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Cwikel’s theorem and the CLR inequality

Rupert L. Frank1

Abstract. We give a short proof of the Cwikel–Lieb–Rozenblum (CLR) bound on the number
of negative eigenvalues of Schrödinger operators. The argument, which is based on work of
Rumin, leads to remarkably good constants and applies to the case of operator-valued potentials
as well. Moreover, we obtain the general form of Cwikel’s estimate about the singular values
of operators of the form f .X/g.�ir/.
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1. Introduction

Among the most beautiful theorems in spectral theory is Cwikel’s result about trace
ideal properties of operators on L2.Rd / of the form f .X/g.�ir/. Here f .X/
denotes multiplication by the function f in position space and g.�ir/ denotes mul-
tiplication by g in momentum space. Cwikel’s theorem says that f 2 Lq.Rd / and
g 2 Lq;w.Rd / implies f .X/g.�ir/ 2 Sq;w.L2.Rd // for q > 2. (We recall the
definition of weak Lq and weak Sq spaces below.) This was conjectured by Simon
in [24] and proved by Cwikel in [3]; see also the review [1] for some extensions of
this result.

An immediate consequence of Cwikel’s theorem is the famous Cwikel–Lieb–
Rozenblum bound on the number N.0;��C V / of negative eigenvalues (counting
multiplicities) of Schrödinger operators ��C V in L2.Rd /, d � 3, namely,

N.0;��C V / � const
Z

Rd

V.x/d=2� dx: (1.1)

Here V.x/� D maxf�V.x/; 0g denotes the negative part. The meaning of this bound
is that the semi-classical approximation,
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“
Rd �Rd

�fp2CV.x/<0g
dxdp

.2�/d
D .2�/�d jfp 2 Rd W jpj < 1gj

Z
Rd

V.x/d=2� dx;

is, in fact, a uniform upper bound on N.0;�� C V / up to a universal constant
depending only on the dimension. Different proofs of (1.1) were given in [21], [17],
[5], [16], and [2]; see also the reviews [14] and [11].

One of our goals here is to provide a new and simple proof of Cwikel’s theorem
and the CLR inequality. Our starting point is the remarkable paper [22] by Rumin
which contains, among others, the inequality

Tr �1=2.��/�1=2 � const
Z

Rd

�.x; x/d=.d�2/dx (1.2)

for operators 0 � � � .��/�1 on L2.Rd /, d � 3. As we shall see, this is a
very powerful inequality (for instance, for � of rank one, it reduces to Sobolev’s
inequality). Surprisingly, its proof is elementary and uses not much more than the
triangle inequality for the Hilbert–Schmidt norm. It also yields a rather good value
for the constant. In this paper we shall derive the CLR inequality (1.1) from (1.2) and
we shall extend (1.2) to L2.Rd / ˝ G with constants independent of the dimension
of the auxiliary Hilbert space G . Both results are new and go beyond [22] and [23].
Our results in the operator-valued case improve upon previous results of [10] (who
follows [3] and has larger constants) and [7] (who can only deal with .��/s for
0 < s � 1). Moreover, we show that a modification of Rumin’s proof of (1.2) yields
an easy proof of Cwikel’s theorem mentioned at the beginning. This is the topic of
Section 2.

Besides its simplicity and its good constants, another advantage of Rumin’s in-
equality (1.2) is that it is not limited to the Laplacian (or its powers) on Rd , but has
extensions to a large class of abstract operators. Roughly speaking, the only assump-
tion is the existence of a density of states, and the energy dependence of this density
of states determines the way in which �.x; x/ enters the right side of (1.2). This
generality of [22] and [23] was of crucial importance for the results in [9] and [6].
In this paper we do not aim at highest possible generality, but we do include a new
theorem about operators T on arbitrary measure spaces X . We prove that a diagonal
heat kernel bound exp.�tT /.x; x/ � C t��=2 with � > 2 implies a CLR inequality
N.0; T C V / � C 0

�C
R
X
V �=2� dx; see Theorem 3.2. This improves earlier results

in [15] and [8] who needed the additional assumption that exp.�tT / is positivity
preserving.

