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1. Introduction

The spectral analysis of magnetic Schrödinger operators in domains with boundary

has been the subject of many research papers in the last two decades. Apart from

the mathematical interest behind the study of their spectra, magnetic Schrödinger

operators in interior/exterior domains with various boundary conditions arise in sev-

eral models of condensed matter physics, as superconductivity (see [15], [9], [16],

and [17]), liquid crystals (see [13], and [19]), and Fermi gases (see [6]).

The present paper is devoted to the study of magnetic Schrödinger operators in

domains with corners (piecewise smooth domains). The presence of corners in the

domain has a strong effect on the spectrum of the operator. In particular, it is shown

in [2] and [14] that the presence of corners decreases the value of the ground state

energy of the operator compared with the case of smooth domains. Discussion of

this effect in the framework of superconductivity is given in [3].

We give in a simple particular case, a brief presentation of the semiclassical results

proved in this paper. Suppose for simplicity that � is a simply connected bounded

domain in R
2 and that A is a vector field such that b D curl A is constant. Let

Ph;� D �.hr � iA/2 be the magnetic Laplacian in L2.�/ with magnetic Neumann

boundary condition,N.�h/ andE.�h/be the number and sum of negative eigenvalues

of Ph;� � �hId . If the boundary of � is smooth, it is proved in [10] and [11] that,
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as h ! 0,

N.�h/ � c1.b; �/j@�jh�1=2 and E.�h/ � c2.b; �/j@�jh1=2; (1.1)

where c1 and c2 are two explicit constants. The formula for the number N.�h/ is

valid for all � < b, while that for the energy E.�h/ is valid for all � � b.

In Theorem 4.1 of this paper, we prove that (1.1) is still holding true when the

domain � has a finite number of corners. The key to prove this extension is a

rough estimate on the number of eigenvalues of a Schrödinger operator with constant

magnetic field in a sectorial domain (see Lemma 2.5).

The result of Theorem 4.1 shows that corners only affect the low-lying eigenvalues

of the operator. As we will see in Theorem 3.1, corners create a few additional

eigenvalues compared with smooth domains.

As a consequence, we may say that in the semi-classical limit and the regime con-

sidered in this paper, the numbers of eigenvalues of magnetic Schrödinger operators

for smooth and non-smooth domains are asymptotically the same.

The paper is organized in the following way. In Section 2, we collect some key

results that will be used throughout the paper. Section 3 is about the number of

low-lying eigenvalues of the operator in a domain with corners (here the regularity

assumption on the domain is precisely stated). Finally, Section 4 contains the semi-

classical analysis that extends (1.1) to domains with corners.

Throughout the paper, the notation N.�; P / will be often used to denote the

number of eigenvalues (counting multiplicities) of the operator P that are below �.
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2. Preliminaries

2.1. Variational principles. Let H be a self-adjoint operator in a Hilbert space H

(of domain D.H/) such that
8

<

:

inf �ess.H/ � 0

H1.�1;0/.H/ is trace class:
(H)

We shall need the following two simple variational principles concerning the

operator H , which are frequently used in [18] and [8].

Lemma 2.1. Let 
 be a bounded operator such that 0 � 
 � 1 (in the sense of

quadratic forms) and the operator H
 is trace class. Then it holds that

tr
�

H1.�1;0/.H/
�

� tr.H
/:



Spectral asymptotics for magnetic Schrödinger operators in domains with corners 555

Lemma 2.2. Assume that the operator H satisfies the hypothesis (H). Then it holds

that

tr
�

H1.�1;0/.H/
�

D inf

N
X

j D1

hfj ; Hfj i;

where the infimum is taken over all orthonormal families ff1; f2; : : : ; fN g � D.H/

and N � 1.

2.2. A family of one-dimensional differential operators. Let us recall the main

results obtained in [7] and [15] concerning the family of harmonic oscillators with

Neumann boundary condition. Given � 2 R, we define the quadratic form

B1.RC/ 3 u 7! qŒ��.u/ D
Z

RC

ju0.t /j2 C j.t � �/u.t/j2dt; (2.1)

where, for a positive integer k 2 N and a given interval I � R, the space Bk.I / is

defined by

Bk.I / D fu 2 H k.I /I t ju.t/ 2 L2.I /; j D 1; : : : ; kg: (2.2)

Since the quadratic form (2.1) is closed and symmetric it defines a unique self-adjoint

operator LŒ��. This operator has domain

D.LŒ��/ D fu 2 B2.RC/Iu0.0/ D 0g;

and is the realization of the differential operator

LŒ�� D �@2
t C .t � �/2; (2.3)

on the given domain. We denote by f�j .�/gC1
j D1 the increasing sequence of eigenval-

ues of LŒ��, which are all simple. By the min-max principle, we have

�1.�/ D inf
u2B1.RC/;u6D0

qŒ��.u/

kuk2
L2.RC/

: (2.4)

It follows from analytic perturbation theory (see [7]) that the functions

R 3 � 7�! �j .�/

are analytic. Furthermore, �1.0/ D 1, �1.�/ � 1 for all � � 0, and j�1.�/ � 1j
decays like exp.��2/ as � ! C1 (see [4]). These properties of �1 yield that

Z 1

0

.�1.�/ � 1/d� D �
Z

R

Œ�1.�/ � 1��d�

is finite. We define the constant

‚0 D inf
�2R

�1.�/: (2.5)
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In [7], it is proved that‚0 D �1.�0/, that �0 is the unique value at which the minimum

‚0 is attained and that �00.�0/ > 0.

