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Abstract. In this paper we develop the scattering theory for a pair of self-adjoint operators
A0 D A1 ˚ � � � ˚AN and A D A1 C � � � C AN under the assumption that all pair products
AjAk with j ¤ k satisfy certain regularity conditions. Roughly speaking, these conditions
mean that the products AjAk , j ¤ k, can be represented as integral operators with smooth
kernels in the spectral representation of the operatorA0. We show that the absolutely continuous
parts of the operators A0 and A are unitarily equivalent. This yields a smooth version of
Ismagilov’s theorem known earlier in the trace class framework. We also prove that the singular
continuous spectrum of the operator A is empty and that its eigenvalues may accumulate only
to “thresholds” of the absolutely continuous spectra of the operators Aj . Our approach relies
on a system of resolvent equations which can be considered as a generalization of Faddeev’s
equations for three particle quantum systems.
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1. Introduction

1.1. Trace class and smooth methods. The methods used in scattering theory are
naturally divided into two groups: trace class and smooth. The fundamental result
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of the trace class method is the Kato–Rosenblum theorem which establishes the
existence of wave operators for a pair of self-adjoint operators A0 and A under the
assumption that the perturbation A�A0 belongs to the trace class S1. In particular,
the absolutely continuous (a.c.) parts of A0 and A turn out to be unitarily equivalent
to each other.

D. Pearson extended the Kato–Rosenblum theorem to operators A0 and A acting
in different Hilbert spaces. More precisely, assuming that A0 acts in H0, A acts in
H and J W H0 ! H is a bounded operator (“identification”) such that the effective
perturbation AJ � JA0 is trace class, Pearson proved that the wave operators (see
the defining equation (2.1) below) for the triple A0; A; J exist. Earlier, sufficient
conditions which ensure both1 the existence and isometricity of wave operators in the
two space setting were found by A. L. Belopol’skiı̆ and M. Sh. Birman.

The smooth method in scattering theory (see, e.g. the original papers [3] and [7]
or the book [11]) is heavily based on the explicit spectral analysis of the unperturbed
operator A0. This approach requires that the perturbation, which we will denote by
A1, be sufficiently “regular” (smooth) in the spectral representation of the operator
A0. This allows one to deduce information about the operatorA D A0 CA1 from an
equation relating the resolvents of the operators A0 andA. Besides the existence and
completeness of the wave operators for the pairA0,A, the smooth method also yields
nontrivial information about the singular component of the operatorA. Normally, one
proves that the singular continuous spectrum of A is empty and that the eigenvalues
of A have finite multiplicities and can accumulate only to some exceptional spectral
points (thresholds) of the operator A0.

The standard scheme of smooth theory works for H0 D H and J D I . In
the present paper we extend it (under rather special assumptions) to the two spaces
framework.

1.2. Ismagilov’s theorem and its smooth version. In the paper [6], R. S. Ismagilov
found an important generalization of the Kato–Rosenblum theorem. He considered
the operator

A D A1 C A1 C � � � C AN (1.1)

where A1 and Aj are bounded self-adjoint operators in a Hilbert space H and
A1 2 S1,AjAk 2 S1 for all j ¤ k. The result of [6] can be formulated as follows.
Consider the operator

A0 D 0˚ A1 ˚ � � � ˚ AN (1.2)

in the Hilbert space

H0 D H N C1 defD H ˚ � � � ˚ H„ ƒ‚ …
N C1

i.e. H0 is the direct sum ofN C1 copies of H . Then the a.c. parts of the operatorsA0

andA are unitarily equivalent to each other. The scattering theory for this pair A0, A

1Under Pearson’s assumptions the wave operators are not necessarily isometric.
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was constructed later in the papers [10] by A. V. Suslov and [5] by J. S. Howland and
T. Kato where it was shown that the wave operators forA0,A exist and are complete.
Strictly speaking, in [6], [10], and [5] the case A1 D 0, N D 2 was considered, but
the general case reduces easily to this one.

Our goal is to develop the scattering theory for the operators A0 and A given
by (1.1) and (1.2) under the assumption that A1 and all pair products AjAk with
j ¤ k satisfy conditions of “smooth” type. In particular, we show that the a.c. parts
of the operators A0 and A are unitarily equivalent. This yields a smooth version of
Ismagilov’s theorem. We also prove that the singular continuous spectrum of the
operator A is empty and that its eigenvalues may accumulate only to the thresholds
of the operators Aj .

The unitary equivalence of the a.c. parts of A0, A, of course, means that the a.c.
spectrum of A consists of the union of the a.c. spectra of A1,…, AN , and the a.c.
subspace ofA has the structure of the orthogonal sum of the subspaces corresponding
to the operators Aj . In the terminology of the multiparticle scattering, each operator
Aj contributes its own channel to the a.c. subspace of A. Because of this, we refer to
the scattering problem given by (1.1) and (1.2) forN � 2 as a multichannel problem,
and call the case N D 1 the single channel case.

In [9] we apply our results to the spectral analysis of the operators of the type
�.H/� �.H0/, whereH0,H is a pair of operators for which the assumptions of the
smooth scattering theory are satisfied, and � is a piecewise continuous function. We
are also planning to apply our results to the spectral theory of Hankel operators with
piecewise continuous symbols � . In the trace class framework, the latter problem
was considered by J. S. Howland in [4]. In both cases, we represent the piecewise
continuous function � as a sum

� D �1 C �1 C � � � C �N ; (1.3)

where �j are certain “standard” functions, each of which has only one discontinuity,
and �1 is a smooth function. Each �j gives rise to a “simple” explicitly diagonalizable
self-adjoint operator Aj and thus (1.3) produces the decomposition (1.1).

1.3. A two spaces setup. Actually, we consider the problem in a more general
framework where self-adjoint operators A0 and A act in different Hilbert spaces H0

and H , respectively, and a bounded operator (“identification”) J W H0 ! H is given.
We do not assume J to be either isometric or invertible. For simplicity, we suppose
that the operators A0 and A are bounded. Under some assumptions, we construct
a variant of smooth scattering theory for the triple A0, A, J . This generalizes the
scheme well known for the case H D H0, J D I . We work in the framework of a
local version of scattering theory, that is, all our smoothness assumptions are made for
the spectral parameter � confined to an open bounded interval� � R. It is important
that 0 … �.

Our assumptions on the “abstract” tripleA0 ,A, J are rather special and are tailored
in such a way that they are satisfied by the “concrete” operators (1.1) and (1.2) and
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the identification

J W H0 �! H ;

f D .f1; f1; f2; : : : ; fN /
> 7�! J f D f1 C f1 C f2 C � � � C fN :

(1.4)

Our main assumption on the “abstract” tripleA0 ,A, J is that the effective perturbation
AJ � JA0 can be factorized as

AJ � JA0 D JT (1.5)

where T is a bounded operator in H0 and the operator T 2 is compact. Moreover, the
operator TA0 (but not T itself) possesses some smoothness properties with respect
to A0.

For the triple (1.1), (1.2), and (1.4), it can be easily checked by a direct inspection
that factorization (1.5) holds with the operator T given in the space H0 D H N C1 by
the matrix

T D

0
BBBBBB@

A1 A1 A1 : : : A1
A1 0 A1 : : : A1

A2 A2 0 : : : A2

:::
:::

:::
: : :

:::

AN AN AN : : : 0

1
CCCCCCA
: (1.6)

The importance of the factorization (1.5) is as follows. Subtracting zJ from both
sides, we get .A � z/J D J.A0 � z/ C JT for any z 2 C. From here, using the
notation

R.z/ D .A � z/�1; R0.z/ D .A0 � z/�1; (1.7)

we immediately obtain the resolvent identity

R.z/J.I C TR0.z// D JR0.z/; Im z 6D 0: (1.8)

The key point of our construction is that we consider (1.8) as an equation for R.z/J
(rather than for R.z/). Under our assumptions, equation (1.8) turns out to be a
Fredholm equation. Using this fact, we establish the limiting absorption principle
for A. That is, we prove that R.z/J has boundary values in an appropriate sense
when z approaches the real axis staying away from the eigenvalues of A. Roughly
speaking, our analysis hinges on inverting the operator I C TR0.z/ in (1.8). Note
that this operator acts in H0, and so we are able to carry out much of the analysis in
the framework of a single Hilbert space H0 rather than in a pair of spaces H0, H .

Analytic results obtained in this way allow us to verify the assumptions of smooth
scattering theory for the operators A0, A and the auxiliary identification zJ D JA0.
Note that the identification zJ was used previously in [5] for the construction of the
scattering theory for the pair (1.1) and (1.2) under Ismagilov’s trace class assumptions.
We first construct local wave operators for the triple A0, A, zJ and the interval �.
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Then using that 0 62 �, we replace zJ by the original identification J . We show
that the local wave operators for the triple A0, A, J are isometric and complete. By
the standard density arguments, global spectral results can be easily derived from
the local ones, if necessary. We also show that the singular continuous spectrum of
the operator A is empty and that its eigenvalues in � do not have interior points of
accumulation.