In addition to deriving the CLR inequality (1.1) from (1.2) we are able to answer
the following conceptual question about (1.2). Namely, besides the new inequal-
ity (1.2) Rumin’s papers [22] and [23] contain a new proof of the inequality

Tr �1=2.��/�1=2 � const
Z

Rd

�.x; x/.dC2/=ddx (1.3)

for operators � on L2.Rd / satisfying 0 � � � 1.
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Inequality (1.3) is due to Lieb and Thirring [19] and plays an important role in their
proof of stability of matter. It is well known that (1.3) is equivalent to an inequality
about eigenvalue sums of Schrödinger operators, namely,

Tr .��C V /� � const
Z

Rd

V.x/.dC2/=2� dx: (1.4)

By “equivalence” we mean that there is a duality principle between (1.3) and (1.4) and
that the optimal constant for one inequality determines that for the other inequality.
Given the striking similarity between (1.2) and (1.3) it is natural to ask whether there
is an inequality for Schrödinger operators which is equivalent to (1.2). We are able
to answer this question completely (Lemma 2.4) and see that (1.2) is “essentially”
equivalent to the CLR inequality. More precisely, we prove that (1.2) is equivalent
to a bound on the Birman–Schwinger operator .��/�1=2V�.��/�1=2 in the weak
trace ideal Sd=2;w.L2.Rd //, however, not with its standard (quasi-)norm but with an
equivalent expression (Lemma 2.3).

For the impatient reader who wants to see immediately and without going through
various dualities how (1.2) implies the CLR bound (1.1) we finish this introduction
with a short derivation of (1.1). For fixed " > 0 we know that the spectrum of
��C V in the interval .�1;�"/ is finite if V� 2 Ld=2.R

d /. Let  1; : : : ;  N be
linearly independent functions which span the corresponding spectral subspace. Our
goal will be to prove an upper bound on N in terms of V , independently of ". We
may assume that the functions are normalized so that hp�� j ;

p�� ki D ıjk .
Note that with this normalization, the  j ’s are linear combinations of eigenfunctions
but, in general, not eigenfunctions. Since they span the spectral subspace of ��CV

corresponding to .�1;�"/ we know, however, that � D P
j j j ih j j satisfies

0 � Tr �1=2.��C V /�1=2: (1.5)

Because of the normalization of the  j ’s we also know that
p���p�� � 1 and Tr �1=2.��/�1=2 D N:

Thus, we infer from (1.2) that

N � Kd

Z
Rd

�.x; x/d=.d�2/dx

for some constant Kd and, therefore, that

Tr V� � �
Z

Rd

V.x/��.x; x/dx

� �
� Z

Rd

V d=2� dx
�2=d � Z

Rd

�.x; x/d=.d�2/dx
�.d�2/=d

� �N .d�2/=dK
�.d�2/=d

d

� Z
Rd

V d=2� dx
�2=d

:
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We insert this bound into (1.5) and get

0 � Tr �1=2.��C V /�1=2

D N C Tr V�

� N �N .d�2/=dK
�.d�2/=d

d

� Z
Rd

V d=2� dx
�2=d

:

Thus,

N � K
�.d�2/=2

d

Z
Rd

V d=2� dx;

independently of ", which proves (1.1).

Acknowledgements. The author is very grateful to A. Laptev, M. Lewin, E. Lieb,
R. Seiringer and T. Weidl for helpful discussions.

2. Cwikel’s theorem

To state our main result we recall that Lp;w.Rd / denotes the space of functions a on
Rd for which the (quasi-)norm

kakp
p;w D sup

�>0

�pjfjaj > �gj

is finite. We shall prove the following theorem.

Theorem 2.1. Let 0 � a 2 Lp;w.Rd / and 0 � b 2 Lp.Rd / for some p > 1. Then
for all � > 0

Tr.a.�ir/1=2b.X/a.�ir/1=2 � �/C

� ��pC1 .p C 1/p�1

.p � 1/p .2�/�d kakp
p;wkbkp

p :

Before proving this result we shall show that Cwikel’s theorem is an easy con-
sequence of it. We recall that Sq;w.H / is the space of compact operators K on a
separable Hilbert space H satisfying

kKkq
q;w D sup

�>0

	qn.	; .K�K/1=2/ < 1:

Here n.	; .K�K/1=2/ denotes the number of eigenvalues of .K�K/1=2 larger than 	,
counting multiplicities.
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Corollary 2.2 (Cwikel’s theorem). If f 2 Lq.Rd / and g 2 Lq;w.Rd / for some
q > 2, then f .X/g.�ir/ 2 Sq;w.L2.Rd // with

kf .X/g.�ir/kq
q;w �

� q

q � 2
�q=2�q C 2

q � 2
�.q�2/=2

.2�/�d kf kq
qkgkq

q;w :

In order to deduce Corollary 2.2 from Theorem 2.1 we use the following lemma,
which shows that the quantity bounded in Theorem 2.1 is indeed equivalent to the
norm in a weak Schatten class.

