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Uniform stability of the Dirichlet spectrum
for rough outer perturbations

Bruno Colbois, Alexandre Girouard, and Mette Iversen

Abstract. The goal of this paper is to study the Dirichlet eigenvalues of bounded domains
Q C Q'. With a local spectral stability requirement on 2, we show that the difference of
the Dirichlet eigenvalues of Q' and € is explicitly controlled from above in terms of the
first eigenvalue of Q’ \ € and of geometric constants depending on the inner domain Q. In
particular, Q’ can be an arbitrary bounded domain.
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1. Introduction and results

Let M be a complete smooth Riemannian manifold. The Dirichlet eigenvalues of a
bounded domain!  C M are denoted

A(Q) < 42(Q) < A3(Q) < -+ o0,

In the Euclidean case, there is a vast literature on spectral stability of the Dirichlet
spectrum under perturbation of the domain. The aim is to show that if Q' is an-
other domain which is, in some sense, geometrically close to €2, then its Dirichlet
eigenvalues are close to those of €2. See for instance the papers [6] and [10] and the
references therein, where spectral stability is studied in particular from the point of
view of y-convergence. Explicit control of the spectrum has been studied for example
in [4] and [13].

In this paper, we are interested in obtaining explicit estimates in the situation
where the two domains € and Q' might not be geometrically close. For domains
Q C Q, the difference of eigenvalues |1 (2) — A (2)] will be controlled in terms
of the fundamental tone A;(Q’ \ Q). In particular, the domains Q' and 2 can have
very different shapes, and the volume of Q' can be large compared to that of Q.
Some natural conditions on the inner domain €2 need to be assumed, but Q' can be

'A domain is a connected open set.
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any bounded open set. We will do this by combining local estimates based on the
work of E.B. Davies [8], with global estimates based on the work of the first author
and J. Bertrand [3]. Note that in this paper constants will depend only on the stated
parameters.

1.1. Statement of results. Our goal is to estimate |4 (22) — A (£2')] in the situation
where Q C Q' are bounded domains. Throughout we will use the notation

QL ={xeM:dx,Q) <e}, Q={xeQ:dx, Q > ¢}
and
p=2r(Q\Q), A=21(Q),

with the convention A;(#) = oo. Observe that because 2 C Q¢ N Q' C Q/, it
follows from monotonicity of the Dirichlet eigenvalues that
0 < Ak(Q) = 4 () = (A (QF N Q) — A(2)) + (A (R) — A4x(QF N Q).
(1.1)

where the two terms on the right hand side are non-negative. We estimate these two
terms separately, and call them the global and the local term respectively.

Global estimates. In Section 2, we prove the following theorem allowing control
of the first term in the right hand side of (1.1) when & = A{(Q"\ Q) is large.

Theorem 1.1. There are constants ay,by > 1 defined by the recurrence rela-
tions (2.1) and (2.2), with the following property. For each a € (0, %), if

AN 220
2(5)° Ta <1 (1.2)
I
then
AN 520
2@ N @)= A = aa(5)" A (1.3)
I
for the choice
Aye 1
e=(—) —
(M) VA

and with
Cha =2Y/2932D,; .

The strategy of the proof consists in a geometrical approach inspired by a special
case of the proof of Theorem 3.3 in [3].
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Remark 1.1. Inequality (1.3) is invariant under homothetic scaling of the domains
due to the specific choice of €. This is important for the potential value to numerical
analysis, and because the problem is naturally scaling invariant. However, this choice
of ¢ implies a need to bound A from below as we pass to the local estimate. This issue
is discussed in Remark 1.3.

Local estimates. In Section 3, we describe classes of domains £ C R” for which
we have uniform control of the second term in the right hand side of (1.1) for each
k € N. They consist of domains 2 with thickenings Q2° satisfying a weak Hardy
inequality.

Definition 1.1. A domain 2 satisfies a weak Hardy inequality with constants a, b if
for each u € C§°(2),

u2
/ - 5a/(|Vu|2+bu2),
Qé Q

where § denotes the distance function to the boundary of 2.

The following illustrates our use of the Hardy inequality for a particular class
of domains. (See Section 3.4 for the definition of the uniform external rolling ball
condition.)

Lemma 1.1. Let 9 > 0,79 > 0. Let A = A(sg, ro,n) be the family of open,
bounded sets Q in R", n > 2, with inradius bounded below by ry satisfying a uniform
external rolling ball condition with parameter y. Then there exist positive constants
y = vy(n), Cx = Cr(n, g9, ro) and e, = ex(n, o, ro) such that for any Q2 € A and
any ¢ < min(gg/2, &x),

0 < Ak (Q) — AL (Q°) < Cre”. (1.4)

Remark 1.2. The proof of Lemma 1.1 is based on the fact that the geometric hy-
potheses imply uniform control of the constants a and b appearing in the Hardy
inequalities for the thickenings €2%. This control allows the application of a result of
E.B. Davies from [8]. For convex domains, we obtain scale invariant local bounds
via an alternative geometric proof (see Proposition 3.1).