An important consequence of standard Sturm–Liouville theory is recalled below

(c.f. Lemma 2.2 in [11]).

Lemma 2.3. The second eigenvalue of LŒ�� satisfies

inf
�2R

�2.�/ > 1:

Notice that part of this conclusion is a consequence of the analysis of Dauge and

Helffer [7], who show that the infimum of �2.�/ is attained for a unique �2 2 R.

2.3. Rough energy bound for the cylinder. Let us consider the operator

Ph;� D �.hr � ibA0/
2 in L2.�/;

with

� D Œ0; S�� .0; h1=2T /:

Functions in the domain of Ph;� satisfy Neumann condition at t D 0, periodic

conditions at s 2 f0; Sg and Dirichlet condition at t D h1=2T . We assume that the

vector field A0 is given by

A0.s; t / D .�t; 0/:
In this particular case, the operator has compact resolvent, hence the spectrum

consists of an increasing sequence of eigenvalues .ej /j �1 converging to C1. Note

that the terms of the sequence .ej / are listed with multiplicities counted. Given� 2 R,

the energy

E.�; b; S; T / D
X

j

�

hb.1C �/ � ej
�

C
(2.6)

is finite. The number of eigenvalues below .1C �/hb is also of particular interest:

N .�; b; S; T / D Cardfj W ej � hb.1C �/g: (2.7)

A function in the domain of Ph;� is periodic with respect to the first variable

(s-variable) so that it can be expanded in a Fourier series. In the proof Lemma 2.4

below, expansion in a Fourier series is used to separate variables.

Lemma 2.4. There exist positive constants T0 and �0 such that, for all S > 0, b > 0,

T �
p
bT0 and � 2 .0; �0�, we have

E.�; b; S; T / � .1C �/hb
� ST

2�
p
h

C 1
�

(2.8)

and

N .�; b; S; T / � ST

2�
p
h

C 1: (2.9)
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The lemma is proved in [10], although the estimate (2.9) is not stated explicitly.

Actually, (2.8) is proved as follows. First (2.9) is established by separation of variables

and the variational min-max principle then the energy E.�; b; S; T / is easily estimated

as N .�; b; S; T / � .1C �/bh, from which (2.8) follows.

2.4. Rough bounds for the sector. Let ˛ 2 .0; 2�/, R > 0, h > 0, b > 0 and

�R;h;˛ D f.r cos �; r sin �/ 2 R
2 W 0 < � < ˛; 0 � r < h1=2Rg: (2.10)

Consider the self-adjoint operator Ph;˛ D �.hr � ibA0/
2 inL2.�R;h;˛/. Func-

tions in the domain of Ph;˛ satisfy Dirichlet condition on the boundary r D h1=2R

and Neumann condition

� � .hr � ibA0/u D 0

on the boundary defined by � D 0 or � D ˛. Here � is the unit outward normal

vector on the boundary @�R;h;˛ and A0.x1; x2/ D .�x2; 0/ is the magnetic potential

introduced in (3.2).

The operator Ph;˛ has compact resolvent and its spectrum is discrete and consists

of isolated eigenvalues .ej / counted with multiplicities. Let � 2 R and define

Ecorn.˛; b; R; �/ D
X

j

�

hb.1C �/ � ej
�

C
; (2.11)

and

Ncorn.˛; b; R; �/ D Cardfj W ej � hb.1C �/g: (2.12)

We give rough estimates of Ecorn.˛; b; R; �/ and Ncorn.˛; b; R; �/ in the next

lemma.

Lemma 2.5. Given b > 0 and ˛ 2 Œ0; 2�/, there exist positive constants C , h0, R0

and �1 such that, for all R � R0, h 2 .0; h0�, and � 2 .�1; �1�, we have

Ncorn.˛; b; R; �/ � C.R2 C 1/; (2.13)

and

Ecorn.˛; b; R; �/ � C.1C �/hb.R2 C 1/: (2.14)

Proof. Observe that the upper bound (2.14) on the energy Ecorn.˛; b; R; �/ follows

immediately from the definition of Ecorn.˛; b; R; �/ and the upper bound in (2.13).

Therefore, we establish the bound in (2.13). The method that will be used is introduced

in [5] and based on a decomposition of the operator via a partition of unity and on

the min-max variational principle.

To simplify the notation, we denote by� andP the set�R;h;˛ introduced in (2.10)

and the operator Ph;˛ respectively.
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Let L0 be a positive real number whose choice will be specified later. Suppose

R > L0. We cover � by two sets

U1.h/ D fx 2 � W jxj < L0h
1=2g;

and

U2.h/ D
n

x 2 � W L0h
1=2

2
< jxj < Rh1=2

o

:

Consider a partition of unity of �

2
X

j D1

�2
j .x/ D 1 and

2
X

j D1

jr�j .x/j2 � C1

L2
0h

in �;

where C1 > 0 is a universal constant and supp�j � Uj .h/.