Lemma 2.3 (Equivalent quasi-norms). LetK be a compact operator on a separable
Hilbert space H and let q > 2. Then K 2 Sq;w.H / if and only if

jKj0q defD .sup
�>0

�q=2�1 Tr.K�K � �/C/1=q < 1:

Moreover,

jKj0q �
� 2

q � 2
�1=qkKkq;w �

� q

q � 2
�1=2jKj0q :

Proof. Since

.E � �/C D
Z 1

�

�.�;1/.E/d


we have

Tr.K�K � �/C D
Z 1

�

n.
p

; .K�K/1=2/d
:

If kKkq;w is finite, this is bounded by

Z 1

�

n.
p

; .K�K/1=2/d
 � kKkq

q;w

Z 1

�


�q=2d


D .q=2� 1/�1kKkq
q;w�

�q=2C1:

Thus, jKj0q � .q=2� 1/�1=qkKkq;w . Conversely, since

�.�2;1/.E/ � .	2 � �/�1.E � �/C
for any � < 	2 we have

n.	; .K�K/1=2/ � .	2 � �/�1 Tr.K�K � �/C:
If jKj0q is finite, this is bounded by

.	2 � �/�1 Tr.K�K � �/C � .	2 � �/�1��q=2C1.jKj0q/q:
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We optimize the right side by choosing � D .1� 2=q/	2 and obtain

n.	; .K�K/1=2/ � q

2

�
1� 2

q

��q=2C1

	�q.jKj0q/q ;

that is, kKkq;w � .q=2/1=q.1� 2=q/�1=2C1=qjKj0q, as claimed.

Proof of Corollary 2.2. After applying unitaries, we may assume that f and g are
non-negative. We put K D f .X/g.�ir/. Applying Theorem 2.1 with a D g2,
b D f 2 and p D q=2 we infer that

.kKk0
q/

q D sup
�>0

�q=2�1 Tr.K�K � �/C

� .p C 1/p�1

.p � 1/p .2�/�d kakp
p;wkbkp

p :

Lemma 2.3 allows to turn this into a bound for kKkq;w , which is the statement of
Corollary 2.2.

We now turn to the proof of Theorem 2.1. The variational principle for sums of
eigenvalues allows us to reformulate it in a dual form, in which we shall actually prove
it. The precise statement is the following. (As usual, we write p0 D p=.p � 1/.)

Lemma 2.4 (Duality). Let A be a non-negative operator in L2.X/ (where X is a
sigma-finite measure space) with kerA D f0g and let p > 1. Then the inequalities

Tr.A1=2bA1=2 � �/C � D��pC1

Z
X

bpdx (i)

for every 0 � b 2 Lp.X/ and � > 0, and

Tr �1=2A�1�1=2 � K

Z
X

�.x; x/p
0

dx (ii)

for every operator 0 � � � A, are equivalent, in the sense that the optimal constants
D and K are related by

.pD/p
0

.p0K/p D 1:

Proof. This is a consequence of the variational characterization for the expression on
the left side of (i), namely,

Tr.A1=2bA1=2 � �/C D sup
0�ı�1

Tr ı1=2.A1=2bA1=2 � �/ı1=2:
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To prove that (ii) implies (i) we change variables from ı to � D A1=2ıA1=2. Then
the conditions 0 � ı � 1 imply that 0 � � � A, and therefore by (ii),

Tr ı1=2.A1=2bA1=2 � �/ı1=2 D Tr �1=2.b � �A�1/�1=2

�
Z

X

.b� � �K�p0

/dx;

where �.x/ D �.x; x/. Maximizing the right side over all functions � � 0 (i.e.,
ignoring the fact that � was related to � ) we find that

Z
X

.b� � �K�p0

/dx � .K�/�pC1 .p � 1/p�1

pp

Z
X

bpdx;

i.e., (ii) holds and the optimal constant satisfies

D � K�pC1 .p � 1/p�1

pp
:

The proof of the converse implication is similar and is omitted.

We now prove the dual form of Theorem 2.1. As we mentioned in the introduction,
the proof follows closely some ideas of Rumin [22] and [23].

Lemma 2.5. Let a 2 Lp;w .Rd / with p > 1 and assume that a.e. a > 0. Then for
any operator � on L2.Rd / satisfying 0 � � � a.�ir/, we have

Tr �1=2a.�ir/�1�1=2 � p � 1
p C 1

Rsc
d;p kak�p0

p;w

Z
Rd

�.x; x/p
0

dx

where

Rsc
d;p D .2�/d=.p�1/

�p � 1
p

�p=.p�1/
:

The superscript “sc” in Rsc
d;p

stands for “semi-classical.” This will be further
explored in Section 4.

It is part of the assertion that the assumption Tr �1=2a.�ir/�1�1=2 < 1 implies
that the diagonal �.x; x/ makes sense for a.e. x 2 Rd and belongs to Lp0.Rd /. Note
that this diagonal value is well-defined if � is a finite rank operator. Given the bound
from the lemma in this case, which is independent of the (finite) rank, the extension
to general � can be carried out, for instance, by monotone convergence. We omit the
details since the finite rank version is all we need for the proof of Theorem 2.1.
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Proof. Since

E�1 D
Z 1

0

�.0;��.E/�
�2d�;

the spectral theorem together with Fubini’s theorem implies that

Tr �1=2a.�ir/�1�1=2 D
Z 1

0

Tr ��

d�

�2

D
Z

Rd

Z 1

0

�� .x/
d�

�2
dx;

(2.1)

where

�� D �.0;��.a.�ir//��.0;��.a.�ir//

and where

�� .x/ D �� .x; x/

is its density.