Corollary 1.1. Under the hypotheses of Lemma 1.1, there exist constants ay, by,
y = y(n),Cy = Ci(n,eo,r0) and g = ex(n, o, ro) such that for each domain
Q € A the following holds. Let o € (0, %), and suppose that (1.2) holds and that

(%)a % < min(eg, &x)
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holds. Then
A\ 320 Cr [ A\ve
Ak () = Al = ekl — A+ (=) . (1.5)
where as above A = A (Q') and cj o = 21/ @*)32by. Taking for example o = 2(2:-)/)
gives
Ak () — Al < (ck,a,\—zfzﬁ?’% + Ckk——ﬁféiﬂ) eec=20 (1.6)

Remark 1.3. Monotonicity implies that the eigenvalue A = A (2’) is bounded above
by A% (£2), so that the numerators of the right hand side of (1.3) and the first term in
the right hand side of (1.5) are bounded above in terms of €2 and k only. A more
delicate issue is bounding A from below, which is relevant for the second term in
the right hand side of (1.5). To ensure A is sufficiently large to have a meaningful
estimate, it is sufficient to bound A (2’) from below. Such a bound is obtained for
example by the Faber—Krahn inequality if we choose to bound the volume of €’ from
above.

In Section 3, similar results will be proved for families defined in terms of a
cone condition and a capacity density condition. In Section 3.1, we give two simple
examples to illustrate the necessity of two of the geometric conditions imposed in
Section 3.4. Our goal for this section is to give some simple criteria implying local
stability.

Proximity of eigenspaces. In Section 4, we control the proximity of the eigenspaces
on Q" and  in terms of © = A1 (R"\ ). Stability of eigenfunctions for the Dirichlet
problem is well known, so our contribution is to provide an explicit control in terms
of u.

1.2. Discussion of results. Stability of the Dirichlet spectrum is closely related to
the stability of the corresponding Dirichlet problem

—Au = fin2, u=00n0dRQ.

Indeed, it is well known that estimates for the associated resolvent operator Rg trans-
late into corresponding bounds for the eigenvalues. This has been studied from the
point of view of various interrelated notions of convergence of domains. See Chap-
ter 2.3 in [11] for an enlightening discussion. In [6] it is proved, under rather weak
assumptions on €2, that if a sequence 2, of domains containing €2 is such that

lim A;(2, \ Q) = oo,
n—oo
then €2, y-converges to €2, which implies

lim Ae(2n) = ().
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In this situation, our results provide explicit control of the difference |1 (2)—Ax (£2,,)]
in terms of w, and so control of the rate of convergence.

As mentioned, explicit estimates of the difference |4 (R2) — A (R')] in terms of
for example the measure of the symmetric difference 2’A in [4] have also been
given previously. Our estimate in terms of © = A1 (Q’\ ) allows control in addition
when the measure of Q' \ Q is large. The results of [4] are valid for classes of
Lipschitz domains described in Section 2.3 in [4]. Our results complement this by
providing a selection of geometric conditions under which we have control of the
spectrum.

Remark 1.4. In her PhD thesis [12], the third author has developed an alternative
version of Theorem 1.1 and Corollary 1.1. The emphasis of this work is scaling
invariance.

Acknowledgements. We would like to thank Michiel van den Berg, Dorin Bucur,
Antoine Lemenant, Yuri Netrusov, and Iosif Polterovich for valuable discussions.

2. Global estimates

The goal of this section is to prove Theorem 1.1. Let 2 C Q' be bounded domains in
the complete smooth Riemannian manifold M. Let ( f;);en be an orthonormal basis
of L2(Q') corresponding to the Dirichlet eigenvalues A; ('), which are extended by
zero outside of Q. Fix ¢ > 0 and let n: M — R be a cutoff function such that

For each k € N, the function
Y = nfi € Hy (¥ N Q)

will be used as test function in the variational characterization of A (£22¢) thanks to
a result of the first author and J. Bertrand Lemma 3.13 in [3]. This result is stated
here in a new scaling invariant version.

Lemma 2.1. Let k € N be a fixed integer. Let ay = 1 and for j € {2,...,k},
recursively define

Jj—1

g =1+(Ya) Q.1

i=1
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Let p; be a positive number such that 4p;a; < 1. Letby = 4andfor j € {2,....k},
recursively define

by = (14 8a;)((1 +bj_1)(1 +8a;) + 1). (2.2)

Foreach A > 0, the following holds: Let q be a quadratic form on a Euclidean space
E of dimension k. Let {1, ..., Y € E be such that for each i, ] <k,

Wi, W) = 8ijl < px and q(¥;) < A(1 + pg). (2.3)

Then there exists an orthonormal basis (F;)1<i<k of E such that for each i €

(1,2, k)
q(Fi) < A(1 + prby).

The proof of Lemma 2.1 differs only slightly from the original proof, and the
modifications will be presented in Section 5. In our situation, the quadratic form is
the Dirichlet energy defined on the space E = span(¥q, ..., V) in L2(Q*# N Q') C
L*(M).

