l�1=2/ (see (11)) is not used

at this stage. It will be need later (see (16) below).
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Since T �
l

D Tl and Spec.Tl/ � Œ�%l ; %l �,

kTlk � %l D 2 � 3 � 2�l�2 < 2; l 2 N: (13)

Let

yBl
defD
 

Bl 0

0 0

!
W `2 �! `2 and yTl

defD
 

Tl 0

0 0

!
W `2 �! `2:

Suppose x 2 `2.2Nj /, j � l , kxk � 1. Then

k yTlC1x � yTlxk � k yTlC1x � yBlC1xk C k yBlC1x � yTlxk
D kRlC1xk C kS�

l xk < "lC1 C ılC1 < 2�l�3 C 2�l�3 D 2�l�2

(see (12)), and therefore

k yTlCmx � yTlxk � Pm�1
pD0 k yTlCpC1x � yTlCpxk <

Pm�1
pD0 2�l�p�2

D 2�l�1 � 2�l�m�1 < 2�l�1;

m 2 N: Hence . yTlx/l2N is a convergent sequence in `2 for any x 2 `2.2Nj /, for all
j 2 N. Since k yTlk D kTlk < 2, for all l 2 N (see (13)), the sequence . yTl/l2N is
strongly convergent. Let T 2 B.`2/ be its limit. Then T � D T , kT k � 2 and

kT x � yTlxk � 2�l�1; x 2 `2.2Nl /; kxk � 1: (14)

Further, Spec.T / D Œ�2; 2�. Indeed, take any � 2 Œ�2; 2�. The distance from �

to Spec.Bl / is less than 2�l C ıl D 2�l C "l < 2�l C 2�l�2 (see (12)). Using
Theorem V.4.10 in [13] as in Remark 2.3, one can show that the distance from �

to Spec.Tl / is less than 2�l C 2�l�2 C "l < 2�l C 2�l�1. Hence there exists an
eigenvector xl 2 `2.2Nl / of Tl such that kxlk D 1 and kTlxl ��xlk < 2�l C2�l�1.
It follows from (14) that

kT xl � �xlk < 2�l C 2�l�1 C 2�l�1 D 2�lC1; l 2 N:

Therefore, � 2 Spec.T /.
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By construction,

Tlx D P2Nl
BlC1x

D P2Nl
PNlC1

TlC1x

D P2Nl
TlC1x D P2Nl

P2NlC1
TlC2x

D P2Nl
TlC2x

D : : :

D P2Nl
TlCmx

D P2Nl
yTlCmx

D : : : ;

for x 2 `2.2Nl /. So,

P2Nl
T j`2.2Nl / D Tl ; l 2 N: (15)

Let us now estimate the difference

P2Nl
T 2j`2.2Nl / � T 2

l :

Since

T 2
lC1 D

 
B2

lC1
C R2

lC1
BlC1RlC1

RlC1BlC1 R2
lC1

!

and

B2
lC1 D

 
T 2

l
C SlS

�
l

TlSl C SlKl

S�
l

Tl C KlS
�
l

S�
l

Sl C K2
l

!
;

we get

kP2Nl
T 2

lC1x � T 2
l xk � kP2Nl

T 2
lC1x � P2Nl

B2
lC1xk

C kP2Nl
B2

lC1x � T 2
l xk

D kP2Nl
R2

lC1xk C kSlS
�
l xk

< "2
lC1 C ı2

lC1

D 2"2
lC1;
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for x 2 `2.2Nl /, and kxk � 1, and therefore (see (12))

kP2Nl
T 2

lCmx � T 2
l xk �

m�1X
pD0

kP2Nl
T 2

lCpC1x � P2Nl
T 2

lCpxk

�
m�1X
pD0

kP2NlCp
T 2

lCpC1x � T 2
lCpxk

< 2

m�1X
pD0

"2
lCpC1

< 2"2
lC1

m�1X
pD0

1

22p

D 2"2
lC1

4

3

�
1 � 1

22m

�
< 4"2

lC1;

for m 2 N. Hence

kP2Nl
T 2j`2.2Nl / � T 2

l k � 4"2
lC1 < �.Tl ; Nl ; ˛l=2/ (16)

(see (11)). Finally,

PNl
T j`2.Nl / D PNl

Tl j`2.Nl / D Bl and

kPNl
T 2j`2.Nl / � PNl

T 2
l j`2.Nl /k < �.Tl ; Nl ; ˛l=2/:

Since Spec2.Tl ; `2.Nl // � f� 2 C W j��r j < ˛l=2g, (10) follows from the definition
of �.Tl ; Nl ; ˛l=2/.