Our next goal is to find a pointwise lower bound on �� in terms of �. To do this,
let � � Rd be any set of finite measure and note that

�Z
�

�.x/dx

�1=2

D k�1=2��k2

� k�1=2�.0;��.a.�ir//��k2 C k�1=2�.�;1/.a.�ir//��k2;

where k � k2 is the Hilbert–Schmidt norm. The first term on the right side is

k�1=2�.0;��.a.�ir//��k2 D k�1=2
� ��k2

D
�Z

�

�� .x/dx

�1=2

;

and the second term, since � � a.�ir/, is bounded from above by

k�1=2�.�;1/.a.�ir// ��k2 � ka.�ir/1=2�.�;1/.a.�ir// ��k2

D j�j1=2

�Z
Rd

a.p/�fa>�g.p/
dp

.2�/d

�1=2

:
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Since a.p/ D R 1
0 �fa>�g.p/d
 and since jfa > tgj � kakp

p;w t
�p, we find

Z
Rd

a.p/�fa>�g.p/dp D
Z 1

0

Z
Rd

�fa>�g.p/�fa>�g.p/dpd


D
Z 1

0

jfa > maxf
; �ggjd


� kakp
p;w

Z 1

0

minf
�p; ��pgd


D p

p � 1
kakp

p;w�
�pC1:

Thus, we have shown that

�Z
�

�.x/dx

�1=2

�
�Z

�

�� .x/dx

�1=2

C j�j1=2.2�/�d=2
� p

p � 1
�1=2kakp=2

p;w�
�.p�1/=2:

Since this is valid for any �, Lebesgue’s differentiation theorem implies that

�.x/1=2 � �� .x/
1=2 C .2�/�d=2

� p

p � 1
�1=2kakp=2

p;w �
�.p�1/=2 a.e.;

and therefore

�� .x/ �
�
�.x/1=2 � .2�/�d=2

� p

p � 1
�1=2kakp=2

p;w �
�.p�1/=2

�2

C a.e.:

Finally, we insert this bound into (2.1) and compute
Z 1

0

�
�.x/1=2 � .2�/�d=2

� p

p � 1
�1=2kakp=2

p;w�
�.p�1/=2

�2

C
d�

�2

D �.x/p=.p�1/.2�/d=.p�1/
�p � 1

p

�p=.p�1/kak�p=.p�1/
p;w

p � 1
p C 1

for a.e. x.

Proof of Theorem 2.1. If a > 0 a.e., then Lemmas 2.4 and 2.5 imply that

Tr.a.�ir/1=2b.X/a.�ir/1=2 � �/C � ��pC1
�p C 1

p � 1
�p�1

Dsc
d;pkakp

p;wkbkp
p ;

where

Dsc
d;p D .p � 1/p�1

pp
.Rsc

d;p/
�pC1:
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For general non-negative a we apply the bound to a" D maxfa; " Qag, where Qa is a
fixed, positive function in Lp;1.Rd /. Since

Tr.a.�ir/1=2b.X/a.�ir/1=2 � �/C D Tr.b.X/1=2a.�ir/b.X/1=2 � �/C
� Tr.b.X/1=2a".�ir/b.X/1=2 � �/C
D Tr.a".�ir/1=2b.X/a".�ir/1=2 � �/C;

the assertion follows from the bound for a" and the fact that lim ka"kp;w D kakp;w .

3. Generalizations

3.1. An operator-valued version of Cwikel’s theorem. The works [12] and [13]
have made clear that good constants in CLR and related inequalities in higher di-
mensions can be derived from operator-valued versions of these inequalities in lower
dimensions. In the case of Cwikel’s theorem this strategy was implemented in [10].
The constant in the CLR inequality for Schrödinger operators with matrix-valued po-
tentials was improved in [7]. In this subsection we show that Rumin’s proof can also
be modified to yield an operator-valued version of Cwikel’s theorem. This extension
is not straightforward and leads, unfortunately, to a somewhat worse constant than
that in Corollary 2.2.

Another thing that we show in this subsection is that the structure of Rd is not
really relevant for Cwikel’s theorem. Indeed, our theorem holds on a general pair
of measure spaces, with the role of the Fourier transform being played by a general
unitary operator with bounded integral kernel. Results in this spirit have already
appeared in [1], but it is not clear whether their techniques also apply in the operator-
valued case.