Let u 2 H 1.�/. The following decomposition formula holds:

Z

�

j.hr � ibA0/uj2dx D
2

X

j D1

Z

�

.j.hr � ibA0/�juj2 � h2jr�j j2juj2/dx:

This decomposition yields the inequality stated below by using the upper bound on

jr�j j:
Z

�

j.hr � ibA0/uj2dx �
2

X

j D1

Z

�

.j.hr � ibA0/�juj2 � C1L
�2
0 hjuj2/dx:

By using the method in [5] and the variational min-max principle, we get that

Ncorn.˛; b; R; �/ � N.ƒh; PU1.h//CN.ƒh; PU2.h//; (2.15)

whereƒ D .1C�/bCC1L
�2
0 ,PU1.h/ D �.hr�ibA0/

2 is the operator inL2.U1.h//

with Dirichlet condition on r D L0h
1=2 and Neumann condition on the other parts of

the boundary of U1.h/, and PU2.h/ D �.hr � ibA0/
2 is the operator in L2.U2.h//

with Neumann boundary condition on � D 0 and � D ˛ and Dirichlet condition on

the other parts of the boundary defined by � D ˛=4, r D L0h
1=2=2 and r D Rh1=2.

Notice that we use polar coordinates .r; �/ in the definition of the domains.

We will need a technical assumption on the number �. We try to explain the need

of this technical assumption. While estimating the terms in the right side of (2.15),

we will define the number

Q� D �C 2b�1C1L
�2
0 C C2b

�1h:

Recall the number of eigenvalues N . Q�; b; Rh1=2; R/ as introduced in (2.7). We shall

see later that we need to estimate the number N . Q�; b; Rh1=2; R/. An estimate of this
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number is given in Lemma 2.4 provided that Q� is smaller than a certain constant �0

(this constant is introduced in Lemma 2.4). Suppose �1 2 .0; �0/. If h and L�1
0 are

selected sufficiently small compared with �1, it is possible to have Q� < �0 whenever

� 2 Œ0; �1� (note that such an upper bound on Q� will fail if � is supposed to vary in

the extended interval Œ0; �0�).

Suppose in the sequel that � 2 Œ0; �1�. We will prove that there exists a positive

constant C independently of � 2 Œ0; �1� and such that

N.ƒh; PU1.h// � C (2.16)

and

N.ƒh; PU2.h// � C.R2 C 1/: (2.17)

In light of (2.15), Theorem 2.5 will be proved once the statements in (2.16)

and (2.17) is shown to be true.

Proof of (2.16). The re-scaling y D h�1=2x gives immediately

N.ƒh; PU1.h// D N.ƒ; PU1.1//:

Here

PU1.1/ D �.r � ibA0/
2 in L2.U1.1//:

Since the operator PU1.1/ has compact resolvent and the number ƒ is bounded

independently of h 2 .0; 1�, it follows that N.ƒ; PU1.1// is bounded as h varies in

.0; 1� too. This establishes the upper bound in (2.16).

Proof of (2.17). The proof requires introducing an additional parameter " as follows:

0 < " < min
�˛

8
;
�

4
� ˛

8

�

:

The need for this parameter is rather technical. Let us explain the idea that will be

used. The domainU2.h/will be covered by four sectorial domains with openings not

exceeding ˛=4C2" and overlapping in a region with area proportional to ". With the

choice of ", we see that the openings of the sectorial domains do not exceed�=2 and as

a consequence, each of these domains is included inside a rectangle. In a rectangular

domain, it is possible to estimate the number of eigenvalues of Schrödinger operators

as in Lemma 2.4. Details will follow below.

Recall the definition of the set

U2.h/ D
n

x 2 � W L0h
1=2

2
< jxj < Rh1=2

o

:
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We cover U2.h/ by four sets

V1.h/ D
n

.r cos �; r sin �/ 2 U2.h/ W 0 � � <
˛

4

o

;

V2.h/ D
n

.r cos �; r sin �/ 2 U2.h/ W
˛

4
� " < � < ˛

2
C "

o

;

V3.h/ D
n

.r cos �; r sin �/ 2 U2.h/ W
˛

2
� " < � < 3˛

4
C "

o

and

V4.h/ D
n

.r cos �; r sin �/ 2 U2.h/ W
3˛

4
< � � ˛

o

:

Define four operators PV1.h/, PV2.h/, PV3.h/, and PV4.h/ in L2.V1.h//, L
2.V2.h//,

L2.V3.h//, and L2.V4.h// respectively. The four operators are self-adjoint realiza-

tions of the differential operator �.hr � ibA0/
2. Functions in the domain of PV1.h/

satisfy Neumann condition on � D 0 and Dirichlet condition on the other parts of

the boundary defined by r D L0h
1=2=2 and r D L0h

1=2. Similarly, functions in

the domain of PV4.h/ satisfy Neumann condition on � D ˛ and Dirichlet condition

on the other parts of the boundary. Functions in the domains of PV2.h/ and PV3.h/

satisfy Dirichelt boundary condition.

Notice that the operators PV1.h/ and PV4.h/ are unitary equivalent and hence have

same spectra. Also, the operators PV2.h/ and PV3.h/ are unitary equivalent and have

same spectra.

We apply an argument similar to the one we did to obtain (2.15). By introducing

a partition of unity supported in V1.h/, V2.h/, V3.h/ and, V4.h/, using the IMS

decomposition formula and the variational min-max principle, we get a constant

C2 > 0 that is allowed to depend on " but not on h and such that

N.ƒh; PU2.h// �
4

X

j D1

N.zƒh; PVj .h//

D 2

2
X

j D1

N.zƒh; PVj .h//;

(2.18)

with zƒ D ƒC C1L
�2
0 C C2h.