It is important that all our results for the “abstract” triple A0, A, J apply to the
“concrete” triple (1.1), (1.2), and (1.4). We emphasize that the condition 0 62 � plays
the crucial role because we impose smoothness assumptions on the pair products
AjA`, j ¤ `, rather than on the operators Aj themselves. Under such assumptions
the standard smooth scheme of scattering theory cannot be directly applied to the
triple A0, A, and J , but fortunately it can be developed for the triple A0, A, zJ in a
relatively standard way.

1.4. Comparison with a three particle scattering problem. Let us discuss the
analogy between (1.1) and the three particle Hamiltonian

H D H0 C V1 C V2 C V3 in L2.R2d /, d � 1. (1.9)

Here H0 D �� is the operator of the total kinetic energy and Vj are potentials of
interaction of pairs of particles (for example, V1 corresponds to the interaction of the
second and the third particles); the motion of the center of mass is removed. The
potentials Vj do not decay at infinity, but the products VjVk with j ¤ k possess
this property. Thus, we have a formal analogy between (1.1) and (1.9) if H0 D 0.
In fact, this analogy goes further. Recall that every two particle Hamiltonian Hj D
H0 C Vj yields its own channels of scattering to the three particle system (provided
the corresponding two particle subsystem has a point spectrum). Similarly, in the
problem (1.1), every operator Aj contributes its own band of the a.c. spectrum to the
spectrum of the operatorA. Furthermore, the resolvent equation (1.8) is algebraically
similar to the famous Faddeev’s equations [2] for the three particle quantum system.
This is discussed in the Appendix.

Nevertheless, our problem preserves many features of the two particle scattering.
Indeed, the two particle scattering matrix differs from the identity operator by a
compact operator, and a result of this type remains true for the pair (1.1) and (1.2).
This should be compared with the fact that, as observed by R. Newton, the singularities
of the three particle scattering matrix are determined by the scattering matrices for
all two particle Hamiltonians Hj ; see Section 14.2 in [12] for a discussion of this
phenomenon. In particular, the scattering matrix minus the identity operator is not
compact in the three particle case.

1.5. The structure of the paper. The basic definitions of scattering theory are
formulated in the abstract framework in Section 2. Our main results concerning
the pair (1.1) and (1.2) are stated in Section 3 under Assumption 3.2. Section 4
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plays the central role. Here we “forget” about the nature of the operators A0, A, J ,
formulate a list of hypotheses (Assumption 4.1) on an “abstract” triple A0; A; J and
then develop a version of smooth scattering theory. In short Section 5, we show that
underAssumption 3.2 these hypotheses are satisfied for the tripleA0,A and J defined
by (1.1), (1.2) and (1.4). Then we translate the “abstract” results of Section 4 back
into the setting of the operators Aj , A. In Section 6 we briefly discuss the stationary
representations for the scattering matrix and the wave operators.

Acknowledgements. Our collaboration has become possible through the hospitality
and financial support of the Departments of Mathematics of the University of Rennes 1
and of King’s College London. The second author was partially supported by the
projects NONa (ANR-08-BLANC-0228) and NOSEVOL (ANR-11-BS0101901).

2. Scattering theory in a two spaces setting

In this preliminary section, we collect the required general definitions and results
from scattering theory. For the details, see, e.g., the book [11].

2.1. Wave operators. Let A0 (resp. A) be a self-adjoint operator in a Hilbert space
H0 (resp. H ). Throughout the paper, we denote by E0.�/ and E.�/ the projection
valued spectral measures ofA0 andA and byP (ac)

0 andP (ac) the orthogonal projections
onto the a.c. subspaces H

(ac)
0 and H (ac) of these operators, and set

E
(ac)
0 .�/ D E0.�/P

(ac)
0 ; E(ac).�/ D E.�/P (ac)

for � � R. We also use the notation R0.z/, R.z/ for the resolvents of A0, A,
see (1.7). We denote by �ess.A/ and �p.A/ the essential and point spectra of a self-
adjoint operatorA. The class of compact operators is denoted byS1. If not specified
otherwise, we use the same symbols k�k and .�; �/ for the norms and the scalar products
in different Hilbert spaces (for example, H0 and H ).

The wave operators for the operators A0, A, a bounded operator J W H0 ! H

and a bounded open interval � are defined by the relation

W˙.A; A0I J;�/ D s-lim
t!˙1 eiAtJe�iA0tE

(ac)
0 .�/; (2.1)

provided this strong limit exists. It is easy to see that under the assumption of its
existence the wave operator possesses the intertwining property

W˙.A; A0I J;�/A0 D AW˙.A; A0I J;�/: (2.2)

We need the following elementary assertion.
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Lemma 2.1. Suppose that the wave operator (2.1) exists. If for a real valued func-
tion '

J �J � '.A0/ 2 S1; (2.3)

then

W �̇.A; A0I J;�/W˙.A; A0I J;�/ D '.A0/E
(ac)
0 .�/: (2.4)

In particular, if J �J � I 2 S1, then the operator W˙.A; A0I J;�/ is isometric on
the subspace RanE(ac)

0 .�/.

Proof. Observe that

kJe�iA0tf k2 D ..J �J � '.A0//e
�iA0tf; e�iA0tf /C .'.A0/f; f /: (2.5)

Let f 2 RanE(ac)
0 .�/ and t ! ˙1. Then the left hand side of (2.5) tends to

kW˙.A; A0I J;�/f k2. By assumption (2.3), k.J �J � '.A0//e
�iA0tf k ! 0 as

jt j ! 1, and hence the first term in the right hand side of (2.5) tends to zero as
jt j ! 1. Therefore passing in (2.5) to the limit t ! ˙1, we get (2.4).

The isometric wave operator W˙.A; A0I J;�/ is called complete if

RanW˙.A; A0I J;�/ D RanE(ac).�/:

If both wave operators W˙.A; A0I J;�/ and W˙.A0; AI J �; �/ exist, then they are
adjoint to each other.

By the usual density arguments, if the local wave operators W˙.A; A0I J;�n/

exist, are isometric and complete for a collection of intervals f�ng such that R n
.[n�n/ has the Lebesgue measure zero, then the global wave operators (� D R)
also exist, are isometric and complete. We state and prove all our results in the local
setting, bearing in mind that the corresponding global results follow automatically.

2.2. Relative smoothness. Let us discuss sufficient conditions for the existence of
the wave operators in the framework of the smooth scattering theory. Let A0 be a
self-adjoint operator in a Hilbert space H0, and let Q0 be a bounded operator acting
from H0 to another Hilbert space K (of course, the case K D H0 is not excluded).
One of the equivalent definitions of the A0-smoothness of Q0 on an interval ı in the
sense of Kato is given by the condition

sup
�2ı;"¤0

kQ0.R0.�C i"/ � R0.� � i"//Q�
0k < 1; R0.z/ D .A0 � z/�1:

Let us state the Kato–Lavine theorem.
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Proposition 2.2. Assume that the factorization

AJ � JA0 D Q�Q0

with bounded operators Q0 W H0 ! K and Q W H ! K holds. Assume that
the operators Q0 and Q are smooth in the sense of Kato relative to A0 and A,
respectively, on every compact subintervalı of an interval�. Then the wave operators
W˙.A; A0I J;�/ and W˙.A0; AI J �; �/ exist and are adjoint to each other.

Usually the smoothness ofQ0 with respect to the “unperturbed” operator A0 can
be verified directly. A proof ofA-smoothness of the operatorQ is more complicated.
If H0 D H , J D I , and Q D BQ0 with a bounded operator B , then in applications
the A-smoothness of Q is often deduced from a sufficiently strong form of A0-
smoothness of the operator Q0 combined with some compactness arguments. This
is discussed in Section 2.3.

Let us formulate a convenient strong form of relative smoothness. Suppose that
the spectrum of the operator A0 on � is a.c. and has a constant (possibly infinite)
multiplicity k. We consider a unitary mapping

F0 W RanE0.�/ �! L2.�I h0/ D L2.�/˝ h0; dim h0 D k; (2.6)

of RanE0.�/ onto the space of vector-valued functions of � 2 � with values in an
auxiliary Hilbert space h0. Assume that F0 maps A0 to the operator of multiplication
by �, that is,

.F0A0f /.�/ D �.F0f /.�/; f 2 RanE0.�/: (2.7)

We denote by jjj � jjj the norm in h0. Note that

d.E0.�1; �/f; f /

d�
D jjj.F0f /.�/jjj2 (2.8)

for all f 2 RanE0.�/ and almost all � 2 �. Along with L2.�I h0/ we consider the
space C � .�I h0/, � 2 .0; 1�, of Hölder continuous vector-valued functions.