We begin with some notations. In this subsection, let .X; dx/ and .Y; dy/ be
sigma-finite measure spaces and let H and G be separable Hilbert spaces. We denote
by Lp.X;Sp.H // the space of all measurable functions f on X with values in the
compact operators in H such that

kf kp

Lp.Sp/
D

Z
X

kf .x/kp

Sp.H/
dx < 1:

Similarly, Lp;w.Y;B.G // is the space of all measurable functions g on Y with values
in the bounded operators on G such that

kgkp

Lp;w.B/
D sup

�>0

�pjfy 2 Y W kg.y/kB.G / > �gj:
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Theorem 3.1 (Operator-valued version of Cwikel’s theorem). Let

ˆ W L2.X;H / �! L2.Y;G /

be a unitary operator, which maps L1.X;H / boundedly into L1.Y;G /. Let q > 2.
If f 2 Lq.X;Sq.H //, g 2 Lq;w.Y;B.G //, then

fˆ�g 2 Sq;w.L2.Y;G /; L2.X;H //

with

kf ˆ�gkq
q;w � q

2

� q

q � 2

�q�1

C 2 kf kq

Lq.Sq/
kgkq

Lq;w.B/
;

where C D kˆkL1!L1
.

This constant is worse than that of Corollary 2.2 by a factor of q
2

�
q

qC2

�.q�2/=2
> 1.

It is still better, by a factor of 22q�5q, than the constant

�q
2

�q� 8

q � 2
�q�2 q

q � 2 C
2:

from [10] (which is the same as in [3] in the scalar case).

Proof. The heart of the proof is the following analogue of Lemma 2.5. Namely, if
p > 1 and a 2 Lp;w.Y;B.G // with a.y/ � 0 and ker a.y/ D f0g for a.e. y 2 Y ,
then for any operator � on L2.X;H / satisfying 0 � � � ˆ�aˆ, we have

Tr �1=2ˆ�a�1ˆ�1=2

� .p � 1/.2p�1/=.p�1/

p2p=.p�1/
C�2=.p�1/ kak�p0

Lp;w.B/

Z
X

TrH �.x; x/p
0

dx:
(3.1)

Here again C D kˆkL1!L1
.

Accepting (3.1) for the moment, we briefly explain how to finish the proof of
Theorem 3.1. First, via a straightforward extension of Lemma 2.4 we infer from (3.1)
that

Tr.a1=2ˆbˆ�a1=2 � �/C � ��pC1
� p

p � 1
�p

C 2kakp

Lp;w.B/
kbkp

Lp.Sp/
; (3.2)

provided that a.y/ and b.x/ are non-negative for a.e. x and y. This implies Theo-
rem 3.1 in the same way as Theorem 2.1 implied Corollary 2.2.

We now turn to the proof of (3.1). We write, similarly as before,

Tr �1=2ˆ�a�1ˆ�1=2 D
Z

X

Z 1

0

TrH �� .x; x/
d�

�2
dx (3.3)

with �� D P��P� and P� D ˆ��.0;��.a/ˆ.
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For any Hilbert–Schmidt operator H in H , any set� � X of finite measure and
any " > 0, we apply the Schwarz inequality to findZ

�

TrH H��.x; x/Hdx D TrL2.X;H/ ��H
��H��

� .1C "/TrL2.X;H/ ��H
�P��P�H��

C .1C "�1/TrL2.X;H/ ��H
�P?

� �P
?
� H��:

(Here H�� is short for �� ˝H and P?
� for 1� P� .) For the first term on the right

side, we notice that

TrL2.X;H/ ��H
�P��P�H�� D

Z
�

TrH H��� .x; x/Hdx:

In order to bound the second term we recall the fact that � � ˆ�aˆ and that C D
kˆkL1!L1

< 1, which yields

TrL2.X;H/ ��H
�P?

� �P
?
� H��

� TrL2.X;H/ ��H
�ˆ�a�fa>�gˆH��

D
Z

�

Z
Y

TrH H�ˆ.y; x/�a.y/�fa.y/>�gˆ.y; x/Hdydx

�
Z

�

Z
Y

ka.y/�fa.y/>�gkBkˆ.y; x/k2
B TrH H�Hdydx

� j�jC 2 TrH H�H
Z

Y

ka.y/kB �fka.y/kB>�gdy:

Here we used the fact that ka.y/�fa.y/>�gkB D ka.y/kB�fka.y/kB>�g. Now the
same weak Lp bound as in the proof of Lemma 2.5 leads to

TrL2.X;H/ ��H
�P?