Recall the number N .�; b; S; T / introduced in (2.7). This number counts the

eigenvalues of the operator Ph;US;T
in the cylinder US;T D Œ0; S�� .0; h1=2T /.

Since the angle ˛=4 is acute and R > L0, we see that

V1.h/ � Œ0; Rh1=2� � .0; Rh1=2/:

A function u.x1; x2/ in the form domain of PV1.h/ satisfies Dirichlet boundary con-

dition on

r D L0h
1=2=2; r D L0h

1=2; and � D ˛=4:
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As a consequence, such a function u.x1; x2/ in the form domain of PV1.h/ can be

extended by zero to a function Qu.x1; x2/ defined in the cylinder

U
defD Œ0; Rh1=2� � .0; Rh1=2/:

The extended function Qu.x1; x2/ satisfies Dirichlet condition on x1 D 0, x1 D Rh1=2

and x2 D Rh1=2. In particular Qu.x1; x2/ is periodic with respect to x1 and is inside

the form domain of Ph;U . In this way, we see that the form domain of the operator

PV1.h/ is embedded in the form domain of the operator Ph;U .

Thus, by the variational min-max principle, it is easy to see that

N.zƒh; PV1.h// � N . Q�; b; Rh1=2; R/;

with Q� D �C 2b�1C1L
�2
0 CC2b

�1h (remember that zƒ D ƒCC1L
�2
0 CC2h, and

N . Q�; b; Rh1=2; R/ counts the eigenvalues � .1C Q�/bh).

Similarly, V2.h/ is inside a rectangular domain D. Rotating the rectangular

domain D transforms it to the domain U introduced above. Notice that the action

of a rotation is a unitary transformation on the operator PV2.h/ and does not change

the spectrum. In this way, functions in the form domain of PV2.h/ are embedded in

the form domain of Ph;U via unitary transformations (rotation of the variable and

extension by 0). The min-max principle will also give us that

N.zƒh; PV2.h// � N . Q�; b; Rh1=2; R/:

As a consequence, we infer from (2.18)

N.ƒh; PU2.h// � 4N . Q�; b; Rh1=2; R/: (2.19)

Select h0 sufficiently small and L0 sufficiently large such that

2b�1C1L
�2
0 C C2b

�1h0 < �0 � �1:

In this way, we get for all � 2 .0; �1/ and h 2 .0; h0�

Q� D �C 2b�1C1L
�2
0 C C2b

�1h0 2 .0; �0�:

Consequently, it follows from Lemma 2.4 that N . Q�; b; Rh1=2; R/ is bounded by a

constant times .R2 C 1/, and thereby get the upper bound in (2.17).

3. Asymptotic number of low-lying eigenvalues near corners

3.1. The operator in an infinite sector. Let ˛ 2 .0; 2�/ and

�˛ D f.r cos �; r sin �/ 2 R
2 W r � 0; 0 < � < ˛g: (3.1)
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Define the magnetic potential

A0.x1; x2/ D .�x2; 0/; .x1; x2/ 2 R
2; (3.2)

whose curl is constant and equal to 1.

Consider the self-adjoint operatorP�˛
D �.r �iA0/

2 inL2.�˛/whose domain

is

D.P�˛
/ D fu 2 L2.�˛/ W .r � iA0/u 2 L2.�/; P�˛

u 2 L2.�˛/;

� � .r � iA0/u D 0 on @�˛ n f0gg;

where � is the unit outward normal vector of @�˛.

It is proved in [2] that the bottom of the essential spectrum of P�˛
is a universal

constant ‚0 2 .1
2
; 1/. Furthermore, when ˛ 2 .0; �

2
�, the operator P�˛

has discrete

spectrum below ‚0.

Many questions connected with the spectrum of the operator P�˛
are left open.

Among these questions are the following onces.

� Is the spectrum of P�˛
below ‚0 finite?

� When ˛ D � , the operator P��
is the half-plane and its spectrum is purely

essential and consists of the interval Œ‚0;1/. Is Œ‚0;1/ the essential spectrum

of P�˛
for any ˛?

� It is conjectured in [2] that the ground state energy (bottom of the spectrum) of

P�˛
is constant and equal to ‚0 when ˛ 2 Œ�; 2�/. This conjecture has not

been proved or disproved yet (see [2]).

3.2. Assumptions on the domain. We describe precisely the regularity properties

of the domain �. The assumptions will be the same as those made in [2] and [3].

In this and the subsequent sections, � is an open and connected set in R
2 whose

boundary is compact and consists of a curvilinear polygon of classC 3. By saying that

the boundary � of � is a curvilinear polygon (of class C 3) we mean the following

(see [12], p. 34–42). For every x 2 � , there exists a neighborhood V of x in R
2 and

a mapping  from V to R
2 such that

(1)  is injective,

(2)  together with  �1 (defined on  .V /) belongs to the class C 3,

(3) �\ V is either fy 2 � W  2.y/ < 0g, fy 2 � W  1.y/ < 0 and  2.y/ < 0g, or

fy 2 � W  1.y/ < 0 or  2.y/ < 0g, where  j denotes the components of  .