Definition 2.3. A bounded operator Q0 W H0 ! K is called strongly A0-smooth
(with an exponent � 2 .0; 1�) on � if there exists a unitary diagonalization F0 of
A0jRan E0.�/ such that the operator F0Q

�
0 maps K continuously into C � .�I h0/, i.e.

jjj.F0Q
�
0g/.�/jjj � Ckgk; jjj.F0Q

�
0g/.�/ � .F0Q

�
0g/.�/jjj � C j� � �j�kgk:

Here the constant C does not depend on � and � in compact subintervals of �.
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For a strongly A0-smooth operator Q0, the operator Z0.�IQ0/ W K ! h0, de-
fined by the relation

Z0.�IQ0/g D .F0Q
�
0g/.�/; (2.9)

is bounded and depends Hölder continuously on � 2 �. According to (2.8) and (2.9)
we have

d.Q0E0.�1; �/Q�
0g; g/

d�
D jjjZ0.�IQ0/gjjj2 (2.10)

so that, for a strongly A0-smooth operator Q0, this expression depends Hölder con-
tinuously on � 2 �. Therefore the following result is a direct consequence (see, e.g.,
Theorem 4.4.7 in [11]) of the spectral theorem for A0 and the Privalov theorem (see,
e.g., Theorem 1.2.6 in [11]).

Proposition 2.4. If an operatorQ0 is strongly A0-smooth on� with some exponent
� 2 .0; 1/, then the operator-valued function Q0R0.z/Q

�
0 is Hölder continuous in

the operator norm .with the same exponent �/ for Re z 2 � and ˙Im z � 0.

According to this result the strong A0-smoothness of an operator Q0 implies its
A0-smoothness in the sense of Kato on each compact subinterval ı of the interval �.

We will also need the following result (see, e.g., Theorem 1.8.3 in [11]). It is
known as the analytic Fredholm alternative.

Proposition 2.5. Let H0 be a Hilbert space, and let� be an open interval. Suppose
that the operator-valued function G0.z/ W H0 ! H0 defined on the set Re z 2 �,
Im z ¤ 0, is analytic, the operators G0.z/

p are compact for some natural p and
the point �1 is not an eigenvalue of the operators G0.z/. Assume also that G0.z/

is continuous up to the cut along the real axis. Then .I CG0.z//
�1 is a continuous

operator-valued function of z for ˙Im z � 0, Re z 2 �, away from a closed set
N˙ � � of measure zero. The set N˙ consists of the points � 2 � where the
equation

g CG0.�˙ i0/g D 0

has a nontrivial solution g 2 H0. Moreover, .I CG0.z//
�1 is Hölder continuous if

G0.z/ is Hölder continuous.

2.3. The “single channel” case. Let us recall the well known basic results (see,
e.g., [7] or Sections 4.6 and 4.7 in [11]) in the “single channel” setting (i.e. forN D 1

in (1.1)) as it provides a simple model for the multichannel case considered in the
next section. Let A0 and A1 be bounded self-adjoint operators in a Hilbert space H

and let A D A0 C A1 (this is consistent with notation (1.1) if we set N D 1 and
A1 D A0). Here A0 is regarded as the “free” operator, A as the perturbed one, and
A1 is the perturbation.
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Proposition 2.6. Let � � R be a bounded open interval; assume that the spectrum
of A0 on� is purely a.c. with a constant multiplicity. LetQ0 be a bounded operator
with KerQ0 D f0g; assume that Q0 is strongly A0-smooth on � with an exponent
� > 1=2. Assume that the operator A1 can be represented as A1 D Q�

0KQ0 with
a compact operator K. Then the local wave operators

W˙.A; A0I�/ defD s-lim
t!˙1 eitAe�itA0E0.�/

exist and enjoy the intertwining property (2.2). These operators are isometric on
RanE0.�/ and are complete:

RanW˙.A; A0I�/ D RanE(ac).�/:

The singular continuous spectrum of A on � is absent. All eigenvalues of A in �
have finite multiplicities and can accumulate only to the endpoints of �.

Proposition 2.6, in particular, implies that the restriction ofA onto RanE(ac).�/ is
unitarily equivalent to the restriction ofA0 onto RanE0.�/. That is, the a.c. spectrum
ofA on� has a constant multiplicity which coincides with the multiplicity of the a.c.
spectrum of A0 on �.

The key step in proof of Proposition 2.6 is the limiting absorption principle in the
following form.

Proposition 2.7. Under the hypotheses of Proposition 2.6 the operator valued func-
tion Q0R.z/Q

�
0 is Hölder continuous in the operator norm for Re z 2 � n �p.A/

and ˙Im z � 0.

The usual scheme of the proof of Proposition 2.7 proceeds as follows. First, one
uses Proposition 2.4 to establish the Hölder continuity of Q0R0.z/Q

�
0 . Then, from

the standard resolvent identity

R.z/.I C A1R0.z// D R0.z/; (2.11)

using the factorization A1 D Q�
0KQ0, one obtains

Q0R.z/Q
�
0.I CKQ0R0.z/Q

�
0/ D Q0R0.z/Q

�
0 : (2.12)

This is a Fredholm equation for the operator Q0R.z/Q
�
0 . Applying now Propo-

sition 2.5 to the operator valued function G0.z/ D KQ0R0.z/Q
�
0 , we see that

Q0R.z/Q
�
0 is continuous for Re z 2 �, ˙Im z � 0 away from the exceptional

set N˙. It follows that the singular spectrum of the operator A is contained in the set
NC \ N�. Under the assumption � > 1=2 it is possible to prove that NC D N� and
that this set consists of eigenvalues of A. Thus the singular continuous spectrum of
the operatorA in� is empty. Basically the same arguments show that the eigenvalues
of A do not have in � interior points of accumulation.
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It follows from Proposition 2.7 that the operator Q0 is A-smooth in the sense of
Kato on every compact subinterval of � n �p.A/. Thus Proposition 2.2 guarantees
the existence of the wave operators W˙.A; A0I�/ and W˙.A0; AI�/. This ensures
that the wave operators W˙.A; A0I�/ are isometric and complete.

Assumption � > 1=2 in Proposition 2.6 is required only for the statements about
the singular continuous and point spectra of A. Construction of the wave operators
can be achieved under the weaker assumption � > 0.

Note that, in the case N D 1, our resolvent equation (1.8) for the triple (1.1),
(1.2), and (1.4) reduces to (2.11).

3. Main results

3.1. A gentle introduction: essential spectrum. Weyl’s theorem on the invariance
of the essential spectrum of a self-adjoint operator under compact perturbations can
be regarded as a precursor of scattering theory. Here we use this setting in order to
illustrate the issues specific to our multichannel situation. The statement below is
well known (see, e.g., Lemma 1.5 in Chapter 10 of the book [8]). We give the proof
since it illustrates our assumption on pair products AjAk , j ¤ k, and explains why
the spectral point � D 0 is exceptional under such an assumption. Our proof relies
only on a direct construction of Weyl’s sequences.

Proposition 3.1. LetA1, …,AN be bounded self-adjoint operators such thatAjAk 2
S1 for j ¤ k, and let the operator A be defined by formula (1.1) whereA1 2 S1.
Then

�ess.A/ [ f0g D
N[

j D1

�ess.Aj /: (3.1)

Proof. If � 2 �ess.Aj / for some j D 1; : : : ; N and � 6D 0, then there exists a (Weyl)
sequence fn such that kfnk D 1, fn ! 0 weakly and gn

defD Ajfn � �fn ! 0

strongly as n ! 1. Since the operators AkAj , k ¤ j , are compact, it follows that
for all k ¤ j

Akfn D ��1.AkAjfn � Akgn/

converge strongly to zero. Thus fn is also the Weyl sequence for the operator A and
the same �.

Conversely, we first check that 0 2 �ess.Aj / for at least one of j D 1; : : : ; N .
Indeed, choose any pair .k; j /, k ¤ j . Since AkAj 2 S1, there exists a sequence
fn such that kfnk D 1, fn ! 0 weakly and kAkAjfnk ! 0 as n ! 1. If
kAjfnk ! 0, then 0 2 �ess.Aj /. In the opposite case, we have kAjfnk � c > 0

at least for some subsequence of fn. Therefore the corresponding gn D Ajfn is a
Weyl sequence for the operator Ak and the point � D 0.
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Suppose now that � 2 �ess.A/ but � ¤ 0. Then there exists a Weyl sequence fn

such that kfnk D 1, fn ! 0 weakly and hn
defD Afn � �fn ! 0 strongly as n ! 1.

Since the operators AkAj , k ¤ j , and A1 are compact, this implies that, for all
indices j D 1; : : : ; N , the sequences

.Aj � �/Ajfn D Aj .A �
X
k¤j

Ak � A1 � �/fn

D �
X
k¤j

AjAkfn � AjA1fn C Ajhn ! 0
(3.2)

strongly as n ! 1. Observe that the norm kAjfnk does not tend to zero as n ! 1
at least for one of the indices j D 1; : : : ; N . Indeed, supposing the contrary, we find
that

NX
j D1

Ajfn C A1fn D Afn D �fn C hn

converges strongly to zero while the norm of the right-hand side tends to j�j ¤ 0.
If Ajfn does not converge to zero, then passing to a subsequence we can assume
that kAjfnk � c > 0 and set 'n D AjfnkAjfnk�1. It follows from (3.2) that
.Aj � �/'n ! 0 as n ! 1. Moreover, 'n ! 0 weakly because fn ! 0 weakly as
n ! 1.