� �P
?
� H�� � j�jC 2 TrH H�H p

p � 1kakp

Lp;w.B/
��pC1:

To summarize, we have shown thatZ
�

TrH H��.x; x/Hdx

� .1C "/

Z
�

TrH H��� .x; x/Hdx

C .1C "�1/j�jC 2 TrH H�H p

p � 1
kakp

Lp;w.B/
��pC1:

Since this is valid for any � and for any H , we have for a.e. x 2 X the operator
inequality

�.x; x/ � .1C "/�� .x; x/C .1C "�1/C 2 p

p � 1kakp

Lp;w.B/
��pC1:
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We now use the fact that an operator inequality A � B implies Tr f .A/ � Tr f .B/
for f non-decreasing. In our case f .t/ D tC, the positive part, and therefore

TrH �� .x; x/ � .1C "/�1 TrH .�.x; x/ � .1C "�1/C 2 p

p � 1kakp

Lp;w.B/
��pC1/C:

It remains to do the � integration,
Z 1

0

TrH �� .x; x/
d�

�2

� "1=.p�1/

.1C "/p=.p�1/

�p � 1
p

�p=.p�1/

C�2=.p�1/kak�p0

Lp;w.B/
TrH �.x; x/p

0

;

and to optimize in " by choosing " D .p�1/�1. This, together with (3.3) proves (3.1)
and completes the proof.

3.2. The CLR inequality for general Schrödinger-like operators. Next, we show
that for a large class of “kinetic energies” T the number N.0; T C V / of negative
eigenvalues (counting multiplicities) of the Schrödinger-type operator T CV can be
bounded in terms of an integral of the potential V . We shall see how the exponent
with which V enters into this bound is determined by T . The improvement of this
result as compared to those in [15] and [8] is that we do not require the potential to
be scalar and that we do not require exp.�tT / to be positivity preserving.

Again, throughout this subsection we assume that X is a sigma-finite measure
space and H a separable Hilbert spaces.

Theorem 3.2. Let T be a non-negative operator in L2.X;H / with ker T D f0g.
Assume that there are constants � > 2 and A < 1 such that for every E > 0, every
� � X of finite measure and every ' 2 H ,

TrL2.X/ ��.'; T
�1�.0;E�.T /'/H�� � AE.��2/=2j�jk'k2

H : (3.4)

Then for any measurable function V on X , taking values in the self-adjoint compact
operators on H ,

N.0; T C V / � C�A

Z
X

TrH V.x/�=2� dx

with

C� D �

2

� �

� � 2
���2

:

If dim H D 1, then C� can be replaced by

C� D
��.� C 2/

.� � 2/2
�.��2/=2

:
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Roughly speaking, assumption (3.4) means that T �1�.0;E�.T / has an integral
kernel (taking values in the bounded operators on H ) which on the diagonal satisfies
the bound

kT �1�.0;E�.T /.x; x/kB.H/ � AE.��2/=2

We discuss the equivalence of this assumption with more standard assumptions in
Lemma 3.4 below.

Before turning to the proof of Theorem 3.2 we illustrate it by the following ex-
ample.

Example 3.3. Let T D .��/s, 0 < s < d=2, in L2.Rd /. Then by explicit diago-
nalization via Fourier transform one sees that (3.4) holds with � D d=s and

A D
Z

Rd

jpj�2s�fjpj<1g
dp

.2�/d

D !d

.2�/d
d

d � 2s :

Thus Theorem 3.2 implies that

N.0; .��/s C V /

� d

2s

� d

d � 2s

�.d�2s/=s !d

.2�/d
d

d � 2s
Z

Rd

TrH V.x/d=2s� dx
(3.5)

in the operator-valued case and

N.0; .��/s C V /

�
�d.d C 2s/

.d � 2s/2

�.d�2s/=2s !d

.2�/d
d

d � 2s

Z
Rd

V.x/d=2s� dx
(3.6)

in the scalar case. These constants are rather good. In the cases which are most
relevant in applications the bounds are about a factor of two worse than the best
available bounds. Indeed, for d D 3, inequality (3.6) gives 0.196 for s D 1 (to be
compared with 0.116 from [17]) and 0.228 for s D 1=2 (to be compared with 0.103
from [4]) and (3.5) gives 0.228 for s D 1 (to be compared with 0.174 from [7]). We
emphasize again that the methods of [17], [4], and [7] are restricted to s � 1. The
above constants are the best ones available for 1 < s < d=2; see the comparison with
the constant from [3] and [10] after Theorem 3.1.