The boundary� of� is a piecewise smooth curve. We work under the assumption

that the boundary� consists of a finite number of smooth curves x�k for k D 1; : : : ; m.

The family .�k/ is the minimal family of curves making up the boundary � . If �

consists of more than one smooth curve (m � 2), then we suppose that the curve
x�kC1 follows x�k according to a positive orientation, on each connected component
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of � . Let sk denotes the vertex which is the end point of x�k . In a neighborhood of

@�, define a vector field �k . For each k, the vector �k is the unit normal a.e. on �k .

Let† be the set of vertices the domain� has. We suppose that† 6D ;. Under this

assumption m � 2 and † consists exactly of m vertices. This assumption certifies

that the domain � does not have a smooth boundary but only a piecewise smooth

boundary. When † D ;, then m D 1, the boundary of � is smooth and the operator

in L2.�/ is the one studied in [11] and [10].

At each vertex sk 2 †, let ˛sk
denotes the angle between x�k and x�kC1 measured

towards the interior.

3.3. Main result. For each angle ˛, recall the sectorial domain �˛ introduced

in (3.1). Let Pb;�˛
D �.r � ibA0/

2 be the operator in L2.�˛/ introduced in

Section 3.1 (with Neumann boundary condition on the smooth part of the boundary

of the sector �˛). The number

n.˛; �I b/ D tr.1.�1;�/.Pb;�˛
// D

X

ƒ<�

dim.Ker.Pb;�˛
�ƒId// (3.3)

is finite for all ˛ and � < ‚0.

If b D 1, we write

n.˛; �/ D n.˛; �I b D 1/: (3.4)

By a scaling argument, it is easy to see that

n.˛; �I b/ D n.˛; �=b/: (3.5)

Let the domain� be as described in Section 3.2. Define the magnetic Schrödinger

operator

Ph;� D �.hr � iA/2; in L2.�/; (3.6)

where A 2 C 2.�I R
2/ is the magnetic potential, h > 0 is the semi-classical parameter

and B D curl A is the magnetic field. The domain of the operator Ph;� is

D.Ph;�/ D fu 2 L2.�/ W .hr � iA/k 2 L2.�/; k D 1; 2;

�j � .hr � iA/u D 0 on �k ; k D 1; : : : ; mg:

Define two constants

b D inf
x2 x�

B.x/ and b0 D inf
x2@�

B.x/: (3.7)

The main result of this section is the following theorem.

Theorem 3.1. Let the constant ‚0 be as defined in (2.5), � 2 .�1;min.‚0b
0; b//

and N.�h/ the number of eigenvalues of the operator Ph;� below �h counting mul-

tiplicities. Suppose that the magnetic field B.x/ is selected such that b > 0. There
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exists a positive number h0 such that, for all h 2 .0; h0/, the following equality holds,

N.�h/ D
m

X

kD1

n

�

˛sk
;

�

B.sk/

�

: (3.8)

The number h0 depends only on the angles ˛sk
and the domain �.

Theorem 3.1 gives the exact number of low-lying eigenvalues ofPh;� correspond-

ing to corners in the domain �. When � > ‚0, we will see in Section 4 that corners

no more affect the leading order term of N.�h/.

3.4. Proof of Theorem 3.1.

Upper bound. Let� be a positive constant satisfying 0 < � < 1. We start by choosing

a partition of unity �k;h introduced in Proposition 11.2 in [2] satisfying

X

k

j�k;hj2 D 1;
X

k

jr�k;hj2 � Ch�2� in R
2

and

supp�k;h � B.zj ; ckh
�/;

with the choice of indices such that

� zk D sk and ck D 1 for all k D 1; 2; : : : ; m;

� if k 62 f1; : : : ; mg and zk 62 @�, then

B.zk; ckh
�/ \ @� D ;

and

ck D 1

2
min.j tan ˛sk

j; 1/I

� if k 62 f1; : : : ; mg and zk 2 @�, then

B.zk; ckh
�/ \† D ;;

B.zk; ckh
�/ \ @� is connected;

and

ck D 1

2
min.j tan ˛sk

j; 1/:
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Recall that † is the set of vertices of the domain �. If u is a function in the form

domain of Ph;�, define

q.u/ D
Z

�

j.hr � iA/uj2dx:

The following decomposition formula holds true for every function u in the form

domain of the operator Ph;�:

q.u/ D
m

X

kD1

q.�k;hu/C
X

k>m
zk2@�

q.�k;hu/

C
X

k>m
zk 62@�

q.�k;hu/ � h2
X

k

Z

�

jr�k;hj2juj2dx:

Using the upper bound on jr�k;hj2, we get the lower bound

q.u/ �
m

X

kD1

q.�k;hu/C
X

k>m
zk2@�

q.�k;hu/

C
X

k>m
zk 62@�

q.�k;hu/ � Ch2�2�

Z

�

juj2dx:
(3.9)

Let k 2 f1; 2; : : : ; mg. It is proved in [2], p. 252, that by performing a change

of variable y D  k.x/ and a gauge transformation (defined by a function 'k), the

following lower bound holds true:

q.�k;hu/ �
Z

�˛sk

..1� Ch� � Ch2� /j.hr � iBkA0/vkj2 � Ch4��2� jvkj2/dy:

(3.10)