It is easy to see that the point � D 0 cannot be dropped out of the left-land
side of (3.1). Indeed, let H be a Hilbert space of infinite dimension, and let A1 D
diagfI; 0g, A2 D diagf0; I g be diagonal operators in the space H ˚ H . Then
�ess.A1/ D �ess.A2/ D f0; 1g while �ess.A1 C A2/ D f1g.

3.2. Multichannel scheme: main results. Let N 2 N and let A1, Aj , j D
1; : : : ; N , be bounded self-adjoint operators in a Hilbert space H . As in Section 1,
we set

A D A1 C A1 C A2 C � � � C AN :

Let� � R be a bounded open interval with 0 62 �, and let X be a bounded operator
in H . We need

Assumption 3.2. (i) One has

KerX D KerX� D f0g:

(ii) The spectra of the operators A1, …, AN in � are a.c. and have constant mul-
tiplicities. For all j D 1; : : : ; N , the operator X is strongly Aj -smooth .see
Definition 2.3/ on � with an exponent � > 1=2.

(iii) The operator A1 can be represented as A1 D X�K1X with a compact oper-
ator K1.
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(iv) For all j ¤ `, the operators AjA` can be represented as

AjA` D X�Kj;`X (3.3)

where the operators Kj;` are compact.

(v) The operators XAjX
�1 are bounded2 for all j D 1; : : : ; N .

Our spectral results are collected in the following assertion.

Theorem 3.3. Suppose that 0 62 �. Under Assumption 3.2 one has the following
properties.

(i) The a.c. spectrum of A on � has a constant multiplicity equal to the sum of the
multiplicities of the a.c. spectra of Aj , j D 1; : : : ; N , on �.

(ii) The singular continuous spectrum of A on � is empty. The eigenvalues of A in
� have finite multiplicities and can accumulate only to the endpoints of �.

(iii) The operator valued function XR.z/X� is Hölder continuous .in the operator
norm/ in z for ˙Im z � 0 and Re z 2 � n �p.A/.

The scattering theory for the set of operators A1; : : : ; AN and the operator A is
described in the following assertion. We denote by Ej .�/ the spectral projection
of Aj corresponding to the interval �.

Theorem 3.4. Suppose that 0 62 �. Under Assumption 3.2 one has the following
properties.

(i) For all j D 1; : : : ; N , the local wave operators

W˙.A; Aj I�/ D s-lim
t!˙1 eiAte�iAj tEj .�/

exist and enjoy the intertwining property

AW˙.A; Aj I�/ D W˙.A; Aj I�/Aj :

The operators W˙.A; Aj I�/ are isometric on RanEj .�/. Their ranges are
orthogonal to each other:

RanW˙.A; Aj I�/ ? RanW˙.A; A`I�/; j 6D `: (3.4)

(ii) The asymptotic completeness holds:

NM
j D1

RanW˙.A; Aj I�/ D RanE(ac).�/: (3.5)

2Strictly speaking, we assume that the operators XAj X�1 defined on the dense set Ran X extend to
bounded operators. The same convention applies to all other operators of this type.
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We note that the first statement of Theorem 3.3 is a direct consequence of Theo-
rem 3.4.

As already mentioned in the Introduction, in the trace class framework (Ismag-
ilov’s theorem) the statements ofTheorem 3.4 (but not parts (ii, iii) ofTheorem 3.3) are
obtained in [4], and [10] under the assumptions AjAk 2 S1, j 6D k, and A1 2 S1.
Part (i) of Theorem 3.3 goes back to [6].

4. A two spaces setup

4.1. Assumptions and results. Let A0 (resp. A) be a bounded self-adjoint operator
in a Hilbert space H0 (resp. H ). Let J W H0 ! H be a bounded operator (the
“identification”). Our key assumption is that the factorization (1.5) holds true with
a bounded operator T in H0. We fix an open bounded interval � � R n f0g and a
bounded operatorQ0 in H0. Below we present a suitable version of scattering theory
for the triple .A0; A; J / under the following assumption.

Assumption 4.1. (i) Ker J � D f0g.

(ii) Ker J \ Ker.A0 C T � z/ D f0g for all z 6D 0.

(iii) KerQ0 D KerQ�
0 D f0g.

(iv) The spectrum ofA0 on� is purely a.c. with a constant multiplicity. The operator
Q0 in H0 is strongly A0-smooth on � with an exponent � 2 .1=2; 1/.

(v) The operator TA0 can be factorized as

TA0 D Q�
0KQ0; (4.1)

where K is a compact operator in H0.

(vi) The operator M0 D Q0T
�Q�1

0 is bounded on H0 and the operator M 2
0 is

compact.

(vii) The operator M D Q0J
�JQ�1

0 is bounded.

(viii) One has
A0.J

�J � I /A0 D Q�
0

zKQ0

with a compact operator zK in H0.

(ix) The operator JA2
0J

� � A2 is compact.

We do not require that Ker J D f0g; it turns out that instead of this it suffices to
impose a much weaker Assumption 4.1(ii).

Our spectral results are formulated in the following assertion.
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Theorem 4.2. Suppose that� � Rnf0g. Under Assumption 4.1 one has the following
properties.

(i) The a.c. spectrum of the operatorA on� has the same multiplicity as that of the
operator A0.

(ii) The singular continuous spectrum of A on � is empty.

(iii) The eigenvalues of A in � have finite multiplicities and can accumulate only to
the endpoints of �.

(iv) Let

Q D Q0J
� W H �! H0:

Then the operator valued functionQR.z/Q� is Hölder continuous .in the oper-
ator norm/ in z for ˙Im z � 0 and Re z 2 � n �p.A/.

Scattering theory is described in the following assertion.

Theorem 4.3. Suppose that� � Rnf0g. Under Assumption 4.1 one has the following
results.

(i) The wave operators W˙.A; A0I J;�/ exist and enjoy the intertwining property

W˙.A; A0I J;�/A0 D AW˙.A; A0I J;�/:

(ii) The operators W˙.A; A0I J;�/ are isometric on RanE0.�/ and are complete:

W �̇.A; A0I J;�/W˙.A; A0I J;�/ D E0.�/; (4.2)

W˙.A; A0I J;�/W �̇.A; A0I J;�/ D E(ac).�/: (4.3)

4.2. Fredholm resolvent equations. Let us proceed from the resolvent identity (1.8)
which we consider as an equation for the operatorR.z/J . This equation is Fredholm
if

.TR0.z//
p 2 S1 for some p 2 N: (4.4)

We first consider the homogeneous equation corresponding to (1.8). The argument
of the following lemma will be used several times in what follows.

Lemma 4.4. Let Assumption 4.1.ii/ hold. Then for any z, Im z 6D 0, the equation

f C TR0.z/f D 0 (4.5)

has only the trivial solution f D 0.
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Proof. Set ' D R0.z/f . It follows from (4.5) that

.A0 � z/' C T ' D 0: (4.6)

Applying the operator J to this equation and using (1.5), we see that AJ' D zJ'.
HenceJ' D 0 because the operatorA is self-adjoint. Moreover, ' 2 Ker.A0CT�z/
according to equation (4.6). ThereforeAssumption 4.1(ii) implies that ' D 0whence
f D 0.

In view of equation (1.8), this directly leads to the following assertion.

Lemma 4.5. If Assumption 4.1.ii/ and inclusion (4.4) are satisfied, then

R.z/J D JR0.z/.I C TR0.z//
�1; Im z 6D 0; (4.7)

where the inverse operator in the right hand side exists and is bounded.

Remark 4.6. Lemmas 4.4 and 4.5 remain true for arbitrary (not necessarily bounded)
self-adjoint operators A0 and A. It suffices to assume that factorization (1.5) holds
with bounded operators T and J .

Equation (4.7) is convenient for Im z 6D 0. In order to study the resolvent R.z/
when z approaches the real axis, we need to sandwich this resolvent between the
operators Q, Q� (recall that Q D Q0J

�) and rearrange equation (1.8). This should
be compared to passing from (2.11) to (2.12) in the “single channel” setting. In the
present case, the algebra is slightly more complicated.

Lemma 4.7. Let Assumption 4.1(v–vii) hold. Then for all Im z 6D 0, we have

QR.z/Q�.I CG0.z// D MQ0R0.z/Q
�
0 ; (4.8)

where the operator G0.z/ is given by3

G0.z/ D �z�1M�
0 C z�1KQ0R0.z/Q

�
0 (4.9)

and hence G2
0.z/ 2 S1.