Proof. By the variational principle and the Birman–Schwinger principle,

N.0; T C V / � N.0; T � V�/
D n.1; T �1=2V�T �1=2/:
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Thus, by the same argument as in the proof of Lemma 2.3, Theorem 3.2 will follow
if we can show that

Tr.T �1=2V�T �1=2 � �/C � ���=2C1AD

Z
X

TrH V.x/�=2� dx:

Here,
D D .�=.� � 2//.��2/=2

in the general case, which can be improved to

D D .2=�/..� C 2/=.� � 2//.��2/=2

for dim H D 1. By the argument of Lemma 2.4 the latter inequality is, in turn,
equivalent to the inequality

Tr �1=2T �1=2 � A�2=.��2/K

Z
X

TrH �.x; x/�=.��2/dx

for every operator 0 � � � T �1. Here

K D 22=.��2/.� � 2/2
�2.��1/=.��2/

in the general case, which can be improved to

K D .� � 2/2=.�.� C 2//

for dim H D 1. In the scalar case dim H D 1, this bound follows from [22] (with the
improved constant of [23]) and the modifications to treat the general case are similar
to our arguments in the proof of Theorem 3.1.

For the sake of completeness, we briefly sketch the proof. We introduce

PE D �.E;1/.T /

and

P?
E D �.0;E�.T /:

The key is, as before, the bound

TrL2.X;H/ ��H
�P?

E �P
?
EH�� � TrL2.X;H/ ��H

�P?
E T

�1P?
EH��

for any set � � X of finite measure and any Hilbert–Schmidt operator H on H .
By assumption (3.4) the right side is bounded by AE.��2/=2j�j TrH H�H . This
implies, as before,

�.x; x/ � .1C "/.PE�PE /.x; x/C .1C "�1/AE.��2/=2

for every " > 0. In the special case dim H D 1 the bound can be somewhat improved
using the argument of Lemma 2.5 top

�.x; x/ �
p
.PE�PE /.x; x/C A1=2E.��2/=4:

With these bounds at hand the proof is completed as before by integration overE.
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We now give sufficient conditions for assumption (3.4), which can be verified in
applications. Similar results are contained in [22].

Lemma 3.4. Let T be a non-negative operator in L2.X;H /, let � � X have finite
measure and let ' 2 H . If, for some constants � > 0 and C 0 and all t > 0

TrL2.X/ ��.'; exp.�tT /'/H�� � C 0t��=2; (3.7)

then for all E > 0

TrL2.X/ ��.'; �.0;E�.T /'/H�� � B 0E�=2 (3.8)

with B 0 D C 0.2e=�/�=2. Moreover, if (3.8) holds for some constants � > 2 and B 0
and all E > 0, then for all E > 0

TrL2.X/ ��.'; T
�1�.0;E�.T /'/H�� � A0E.��2/=2 (3.9)

with A0 D B 0�=.� � 2/.

Proof. To prove the first assertion of the lemma we use the bound �.0;E�.
/ �
etEe�t	. Thus (3.7) implies

TrL2.X/ ��.'; �.0;E�.T /'/H�� � C 0t��=2etE

for all t > 0. We optimize the right side by choosing t D �=.2E/.
To prove the second assertion we write


�1�.0;E�.
/ D
Z 1

0

�.0;minfs;Eg�.
/
ds

s2
:

Thus (3.8) implies

TrL2.X/ ��.'; T
�1�.0;E�.T /'/H�� � B 0

Z 1

0

minfs; Eg�=2ds

s2

D B 0 �

� � 2E
.��2/=2;

as claimed.

Assumption (3.7) is a standard assumption in works on ultra-contractivity. In the
work of Levin and Solomyak [15] (see also [8]) it was used to extend the proof of Li
and Yau [16] to general Dirichlet forms generating submarkovian semi-groups. The
important difference, however, is that here, as in [22] and [23], we do not need the
heat kernel to be positivity preserving and a contraction on L1.

One application of Lemma 3.4 concerns magnetic Schrödinger operators. That
is, take X D Rd , H D C and T D .�ir C A/2 for some A 2 L2;loc.Rd ;Rd /.
While we do not know how to verify (3.4) directly, we know from the diamagnetic
inequality that (3.7) holds withC 0 D .4�/�d=2j�jk'k2

H
. Thus, in dimension d � 3,

inequality (3.9) holds with A0 D .e=.2�d//d=2.d=.d � 2//j�jk'k2
H

and (3.4) with
A D .e=.2�d//d=2.d=.d � 2//. While this constant is worse than that without
magnetic field, it is independent of the magnetic field, as it should be.
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4. Concluding remarks

In this final subsection we discuss the problem of finding the optimal (i.e., largest
possible) constant Ks;d in Rumin’s inequality

Tr �1=2.��/s�1=2 � Ks;d

Z
Rd

�.x; x/d=.d�2s/dx (4.1)

for operators � on L2.Rd / satisfying 0 � � � .��/�s. We assume throughout that
2s < d .

Lemma 2.5 (with a.�/ D j�j�2s and p D d=2s) implies that this inequality holds
and that the optimal constant satisfies

Ks;d � d � 2s
d C 2s

.2�/2ds=.d�2s/
�d � 2s

d

�d=.d�2s/

!
�2s=.d�2s/

d
:

Here
!d D jf� 2 Rd W j�j < 1gj:

In the following subsections we derive two upper bounds for Ks;d and discuss a
non-obvious symmetry.