Remark 2.6. The argument in the proof of Lemma 2.5 does not change if one adds
the requirement

"l <
1

2

p
�.Tl�1; 2Nl�1; ˛l�1/

to (11), although one may get a different sequence of matrices Tl and, correspondingly,
a different limit operator T . For these, one has, additionally to the estimates in the
proof of Lemma 2.5, the following inequalities

kP2Nl
T 2j`2.2Nl / � T 2

l k � 4"2
lC1 < �.Tl ; 2Nl ; ˛l/

(see (16)). Since Spec2.Tl ; `2.2Nl // D Spec.Tl /, it follows from the definition
of �.Tl ; 2Nl ; ˛l/ and from what we know about Spec.Tl/, that Spec2.T; `2.2Nl //

lies in an ˛l -neighbourhood of Œ�%l ; %l � and the distance from any point of Œ�2; 2� to
Spec2.T; `2.2Nl // is less than 2�l C2�l�1 C˛l . Hence Spec2.T; `2.2Nl // converge
to Œ�2; 2� while Spec2.T; `2.Nl // converge to frg as l ! C1.
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3. Proof of Theorem 1.1

Let
rj 2 F \ .�.j /� ; �

.j /
C /;

for j D 1; : : : ; n, and let T .j / and N
.j /

l
, l 2 N be the same as in Lemma 2.5 but

with rj 2 .�.j /� ; �
.j /
C / in place of r 2 .��; �C/. Let Hj D `2, H D Ln

j D1 Hj

and T D diagfT .1/; : : : ; T .n/g 2 B.H /. It is clear that T D T � and Spec.T / DSn
j D1Œ�.j /� ; �

.j /
C �.

Let Fl be a finite subset of the interior of Q
�Sn

j D1Œ�.j /� ; �
.j /
C �
�

symmetric with
respect to the real line and such that

dH .Fl ; F / < 2�l�1; (17)

and let Fl \f� 2 C W Im � � 0g D f�.l/
1 ; : : : ; �

.l/
nl

g. For any k D 1; : : : ; nl there exist

�
.l/

1;k
; �

.l/

2;k
; �

.l/

3;k
2 Sn

j D1.�.j /� ; �
.j /
C / such that the convex hull of f.�.l/

k
��

.l/

m;k
/2g3

mD1

contains 0, i.e. there exists

t
.l/

1;k
; t

.l/

2;k
; t

.l/

3;k
2 Œ0; 1� W t

.l/

1;k
C t

.l/

2;k
C t

.l/

3;k
D 1;

3X
mD1

t
.l/

m;k
.�

.l/

k
� �

.l/

m;k
/2 D 0

(18)

(see [19]).
Let L0 D f0g, zN0 D 1, and suppose we have constructed L0 � L1 � � � � �

Ll�1 � H and zN0 < zN1 < � � � < zNl�1 2 N such that Lp � Ln
j D1 `2. zNp/,

p D 1; : : : ; l � 1. Let us construct Ll and zNl . Let yN .j /

l
be the smallest number

among N
.j /

l
< N

.j /

lC1
< N

.j /

lC2
< : : : which is greater than or equal to zNl�1. Then

Ll�1 � L0
l

defD Ln
j D1 `2. yN .j /

l
/ and

dH .Spec2.T; L0
l /; fr1; : : : ; rng/ < ˛l : (19)

Let E.�/ be the spectral measure of T and let

W
.l/

m;k
�

n[
j D1

.�.j /� ; �
.j /
C /

be the "0
l
-neighbourhood of �

.l/

m;k
, where "0

l
is a small positive number to be specified

later. Since the subspaces E.W
.l/

m;k
/H � H are infinite dimensional, we can choose

vectors u
.l/

m;k
2 E.W

.l/

m;k
/H such that ku

.l/

m;k
k D 1 and

u
.l/

m;k
? T q.L0

l / and u
.l/

m;k
? T qu

.l/

m0;k0 ;
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for q D 0; 1; 2, m; m0 D 1; 2; 3, k; k0 D 1; : : : nl , and .m; k/ 6D .m0; k0/. Let

v
.l/

k
D

3X
mD1

q
t

.l/

m;k
u

.l/

m;k
; L0

l D L0
l ˚ spanfv.l/

k
gnl

kD1
;

and let P 0
l

W H ! L0
l

and P 0
l
W H ! L0

l
be the corresponding orthogonal projec-

tions. Then kv
.l/

k
k D 1,

v
.l/

k
? T q.L0

l /; v
.l/

k
? T qv

.l/

k0 ; q D 0; 1; 2; k; k0 D 1; : : : nl ; k 6D k0;

and

P 0
l .�I � T /2jL0

l
D P 0

l .�I � T /2jL0
l
;

P 0
l .�I � T /2v

.l/

k
D ..�I � T /2v

.l/

k
; v

.l/

k
/v

.l/

k

defD p
.l/

k
.�/v

.l/

k
:

Hence P 0
l
.�I � T /2jL0

l
is unitarily equivalent to 

P 0
l

.�I � T /2jL0
l

0

0 diagfp.l/
1 .�/; : : : ; p

.l/
nl

.�/g

!

