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Spectral sets of periodic matrices
related to the strong moment problem
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Abstract. The main result of this work is a parametric description of the spectral sets of a
class of periodic 5-diagonal matrices, related to the strong moment problem. This class is a
self-adjoint twin of the class of CMV matrices. Both are hidden in the simplest possible class
of regular 5-diagonal matrices, this fact we also show here.
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1. Introduction

1.1. Historical remarks; towards the setting of the problem. Akhieser and Levin
introduced special conformal mappings on so-called comb-like domains, see [1].
Marchenko and Ostrovskii [17] used successfully these conformal mappings in the
spectral theory of periodic Sturm-Liouville operators, in particular they gave a para-
metric description of the spectral sets of such operators. Later this idea was adopted
by Perkolab in [28] to periodic Jacobi matrices. On the other hand, these conformal

1This work was supported by Austrian Science Fund FWF, project no: P22025-N18.
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mappings are strongly connected to Chebyshev-type extremal problems; this connec-
tion was explicitly noted by Peherstorfer in [20], [21], and [22]; see also [31]. In
connection to these extremal problems, see also [3] and [4].

Spectral properties of multi-diagonal and block-Jacobi matrices, as well as their
continuous analogues, like Schrödinger operators with periodic matrix potentials
were studied intensively; for essential results in this direction see e.g. [7], [8], [12],
and [16]. Let’s note that a new very interesting application of block-Jacobi matrices
was found by Damanik, Killip and Simon [9].

Our problem is related to the general objective of finding a parametric description
of spectral surfaces corresponding to multi-diagonal periodic matrices. We will try
to clarify the meaning of the words “parametric description.” Following Marchenko,
we would like to have a description by free independent parameters subject to at most
trivial restrictions. Generally, these spectral surfaces were described in the classical
paper [18] of Mumford and van Moerbeke, however this description hardly fits to
the above mentioned criterion of Marchenko. Let us discuss both descriptions in the
simplest possible case of periodic Jacobi matrices.

Consider a doubly infinite, periodic Jacobi matrix

J D

2
66666666666664

: : :

: : : p�1

: : : q�1 p0

p0 q0 p1

p1 q1
: : :

p2
: : :

: : :

3
77777777777775

;

where pkCN D pk ; qkCN D qk ; pk > 0; and qk 2 R: This matrix defines a bounded
self-adjoint operator on `2: It is well-known that the spectrum consists of the union
of non-degenerated intervals E D Œb0; a0� n S

j �1.aj ; bj /; see e.g. [28], but it is far
from being an arbitrary system of intervals. So, the point is to give a parametric
description of those sets which can be the spectrum of periodic Jacobi matrices. First
we recall such a description according to the approach of Marchenko and Ostrovskii.
For a system of nonnegative parameters fhkgn�1

kD1
, let D D D.h1; : : : ; hn�1/ be the

region obtained from the half-strip

fw W � �n < Re w < 0; Im w > 0g
by removing vertical intervals

fw W Re w D ��k; 0 < Im w � hkg; k D 1; : : : ; n � 1: (1.1)
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Such a domain is called a comb; furthermore, we call the interval Œ��n; 0� the
base of the comb, the half-axes

fw W Re w D 0; Im w � 0g
and

fw W Re w D ��n; Im w � 0g
form its right and left sides, and the slits (1.1) are called the teeth of the comb.

Let � be the conformal map of the upper half-plane H to D normalized by the
conditions �.a0/ D 0, �.b0/ D ��n, �.1/ D 1, the so-called comb-function.
Denote by E.h1; : : : ; hn�1/ the full preimage of the comb’s base, i.e.:

E.h1; : : : ; hn�1/
defD ��1.Œ��n; 0�/: (1.2)

A system of intervals is the spectrum of a periodic Jacobi matrix if and only if
E D E.h1; :::; hn�1/ for a certain system of parameters fhkgn�1

kD1
. Let us point

out that for fixed a0 and b0; for the spectral set we have n � 1 free parameters
(hj � 0; j D 1; :::; n � 1), meanwhile a general system of intervals is described by
2.n � 1/ parameters (aj ; bj ; j D 1; :::; n � 1).

Next, we give the description of such sets in the language of the theorem of
Mumford and van Moerbeke. To this end, we need to consider the two-sheeted
Riemann surface

R D
n
.w; z/ W w2 D

Y
j �0

.z � aj /.z � bj /
o
: (1.3)

This surface should be compactified by adding two infinite points 1˙ (on the upper
and lower sheet). The corresponding system of intervals E is the spectrum of a
periodic Jacobi matrix if and only if the divisor n1C �n1� is a divisor of a function
on R: We have thus also a description of spectral sets, but from our point of view not
by means of free independent parameters.

On the same level of explicitness, one can describe spectral sets of periodic CMV
matrices (Chapter 11 in [30]). Notice that the spectral theory of CMV matrices, in-
cluding the one of periodic matrices, and the related theory of orthogonal polynomials
on the unit circle, see [2], [23], [24], and [25], became hot research topics in the last
few years, see e.g. [5], [13], [14], and [15] and the books [29] and [30]. Going back
to the spectrum of periodic CMV matrices, for a system of nonnegative parameters
fhkgn�1

kD0
we define a periodic comb in the following way. Let

DCMV D DCMV.h0; : : : ; hn�1/

be the region obtained from the upper half-plane by removing vertical intervals (teeth)

fw W Re w D 2�.k C ns/; 0 < Im w � hkg; k D 0; : : : ; n � 1; s 2 Z:
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Let �CMV be the conformal map of the upper half-plane H to DCMV normalized by
the following asymptotics at infinity

�CMV.z/ D nz C iq C o.1/; z D x C iy; y ! 1;

where q is positive. In this case the spectral set ECMV � T also corresponds to the
base of the comb, given by

ECMV.h0; : : : ; hn�1/
defD feiz W z 2 ��1

CMV.R/g: (1.4)

Note that CMV matrices are already 5-diagonal, but of very specific structure.
The main result of this work is a parametric description of the spectral sets of

another special class of periodic 5-diagonal matrices, which is a self-adjoint twin of
the CMV class. They are related to the strong moment problem, see e.g. [19] and [6],
and we take a risk to introduce an abbreviation and call them SMP matrices.