Proof. First, we multiply (1.8) by Q on the left and by Q�
0 on the right:

QR.z/Q� CQR.z/JTR0.z/Q
�
0 D QJR0.z/Q

�
0 : (4.10)

Let us show that
TR0.z/Q

�
0 D Q�

0G0.z/: (4.11)

3Formally, G0.z/ D .Q�

0 /�1TR0.z/Q�

0 .
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Indeed, using the identity

zR0.z/ D �I C A0R0.z/; (4.12)

we see that
zTR0.z/Q

�
0 D �TQ�

0 C .TA0/R0.z/Q
�
0 : (4.13)

By Assumption 4.1(vi), we have

TQ�
0 D Q�

0M
�
0 :

Using also equality (4.1), we can rewrite (4.13) as

TR0.z/Q
�
0 D z�1Q�

0.�M�
0 CKQ0R0.z/Q

�
0/:

By definition (4.9), this yields (4.11).
Substituting (4.11) into the second term in the left hand side of (4.10) and using

that JQ�
0 D Q�, we see that this term equalsQR.z/Q�G0.z/. In the right hand side

of (4.10), we use the fact that, by Assumption 4.1(vii),

QJ D Q0J
�J D MQ0: (4.14)

Therefore (4.10) yields identity (4.8).
The operator G2

0.z/ is compact because, by Assumption 4.1(v,vi), both K and
M 2

0 are compact.

The resolvent equation (4.8) allows us to study the boundary values of R.z/ as
Im z ! 0. It should be compared to the resolvent equation (2.12) in the “single
channel” setting. The main difference between the single channel resolvent equation
and the multichannel one is that in the single channel case, the operatorKQ0R0.z/Q

�
0

is compact, whereas under Assumption 4.1 we cannot guarantee the compactness of
G0.z/; instead, we have the compactness of the square G2

0 .z/. In any case, (4.8) is a
Fredholm equation for QR.z/Q� amenable to analysis for Im z ! 0.

Lemma 4.8. Let the operator G0.z/ be defined by (4.9). Then under Assump-
tion 4.1.ii; iii; v � vii/, the equation

g CG0.z/g D 0; Im z 6D 0; (4.15)

has only the trivial solution g D 0.

Proof. Applying the operator Q�
0 to equation (4.15) and taking identity (4.11) into

account, we obtain equation (4.5) for f D Q�
0g. By Lemma 4.4 we have f D 0.

This ensures that g D 0 because KerQ�
0 D f0g.

Since G2
0.z/ 2 S1, Lemma 4.8 implies the following assertion.

Lemma 4.9. Under the hypothesis of Lemma 4.8, we have the representation

QR.z/Q� D MQ0R0.z/Q
�
0.I CG0.z//

�1; Im z 6D 0; (4.16)

where the inverse operator in the right hand side exists and is bounded.
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4.3. The limiting absorption principle and spectral consequences. Let us now
study equation (4.16) as z approaches the interval �. The first assertion is a direct
consequence of Proposition 2.4.

Lemma 4.10. Under Assumption 4.1(iv) the operator valued functionsQ0R0.z/Q
�
0

and hence G0.z/ are Hölder continuous with exponent � 2 .1=2; 1/ for Re z 2 �,
˙Im z � 0.

Let the set N˙ � � consist of the points � such that the equation

g CG0.�˙ i0/g D 0 (4.17)

has a nontrivial solution g 6D 0. By Proposition 2.5, the set N˙ is closed and has
the Lebesgue measure zero. The inverse operator in the right hand side of (4.16)
is continuous for ˙Im z � 0 away from the set N˙. Equation (4.16) implies the
same statement about the operator valued function QR.z/Q�. We also take into
account that QR.z/Q� and QR. Nz/Q� are continuous simultaneously. Thus, com-
bining Proposition 2.5 and Lemma 4.10, we obtain the following assertion, which is
known as the limiting absorption principle.

Theorem 4.11. Let Assumption 4.1(ii–vii) hold. Then the set N˙ � � is closed
and has the Lebesgue measure zero. The operator-valued function QR.z/Q� is
Hölder continuous with the exponent � up to the cut along � away from the set
N D NC \ N�.

Observe that the hypotheses of Theorem 4.11 do not exclude that, for example,
J D 0; then Q D 0 and the statement of the theorem is vacuous. So in order to
deduce from this theorem some spectral consequences for A, we need additional
assumptions such as Ker J � D f0g (which is part (i) of Assumption 4.1). Then the
kernel ofQ D Q0J

� is trivial and hence the range of the operatorQ� is dense in H .
So Theorem 4.11 implies the following result.

Corollary 4.12. Let Assumption 4.1(i–vii) hold. Then, on the interval�, the singular
continuous spectrum and the eigenvalues of A are contained in the set N .

Next, we check that the “exceptional” set N is exhausted by the eigenvalues of
the operator A. To that end, we need to study in more detail the solutions of the
homogeneous equation (4.17). We start with an elementary but not quite obvious
identity which is a direct consequence of the self-adjointness of A.

Lemma 4.13. Let Assumption 4.1.iii; vi; vii/ hold. For all g 2 H0 and z D �C i",
" 6D 0, we have

Im ..I CG0.z//g;MQ0R0.z/Q
�
0g/ D �"kJR0.z/Q

�
0gk2: (4.18)
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Proof. By the relation (1.5), we have

J.A0 � z/' C JT ' D AJ' � zJ'
for all ' 2 H0. Setting here ' D R0.z/f , we see that

J.I C TR0.z//f D AJR0.z/f � zJR0.z/f

and hence

.J.I C TR0.z//f; JR0.z/f / D .AJR0.z/f; JR0.z/f / � z.JR0.z/f; JR0.z/f /:

Taking the imaginary part and using the self-adjointness of A, we get

Im .J.I C TR0.z//f; JR0.z/f / D �"kJR0.z/f k2:

Setting f D Q�
0g, we obtain

Im ..I C TR0.z//Q
�
0g; J

�JR0.z/Q
�
0g/ D �"kJR0.z/Q

�
0gk2: (4.19)

According to identities (4.11) and (4.14) the left hand side of (4.18) and of (4.19)
coincide.

In the case J D I , identity (4.18) is well known and plays the crucial role in the
study of the exceptional set N . This is still true in a more general case considered
here.

Our next goal is to pass to the limit " ! 0 in (4.18). The following assertion will
allow us to get rid of the operator J in the right hand side.

Lemma 4.14. Let Assumption 4.1.iv; vii; viii/ hold. Then, for all g 2 H0, the
function

..J �J � I /R0.z/Q
�
0g;R0.z/Q

�
0g/

is continuous for Re z 2 �, ˙Im z � 0.

Proof. Using identity (4.12), we get

jzj2R0. Nz/.J �J � I /R0.z/

D �.J �J � I /CR0. Nz/A0.J
�J � I /A0R0.z/ � 2Re .z.J �J � I /R0.z//:

Consider separately the three terms in the right hand side The first one does not depend
on z. Next, by Assumption 4.1(viii), we have

.A0.J
�J � I /A0R0.z/Q

�
0g;R0.z/Q

�
0g/ D . zKQ0R0.z/Q

�
0g;Q0R0.z/Q

�
0g/:

This function is continuous because, by Lemma 4.10, the operator valued function
Q0R0.z/Q

�
0 is continuous. Finally, we have

..J �J � I /R0.z/Q
�
0g;Q

�
0g/ D .Q0J

�JR0.z/Q
�
0g; g/ � .Q0R0.z/Q

�
0g; g/

D .MQ0R0.z/Q
�
0g; g/ � .Q0R0.z/Q

�
0g; g/;
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where we have used (vii) at the last step. The right hand side here is again continuous
because the operator valued function Q0R0.z/Q

�
0 is continuous.

Lemma 4.15. Let Assumption 4.1.iii; iv; vi � viii/ hold. If g satisfies equation (4.17)
for � 2 �, then

d.E0.�1; �/Q�
0g;Q

�
0g/

d�
D 0: (4.20)

Proof. Recall that according to relation (2.10) under assumption (iv) the left hand
side of (4.20) is a continuous function of � 2 �. By Lemma 4.10, the operator
valued function G0.z/ defined by (4.9) is continuous for Re z 2 �, ˙Im z � 0.
Therefore if g satisfies equation (4.17), then k.I CG0.�˙ i"//gk ! 0 as " ! C0.
By Lemma 4.13, it follows that

lim
"!C0

"kJR0.�˙ i"/Q�
0gk2 D 0;

whence, by Lemma 4.14,

lim
"!C0

"kR0.�˙ i"/Q�
0gk2 D 0: (4.21)

Now it remains to use the general operator theoretic identity

d.E0.�1; �/Q�
0g;Q

�
0g/

d�
D 1

	
lim

"!C0
"kR0.�˙ i"/Q�

0gk2; (4.22)

which is a consequence of the relation between boundary values of a Cauchy integral
and its density. Putting (4.21) and (4.22) together, we get (4.20).

Given identity (4.20), the following two lemmas as well as the results of Section 4.5
are quite standard.

Lemma 4.16. Let Assumption 4.1.ii � viii/ hold. Then for both signs “˙” the
inclusion

N˙ � �p.A/ \� (4.23)

is true.