Here � 2 .0; 1/ is any constant, Bk D B.zk/, A0 is the magnetic potential in (3.2)

and

vk.y/ D e�i'k.y/.�k;hu/ B  �1
k .y/:

The optimal choice of � and � is � D 3=8 and � D 1=8. This produces the lower

bound

q.�k;hu/ �
Z

�˛sk

..1� Ch1=4/j.hr � iBkA0/vkj2 � Ch5=4jvkj2/dy: (3.11)

Similarly, when k 62 f1; 2; : : : ; mg and zk 2 @�, by applying a change of variable

and a gauge transformation, we obtain the lower bound (see [11])

q.�k;hu/ �
Z

Uh

..1� Ch1=4/j.hr � iBkA0/vkj2 � Ch5=4jvk j2/dy; (3.12)
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where Uh D fy D .y1; y2/ 2 R
2 W y1 2 .0; h3=8/ and y2 2 .0;1/g. By inserting

the lower bounds in (3.11) and (3.12) into (3.9) we obtain

q.u/ �
m

X

kD1

Z

�˛sk

..1 � Ch1=4/j.hr � iBkA0/vkj2 � Ch5=4jvkj2/dy

C
X

k>m
zk2@�

Z

Uh

..1� Ch1=4/j.hr � iBkA0/vkj2 � Ch5=4jvkj2/dy

C
X

k>m
zk 62@�

q.�k;hu/ � Ch5=4

Z

�

juj2dx:

(3.13)

By the variational min-max principle (and the remark in (3.5)), we deduce the fol-

lowing upper bound on the number N.�h/:

N.�h/ �
m

X

kD1

n

�

˛sk
;

�C Ch1=4

.1� Ch1=4/B.sk/

�

C
X

k>m
zk2@�

N
�

PBk ;Uh
;
�hC Ch5=4

1 � Ch1=4

�

C
X

k>m
zk 62@�

N.PD
h;�; �hC Ch5=4/:

HerePBk ;Uh
D �.hr � iBkA0/

2 is the operator inL2.Uh/with Neumann boundary

condition at y2 D 0 and Dirichlet condition elsewhere, and PD
h;�

D �.hr � iA/2 is

the operator in L2.�/ with Dirichlet boundary condition. The spectrum of PBk ;Uh

starts at‚0Bkh and that of PD
h;�

starts above bh (cf. Section 2 in [15] or Lemma 3.2

and eq. (1.4) in [11]). Thus, if � < min.‚0b
0; b/ and h is selected sufficiently small,

we get

N
�

PBk ;Uh
;
�hC Ch5=4

1 � Ch1=4

�

D N.PD
h;�; �hC Ch5=4/ D 0:

Since the spectrum of the operator P�˛sk
below‚0 consists of isolated eigenvalues,

we get for h sufficiently small that

n

�

˛sk
;

�C Ch1=4

.1� Ch1=4/B.sk/

�

D n.˛sk
;

�

B.sk/
/:

This finishes the proof of the upper bound.
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Lower bound. The proof of the lower bound is similar to the one in [11] and uses a

bracketing technique. Let zPh;� be the self adjoint realization of the restriction of the

operator Ph;� on functions vanishing outside the set

N
[

kD1

B.sk ; h
3=8/:

By the variational min-max principle, the eigenvalues of zPh;� are larger than those

of Ph;�. Thus

N.�h/ � N.�h; zPh;�/:

We will show next that there exist constants C > 0 and h0 > 0 such that, for all

h 2 .0; h0�, we have

N.�h; zPh;�/ �
N

X

kD1

n

�

˛sk
;

� � Ch1=4

.1C Ch1=4/B.sk/

�

: (3.14)

If h is made sufficiently small, then

n

�

˛sk
;

� � Ch1=4

.1C Ch1=4/B.sk/

�

D n

�

˛sk
;

�

B.sk/

�

;

and we get the lower bound we wish to prove.

Derivation of (3.14) is easy. Let Qq be the quadratic form associated with zPh;�.

Select an arbitrary function u in the form domain of zPh;�. A matching asymptotic

upper bound of (3.11) is proved in [2], p. 252:

Z

B.sk ;h3=8/

j.hr � iA/uj2dx

�
Z

�˛sk

..1 � Ch1=4/j.hr � iBkA0/vj j2 � Ch5=4jvkj2/dy;

where Bk D B.sk/ and vk is obtained from u by the change of variables y D  k.x/

times a gauge transformation. Summing over k, we get

Qq.u/ �
X

k

Z

�˛sk

..1� Ch1=4/j.hr � iBkA0/vkj2 � Ch5=4jvk j2/dy:

By the variational min-max principle, we deduce that the eigenvalues of the operator
zPh;� are smaller than those of the direct sum of the operators P�˛sk

;Bk
, thereby

proving (3.14).
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4. Energy and number of eigenvalues in piecewise smooth domains

4.1. Main results. We will state other results concerning the number and sum of

eigenvalues of the operator Ph;� introduced in (3.6). The assumptions on the domain

� is as described in Section 3.2. The notation and assumption on the magnetic field

B D curl A is as in (3.7) and Section 3.4.