We would like to stress that certain general facts from their spectral theory can
be immediately reduced to the spectral theory of Jacobi matrices, in the same way
like corresponding properties of CMV matrices can be reduced to those of Jacobi
matrices and vice versa. Indeed, let J be a periodic Jacobi matrix. We define

zA defD J � z0

J � Nz0

; z0 2 H:

Then zA is an unitary operator, which is unitarily equivalent to a finite-band almost
periodic CMV matrix A; see e.g. [26]. Or vice versa, let A be a periodic CMV matrix
and assume that t0 2 T does not belong to its spectrum. Then we define

zJ defD i
A C t0

A � t0
:

This matrix is unitarily equivalent to a finite-band almost periodic Jacobi matrix J .
For this reason for instance, the spectrum of J (a union of intervals) one can easily
get by fractional linear transformation from the spectrum of A (a union of arcs),
and of course the spectral multiplicity (equal two) is the same for both matrices.
However, we point out that a periodic matrix corresponds to an almost periodic one,
and therefore there is no way to describe the spectral sets of such periodic Jacobi
matrices by means of spectral sets of such CMV matrices, and vice versa. Both
problems should be treated separately.

The same is related to SMP matrices. Certain general problems of their spectral
theory, like multiplicity of the spectrum, can be easily reduced to the spectral theory
of Jacobi matrices. Nevertheless, a description of the spectral set of periodic SMP
matrices can be reduced to neither periodic CMV nor periodic Jacobi matrices. Our
main result is such a description on the same level of explicitness like (1.2) and (1.4).
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1.2. SMP matrices, main problem. One-sided Jacobi matrices deal with orthogo-
nal polynomials on the real axis. CMV matrices deal with orthogonalization of the
following family of rational functions [29], p. 262,

1; �;
1

�
; �2;

1

�2
; : : : ; (1.5)

with respect to a measure on the unit circle. One sided SMP matrices are related to
orthogonalization of the same family (1.5) but with respect to a measure on the real
axis. Note that even more general orthogonal systems of rational functions are still
under investigations, see e.g. the most recent [10]. Further, a Jacobi matrix is not
necessary associated to a measure with a compact support, but we are restricted to
this kind of measures if we are interested in the Jacobi matrices generating bounded
operators. Similarly, in the SMP matrix case we consider measures � supported on a
compact set without a vicinity of the origin. That is, not only operator multiplication
by the independent variable � is bounded, but its inverse, the multiplication by 1=�,
is also bounded in L2

�.
Let

'2n�1 D �n C � � � ; '2n D 1

�n
C � � � (1.6)

be the SMP-orthogonal system. Then for even vectors of the corresponding orthonor-
mal basis we have the three term recurrence relations

�
'2n

k'2nk D p2n

'2n�1

k'2n�1k C q2n

'2n

k'2nk C p2nC1

'2nC1

k'2nC1k ; p0
defD 0: (1.7)

In the same time for odd vectors the three terms relations are generated by the mul-
tiplication by 1=�:

1

�

'2n�1

k'2n�1k D �2n�1

'2n�2

k'2n�2k C �2n�1

'2n�1

k'2n�1k C �2n

'2n

k'2nk : (1.8)

The SMP matrix A acting in `2C is the matrix of the multiplication by � in L2
�

with respect to the orthonormal basis '2nk'2nk . Then, according to the above definition

Ae2n D A2e2n D p2ne2n�1 C q2ne2n C p2nC1e2nC1

and

A�1e2n�1 D A1e2n�1 D �2n�1e2n�2 C �2n�1e2n�1 C �2ne2n

where

A1 D

2
66666664

1 �1

0 �1 0

�2 1
: : :

0
: : :

: : :

3
77777775

; A2 D

2
66666664

q0 0

p1 1 p2

0 q2
: : :

p3
: : :

: : :

3
77777775

;
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and fengn�0 is the standard basis in `2C. In a generic position A1 and A2 are invertible,
equivalently �2n�1 6D 0 and q2n 6D 0 for all n, and we obtain the five-diagonal matrix
in the form A D A2A�1

1 . Due to the symmetry A� D A we have

p2n�1

q2n�2

D ��2n�1

�2n�1

and
p2n

q2n

D � �2n

�2n�1

: (1.9)

That is, in a generic case the one sided SMP matrix A, similarly to a Jacobi matrix,
is given by two sequences fp2n; �2nC1gn�0 and fq2n; �2nC1gn�0, since p2nC1 and
�2n can be found from (1.9).

Remark 1.1. A degeneration is possible: for instance, if the measure � is symmetric,
then '0 D 1; '1 D �, and therefore, �2 D �1 D 0. Of course, the operator A and
its inverse A�1, given by 5-diagonal matrices, still have perfect sense, they just can
not be written in the form A2A�1

1 and/or A1A�1
2 respectively. On the other hand,

a degeneration is not possible if we assume that the operator A is positive. But our
main problem becomes especially interesting if the spectral set contains positive and
negative components. It is very essential: we do not assume that A > 0!