Proof. Let a vector g 6D 0 satisfy equation (4.17). Set

f D Q�
0g

and
' D R0.�˙ i0/f I

let us check that ' 2 H0. Let F0 be the unitary map (see (2.6)) which diagonalizes
A0 and Of D F0f . By assumption (iv) (the strong smoothness of Q0), the function
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Of .�/ D Z0.�IQ0/g defined by (2.9) is Hölder continuous on � with the exponent
� > 1=2. In view of equality (2.10) and Lemma 4.15, we have Of .�/ D 0. Therefore

kE0.�/'k2 D
Z

�

j� � �j�2jjj Of .�/jjj2d�

D
Z

�

j� � �j�2jjj Of .�/ � Of .�/jjj2d

� const
Z

�

j� � �j�2C2�d�

< 1;

and hence ' 2 H0.
The following argument is quite similar to the proof of Lemma 4.8. Multiply-

ing (4.17) by Q�
0 and using identity (4.11), we obtain

f C TR0.�˙ i0/f D 0:

It follows that ' D R0.�˙ i0/f satisfies

.A0 � �/' C T ' D 0: (4.24)

Since AJ D J.A0 C T /, this yields AJ' D �J'. So it remains to check that
J' 6D 0. Supposing the contrary and using equation (4.24), we see that ' D 0,
by assumption (ii). Now it follows that f D Q�

0g D 0 and hence g D 0. This
contradicts the assumption g 6D 0. Thus  D J' 6D 0 and A D � .

Lemma 4.17. Let Assumption 4.1.i � viii/ hold true. Then on the interval �, the
operatorA does not have any singular continuous spectrum. For the point spectrum,
we have

NC D N� D �p.A/ \�: (4.25)

Proof. By Corollary 4.12, the singular spectrum of A on� is contained in N and, in
particular,

�p.A/ \� � N : (4.26)

Since, by Lemma 4.16, the set N is countable, the singular continuous spectrum of
A is empty. Comparing (4.23) with (4.26), we obtain equality (4.25).

4.4. Non-accumulation of eigenvalues. Here we prove two results.

Lemma 4.18. Let Assumption 4.1.i � viii/ hold true. Then the eigenvalues of A in
� have finite multiplicities.
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Proof. Taking conjugates in (1.5), we see that

J �A � A0J
� D T �J �:

Therefore if A D � , then the element ' D J � satisfies the equation

.A0 � �/' C T �' D 0

and hence the equation
' CR0.�˙ i0/T �' D 0:

Let us applyQ0 to the last equation and use the fact that according to (4.11)Q0R0.�˙
i0/T � D G0.�˙ i0/Q0. Thus, for g D Q0', we get the equation

g CG�
0 .�˙ i0/g D 0:

Next, we claim that g 6D 0 if  6D 0. Indeed, if g D 0, then ' D 0 because
KerQ0 D f0g and  D 0 because Ker J � D f0g. Actually, the above argument
shows that

dim Ker.A � �/ � dim Ker.I CG�
0 .�˙ i0//:

The dimension in the right hand side is finite because the operator G�
0 .� ˙ i0/2 is

compact.

Lemma 4.19. Let Assumption 4.1.i � viii/ hold true. Then the eigenvalues of A in
� can accumulate only to the endpoints of �.

Proof. Suppose, to get a contradiction, that a sequence of eigenvalues of A in � has
an accumulation point: �n ! �0 2 � as n ! 1. Then by Lemma 4.17 there exists
a sequence of elements gn 2 H0 such that

gn CG0.�n C i0/gn D 0; kgnk D 1: (4.27)

Since the operators G0.� C i0/ depend continuously on � 2 � and G0.� C i0/2

are compact, the sequence gn is compact in H . Passing to a subsequence, we may
assume that

kgn � g0k �! 0; n ! 1; (4.28)

where the element g0 2 H0 satisfies

g0 CG0.�0 C i0/g0 D 0; kg0k D 1:

Let us set

 n D JR0.�n C i0/Q�
0gn and  0 D JR0.�0 C i0/Q�

0g0:

By the arguments of Lemma 4.16, it can be easily deduced from condition (4.20) on
Q�

0gn and Q�
0g0 that  n 2 H and  0 2 H . Using additionally (4.28), we obtain

k n �  0k �! 0; n ! 1: (4.29)
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Exactly as in Lemma 4.16, equation (4.27) implies that A n D �n n, and hence
 n are pairwise orthogonal. Therefore relation (4.29) can be true only if  0 D 0.
Now, again the arguments of Lemma 4.16 show that g0 D 0 which contradicts the
condition kg0k D 1.

Combining Theorem 4.11 and Lemmas 4.17–4.19, we obtain statements (ii), (iii)
and (iv) of Theorem 4.2.

4.5. The wave operators. Here we prove Theorem 4.3. Let us set zJ D JA0 and
first prove intermediate results involving the identification zJ instead of J .

Lemma 4.20. Let Assumption 4.1 hold true. Then the wave operators

W˙.A; A0I zJ ;�/; W˙.A0; AI zJ �; �/ (4.30)

exist and satisfy the relations

W �̇.A; A0I zJ ;�/ D W˙.A0; AI zJ �; �/; (4.31)

W �̇.A; A0I zJ ;�/W˙.A; A0I zJ ;�/ D A2
0E0.�/; (4.32)

W˙.A; A0I zJ ;�/W �̇.A; A0I zJ ;�/ D A2E(ac).�/: (4.33)

Proof. By condition (1.5) and Assumption 4.1(v), we have

A zJ � zJA0 D JTA0 D Q�KQ0; Q D Q0J
�:

By Assumption 4.1(iv), the operator Q0 is strongly A0-smooth on � and therefore
it is A0-smooth (in the sense of Kato) on any compact subinterval of �. Next, by
Theorem 4.11, the operator Q is A-smooth (in the sense of Kato) on every compact
subinterval of the set � n N . Therefore Proposition 2.2 implies the existence of the
wave operators (4.30); then relation (4.31) automatically holds.

By Assumptions 4.1(viii, ix), we have

zJ � zJ � A2
0 2 S1; zJ zJ � � A2 2 S1:

Applying now Lemma 2.1 with '.�/ D �2 to the triple A0; A; zJ , we obtain (4.32).
Similarly, applying Lemma 2.1 to the triple A;A0; zJ �, we obtain the relation

W �̇.A0; AI zJ �; �/W˙.A0; AI zJ �; �/ D A2E(ac).�/:

By (4.31), it is equivalent to (4.33).

Now we are ready to provide the proof of Theorem 4.3.
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Proof of Theorem 4.3. Since, by Lemma 4.20, the wave operators W˙.A; A0I zJ ;�/
exist, the limits (2.1) exist on elements f D A0g where g 2 H0 is arbitrary. Using
that H

(ac)
0 � RanA0, we see that the wave operators W˙.A; A0I J;�/ also exist and

satisfy
W˙.A; A0I J;�/A0 D W˙.A; A0I zJ ;�/: (4.34)

It follows from (4.32) and (4.34) that for all f 2 H0

kW˙.A; A0I J;�/A0f k D kW˙.A; A0I zJ ;�/f k D kE0.�/A0f k:

Therefore
kW˙.A; A0I J;�/gk D kE0.�/gk (4.35)

for all g 2 RanA0 and hence for all g 2 RanA0. Every g 2 H0 equals g D
g0 C g1 where g0 2 KerA0 and g1 2 RanA0. Since W˙.A; A0I J;�/g D
W˙.A; A0I J;�/g1 andE0.�/g D E0.�/g1, equality (4.35) extends to all g 2 H0.
This implies (4.2).

Next, by the intertwining relation, equation (4.34) yields

AW˙.A; A0I J;�/ D W˙.A; A0I zJ ;�/: (4.36)

Similarly, to the proof of (4.35), comparing (4.33) and (4.36) , we see that

kW �̇.A; A0I J;�/gk D kE(ac).�/gk

for all g 2 RanA. Then, again as (4.35), this equality extends to all g 2 H which
implies (4.3).

Finally, the first statement of Theorem 4.2 is a direct consequence of Theorem 4.3.
The proofs of Theorems 4.2 and 4.3 are complete.

5. Proofs of Theorems 3.3 and 3.4

In this section we return to the setup of Section 3 and use Theorems 4.2 and 4.3 to
prove our main results, Theorems 3.3 and 3.4, respectively.

Let H0 D H N C1, and letA,A0, J be given by (1.1), (1.2), and (1.4), respectively.
We set Q0 D diagfX; : : : ; Xg in H0. As usual, � is a bounded open interval such
that 0 62 �.

Lemma 5.1. Let Assumption 3.2 be satisfied. Then Assumption 4.1 holds true for the
operators A0, A and J defined above.
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Proof. (i) is obvious because

J �f D .f; f; : : : ; f />: (5.1)

(ii) According to equality (1.6)

A0 C T D

0
BBBB@

A1 A1 : : : A1
A1 A1 : : : A1

:::
:::

: : :
:::

AN AN : : : AN

1
CCCCA

so that for f D .f1; f1; : : : ; fN /
> 2 H0 we have

.A0 C T /f D .A1J f ; A1J f ; : : : ; ANJ f/>:

Thus if J f D 0, then .A0 C T /f D 0. Hence f D 0 if J f D .A0 C T � z/f D 0.