Lemma 2.2. For each j € {1,2,...,k}, the Dirichlet energy of the test function
Vi = nf; satisfies

IV 1?2 < A+ A +2A12)01/2, (2.4)
where A = Z(M)

P

Proof of Lemma 2.2. Writing f = f; and ¥ = nf to simplify notations, direct
computation using the definition of v and of the cutoff function 7 leads to

/|vw|2=/ IVn|2f2+2/ ann-Vf+/ PIV P
928 QZS\QE QZS\QE 926

1 2
s e [ s [ e
& QZs\Qs £ 928\98 Q2e
A 2.5)

IA

1 2 1/2 2 12 2
Ly 2ay (/ IVfI) + [
& & QZs\Qs Q2e

< %A NIy
& &

In order to give an upper bound for

A= / 2
QZs\Qs
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an auxiliary cutoff function

XM — R
is introduced, satisfying
1
O<sy=1 |Vxl=-,
€
lin M\ Q°, (2.6)
X =
0in 2
It follows that
R A A 7
Q2e\Qe M\
The function y f is then used in the variational characterization of wu:
plaf < [ VOO =2 [ (ViR s+ 21
Q\Q Q\Q
2 2 2
<= [ a2 vy
£ Jang Q\Q
1
It follows that
1+ &%)
Aslle||2§2( 5 ) @2.7)
e p
which is substituted back into inequality (2.5) to complete the proof. O

The following lemma shows that the test functions y; form an almost orthonormal
family in L?2.

Lemma 2.3. Foreachi,j <k,
(i, W) — 8ij] < 862A,
where A = 2(%).

Proof of Lemma 2.3. For the case i = j, the inequality (2.7) implies

1+ 22
Wl = [ 7= e z-a( ),
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where the cutoff function y has been defined in (2.6). Since ||v¥;[|*> < || fil|*> = 1
this implies

1+ &2
&2

:'/5228(;72_1)]9};-+/928ﬁﬁ :

As f; and f; are orthogonal on " and extended by zero outside of €,

[z /Q,\Q%fl-fj

which together with 1 — n? < x2 implies

|(‘/’i»‘/’i)_1|§2( ):ezA.
Fori # j,

v =| [ 2

< z/ U2+ £ <2012 + Iy 1),
Q\Q2¢

0P =55 | = 2080+ 115 P,

Combining this with inequality (2.7) and noting that max(1;,A;) < Ax(2’), then

gives
1 —l— &2
‘ |IRZIE . O
Proof of Theorem 1.1. Given « € (0, Z)’ let
Ane 1
e=—) —.
(M) Vi

Note that because a; > 1 by definition, it follows from condition (1.2) that
e < 1/+/A, which implies A < 8% Thus

A4 2VAVE < —— M 4(%)1_4‘1/\ + 4(%)%_2'11

szf
AN 520
< 8(—) S

I
Moreover

4 A 1—2a A 2

Az -=4(5)  =8(5)"
e H M

By condition (1.2) of Theorem 1.1, the hypotheses of Lemma 2.1 then hold with

p=s() "
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This gives
AN S —2a
@ @) —Al = 8h(=)" A,
m
and so N
5—2a
M@ N Q) — Al < aa(5) A
n
for cx o = 21/ 32b;, as required. O

3. Uniform local stability

A family 4 of domains Q C M is uniformly locally stable if there exists &g > 0 such
that for each Q2 € A, a uniform upper bound for [Ax (2) — A (£29)] holds, in terms of
& < g9, k € N, and some geometric quantities depending only on 2. The family 4
described in the introduction (see Lemma 1.1) is a prototypical example of uniform
local stability. Other examples of such families will be given in Section 3.4.

3.1. Motivating examples. The goal of the present section is to give two simple
examples to illustrate the necessity of the geometric conditions imposed in the con-
struction of the families in Section 3.4. The first illustrates the need for a lower bound
on the inradius, while the second for a condition of the form (Q¢)y, C 2 for all
& < &9, as required in Lemma 1.1.

Example 1. The Dirichlet eigenvalues of the ball Q2 = B(0,r) C R” are
c(n, k)

(@) = == keN

where ¢(n, k) is the k-th eigenvalue of a ball of radius one in R”. It follows that

2r + ¢ )

Ak () — 1 (QF) = c(n,k)e(m

In order to have a uniform upper bound on A (2) — A (2%), itis necessary to consider
balls B(0, r) of radius r bounded below, say by ro > 0. Consider the family

A= A, rg) ={B(p.r): p e R",r > ro}.

For any ball Q € 4, and for any & < g9 = ro, one easily sees that

3c(n, k) ¢
A () — A (Q°) < (2 )—.
rO ro

In the more general context of Section 3.4, this will translate into lower bounds on
the inradius.
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Example 2. Consider the family A = {Q;: ¢ € (0, 1)} described in Figure 1. Some
of the features of this family are:

(1) The inradius of €2, is uniformly bounded.
(2) The boundary 02, is smooth and its curvature is uniformly bounded.

In spite of these two properties, this family is not uniformly locally stable. Indeed,
for each g9 > 0, choosing ¢ < g¢ leads to discontinuous variations of A; as ¢ varies
from 0 to &¢. This follows from the fact that Q¢ is completely different from €2, since
at & = g9/2, the domain Q§ becomes doubly connected.

In Lemma 1.1, this situation was avoided by requiring (2%) y. C Q forall e < g,
and we will need a condition of this type to be satisfied throughout.

Figure 1. The domains Q;,0 <t < 1.