Remark 1.2. The system 'n is just another orthogonal basis in L2
� comparably to

the basis of orthogonal polynomials Pn. Therefore A is unitarily equivalent to the
Jacobi matrix J , which corresponds to the same operator of multiplication by the
independent variable in L2

� in the basis fPngn�0.

As it is well known, two sided matrices are much more relevant to the periodic
case. We postpone the formal definition of two sided matrices of the SMP class till
Section 2, see Definition 2.5; but in a generic case, a SMP matrix is still defined as a
ratio of two 3-diagonal two sided matrices A D A2A�1

1 , where

A1 D

2
6666666666666664

: : :

: : : N��1

: : : ��1 0

�0 1 N�1

0 �1 0

�2 1
: : :

0
: : :

: : :

3
7777777777777775

; A2 D

2
6666666666666664

: : :

: : : 0
: : : 1 Np0

0 q0 0

p1 1 Np2

0 q2
: : :

p3
: : :

: : :

3
7777777777777775

;

and A1 and A2 are invertible; equivalently �2n�1 6D 0 and q2n 6D 0 for all n. Due
to the symmetry A D A�, the generating coefficient sequences are subject to the
restrictions (1.9). Note also that degenerations are possible, see Remark 4.3.
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Let fengn2Z be the standard basis in the two-sided `2. Thus, constructing A in a
generic case, we follow the procedure, which is similar to the CMV matrices case:
having e�1 and e0 as the generators of the cyclic subspace we form the whole space
applying A on the even step and A�1 on the odd step, however, as it was mentioned,
the operator is not unitary, but self-adjoint, that is, the spectrum is not on the unit
circle but on the real axis.

Generally, A can be represented as a two dimensional perturbation of a block
orthogonal matrix

A D
"

A� 0

0 AC

#
C e�1h�; Qe0i Qp0 C Qe0h�; e�1i Qp0;

where

Qp0 D kPCAe�1k; Qe0 D 1

Qp0

PCAe�1;

and A˙ D P˙AP˙ are restrictions of A to the positive and negative half-axis ac-
cording to the orthogonal decomposition `2 D `2� ˚ `2C. For this reason it is unitary
equivalent to an almost periodic finite band Jacobi matrix. In fact e�1 and Qe0 are
always cyclic for A. The corresponding Jacobi matrix J is uniquely defined by the
relation "

h.A � z/�1e�1; e�1i h.A � z/�1 Qe0; e�1i
h.A � z/�1e�1; Qe0i h.A � z/�1 Qe0; Qe0i

#

D
"

h.J � z/�1e�1; e�1i h.J � z/�1e0; e�1i
h.J � z/�1e�1; e0i h.J � z/�1e0; e0i

#
;

that is, all general facts from its spectral theory (like the spectral multiplicity) can
be reduced to the spectral theory of Jacobi matrices. However it is quite different as
soon as we pose the problem:

Problem 1.3. Describe the spectral sets of periodic SMP matrices.

1.3. Main result and an open problem. We consider SMP matrices such that
kAk < 1 and kA�1k < 1. Therefore in what follows we always assume that
the system of intervals E is such that 1 62 E, as well as 0 62 E.

Basically from the general theorem of Mumford and van Moerbeke [18] it follows

Theorem 1.4. A set E is a spectrum of a periodic SMP matrix A if and only if the
divisor k.1C C0C/�k.1� C0�/ is a divisor of a function on the Riemann surface
R defined by (1.3), where k is integer, k 2 ZC, and 0˙ correspond to the origin on
the upper and lower sheets of R. Moreover, 2k is a period of A.
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To formulate our main result, that is, a description of E in the sense of Marchenko,
we define comb regions of a new kind, which we call hyperbolic combs. Recall that
the hyperbolic curves

y2 � x2 D c1; xy D c2

form an orthogonal net in the complex plane u D x C iy. The hyperbolas degenerate
to pairs of straight lines as c1 D 0 and c2 D 0. The points on such curves will form
bases, left/right sides and teeth of the comb.

Definition 1.5. For h0 > 0 the points on the curve

y2 � x2 D h2
0; u D x C iy; (1.10)

belonging to the upper and lower half-planes, will form the upper and lower bases
of a hyperbolic comb …, see Figure 1. For integers k and m 2 Œ0; k� and parameter
0 � !0 � �m, the upper and lower right sides of … are formed by the points on the
curves

2xy D �m � !0; 2xy D �.m � k/ � !0; for x > 0; (1.11)

and the left ones by

2xy D �!0; 2xy D �k � !0; for x < 0: (1.12)

The upper and lower teeth of the comb are formed by the points on the curves

2xy D �` � !0; for y > 0; 1 � ` � m � 1 (1.13)

and

2xy D �.` � k/ � !0; for y < 0; m C 1 � ` � 2k � 1 (1.14)

starting on the bases and of length h` � 0. In addition, if !0 D �`0 then the
hyperbolic curves related to ` D `0 in (1.13) and ` D k C `0 in (1.14) degenerate.
In this case the corresponding teeth are pieces of the imaginary axis, as soon as

h`0
< h0 and hkC`0

< h0: (1.15)

Otherwise one of them still satisfies (1.15), and another one has T-shape, see Figure 2,
consisting of the piece of the imaginary axis

0 � y � h0 or � h0 � y � 0; (1.16)

respectively, and of the real interval

� h.`0/� � x � h
.`0/
C ; h

.`0/
˙ � 0: (1.17)
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Im u D �!0

2 Re u
Im u D �m�!0

2 Re u

Im u D �k�!0

2 Re u
Im u D �.m�k/�!0

2 Re u

.Im u/2 � .Re u/2 D h2
0

.Im u/2 � .Re u/2 D h2
0

Figure 1. … region for !0 6D �`.