(iii) follows from Assumption 3.2(i).

(iv) follows from Assumption 3.2(ii).

(v) According to (1.6) the operator TA0 has matrix entries A1A` andAjA`, j 6D
`. It follows from Assumption 3.2(iii, v) that A1A` D X�K1.XA`X

�1/X where
the operators K1.XA`X

�1/ are compact. For AjA`, we have representation (3.3)
where Kj;` are compact.

(vi) According to (1.6) the operator M0 D Q0T
�Q�1

0 in H0 is represented by a
matrix with entries XA1X�1 (which equals X�XK1 and is compact by Assump-
tion 3.2(iii)) and XAjX

�1 (which are bounded by Assumption 3.2(v)).
Similarly, the operator M 2

0 D Q0.T
�/2Q�1

0 is represented by a matrix with
entries

XAjA`X
�1; j 6D `;

XA1AjX
�1 D .XA1X�1/.XAjX

�1/;

XAjA1X�1 D .XAjX
�1/.XA1X�1/

and

XA21X�1 D .XA1X�1/2:

The operators XAjA`X
�1 D XX�Kj;`, j 6D `, are compact by Assumption 3.2(iv).

As we have seen, the other operators above are compact by Assumption 3.2(iii,v).
(vii) It follows from formulas (1.4) and (5.1) that the operator J �J acting in the

space H0 has the form
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J �J D

0
BBBBB@

I I : : : I

I I : : : I

:::
:::

: : :
:::

I I : : : I

1
CCCCCA
: (5.2)

Thus Q0J
�JQ�1

0 D J �J is a bounded operator.

(viii) According to formula (5.2) the operator A0.J
�J � I /A0 in H0 has matrix

entries which are zero on the diagonal and are of the form AjA` with j 6D ` off the
diagonal. These operators admit representation (3.3) with compact operators Kj;`.

(ix) It follows from definitions (1.1), (1.2) and (1.4) that

JA2
0J

� � A2 D
NX

j D1

A2
j �

�
A1 C

NX
j D1

Aj

�2

:

In this expression the operatorsA2
j cancel each other. Therefore JA2

0J
� �A2 consists

of the terms A21, A1Aj , AjA1 and AjA`, j 6D `, which are all compact by
Assumption 3.2 (iii, iv).

Thus Theorems 4.2 and 4.3 are true for the operators A0, A and J considered
here. Theorem 3.3 is a direct consequence of Theorem 4.2. It remains to reformulate
Theorem 4.3 as Theorem 3.4. By the definition (1.4) of J , the existence of the wave
operatorsW˙.A; A0I J;�/ and the existence ofW˙.A; Aj I�/ for all j D 1; : : : ; N

are equivalent and

W˙.A; A0I J;�/f D
NX

j D1

W˙.A; Aj I�/fj (5.3)

if f D .f0; f1; : : : ; fN /
>. The isometricity of W˙.A; Aj I�/ and the intertwining

property are the consequences of their existence.
Next, taking f D .0; : : : ; 0; fj ; 0; : : : ; 0/

>, g D .0; : : : ; 0; g`; 0; : : : ; 0/
> and

using (4.2) and (5.3), we obtain that

.W˙.A; Aj I�/fj ; W˙.A; A`I�/g`/ D .E0.�/f ; g/:

If j ¤ `, the right hand side here is zero for arbitrary fj 2 H , g` 2 H which implies
relation (3.4).

According to (4.3) for every g 2 RanE(ac).�/ and f D W �̇.A; A0I J;�/g, we

haveg D W˙.A; A0I J;�/f . Therefore, again by (5.3), g D PN
j D1W˙.A; Aj I�/fj

where f D .0; f1; : : : ; fN /
>. This proves the asymptotic completeness (3.5).
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6. Stationary representations for wave operators and scattering matrix

Here we address a more special question of stationary representations for the wave
operators and scattering matrix in the “abstract” framework of Section 4. Of course
the representations obtained are automatically true for the triple (1.1), (1.2), and (1.4).
This is briefly discussed in Section 6.4.

6.1. The scattering matrix: definition. The local scattering operator for the triple
A0, A, J and the interval � is defined by the formula

S.A; A0I J;�/ D WC.A; A0I J;�/�W�.A; A0I J;�/: (6.1)

By (4.2), (4.3), and the intertwining property of the wave operators, the scattering
operator is unitary on RanE0.�/ and commutes with A0.

Therefore in the spectral representation (see (2.6) and (2.7)) of A0, the scattering
operator acts as the multiplication by the operator valued function

S.�/ D S.�IA;A0I J;�/ W h0 �! h0:

This means that

.F0S.A; A0I J;�/f /.�/ D S.�/.F0f /.�/; f 2 RanE0.�/:

The operator S.�/ is defined and is unitary for almost all � 2 �. It is known as the
scattering matrix. The definition of the scattering matrix depends of course on the
choice of the mapping (2.6), but in applications the mapping F0 emerges naturally.

Along with the scattering matrix S.�/ corresponding to the scattering opera-
tor (6.1), we consider the scattering matrix zS.�/, corresponding to the scattering
operator S.A; A0I zJ ;�/ where zJ D JA0. Since

S.A; A0I zJ ;�/ D WC.A; A0I zJ ;�/�W�.A; A0I zJ ;�/
D A0WC.A; A0I J;�/�W�.A; A0I J;�/A0

D A0S.A; A0I J;�/A0;

we have
zS.�/ D �2S.�/: (6.2)

Note that the operators zS.�/ are not unitary.

6.2. The stationary representation for the scattering matrix. Our goal here is
to obtain a representation for the scattering matrix S.�/ in terms of the resolvent
R.z/ D .A � z/�1 of the operator A. As before, we set Q D Q0J

� W H ! H0.
Recall that, by Theorem 4.2, the operator valued function G.z/ D QR.z/Q� is
Hölder continuous .in the operator norm/ in z for ˙Im z � 0 and Re z 2 � n �p.A/.
We also use the notation Z0.�/ D Z0.�IQ0/ for operator (2.9). This operator is
bounded and depends Hölder continuously on � 2 �. Now we are ready to present
the stationary representation of S.�/.
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Theorem 6.1. Let Assumption 4.1 hold. Then for all � 2 � n �p.A/ the scattering
matrix S.�/ can be represented as

S.�/ D I � 2	i��1Z0.�/M
�KZ�

0 .�/C 2	i��2Z0.�/K
�G.�C i0/KZ�

0 .�/:

(6.3)
The operator S.�/ � I is compact and depends Hölder continuously on �.

We emphasize that all operators in the right hand side of (6.3) are bounded and
depend Hölder continuously on � 2 � n �p.A/.

For the proof, we use the fact that all the assumptions of the general stationary
scheme (see [1] and [11]) are satisfied for the triple A0, A, zJ (but not for A0, A,
J ). Therefore we can apply the standard stationary representation for zS.�/ (see
Proposition 1 of § 7.4 in [11]). We recall this representation at a somewhat heuristic
level. It is convenient to use a formal notation 
0.�/ W H0 ! h0 defined by the
equality


0.�/f D .F0f /.�/; f 2 RanE0.�/; � 2 �: (6.4)

Observe that the operator
Z0.�/ D 
0.�/Q

�
0

is correctly defined by equality (2.9). In view of (1.5) we have

zV defD A zJ � zJA0 D JTA0: (6.5)

We further observe that the auxiliary wave operator� D WC.A0; A0I zJ � zJ ;�/ exists.
It commutes with the operatorA0 and hence acts as the multiplication by the operator
valued function �.�/ in the spectral representation of A0. Then the representation
for zS.�/ formally reads as

zS.�/ D �.�/ � 2	i
0.�/. zJ � zV � zV �R.�C i0/ zV /
�
0 .�/:

Let us show that all the terms in the right hand side are correctly defined. First,
we observe that under Assumption 4.1(viii) zJ � zJ �A2

0 2 S1 so that the operator �
exists and � D A2

0E0.�/. It follows that �.�/ D �2I . Then we use the fact that
according to (6.5) and Assumption 4.1(v, vii)

zJ � zV D A0J
�JTA0 D A0Q

�
0M

�KQ0

whence

0.�/ zJ � zV 
�

0 .�/ D �Z0.�/M
�KZ�

0 .�/:

Finally, according to (6.5) and Assumption 4.1(v) we have zV D Q�KQ0 so that


0.�/ zV �R.�C i0/ zV 
�
0 .�/ D Z0.�/K

�G.�C i0/KZ�
0 .�/:

Now we are in the position to formulate the precise result.
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Lemma 6.2. Let Assumption 4.1 hold. Then for all � 2 � n �p.A/ the scattering
matrix zS.�/ can be represented as

zS.�/ D �2I � 2	i�Z0.�/M
�KZ�

0 .�/C 2	iZ0.�/K
�G.�C i0/KZ�

0 .�/: (6.6)

The representation (6.3) for S.�/ directly follows from (6.2) and (6.6). Since
Z0.�/ and G.�C i0/ depend Hölder continuously on �, the same is true for S.�/.
Finally, the operator S.�/� I is compact because by Assumption 4.1(v) the operator
K is compact.