3.2. Convex domains. Local spectral stability is particularly simple for convex
domains. Given ro > 0, consider the family

A = A, rg) = {Q C R*: Q is convex, inradius(2) > ro}.

Proposition 3.1. For any domain Q € A,

Ae(R) — A (2°) <

k) 2 2
CHE D)

Lemma 3.1. Let Q2 be a convex domain. Then (2°), = Q.

Proof of Lemma 3.1. A point x € R” lies in (2%), if and only if B(x,&) C Q°.
Suppose that x ¢ Q2. Then there exists a hyperplane separating x from 2. This
implies the existence of y € B(x,¢) such that d(y, Q) > e, which contradicts
B(x,¢e) C Q°. O
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Lemma 3.2. Letrg > 0. Let @ C R" be a bounded convex Euclidean domain such
that B(x,rg) C Q2. Then

Qf C H(Q)

where H is an homothety of factor 1 + ¢/ ro with center x.

Figure 2. Proof of Lemma 3.2

Proof. Fix y € 0Q2. There is a unique point y’ € dQ2° such that y € xy’, where xy’
denotes the segment connecting x and y’. There also exists a point x’ € dB(x, rg)
such that the segment x’y is tangent to 0B(x, r¢). Let z be the orthogonal projection
of y’ onto the line through x” and y. It follows from Thales’ theorem that we can
compare the lengths of the segments to get

xx’ o

vy Xy Xy

Together with Lemma 3.1 this implies

7 =
oz e

Xy o o
Noting that yy’ = xy’ — Xy, we then have
xy’ £
Xy ro

This gives y’ € H(R2), and so completes the proof as y € 92 was arbitrary. O
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3.3. A result of E. B. Davies. In studying the behavior of the spectrum of the outer
perturbation ¢ we rely on a result of Davies [8] related to the stability of the inner
perturbation 2. In the sequel, we will consider bounded domains 2 C M, where
M is a complete Riemannian manifold with Ricci curvature bounded from below by
—1. We will also denote by rg the inradius of €2, i.e. the radius of the largest ball
contained in .

Theorem 3.1. Let Q C M satisfy a weak Hardy inequality with constants a, b and
inradius bounded below by ro > 0. Then for each k € N, and each0 < a < 1//a,
there exists constants &y and Cy depending only on «,a, b, ro, k, such that

0 < Ag(Re) — Ak (Q) < Cre™,
Jorany 0 < & < &g.

The theorem is proved in [8] for more general operators, with @ C R”. In
Theorem 13 in [9] Davies extends the result to include the sharp exponent. For
insight we outline Davies’ proof for the situation we are considering. The proof will
make use of the following result proved in Theorem 14 in [8]. The fact that ¢ depends
only on a, o can be deduced from a careful reading of the proofs in [8] and [9].

Theorem 3.2. Let Q satisfy a weak Hardy inequality with constants a,b and let
0 < a < 1/4/a. Then there exists a constant ¢ depending only on a,a, such that for
each u € Dom(A),

2
u
/Q sz = =+ Dulall (= + ) ull

and
|Vul?
820{

< cll(=A + bull2 [ (=A + b)ul),,
where § again denotes the distance function to the boundary of Q.

Proof of Theorem 3.1. For each k € N, the span of the first k eigenfunctions ¢;,i =
1,2,...,k of Qis denoted Ay, and we write A = A () for the eigenvalues of €.
Givenu € A with |[u|, = 1,1et0 < & < ro/2, and write S = Q \ Q22,. Define the
cut-off function y: Q — R by

0 it x € QF,
x(x) = e Mdist(x, 0Q,)  if x € Q¢ \ Qae,
1 if x € Qop.
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Using that § < 2¢ and |V x| < 1/¢ on S leads to

‘/ VP - [ (vur 2(/ v+ [ |qu|2)—/ Vuf?
Q Q S S Q
52/ |uV)(|2+/ |Vu|2
S S

2 242 Ju? 2 |Vul?
8—2(28) o < 82""2“ + (28) o < 820’ .

=

=

Theorem 3.2 then gives

‘ [ veor [ v

This holds for any 0 < a < 1/+/a with ¢ = ¢(a, ). For the last inequality we have
used that u € Ay is of the form u = Zf;l a;@; giving —Au = Zle Aia;g; for
some «; € R, and thereby

I(=A 4+ bullz = (Ax + b)[Jull2,

< e2(23F2% 1 22%)¢ || (—A + b)ul2 (A + b)Y ?ul|,

< £2%22%9¢ (g + b)>2|u|? = £2%22%9¢ (g + b)*/2.

(=4 + )2l < (g + 5)?|[ul2.

Next we estimate

2
2 2 2 2420 |ul
u- — u)- < u-<eg

/sz /sz(X ) _/s - 5 §2t2e

< 72| (A + b)ull2| (A + ) ?ull2 (by Theorem 3.2)

S 82+2aC(kk + b)3/2.
Combining these two estimates with the min-max principle finally gives

IVvl3
= span{ y¢1, . ..,ka}}

(@) s T
2

ETLICOT R
Il

et £2%22%9¢ (Ag + b)3/?
1 —g2t2ec(Ay + b)3/2

If we take
1 1/2+20)
<( )

20 + )32 - ok
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we have

£292299¢ (g + b)3/?
_ 82+2“C(/\k + b)3/2

Ae(§2e) = e = 7

< 222 19c (U + b)),

Using again that the inradius is bounded below by ry, it follows from the proof of
Corollary 2.3 in [5] that there exists a constant ¢ depending only on n and k such that

n—1)>2
/\kS( 4)

. ¢
ré’
Putting everything together, we have
Me(Qe) — Ak < Cr(@,a, b, ro)e™,

forall ¢ < g = er(a,a,b, rg). For the extension to the sharp exponent %E please
see Theorem 13 in [9].