�h.`0/
� h

.`0/

C

Figure 2. … region for !0 D �`0.

Remark 1.6. To summarize, a hyperbolic comb … is a domain bounded by hyperbolas
with hyperbolic teeth, which depends of the following system of parameters … D
….k; mI !0; h0I h1; : : : ; h2k�1/, k; m 2 ZC, k � m, 0 � !0 � �m, h` � 0.
Such a domain allows degeneration if !0 D �`0, case in which two (upper and
lower) of the comb’s teeth are also given by free independent parameters subject to
the trivial restrictions (1.15)–(1.17). Note also that … contains two infinite points
corresponding to x D ˙1. As it was mentioned 2k is a period of A and m describes
a “distance” between positions 0 and 1 (in a generic case, how many intervals of E

are in between).

Definition 1.7. For a given hyperbolic comb …, a comb function � is a conformal
map � W H ! … such that 0 and 1 correspond to the infinite points in ….

Theorem 1.8. A system of intervals E is the spectral set of a periodic SMP matrix A

if and only if it is the preimage through a comb function � of the base of a hyperbolic
comb ….
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Remark 1.9. In Definition 1.7 the conformal mapping � is defined up to multi-
plication by a positive constant �, i.e., �.�/ 7! �.��/. This reflects the fact that
the transformation A 7! �A acts on the set of periodic SMP matrices. Similarly,
J 7! aJ Cb, a > 0; b 2 R acts on the set of periodic Jacobi matrices, and a standard
comb defines a spectral set up to the linear transform �.J / 7! a�.J / C b.

Remark 1.10. Thus, if E is the spectrum of a periodic SMP matrix A, then E can be
obtain as the preimage of the base for a certain hyperbolic comb …. Conversely, if …

is given we obtain the system of intervals E as the preimage of the base of this comb
(as it was explained in the previous remark, … defines E up to the homogeneous
dilation E 7! �E). Then, to a such set E one can associate an isospectral set of
periodic SMP matrices A.E/, which we describe in Theorem 4.2.

In Section 2 we introduce and discuss the spectral surfaces of periodic 5-diagonal
matrices of the simplest possible structure. Note that both CMV and SMP matrices
are hidden in this class; see (1.18) and (1.19). We do not know how to parametrize
(in the Marchenko sense) these spectral surfaces in the general case, see Problem 2.2.

For example, note that the function z D �C1=� is real on the set T [R. Assume
that a measure � is supported on a compact subset of T [ R and vanishes in the
vicinity of the origin. Then the multiplication by z defines a bounded self-adjoint
operator in L2

�. Moreover, with respect to the orthonormal basis (1.6) it is represented
by a 5-diagonal (one-sided) matrix, which we denote by J (it is not a Jacobi matrix,
since it is indeed 5-diagonal!). Let us point out that if the measure � is supported
only on T then

J D A C A�1; (1.18)

where A is a CMV matrix. If � is supported only on R then

J D A C A�1; (1.19)

where A is a SMP matrix. But if the measure does not vanish on both components T
and R the multiplication by � generates also a certain matrix, which is neither unitary
nor self-adjoint, that is, neither of CMV nor of SMP class. We do not know how to
describe spectral sets E of corresponding periodic two-sided matrices. Notice that
E in this case should be a union of arcs on T and intervals in R.

The further structure of this work is as follows: in Section 3 we prove our main
theorem; the functional model for periodic SMP matrices is given in Section 4.

The second author is thankful to the organizers of the program Hilbert spaces of
entire functions and spectral theory of self-adjoint differential operators, at CRM,
Barcelona, 2011, and to Alex Eremenko for stimulating discussions. In a sense this
paper is an addition to their joint work [11].
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2. Spectral surfaces with the maximal number of boundary ovals

Let J be a 5-diagonal self-adjoint matrix of period d

J D rS2 C pS C q C S�1 Np C S�2r; (2.1)

where S is the shift operator and p; r; q are diagonal matrices of period d , such
that rm > 0 for all m 2 Z (we say that such J ’s are regular). We recall certain
fundamental facts from the spectral theory of multi-diagonal periodic matrices [18],
adopting to the 5-diagonal case.

For

j.w/ D

2
66666666664

q0 Np1 r2 : : : 0 r0=w p0=w

p1 q1 Np2 r3 : : : 0 r1=w

r2 p2 q2 Np3 r4 : : : 0

: : : : : : : : : : : : : : : : : : : : :

0 : : : rd�3 pd�3 qd�3 Npd�2 rd�1

r0w 0 : : : rd�2 pd�2 qd�2 Npd�1

Np0w r1w 0 : : : rd�1 pd�1 qd�1

3
77777777775

(2.2)

let

F.z; w/ D detfj.w/ � z � I gQd�1
j D0 rj

D w2 C 1=w2 C A.z/w C A�.z/1=w C B.z/

where A and B are polynomials; in particular, for even d D 2k, such that

B.z/ D z2kQ2k�1
j D0 rj

C � � � ; (2.3a)

and

A�.z/
defD A. Nz/ D

� �1Qk�1
j D0 r2j

C �1Qk�1
j D0 r2j C1

�
zk C � � � : (2.3b)

Then the spectral curve corresponding to J is the Riemann surface defined by

R D fP D .z; w/ W F.z; w/ D 0g (2.4)

with an appropriate compactification (adding infinite points). R is endowed with an
antiholomorphic involution 	P

defD . Nz; 1= Nw/ for which

R n @RC D RC [ R�; RC D fP D .z; w/ 2 R W jwj < 1gI
see Figure 3.
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@RC

RC

@R�

P

	P

Figure 3. Topology of the spectral curve.