Let .ej / be the increasing sequence of eigenvalues of the operator Ph;� in the

interval .�1; bh�, counting multiplicities. If � 2 .�1; b�, define

N.�h/ D tr.1.�1;�h/.Ph;�// D Cardfej W ej � �hg (4.1)

and

E.�h/ D tr.1.�1;�h/.Ph;� � �hId// D
X

ej ��h

.ej � �h/: (4.2)

The main result we prove in this section is Theorem 4.1. Its statement requires the

notation Œx�C D max.x; 0/ for any real number x, the eigenvalue �1.�/ introduced

in (2.4), and the arc-length measure ds.x/ along the boundary of �.

Theorem 4.1. For any real number � � b and as h ! 0, it holds true that

E.�h/ D �h
1=2

2�

Z

@�

Z 1

�1

B.x/3=2
h �

B.x/
� �1.�/

i

C
d�ds.x/C o.h1=2/: (4.3)

Furthermore, if � < b, then

N.�h/ D 1

2�h1=2

Z

f.x;�/2@��R W B.x/�1.�/��

B.x/1=2d�ds.x/C o.h�1=2/: (4.4)

While proving Theorem 4.1, we only give the new ingredients and constructions

required to adapt the proof given in [10]. We will refer to [10] for the detailed

calculations.

4.2. Proof of Theorem 4.1. Notice that (4.4) is a consequence of (4.3). Actually,

the term on the right side of (4.4) is the derivative with respect to �h of that on the

right side of (4.3). On the other hand, using the variational principle of Lemma 2.2,

the number N.�h/ can be seen as the derivative of the energy E.�h/ with respect to

�h.

Therefore, to prove Theorem 4.1, it is sufficient to establish the asymptotic formula

in (4.3).

Using a magnetic Lieb-Thirring inequality and a decomposition of the operator

by a partition of unity, it is possible to prove that the energy E.�h/ is finite for all

� � b. Details regarding this proof are given in Section 5.1 in [10], pp. 242–243.
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We start by proving the asymptotic lower bound

E.�h/ � �h
1=2

2�

Z

@�

Z 1

�1

B.x/3=2
h �

B.x/
� �1.�/

i

C
d�ds.x/ C o.h1=2/: (4.5)

LetH D Ph;� ��hId and notice that the energyE.�h/ can be expressed in the more

useful form

E.�h/ D tr.H1.�1;0/.H//:

Let ff1; f2; : : : ; fN g be any L2 orthonormal set in D.H/. We will give a uniform

lower bound of
N

X

j D1

hfj ; Hfj i:

Using Lemma 2.2, this will imply a lower bound of tr.H1.�1;0/.H//.

Consider a partition of unity of R

 2
1 C  2

2 D 1; supp 1 ��� 1; 1Œ; supp 2 � Œ
1

2
;1Œ; (4.6)

such that

jr 1j2 C jr 2j2 � C (4.7)

and C > 0 is a universal constant.

Let

�.h/ D 1

2
min.j tan ˛j; 1/h3=8; (4.8)

where ˛ D minf˛sk
W k D 1; 2; : : : ; mg.

Using the partition of unity in (4.6), we put

t .x/ D dist.x; @�/;  1;h.x/ D  1

� t .x/

�.h/

�

;  2;h.x/ D  2

� t .x/

�.h/

�

; (4.9)

for x 2 x�. We introduce the potential

Vh D h2.jr 1;hj2 C jr 2;hj2/: (4.10)

It is possible to prove that (see the proof of eq. (5.10) in [10], p. 243)

N
X

j D1

hfj ; Hfj i �
N

X

j D1

hfj ;  1;h.H � Vh/ 1;hfj i � C h

�.h/

�

1C h

�.h/2

�

: (4.11)

With our choice of �.h/, the remainder terms in (4.11) are of the order of h5=8 D
o.h1=2/. Thus, we have

N
X

j D1

hfj ; Hfj i �
N

X

j D1

hfj ;  1;h.H � Vh/ 1;hfj i C o.h1=2/: (4.12)
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Next, we estimate from below the term on the right side of (4.12). Recall the vertices

sk , k D 1; 2; : : : ; m, of the domain �. Recall also that the boundary of the domain

� consists of smooth curves .�k/. For each k, define

�k.h/ D
n

x 2 x� W dist.x; �k/ � �.h/ and dist.x; sk/ � 1

2
h3=8

o

; (4.13)

where �.h/ is defined in (4.8). Consider a partition of unity of R
2

m
X

kD1

g2
k C

m
X

kD1

h2
k D 1;

m
X

kD1

�

jrgk j2 C jrhkj2
�

� C

h3=4
;

where suppgk � B.sk ; h
3=8/, supphk � �k.h/ for all k, and C is a universal

constant.

Then, we have the decomposition formula

N
X

j D1

hfj ;  1;h.H � Vh/ 1;hfj i

D
N

X

j D1

m
X

kD1

hfj ; gk 1;h.H � V1;h/gk 1;hfj i

C
N

X

j D1

m
X

kD1

hfj ; hk 1;h.H � V1;h/hk 1;hfj i;

(4.14)

where

V1;h D Vh C h2

m
X

kD1

jrgk j2 C h2

m
X

kD1

jrhk j2;

and

jV1;hj � Ch5=4:

We will show that the first term on the right side of (4.14) is of order o.h1=2/. Recall

the definition of the energy Ecorn.˛; b; R; �/ in (2.11). We use (3.12) withu D  1;hfj

and �k;h D gk to bound the term hfj ; gk 1;h.H � V1;h/gk 1;hfj i from below by

a quadratic form defined over the sector �˛sj
. Then we use the variational principle

of Lemma 2.2 and the lower bound of V1;h to get

N
X

j D1

hfj ; gk 1;h.H � V1;h/gk 1;hfj i � �.1� Ch1=4/Ecorn.˛sk
;Bk; h

�1=8; Q�/:

Here Q� D �b�1 � 1 C Ch1=4 � Ch1=4. The number Q� appears naturally after

replacing �V1;h by the lower bound �Ch5=4 (see [10], pp. 244–245, for more details).
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Clearly, Q� can be made smaller than an arbitrary positive number. Thus, we can

apply Lemma 2.5 and use (2.14). In this way, we get the following lower bound that

holds uniformly with respect to k

N
X

j D1

hfj ; gk 1;h.H � V1;h/gk 1;hfj i � �Ch3=4 D o.h1=2/: (4.15)

The second term on the right side of (4.14) is bounded as in the proof of eq. (5.26)

in [10], pp. 244–248. The following lower bound holds uniformly in k, N and the

orthonormal family ffj g:

N
X

j D1

hfj ; hk 1;h.H � V1;h/hk 1;hfj i

� �h
1=2

2�

Z

�k

Z

R

B.x/3=2
h

�1.�/ � �

B.x/

i

�
d�dx � Ch5=8:

(4.16)

Substitution of (4.15) and (4.16) into (4.14) establishes the lower bound (4.5).

Upper bound. The upper bound will be obtained by constructing a specific density

matrix 
 and computing the energy of tr..Ph;� � �hId/
/. The calculations follow

closely those in Section 5.3 in [10], p. 248.

Recall the sets �k.h/ introduced in (4.13). Let �.h/ be as defined in (4.8). For

each k, we cover �k.h/ by disjoint squares

Kj;k D fx 2 R
2 W jx � zj;kj < �g; 1 � j � Nk ;

where the points .zj;k/ are on �k and equally spaced. In each Kj;k , it is possible

to apply a transformation ĵ;k.x/ D .s; t / that straightens @� (t D 0 defines the

boundary of � and s measures the arc-length along @�).

Recall the eigenvalues .�p.�// of the harmonic oscillator in (2.3). We introduce

an orthonormal basis .up/ of L2.RC/:

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

.�@2
t C .t � �/2/up .t I �/ D �p.�/up .t I �/ ; t > 0;

u0
p .0I �/ D 0;

Z 1

0

jup .t I �/ j2dt D 1:

(4.17)

Let � 2 C1.R2/ be positive, smooth, have values in Œ0; 1�, supported in B.0; 2/

and equal to 1 on B.0; 1/. Define �j;k.x/ to be

�j;k.x/
defD �

�x � zj;k

�.h/

�

:
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We denote by Bj;k D B.zj;k/. For each .j; k/, there exists a function 'j;k such that

A � r'j;k D .�Bj;kx2; 0/C O.jx � zj;k j/ in Kj;k:

Define

Qfj;p;k..s; t /I h; ; �/
defD

�Bj;k

h

�1=4

e�i�s
p

Bj;k=hup

�

r

Bj;k

h
t I �

�

: (4.18)

We get – by the coordinate transformation ĵ;k – the function in �

fj;p;k.xI h; �/ D
� 1

2�
p

h=Bj;k

�1=2 Qfj;p;k. ĵ;k.x/I h; �/�j;k.x/ 1;h.x/: (4.19)

Next, let K > 0 and define the function

fp.xI �/

D
m

X

kD1

Nk
X

j D1

Mp.h; �; j; kIK/ei'j;k.x/=h�j;k.x/ 1;h.x/ Qfj;p;k. ĵ;k.x/I h; �/;

where Mp.h; �; j; kIK/ D MK.h; �; j; k/1fpD1g and MK.h; �; j; k/ is the charac-

teristic function of the set

n

.�; j; k/ W �

Bj;k

� �1.�/ � 0; j�j � K
o

:

Let…bnd
p .h; �/ be the operator with integral kernel in L2.�/ whose integral kernel is

defined by

…bnd
p .h; �/.x; x0/ D fp.xI �/fp.x0I �/: (4.20)

Define the density matrix


 D
1

X

pD1

…bnd
p .h; �/: (4.21)

Clearly 0 � 
 as an operator on L2.�/. Furthermore, there exists a constant C > 0

such that


 � .1C C�.h//; (4.22)

in the quadratic form sense. Details concerning the derivation of (4.22) are give in

the proof of eq. (5.34) in [10]. Moreover (see eq. (5.37) in [10]) we have

trŒ.Ph;� � �h/
� � �h
1=2

2�

Z K

�K

Z

@�

B.x/3=2Œ
�

B.x/
� �1.�/�Cds.x/d� C CKh3=4:

(4.23)



Spectral asymptotics for magnetic Schrödinger operators in domains with corners 573

Let us mention that, while estimating the term on the left side of (4.23), the discrete

sum over j and k becomes a Riemann sum as h ! 0, thereby resulting in an integral

on the right side of (4.23). SinceK can be chosen arbitrarily large, eq. (4.23) implies

the asymptotic upper bound

trŒ.Ph;� � �h/
� � �h
1=2

2�

Z 1

�1

Z

@�

B.x/3=2
h �

B.x/
��1.�/

i

C
ds.x/d� C o.h1=2/:
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