3.4. Examples of locally stable families. In this section we construct families 4 of
domains such that for each k and each ¢ > 0 small enough, the difference | A (2¢) —
Ak (€2)| is controlled in terms of €, k and some geometric hypotheses on 2. The
bounds are uniform in Q2 € 4.

The goal is to describe families of domains for which we can use Theorem 3.1
to get such uniform estimates. Because Theorem 3.1 relates A (€2) to A (Q2,) rather
than to Ax (2%), we will need the following conditions to hold for some g9 > 0 in
addition to the lower bound r( on the inradius.

— There exists N > 0 such that (2%) y. is contained in €2 for each ¢ < gy.

— The sets Q2° satisty the weak Hardy inequality with constants @, b independent
of ¢ < gp.

This allows control of |Ax(R2%) — A ((R2%)ne)|, and so of [A(28) — Ar ()]
because (2°)y. C Q. In the remainder of this section, we give an exposition of the
situation in Euclidean space R”.

The following three definitions will be used.

Definition 3.1. An open set Q@ C R” satisfies a uniform external cone condition [7],
p. 129, with parameters « > 0,8 > 0 if for any x € Q¢ we can find a cone C of
height § and angle « with x € C and C C Q€.

Definition 3.2. An open set 2 C R” satisfies a uniform external ball condition (2],
p. 2, with parameters « > 0, > 0 if for any z € Q2 and 0 < r < f there exists
x € Q¢ with d(z,x) < r such that B(x,ar) C Q€. It satisfies a uniform external
rolling ball condition with parameter 8 > 0 if this holds with @ = 1.
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Definition 3.3. An open set @ C R”,n > 3 satisfies a uniform capacity density
condition, see Lemma 3 in [1], with parameter ¢ > 0 if for any z € Q2 and any
r>0

cap(B(z,r)\ Q) = ar" 2.

Here cap is the capacity defined by
cap(T") = inf {/ |Vu?:v e CS°(R"), v>1onT}.
R

Remark 3.1. The uniform capacity density condition is weaker than the uniform
external ball condition, which again is implied by the uniform external cone condition
and finally by the stronger uniform Lipschitz condition. All of these conditions imply
that the set satisfies a weak Hardy inequality.

3.4.1. Uniform external rolling ball condition

Proposition 3.2. Let g9 > 0,79 > 0. Let A = A(gg, ro,n) be a family of open,
bounded sets Q2 in Euclidean space R",n > 2, with inradius bounded below by ry.
Then each Q2 € A satisfies the uniform external rolling ball condition with parameter
B = &g if and only if (QF), C Q for all € < gqy. In this case the sets QF, ¢ < g¢/2,
satisfy the uniform external rolling ball condition with parameter B = ¢ /2.

Proof. Suppose (2°), C Q forall ¢ < gg. Let z € Q2 and 0 < & < gg. Then as
(%), C 2, zisnotin (2°),, and so d(z, (2°)¢) = . This gives B(z, ) N (QF)° #
@, and so we choose x in this set. Then x € (2¢)¢ implies d(x, 2) > ¢, and so we
have B(x, &) C Q¢ with d(z, x) < ¢ as required.

Now suppose €2 satisfies the uniform external rolling ball condition with parameter
B = ¢eo. Let z € Q¢ and 0 < ¢ < gg. By the rolling ball condition, there exists x
such that d(z,x) < g9 and B(x,&9) C Q°¢. As ¢ < g9, we have x € (Q°)¢ and so
d(z, (22%)¢) < e. Thus z is not in (2°),, and we conclude that (2%), C €.

Now note that if (2¢), C Q for all & < g, then the sets Q°, ¢ < g¢/2, satisfy a
condition of the form ((Q2¢)%)s C Q¢ for all § < ¢o/2. Hence they also satisfy the
uniform external rolling ball condition with parameter § = g¢/2. O

Lemma3.3. Leteg > 0,79 > 0. Let A = A(eg, 1o, 1) be the family of open, bounded
sets Q in R™, n > 2, with inradius bounded below by ry satisfying a uniform external
rolling ball condition with parameter €y. Then there exist constants y = y(n),
er = er(n,e9,r9) and Cr, = Cr(n,eq,ro) such that for any Q2 € A and any
& < min(eg/2, &x),

0 < Ak () — Ak (%) < Cre”. (3.1)
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Proof. For ¢ < g¢/2, the sets Q° satisfy the rolling ball condition with parameter
£0/2 by Proposition 3.2. By the proof of Theorem 1.5.4 in [7], the sets satisfy the
weak Hardy inequalities

2
/Qg—zfa(/QWulz—i-buz), ueC&(Q)

and

2
/Z—zga(/ |Vu|2+bu2), u € Cy°(R2°),e <e0/2,
Q¢ Q¢

with constants b = (2/&9)? and

n /6 /2
a=— sin”~2(t)dt/ / sin”~2(t)dt.
32 Jo 0
Here § denotes the distance function to the boundary. Then by Theorem 3.1, eq. (3.4)
follows with y < % Ol

Combining Lemma 3.1 with Proposition 3.2 leads to the following corollary.