Note that the spectrum of J (as the operator acting in `2) corresponds to the fixed
line of the involution 	 : 	P D P ,

z 2 �.J / if and only if there exists w such that P D .z; w/ 2 @RC:

In other words it is described by the condition jwj D 1.
Recall that the spectral surfaces related to periodic Jacobi matrices are of the form

zR D
n
.w; z/ W w C 1

w
D zA.z/

o
;

where zA is a real polynomial. In the similar decomposition zR n @ zR D zRC [ zR� it
possesses the following property: the number of boundary ovals, i.e., the number of
intervals

@ zR D fz 2 R W j zA.z/j � 2g
is maximal for the given genus of the surface.

We say that the spectral curve R, related to a 5-diagonal matrix, is of the simplest
structure if it has maximal possible number of components of the boundary @RC for
the given genus. For example, in Figure 3 the number of boundary components is 3,
but its genus is 4 and the maximal possible number of components is 5. That is, the
curve of this structure does not belong to the class.
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z D z.P /

RC

c1

c2

Figure 4. RC as the two sheeted covering of z-plane.

In other words, let us represent RC as two a sheeted covering of the z-plane, see
Figure 4. It is a hyperelliptic curve with a system of cuts @RC. We say that the
spectral curve is of the simplest structure if this hyperelliptic curve has genus 0, i.e.:

RC ' xC n E:

The corresponding equivalence can be written explicitly

z D � C c2

� � �0

; � 2 C; c1 D �0 � 2c; c2 D �0 C 2c; (2.5)

where c1, c2 denote the only two possible critical values of z, in the case that both
numbers are finite and if, say, c2 D 1 then

z D �2 � 2c; c1 D c2 � 2c:

The set E, which corresponds to @RC, is a system of cuts in the complex plane C
with the property

z.�/ 2 R; � 2 E: (2.6)

It is essential to note that E is far from being an arbitrary system of cuts for
which (2.6) holds. Recall that up to now the second function w was not involved
into considerations. Meanwhile w D w.�/ is a function in xC n E with the following
properties [18]:

(i) w is single-valued and holomorphic;

(ii) jwj < 1 in xC n E and jwj D 1 on E;

(iii) zeros of w are f�0; 1g D z�1.1/ 6� E (of equal multiplicity).
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For definiteness, here and below, we consider the case (2.5) (with two finite critical
values). Properties (i)–(iii) imply that

1

k
log

1

jw.�/j D G�0
.�/ C G1.�/; (2.7)

where G�0
.�/ is the Green function in the domain xC n E with a logarithmic pole at

�0 and k is the multiplicity of w in �0 and 1 respectively.
Let us recall the concept of the complex Green function b�0

.�/. It is an analytic
multivalued function in xC n E such that

log
1

jb�0
.�/j D G�0

.�/: (2.8)

Note that (2.8) determines b�0
up to a unimodular constant. In what follows we

assume the normalizations b�0
.1/ > 0 and b1.�0/ > 0.

Let �1.xC n E/ be the fundamental group of this domain. Then b�0
generates the

character 
�0
2 �1.xC n E/� on this group by

b�0
B � D 
�0

.�/b�0
; � 2 �1.xC n E/;

which indicates the multivalued structure of the complex Green function. Moreover,
let us split E into connected components, E D S~

j D0 Ej , and let �j ’s be simple

contours around Ej ’s. Note that they form generators of the group �1.xCnE/ subject
to the condition

�0 B � � � B �m D trivial:

Then, for a suitable choice of the direction of �j ,


�0
.�j / D e2�i!�0

.Ej /; (2.9)

where !�0
.Ej / is the harmonic measure of Ej at �0.

The factor b�0
b1 removes the singularities of z in xC n E. Let

t1 D .b1b�0
z/.1/

j.b1b�0
z/.1/j and t�0

D .b1b�0
z/.�0/

j.b1b�0
z/.�0/j :

Define � 2 Œ0; 1/ by the condition t1 D e2�i� t�0
. Let 
 D 
�0


1. Thus 
.�j / D
e2�i!j , where !j D !�0

.Ej / C !1.Ej /.

Theorem 2.1. Let z be given by (2.5). Let E D S~
j D0 Ej � z�1.R/ be a system of

cuts (2.6). Then R D RC [ @RC [ R�, where RC ' xC n E, is a spectral curve
of a 5-diagonal periodic matrix if and only if the numbers � and !j (for all j ) are
rational. Moreover w D t�k1 .b�0

b1/k , where k is a common denominator of these
rational numbers.
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Problem 2.2. Find a parametric description of sets E from Theorem 2.1 in the
Marchenko sense.

A proof of Theorem 2.1 is based on a fact of the general theory [18], that a
given periodic J with the spectral curve R possesses functional representation as the
multiplication operator by z. We give such a representation following basically [27]
and [32].