and

Spec2.T; L0
l/ D Spec2.T; L0

l / [
nl[

kD1

f� 2 C W p
.l/

k
.�/ D 0g: (20)

By construction, the coefficients of the quadratic polynomial

p
.l/

k
.�/ D ..�I � T /2v

.l/

k
; v

.l/

k
/ D

3X
mD1

t
.l/

m;k
..�I � T /2u

.l/

k
; u

.l/

k
/

are real and differ by less than C "0
l

from those of

q
.l/

k
.�/

defD
3X

mD1

t
.l/

m;k
.� � �

.l/

m;k
/2:

(It follows from the spectral theorem that one can take

C D 2 maxf1; kT kg
here.) Taking "0

l
sufficiently small we can ensure that the zeros of p

.l/

k
.�/ differ from

those of q
.l/

k
.�/ by less than 2�l�1. According to (18), �

.l/

k
and its complex conjugate

are the zeros of q
.l/

k
.�/. Hence it follows from (17), (19), and (20) that

dH .Spec2.T; L0
l/; F / < maxf˛l ; 2�lg:
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Let zNl > zNl�1, zNl > yN .j /

l
, j D 1; : : : ; n, P.l/ W H ! Ln

j D1 `2. zNl/ be the
orthogonal projection,

Ll D L0
l ˚ spanfP.l/v

.l/

k
gnl

kD1

and let Pl W H ! Ll be the corresponding orthogonal projection. Spec2.T; L0
l
/ is

the set of zeros of the determinant of a matrix representation of P 0
l
.�I �T /2jL0

l
which

is a polynomial in �. If zNl is large, then P.l/v
.l/

k
is close to v

.l/

k
, and the coefficients

of the polynomial corresponding to Pl.�I � T /2jLl
are close to their counterparts

corresponding to P 0
l
.�I � T /2jL0

l
. Hence taking zNl sufficiently large we get

dH .Spec2.T; Ll/; F / < maxf˛l ; 2�lg
(see Theorem 4.10c in [11]). Note that .Ll / 2 P.H / because Ll 
 L0

l
DLn

j D1 `2. yN .j /

l
/ and yN .j /

l
� N

.j /

l
! C1 as l ! C1, j D 1; : : : n.

Remark 3.1. Spec2.T; Ll/ constructed in the above proof converge to F . The limit
behaviour of a sequence of second order relative spectra of T may be considerably
more complicated than that. Let, for example, F0 � Q

�Sn
j D1Œ�.j /� ; �

.j /
C �
�

be another
compact set symmetric with respect to the real line and such that

F0 \ F \ .�.j /� ; �
.j /
C / 6D ;; j D 1; : : : ; n:

Acting as in the proof above one can construct a sequence .L0;l / similar to .Ll / and
such that

dH .Spec2.T; L0;l/; F0/ �! 0; as l ! C1:

Then it is easy to extract subsequences from .Ll / and to .L0;l / and to combine them
into a new sequence .Ml/ 2 P.H / in such a way that

dH .Spec2.T; M2l/; F / �! 0 and dH .Spec2.T; M2lC1/; F0/ �! 0;

as l ! C1. One can of course carry out a similar procedure with more than just
two limit sets F and F0.

4. Concluding remarks

The sequence .Nl / in the proof of Lemma 2.5 and .dim Ll / in the proof of The-
orem 1.1 are very rapidly increasing and it is not clear whether the above results
have serious implications for “real life” computations involving second order relative
spectra. In all numerical examples studied so far (see, e.g., [3], [4], [5], [6], [7],
[8], [14], and [21]), second order relative spectra seemed to approximate the whole
spectrum quite well.



550 E. Shargorodsky

Question 1. Can the phenomenon described by Lemma 2.5 and Theorem 1.1 still
happen if one restricts the rate of growth of dim Ll ?

Note that

lim
N !C1

� Spec2.T; `2.N // \ R D Œ�2; 2� D Spec.T /

in Remark 2.6. Here

lim
l!C1

�Gl
defD fz 2 C W there are lm 2 N; and zlm

2 Glm
such that

lm ! C1 and zlm
! z; as m ! C1g

for Gl � C, and l 2 N.
It is well known that

lim
l!C1� Spec.T; Ll/ � Spec.T /; .Ll / 2 P.H /;

where
lim

l!C1�Gl
defD fz 2 Cj 9zl 2 Gl W lim

l!C1
zl D zg

(see, e.g., [1] or [19]). It is reasonable therefore to use lim� when approximating
Spec.T / with the help of Spec.T; Ll/. On the other hand, the non-pollution result (2)
shows it is more natural to use lim� when approximating Spec.T / with the help of
Spec2.T; Ll/.

Another natural question is whether or not one can drop condition (3) in Theo-
rem 1.1.

Question 2. Can the limit set of a sequence of second order relative spectra be
disjoint from the (essential) spectrum of T D T � 2 B.H /?
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