Corollary 3.1. Let g9 > 0,79 > 0. Let A = A(eg, 1o, n) be the family of open,
bounded sets Q in R",n > 2, with inradius bounded below by ro and such that for
each Q € A, (%), C Q for all ¢ < gy. Then there exist constants y = y(n),
er = er(n,e9,r9) and Cr, = Cr(n,eq,r9) such that for any Q2 € A and any
e <min(go/2,ex),

0 < A () — Ar (%) < Cre?. (3.2)
3.4.2. Capacity density condition

Lemma 3.4. Let N,gg,rg > 0. Let A = A(N, €9, 19, @, 1) be the family of open,
bounded sets Q2 in R™,n > 3, such that (2%)Ne C Q forall ¢ < gy. Suppose also Q2
satisfies a uniform capacity density condition with parameter o > 0, uniformly in & <
go. Then there exist constants y = y(a), & = ex(n,ro, ) and C, = Cr(n, rg,a)
such that for any Q € A and any ¢ < min(gg, &),

0 < Ak(R) — 1 () < Cx(Ne)?. 3.3)

This follows by a combination of Theorem 4.2 in [8] with Proposition 1 and
Lemma 3 in [1], which gives a Hardy inequality for sets satisfying a uniform capacity
density condition.
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3.4.3. Uniform external cone condition

Lemma 3.5. Let g9 > 0, ro > 0. Let A = A(eg,ro,a, B,n) be the family of
open, bounded sets in R" ,n > 2, with inradius bounded below by ry and such that
for each Q2 € A, the sets 2, Q°F, & < gg satisfy a uniform external cone condition
with parameters o« > 0,8 > 0. Then there exist constants y = y(«a, B), e =
ex(n,a, B,ro) and Cy = Cx(n,a, B, ro) such that for any & < min(taﬂnt(?;’/(g)/i)l L Ek),
and any Q € A,

0 < A (R2) — /\k(QE) < Cé’. 3.4)

Proof. As mentioned Lemma 3 in [1] gives a Hardy inequality for sets satisfying
a uniform capacity density condition and hence also for sets satisfying the stronger
uniform external cone condition. This ensures that a weak Hardy inequality exists
uniformly for the sets 2, Q% ¢ < g9. We now show (Q°%)y. C Q for some N =

N(o) uniformly in ¢ < taﬁnt(a;l/(g)/—lz—)l = ¢* by showing that x € Q€ implies x €

((257) yex)€. Then (3.4) follows by Theorem 3.1.
Take x € Q€ andlet C C Q€ be a cone of height 8 and angle o with x € C. Such

a cone contains a ball of radlus ¢* centered at a point y for which we then have y €

(@) and d(x, y) < b7y Thus x € (2 )nex)¢ for N > (tan(/2))™". O

3.4.4. The case of R2

Lemma 3.6. Let N, gg,rg > 0. Let A = A(N, g9, ro) be the family of open, bounded
sets Q in R? such that Q¢ is simply connected with inradius bounded below by ry,
and satisfies (Q¥)ne C Q for all ¢ < gg. Then there exist constants Cy, = Cy(ro)
and ey = ey (ro) such that for any Q € A and any ¢ < min(eg, &),

0 < Ak () — Ak (2°) < Cre'/2. (3.5)

The inequality follows by Theorem 3.1 using that simply connected planar sets
satisfy a Hardy inequality with a = 16, b = 0; see Theorem 1.5.10 in [7]. Note that
the sharp exponent for Theorem 3.1 in R? was first given in [14].

4. Proximity of eigenspaces
Some notation. Denote by A; = 4;(£2) the eigenvalues of 2, and by A} = 1; ()

the eigenvalues of Q’. Most of this paper has been devoted to estimation of the
difference A; — A’. We write

§; = a(/\ — 2.
J=
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We consider an orthonormal basis (f;")72, of eigenfunctions of Q’ corresponding
to the eigenvalues A;. For k > 1, let Ej be the successive distinct eigenspaces
for Q. Let ny = dim(Ey) be the corresponding multiplicities and set Ng = 0 and
Ny =n1 + -+ + ng. In particular, this means that for each k € N,

/\Nk_l-i-l == /\Nk_l-i-nk = /\Nk-

We also introduce the corresponding vector space E; spanned by the eigenfunctions
fj(’k—l"‘l’ e, fl(,k on . The projection operator Py : L*(Q') — E|_ is defined, for
/= Z;il aj jlyby
Ny
P(f)= Y. aff
J=Ni—1+1

The gaps between successive distinct eigenvalues of 2 are Ay, 41 — Ay, , and we
write

k
A = §I1=irll(kNj+1 —AN;)-

In particular, if i < k, we have the relation 18\—’ < —18\’;( which will be used in the proof,
1
[ 1 - s e 6 1 .
and A_/;( < 5 implies =3 foralli <k.