For a fixed character ˛ the multivalued analytic functions F , F B� D ˛.�/F , such
that jF.�/j2 has a harmonic majorant in xCnE, form the Hardy space H 2.˛/ � L2

!1

with the norm given by the integral of the boundary values:

kF k2 D
Z

E

jF.�/j2!1.d�/:

Note that the point-evaluation functional is bounded in this space and therefore in
H 2.˛/ there is the reproducing kernel k˛

�
:

F.�/ D hF; k˛
�i; � 2 xC n E;

for all F 2 H 2.˛/.

Lemma 2.3. For a character ˛ 2 �1.xC n E/� let

K˛
� D k˛

�

kk˛
�

k
denote the normalized reproducing kernel at �. Then, for an arbitrary system of
unimodular constants tm, the family

e2n D t2nbn
�0

bn1K
˛��n

�0
��n

1

�0
; e2nC1 D t2nC1bnC1

�0
bn1K

˛��n�1
�0

��n
1

1 (2.10)

forms an orthonormal basis in H 2.˛/, n � 0. Moreover, extended to negative indexes
it forms an orthonormal basis in L2

!1
.

Proof. The system (2.10) is orthonormal: indeed, for m � n,

he2n; e2m�1i D ht2nbn
�0

bn1K
˛��n

�0
��n

1

�0
; t2m�1bm

�0
bm�11 K

˛��m
�0

�
�mC1
1

1 i

D ht2nbn�m
�0

bn�mC11 K
˛��n

�0
��n

1

�0
; t2m�1K

˛��m
�0

�
�mC1
1

1 i

D t2m�1t2nbn�m
�0

.1/bn�mC11 .1/
K

˛��n
�0

��n
1

�0
.1/

K
˛��m

�0
�

�mC1
1

1 .1/

D 0;



38 I. Moale and P. Yuditskii

where in the last line we used the fact that K
˛��m

�0
�

�mC1
1

1 is the normalized reproducing
kernel and b1.1/ D 0. All other possible relations between the indexes of the basis
elements can be treated in a similar way.

Moreover, every function from H 2.˛/ orthogonal to it has a zero of infinite
multiplicity in �0 (and 1) and therefore vanishes identically. To prove the second
claim one has to use the description of the orthogonal complement L2

!1
� H 2.˛/

by means of the Hardy space [32] and once again apply the same argument related to
the corresponding H 2-space and orthonormal basis of reproducing kernels in it.

Lemma 2.4. The multiplication by z with respect to the basis (2.10) is a 5-diagonal
self-adjoint matrix,

zemC2 D xrmC2em C xpmC2emC1 C qmC2emC2 C pmC3emC3 C rmC4emC4: (2.11)

Moreover rm > 0 if and only if

t2n�1 D t�n1 t.�1/; t2n D t�n
�0

t.0/: (2.12)

Proof. Since the factor b�0
b1 removes the singularities of z in xC n E the function

zb�0
b1F belongs to H 2.˛
/ for every F 2 H 2.˛/ and an arbitrary ˛ 2 �1.xCnE/�.

Thus the decomposition of zemC2 starts with em,

zemC2 D xrmC2em C � � � :

Since z.�/ is real on E the multiplication operator is self-adjoint; its matrix possesses
the symmetry property and therefore it is 5-diagonal (2.11). Finally we put � D �0

in (2.11) for even m

.zb�0
b1/.�0/K

˛��.nC2/

�0
.�0/t2nC2 D xr2nC2K

˛��n

�0
.�0/t2n

and � D 1 for odd m

.zb�0
b1/.1/K˛�1��.nC2/

1 .1/t2nC1 D Nr2nC1K˛�1��n

1 .1/t2n�1:

Since K˛
�

.�/ > 0 we get (2.12).

Proof of Theorem 2.1. Let J be a periodic self-adjoint 5-diagonal matrix and R be
its spectral surface such that RC ' xC n E. Since w.�/ is single-valued in the
domain, (2.7) and (2.9) imply that !j D !�0

.Ej / C !1.Ej / are rational. Further,
due to (2.3) the function wzk is regular in the domain, moreover 1=.wzk/.�0/ and
1=.wzk/.1/ are roots of the quadratic equation

C 2 C
� �1Qk�1

j D0 r2j

C �1Qk�1
j D0 r2j C1

�
C C 1Q2k�1

j D0 rj

D
�
C � 1Qk�1

j D0 r2j

��
C � 1Qk�1

j D0 r2j

�

D 0:
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Thus .wzk/.�0/ > 0 and .wzk/.1/ > 0. Since w D t .b�0
b1/k , t 2 T , the

ratio .zb�0
b1/k.1/=.zb�0

b1/k.�0/ is also positive. That is e2�ik� D 1. And this
finishes the necessity part of the theorem.

In the opposite direction, for the given system of cuts we define J according to
Lemma 2.4. It remains to check that J is periodic. Let w D t�k1 .b�0

b1/k . Since

k.�/ D 1, for all � 2 �1.xC n E/, it is single-valued. Note that w is normalized by
the condition .wzk/.1/ D j.b�0

b1z/k.1/j > 0. We claim that

wen D enC2k : (2.13)

For odd n, equation (2.13) holds automatically. For even n we should take into account
that in addition t�k1 tk

�0
D e�2�ik� D 1. Thus (2.13) defines the shift operator. Since

the multiplication operators by z and w commute, we have JS2k D S2kJ . Therefore
J is periodic.

Now, let us restrict ourselves to the real case, i.e., c2 D Nc1 or both critical values
are real. Without lost of generality c2 D Nc1 D 2i or c2 D �c1 D 2. Thus, according
to (2.5),

z D � � 1

�
(2.14)

in the first case, and

z D � C 1

�
(2.15)

in the second one.
In the case (2.14), z�1.R/ D R, thus E is a system of intervals on the real axis.