6.3. Wave operators. Here we briefly discuss stationary representations of the wave
operators. These representations are equivalent to the expansion over appropriate
generalized eigenfunctions of the operator A.

Since all the assumptions of the stationary scheme of scattering theory are satisfied
for the triple A,A0, zJ , we can directly apply Theorem 5.6.1 of [11] to this triple. We
use notation (6.4) and formally set

z
˙.�/f D 
0.�/. zJ � � zV �R.�˙ i0//f (6.7)

for f 2 RanQ�. Similarly to the previous subsection, under Assumption 4.1 this
formula acquires the correct meaning. Indeed, Assumption 4.1(vii) shows that


0.�/ zJ �Q� D �
0.�/J
�JQ�

0 D �
0.�/Q
�
0M

� D �Z0.�/M
�

and, in view of equality (6.5), Assumption 4.1(v) shows that


0.�/ zV �R.�˙ i0/Q� D 
0.�/A0T
�J �R.�˙ i0/Q�

D 
0.�/Q
�
0K

�Q0J
�R.�˙ i0/Q�

D Z0.�/K
�G.�˙ i0/:

Therefore representation (6.7) can be rewritten in terms of bounded operators as

z
˙.�/f D �Z0.�/M
�g � Z0.�/K

�G.�˙ i0/g; f D Q�g: (6.8)

Now we put
. zF˙f /.�/ D z
˙.�/f; f 2 RanQ�:

According to Theorem 5.6.1 of [11] the operators zF˙ extend to bounded operators
from H to L2.�; h0/ and diagonalize the operator A W . zF˙Af /.�/ D �. zF˙f /.�/.
They are related to the wave operators by the formula W˙.A; A0I zJ ;�/ D zF �̇F0.

It remains to replace the identification zJ by J . We again formally set


˙.�/f D 
0.�/.J
� � T �J �R.�˙ i0//f (6.9)
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for f 2 RanQ�. Since zJ D JA0 and zV D JTA0, comparing (6.7) and (6.9) we
see that z
˙.�/ D �
˙.�/. Therefore using (6.8), we can rewrite (6.9) in terms of
bounded operators as


˙.�/f D Z0.�/M
�g � ��1Z0.�/K

�G.�˙ i0/g; f D Q�g: (6.10)

Thus, the operators 
˙.�/ W H ! h0 are well defined on the dense set RanQ� and,
for f 2 RanQ�, the vector valued functions 
˙.�/f depend Hölder continuously
on � 2 � n �p.A/. Using (4.34), we can now rephrase the results about the wave
operators W˙.A; A0I zJ ;�/ in terms of the wave operators W˙.A; A0I J;�/. This
yields the following result.

Theorem 6.3. Let Assumption 4.1 hold. Define the operators
˙.�/ by equation (6.9)
.or, more precisely, by (6.10)/ and set

.F˙f /.�/ D 
˙.�/f; f 2 RanQ�:

Then F˙ extends to the partial isometry F˙ W H ! L2.�I h0/ with the initial space
RanE(ac).�/, and the intertwining property

.F˙Af /.�/ D �.F˙f /.�/

is satisfied. The operators F˙ and the wave operators are related by the equality

W˙.A; A0I J;�/ D F �̇F0:

Moreover, for f0 2 RanQ�
0 , f 2 RanQ�, we have the representation

.W˙.A; A0I J;�/f0; f / D
Z

�

hhh
0.�/f0; 
˙.�/f iiid�

where hhh�; �iii is the inner product in h0.

6.4. The multichannel case. Of course under Assumption 3.2 all the results of this
section are true for the operators A0, A and J defined by (1.1), (1.2), and (1.4).
Let Aj , j D 1; : : : ; N , be realized as the operator of multiplication by independent
variable � in the space L2.�/˝ hj where dim hj is the multiplicity of the spectrum
of the operator Aj on the interval �. Then the scattering matrix S.�/ is given by
the matrix S`;j .�/ W hj ! hk . Theorem 6.1, in particular, shows that the operators
Sj;j .�/ � I and S`;j .�/ for ` ¤ j are compact.

A. Faddeev’s equations

Let us show that Faddeev’s equations for three interacting quantum particles follow
from the resolvent equation (1.8) for a particular choice of the operators A0, A and
J . Actually, we consider a slightly more general situation.
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Let a self-adjoint operator H in a Hilbert space H admit the representation

H D H0 C
NX

j D1

Vj : (A.1)

We suppose that the operator H0 is self-adjoint and set R0.z/ D .H0 � z/�1. For
simplicity, we assume that all operators Vj (but not H0) are bounded. Our main
assumption is that

Vj R0.z/Vk 2 S1; j; k D 1; : : : ; N; j ¤ k; Im z ¤ 0: (A.2)

In the three-particle problem H is the Schrödinger operator, H0 is the operator of
the kinetic energy of three particles with the center-of-mass motion removed; Vj ,
j D 1; 2; 3, are potential energies of pair interactions of particles (for example, V1 is
the potential energy of interaction of the second and third particles).

We introduce the Hilbert space H0 D H N as the direct sum of N copies of the
space H . The elements of this space are columns f D .f1; : : : ; fN /

>. We define the
operator A0 in this space as

A0 D diagfH1; : : : ; HN g where Hj D H0 C Vj (A.3)

and the operator
J W H0 �! H

by

J f D
NX

j D1

fj : (A.4)

We set
A D H:

Since

.AJ � JA0/f D
NX

j;kD1Ij ¤k

Vkfj

factorization (1.5) is now true with the operator

T W H0 �! H0

acting by the formula

T D

0
BBBB@

0 V1 V1 : : : V1

V2 0 V2 : : : V2

:::
:::

:::
: : :

:::

VN VN VN : : : 0

1
CCCCA : (A.5)
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Let us check Assumption 4.1(ii). Comparing equations (A.3) and (A.5) we find
that

A0 C T D

0
BBBB@

H1 V1 V1 : : : V1

V2 H2 V2 : : : V2

:::
:::

:::
: : :

:::

VN VN VN : : : HN

1
CCCCA

and hence

.A0 C T /f D .H0f1 C V1J f ; H0f2 C V2J f ; : : : ; H0fN C VNJ f/>:

Thus, if J f D 0, then

.A0 C T � z/f D ..H0 � z/f1; .H0 � z/f2; : : : ; .H0 � z/fN /
>:

Since the operator H0 is self-adjoint, the equality .A0 C T � z/f D 0 implies that
fj D 0 for all j D 1; 2; : : : ; N .

Next, we check inclusion (4.4) for p D 2. Set Rj .z/ D .Hj � z/�1. It follows
from (A.5) that

TR0.z/ D

0
BBBB@

0 V1R2.z/ V1R3.z/ : : : V1RN .z/

V2R1.z/ 0 V2R3.z/ : : : V2RN .z/

:::
:::

:::
: : :

:::

VN R1.z/ VN R2.z/ VN R3.z/ : : : 0

1
CCCCA :

Therefore the operator .TR0.z//
2 is given by the N � N matrix with elements

Vj Rk.z/VkR`.z/; j ¤ k:

By the resolvent identity applied to the pair H0, Hk , we have

Vj RkVk D .Vj R0Vk/.I � RkVk/;

and hence this operator is compact by assumption (A.2).
Thus Lemma 4.5 (see also Remark 4.6) implies the following result.

Theorem A.1. Let the operators A0 and A D H be defined by formulas (A.3)
and (A.1), and let the operator J be given by formula (A.4). Then under assump-
tion (A.2) the resolvent R.z/ D .H � z/�1 of the operator H admits the represen-
tation (4.7) where the inverse operator on the right exists and is bounded.

Note that (1.8) in the case considered is equivalent to the system of Faddeev’s
equations. Indeed, applying both sides of (1.8) to an element f D .f1; : : : ; fN /

>,
we find that

R.z/.

NX
kD1

fk C
NX

j;kD1Ij ¤k

Vj Rk.z/fk/ D
NX

kD1

Rk.z/fk :
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Since elements fk are arbitrary, this leads to a system of N equations

R.z/.I C
NX

j D1Ij ¤k

Vj Rk.z// D Rk.z/; k D 1; : : : ; N; (A.6)

for the same object R.z/. We note that each of equations (A.6) is simply the re-
solvent equation for the pair Hk , H . It determines the resolvent uniquely, but the
operators Vj Rk.z/ are not of course compact. Nevertheless, considered together,
equations (A.6) yield the Fredholm system.

Applying to (A.6) on the right the operator Vk and setting Yk.z/ D R.z/Vk , we
obtain the system of N equations

Yk.z/C
NX

j D1Ij ¤k

Yj .z/Rk.z/Vk D Rk.z/Vk; k D 1; : : : ; N;

for N operators Yk.z/. This system was derived and used by L. D. Faddeev in [2] in
the study of three particle quantum systems.
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