We can now express the proximity of eigenspaces.

Proposition 4.1. There exists a sequence of constants (Ag)7—, such that if Sy, +1 <
2ATk’ then the following holds.
K

A. Foreach f € Ey, | f|| = 1, we have

ARSNg_ +1
10 = PO = 1= [P = HENemtt
k
B. Foreach f' € E;, | f'|| = 1, there exist f € Ey, || f|l = 1 with

4AkSN, 41
I - pp = 2
k

C. Foreach f € Exo, 1 >0, || f|| = 1, we have

4075 AN+
Ak ’

1P+ -+ PP <

, , A k=14,
Moreover, the constants are defined by the induction Ay, = 248 %}’_H,

and so depend on k and the spectrum of Q2.

We first show the following technical proposition.
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Proposition 4.2. Under the condition §n, +1 < %Ai,we have, for f € Ei, | f]l =1,
Lf = Pi(OI> = 1= 1P ()]
2
= A_i(SNi—l'H + Ay IPLCS) + -+ Pic (D).

Proof. We consider f € E; and, applying ¢, we get the relations

A1 —a (P = Y a(Pi(f))

j<i
= 3 q(Pi () + My, (1= S 1PHHIP)
J<i J=<i

and
AN +1—q(Pi(f))
= ANyt = My 1 = POy 4
—(@(Pi(f) = My, 1 PO,
Putting this together, we get

M1 = My + = 1PN, 4

>3 q(Pi(f) + Ay, 1 (1= 1P (HIP)

j<i =i
+q(Pi(f) = Ay il PO
Noticing that ¢(P; (f)) — /VNi_1+1 |1 P; (f)]I* = 0, we get

ANt = My F Ay 2 PO

Jj<i

> (1= P (NI Xy, 41 = Ay 1)

ie.
(AN,-_ +1 _/VN +1) + A 1 Z j ||Pj(f)||2
(=[P (NIP) < —— = -
Ni+1 N;_1+1
Moreover,

Mv,-+1 _’\3v,~_1+1 = (Mv,-+1 —AN;+1) + (AN+1 = AN 41)
+ (AN +1 _’\3v,~_1+1)

> A — (/\N,'—H _A/N,-+1)'
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So under the condition (An, +1 — /\;\,iﬂ) < %Ai, we get

AN;y+1 = Ay, ) + Ay < 1P (O

) 2
A= 1P NIP) =2 o

Before proving Proposition 4.1, we recall a fact of linear algebra which is needed
for the proof.

Lemma 4.1. Let (V, (.,.)) be a prehilbert vector space, P a projector and v a vector
of norm 1 such that P(v) # 0. Then we have

o= o

2
Tyl = 40— IP@IP).

Proof. We have

P()
o~ rppl = 0= P@I+ |- - ”P( 0 D | <20 - )
and
lv= PO = (v.v = P@)) = (v.0) = (v. P@)) = 1 = [P)|>. O

Proof of Proposition 4.1. The proof is by induction on k.

(1) We show that A is true for k = 1.

(2) We show that if A is true for k, then B is true for k.

(3) We show that if A and B are true for 1, ..., k, then C is true for k.

(4) We show that if A, B, C are true for 1, ...,k — 1, then A is true for k.
So because A is true for k = 1, it follows that B and C are true for k = 1, and this

implies that A is true for kK = 2. Then the induction continues in the obvious way.
(1) Proof of A for k = 1: this follows directly from Proposition 4.2 with A; = 2.
(2) Proof of A true for k implies B for k: let f" € Ei, [ f'|| = 1. If 6y, _ 41 <

2ATk’ the restriction of Py to Ej is bijective and there exist f € Eg, || f|| = 1 with

[ = R Tt follows from Lemma 4.1 that | £/ — £1|> < 4[[(1 — Po)(f)]? <

AkSN_ 41
4T‘

(3) Proof of A and B true for 1,..., k implies C for k.
Let f € Exy;,/ > land || f| = 1. Leti < k. For any h' e El|N| =

because P; is surjective under the hypothesis oy, 11 < there exist 1 € El,

- P; (h
2] = 1 with i’ = P Eh;" We have

(Pi(f). 1) = (L)) =(f.h" = h)+ (f h).

ﬁ’
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Asin the case k = 1, we have (f, h) =0, so

Pi(h)
(Pi(f). 1)y = (f.h —h) < | fIlIIK =h] = |h— :
’ b~ e
By Lemma 4.1, we get |(P; (), h')|> < 4(1—| P;(h)|?) < 4A ’ 1+1 by A. Using
S ESRAT 8Nk1\_/:+1 , and because this is true for each " € E, ||h/|| = 1, we have

SN, 1+1
1P (N)II> < 4Ai—kA‘ ,
k

and we deduce that

8 k—1
ZHP (NI < 4(2A )

i=1

(4) Proof of A, B, C true for 1, ...,k — 1 implies A for k.
Note that, because we have A; > 2, the hypothesis Sy, +1 < A 1mphes SNe+1 =

T' By P1r\0p0s1t10n 4.2, we have for f € Eg, || f|| = 1, and under the condition
SNk-I-l =< _k’

17 = PN = —(5Nk 1+ Ay 1 PU) A+ P (O1P).