Since z�1.1/ D f0; 1g, E is subject to the restriction f0; 1g 6� E.
If z is of the form (2.15), then z�1.R/ D R [ T , that is, E is a union of real

intervals and arcs of the unit circle, and again f0; 1g 6� E. This case under the
additional assumption E � T leads to periodic CMV matrices [30]. Indeed, in the
current case the multiplication by � is also well defined and represents an unitary
matrix A such that

J D A C A�1 D A C A�: (2.16)

As it was mentioned this functional model is the same as that related to periodic and
almost periodic CMV matrices, see e.g. [27]. Conversely, having a periodic CMV
matrix A we obtain the periodic self-adjoint J of the class (2.16).

Similarly, in the case (2.14) the multiplication by � leads to the self-adjoint oper-
ator A such that

J D A � A�1; (2.17)

where A�1 exists and corresponds to the multiplication by 1=�, i.e., to a periodic
SMP matrix. Further details of the corresponding functional model are discussed in
Section 4. Note that the case (2.15) under the additional assumption E � R leads to
essentially the same class of self-adjoint operators.

Thus our formal definition for SMP matrices is as follows.
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Definition 2.5. A self-adjoint 5-diagonal matrix A of the form

AemC2 D rmC2em C NpmC2emC1 C qmC2emC2 C pmC3emC3 C rmC4emC4; (2.18)

where r2n D 0 and r2nC1 > 0, belongs to the SMP class if A is invertible and
�S�1A�1S belongs to the same class.

Remark 2.6. We say that A of the form (2.18) belongs to the SMPC class if the
involution in the class is given by A 7! S�1A�1S .

3. Proof of the Main Theorem

Let E D Œb0; a0�nS~
j D1.aj ; bj / be a system of intervals on R, recall f0; 1g 2 xCnE,

z D ��1=�. We apply Theorem 2.1 in the current case. As it is well known the Green
function (say with respect to infinity) is represented by the hyperelliptic integral; see
e.g. [33], and [32],

G.�; 1/ D Re
Z �

a0

�~ C � � �qQ~
j D0.� � aj /.� � bj /

d�:

Therefore for the sum of the Green functions we have

G.�; 1/ C G.�; 0/ D Re
Z �

a0

M~C1.�/qQ~
j D0.� � aj /.� � bj /

d�

�
; (3.1)

where M~C1 is a monic polynomial of degree ~ C 1. Note that the residue of the
corresponding differential at the origin is �1.

3.1. Spectrum of SMP matrices for the Stieltjes class. Let us consider the simplest
cases E � RC or E � R� (we can say that the spectrum is on the upper (lower)
sheet of RC). The strong Stieltjes moment problem is related to measures supported
on the positive half-axis [19]. The shape of the sum G.�; 1/ C G.�; 0/ on R n E is
shown in Figure 5. It implies immediately that all the zeros of the polynomial M~C1

in (3.1) are real in this case. Indeed, each gap .aj ; bj /, j � 1, contains at least one
critical point; there is a critical point between �1 and 0; the total number of critical
points is ~ C 1. Therefore

Q�.�/ D i

Z �

a0

M~C1.�/qQ~
j D0.� � aj /.� � bj /

d�

�
(3.2)

is the Schwarz-Christoffel integral, which maps conformally the upper half-plane H
onto the (generalized) polygon in Figure 6.
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0 b0 aj bj a0

Figure 5. G0 C G1 on R: the spectrum is on the upper sheet.

0���2�

.0/ .1/

Figure 6. Image of the Abelian integral Q� .

According to (2.7) w.�/ D teik Q�.�/, t 2 T . Let Q!j be the coordinates of the
base of the slits. Then w.�/ is single valued in xC n E if and only if Q!j k 2 �Z for
all j . It remains to mention that due to the chosen normalization for b�0

and b1 the
product b�0

.�/b1.�/.� � 1=�/ is positive at infinity and negative at the origin, that
is � D 1=2. Thus we can parametrize the spectral sets of periodic SMP matrices in
this case by sufficiently simple domains shown in Figure 6 with rational Q!j ’s (quite
similar to the Jacobi and CMV matrices cases).

3.2. Complex critical points and three real critical points in the same gap. The
situation changes dramatically as soon as 0 2 .aj ; bj /, j � 1, that is, E D E� [EC,
E˙ � R˙. Still all gaps, except for .aj ; bj /, should contain a critical point, thus
M~C1 has at least ~ � 1 real critical points. However, the positions of two remaining
critical points are not a priory fixed.
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First, we consider the case when two remaining critical points are complex 
0

and 
0, Im 
0 > 0. Let us consider Q�.�/ in the upper half-plane H. Since locally
Q�.�/ D Q�.
0/ C C.� � 
0/2 C � � � , there exist two orthogonal directions where
Re d Q� D 0. Moreover for one of them Im Q� has a local minimum at 
0 and a
local maximum for another one. We define the curve � , 
0 2 � , by the condition
Re d Q� D 0, such that Im Q� increases. Since there is no other critical point in H this
curve should terminate on the real axis. Note that Im Q�.�/ decreases as � approaches
E. If so, in the gaps � may approach either a critical point or 0 and 1. The first case
is also not possible since the critical point is a local minimum for Im Q� D G�0

C G1
along the real axis, thus it should be local maximum in the orthogonal direction � .
But along � it increases. Thus, � terminates at 0 and 1; see Figure 7.

b0 aj bj a0

0

ECE�


0

H�

HC

�

Figure 7. A complex critical point.