4.1. The semi-classical constant. Here we show that

Ks;d � .2�/2ds=.d�2s/
�d � 2s

d

�d=.d�2s/

!
�2s=.d�2s/

d
: (4.2)

Note that this upper bound differs from the constant in Lemma 2.5 only by a factor
of .d � 2s/=.d C 2s/. There are two ways to prove (4.2). The first one consists in
noting that a Weyl-type semi-classical formula yields a lower bound on the optimal
constant Ds;d in the inequality

Tr..��/�s=2V�.��/�s=2 � �/C � Ds;d�
�d=2sC1

Z
Rd

V.x/d=2s� dx

and then using Lemma 2.4 to convert this into an upper bound onKs;d . Since this is
standard, we explain a less known, but more direct approach. Instead of finding the
best constant Ks;d in (4.1) we look for the best constant K 0

s;d
in the inequality

“
Rd �Rd

jpj2sM.p; x/
dpdx

.2�/d

� K 0
s;d

Z
Rd

�Z
Rd

M.p; x/
dp

.2�/d

�d=.d�2s/

dx

(4.3)

for all functions M on Rd � Rd satisfying 0 � M.p; x/ � jpj�2s for all x and p.
Using coherent states it is easy to verify thatKs;d � K 0

s;d
. It is elementary to compute

the optimal constant K 0
s;d

. It is given by the right side of (4.2). Optimizers M are of

the form M.p; x/ D jpj�2s�fjpj<R.x/g for an arbitrary function R.
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4.2. The Sobolev constant. Applying (4.1) to an operator � D ˛ j  ih j of rank
one with ˛ D k.��/s=2 k�2 we obtain

k.��/s=2 k2 � K
.d�2s/=d

s;d

�Z
Rd

j j2d=.d�2s/dx

�.d�2s/=d

: (4.4)

This is Sobolev’s inequality. The best constant in this inequality for general s has
been determined by Lieb [18] (in a dual formulation). Using this value, we infer that

Ks;d � .4�/ds=.d�2s/
��..d C 2s/=2/

�..d � 2s/=2/
�d=.d�2s/��.d=2/

�.d/

�2s=.d�2s/

: (4.5)

Numerically, it is easy to determine which one of the upper bounds (4.2) and (4.5) is
better. It seems like (4.5) is better for d D 1 and (4.2) is better for d � 3. In d D 2,
inequality (4.5) is better for s < 1=2 and (4.2) is better for s > 1=2. We also remark
that the constants on the right sides of (4.2) and (4.5) are asymptotically equal as
s ! 0 and as s ! d=2.

4.3. Conformal invariance. Lieb [18] has shown that (4.4) (or an equivalent ver-
sion thereof) is conformally invariant in the following sense. If h is a conformal
transformation of Rd [ f1g and if '.x/ D Jh.x/

.d�2s/=2d .h.x//, where Jh is the
Jacobian of h, then

k.��/s=2'k2 D k.��/s=2 k2

and Z
Rd

j'j2d=.d�2s/dx D
Z

Rd

j j2d=.d�2s/dx:

Similarly, we now argue that (4.1) is conformally invariant under replacing�.x; y/
by Jh.x/

.d�2s/=2d �.h.x/; h.y//Jh.y/
.d�2s/=2d . We first observe that (4.1) is equiv-

alent to the following inequality. For any sequence of functions . j / � PH s.Rd /

satisfying h.��/s=2 j ; .��/s=2 ki D ıj;k and for any sequence of numbers .
j /

satisfying 0 � 
j � 1, we have

X
j


j � Ks;d

Z
Rd

� X
j


j j j j2
�d=.d�2s/

dx:

This equivalence follows by expanding the trace class operator .��/s=2�.��/s=2 DP
j 
j j fj ihfj j into its eigenfunctions and setting  j D .��/�s=2fj .

If we now let 'j .x/ D Jh.x/
.d�2s/=2d j .h.x//, then, by polarization of the

above identity,

h.��/s=2'j ; .��/s=2'ki D h.��/s=2 j ; .��/s=2 ki;
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and clearly
Z

Rd

� X
j


j j'j j2
�d=.d�2s/

dx D
Z

Rd

� X
j


j j j j2
�d=.d�2s/

dx:

This proves that Rumin’s inequality (4.1) is invariant under replacing �.x; y/ by
Jh.x/

.d�2s/=2d�.h.x/; h.y//Jh.y/
.d�2s/=2d for any conformal transformation.

One consequence of this conformal invariance is that the inequality has an equiv-
alent formulation on the sphere Sd via stereographic projection as in [18]. In light
of previous results about conformally invariant trace inequalities [20] it is natural to
wonder about the sharp constant in (4.1).
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