By induction, | P1(f) 4 -+ + Pt (F)? < 451 4; )"’Nk —j=21_, which is by
definition < 4(Y ! Ai)"”NkA—ikl“.

k=1 4
So we choose Ay =2+8W. O

5. Proof of Lemma 2.1

The proof of Lemma 2.1 is very close to the proof of Lemma 3.13 in [3]. Under the
hypothesis

Vi) =il <p. q(¥i) <Ai(1+p),

for 1 <i,j <k, we prove that
q(Fi) < Ai(1 + pby).

Here the constants by are defined by

b = (1 +8ag)(1 + (1 + pbg—1)(1 + 8ay))
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(where the ay are defined in the statement of the lemma) with by = 4, and {F; }f-‘zl
is the orthonormal basis naturally associated to the basis {; }f.‘:l. We have

hi
F =
7l

where
i—1

hi =i =Y (Fj.yi)F)

Jj=1

In particular, by depends only on k (and not on A ), but in a rather complicated form.
We also denote by p(v;) the projection of v; given by p(v;) = E};ll (Fj, ¥i)Fj,
so that we have the relation ¥; = h; + p(¥;).

Proof. First part. The beginning of the proof is verbatim the same as the proof of
Lemma 3.13 in [3].

We suppose the result is true for s < k and show it for s = k. As a first step, note
that

q(F1) =

q(¥1) 1+p

< =1
vl? — (
1

so using p < 5 we can take by = 4. We also use without repeating the proof the
following fact proved in the first part of Lemma 3.13 in [3]. Fori = 1,...,k — 1
and s > i, we have

1+p%)

| WS’ | = \/_alp
We have for s < k

s—1 s—1

q(p(s) = Y Y (. F) (V5. F1)q(F;. ).

j=1lIl=1
By the recurrence hypothesis we have
q(F;. F) < q"2(Fpg' > (F)
< (L + pb )2 (1 + pb))/? < As—i (1 + pbs-1),
and, using the definition of the a; along with the Cauchy-Schwarz inequality,

s—1

q(p(¥)) < As—1(1 + pbs—1)20% Y aja; < 2p%asks—1(1 + pbs—1).
Ji=1

We will also use the fact that ||ig||?> > 1 — pas. This implies (and this is the main
change)

o7 = 1 20
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Second part. The following includes some new developments in comparison
with Lemma 3.13 in [3].
We use that for2 < s <k

4(Fy) < ﬁ(q(ws) +a(ps) + 27T W)

and get the following estimate for q(F):
q(Fr) < (14 2pap) A (1 + p) + Ak—12p%ar (1 + pbi—1)
+ 2002 (U )2 ar (1 + pbr-1)'2p].
Because A1 < Aj, we get
q(F) < Ae(1 4 2pa)[(1 + p) + 2p°ax (1 + pby—1)
+2(1 4 )" Qar(1 + pbi—1))"?p].
But
(1+2pa)[(1 + p) + 2p%ar (1 + pbr—1)
+2(1 4 p)"?Qar(1 + pbe—1))"/?p]
= 1+ p2ar[(1 + p) + 2p’ar (1 + pbx_1)
+2(1+ )" ?Qar (1 + pbr—1))"?p]
+ o[l + 2pag(1 + pbi—1) +2(1 + p)"/>2ax (1 + pbg—1))"/?].
So to obtain the conclusion, we have to show that
b = 2ax[(1+ p) + 2p%ax (1 + pbr—1) +2(1 + p)"/>(2ax (1 + pbg—1))"/*p]
+ [1+ 2par (1 + pbi—1) +2(1 + p) /> (2ax (1 + pby_1))""?].

We simplify this expression using inequalities implied by the definition of p and ay
suchas p < 1/2, 2p2ak < 1,2pay < 1along with 4/x < x if x > 1. This gives

[(1+ p) + 2p%ar (1 + pbi—1) + 2(1 + p) /> Qar (1 + phi_1))"/?p]
< [(1 4 p) + 2p%ar(1 + pbr—1) + 2(1 + p)(2ar(1 + pbr—1))p]
< [(1+ p) + (1 + pbr—1)(2p%ar + 4(1 + p)ag)]
<2+ (1 + pbg—1)(1 + Bag)

and
[1 4 2pax (1 4 pbr—y) + 2(1 + p)'/>2ar (1 + pb—1))"/?]
< [1+2pa(l + pbx—1) + 2(1 + p)(2ax (1 + pbi—1))]
=1+ (1 + pbg-1)[2par + 4(1 + p)a]
1+ (14 8ag)(1 + pbr_1).

IA
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We can then finish with

2ar[2 + (1 4 pbr—1)(1 + 8ai)] + [1 + (1 + 8ax)(1 + pbi—1)]
= (1 4+ pbr—1)(1 + 8ag)(1 + 2ax) + 1 + 4ay
< (1 4+ pbr—1)(1 + 8ar)(1 + 8ag) + 1 + 8ay
= (14 8ax)(1 + (1 4 pbr—1)(1 + 8ax))

< by,

using that the assumption (1.2) of Theorem 1.1 implies p < 1. O
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