As the result we get Hn� D H� [HC such that E˙ � @H˙. Let �.�/ D k Q�.�/.
Inspecting the boundary behavior of the given analytic function we obtain that it maps
conformally H˙ onto D˙ shown in Figure 8, where the point �!0 C ih2

0 corresponds
to the critical point 
0.

.0/ .1/ .0/ .1/

.�!0; h2
0
/.�!0; h2

0
/

DC D�

��m��m 0 ��k �.k � m/

Figure 8. D˙ D �.H˙/ regions for a complex critical point.
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Now we define

u.�/ D
q

�i�.�/ � i!0 � h2
0; � 2 HC: (3.3)

Here we assume that Im u.�/ > 0. Similarly we define

u.�/ D �
q

�i�.�/ � i!0 � h2
0; � 2 H� (3.4)

and in this case Im u.�/ < 0. In this way we get the regions …˙. Since

� D �.2 Re u Im u C !0/ C i..Re u/2 � .Im u/2 C h2
0/;

these regions are bounded by hyperbolic curves (1.10)–(1.14); see Figure 1. Gluing
the images along the curve � we obtain the conformal mapping of the upper half-plane
H onto the special comb domain … D …C [ …� [ R.

Conversely, for the region … described by these equations we define a conformal
map u W H ! … , u.0/ D C1, u.1/ D �1, and set

w.�/ D e�.u2.�/Ch2
0

Ci!0/; z D � � 1

�
: (3.5)

Then, the set E corresponds to jwj D 1. Since the base of the slits for D˙ are of the
form �`, w extended in the lower half-plane is single-valued in xC n E. Finally, w is
real for � 2 R n E, that is, � is rational. Based on Theorem 2.1 we conclude that this
domain can be associated to a periodic SMP matrix.

Let us turn to the case of three real critical points in the same gap. In this case
H can be decomposed into three pieces. Let 
1 < 
0 < 
2 be critical points in the
gap .ai ; bi /. Note that with necessity 
1 and 
2 are points of local maximum and
Im � assumes a local minimum at 
0 in this interval. Therefore there are directions
�1, �2 orthogonal to the real axis at 
1 and 
2 respectively such that Im � increases.
Arguments like the above show that these curves, Re d� D 0, terminate at 0 and 1;
see Figure 9.

b0b0b0b0 aj 0 bj aiaiaiai 
1 
0 
2
2 bi a0

�1

�2

H0C

H1C

H�

Figure 9. Three real critical points in the same gap, HC D H0C [ H1C.
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In each of them, �.�/ represents a conformal mapping, see Figure 10. In this
picture �!0 C ih2

0, �!0 C ih2
1, and �!0 C ih2

2 are images of the critical points

0, 
1, and 
2 respectively and !0 D �`0. We make the change of variable (3.3)
and (3.4), having in mind that now HC or H� consists of two components. We arrive
at the parametrization of the spectral curve by the domains of the form Figure 2 such
that

h.`0/� D
q

h2
2 � h2

0 and h
.`0/
C D

q
h2

1 � h2
0

in (1.17).

.1/
.1/ .0/

.0/
h2

1

h2
2

D1C D�

D0C

.�!0; h2
2
/

.�!0; h0
2
/

.�!0; h1
2
/

0 ��k ��`0

Figure 10. D˙ D �.H˙/ three real critical points in the same gap.

As before, starting from a region …, by (3.5) we arrive at the set E and the domain
xC n E ' RC which corresponds to a periodic SMP matrix.

3.3. Other cases. In the previous subsection we considered critical values in two
main generic positions. Now let us list the remaining special cases.

1. For two complex critical values, if !0 D �`0 then one of the cuts in (1.13) and
one in (1.14) degenerate to the intervals on the imaginary axis. The length of such
a cut can not be arbitrary long, thus h`0

and hkC`0
are subject for conditions (1.15).

As soon as one of these values approaches h0 two complex critical values, from the
upper and lower half-planes, approach the critical value in the corresponding gap. In
the limit we have the critical value of multiplicity 3. The same special case can be
obtained when two critical values 
1 and 
2 tend to 
0, correspondingly h

.`0/
˙ ! 0;

see Figure 2.

2. The case of a critical point of multiplicity two and a simple critical point in a
gap corresponds to h

.`0/
C D 0, h.`0/� > 0 or h.`0/� D 0, h

.`0/
C > 0.

3. Two critical points (or one critical point of multiplicity two) may appear in
the interval which contains zero or infinity. The domain … looks similar to that one
shown in Figure 2, but the degenerated hyperbola corresponds to the most left (or
right) position, i.e., `0 D 0 or `0 D m.
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4. It was assumed that m � k. If m > k the domain … in Figure 1 remains the
same, but we switch the normalization conditions to u.0/ D �1 and u.1/ D C1.

5. In the Stieltjes case, subsection 3.1, the spectral curve was described by a
simpler domain, Figure 6. By (3.3) it can be transformed to a … region bounded from
below by the real axis.

4. Functional model for periodic SMP matrices

Let xC n E correspond to a periodic SMP matrix. We define

A.˛/ D K˛
0 .1/

K˛1.1/
; B.˛/ D K˛

0 .0/

K˛1.1/
; ˛ 2 �1.xC n E/�: (4.1)

For the reader’s convenience we prove here a known lemma, see e.g. [27].

Lemma 4.1. The following identities hold true

C.˛/
defD

p
1 � jA.˛/j2 D b1.0/

K
˛��1

1
0 .0/

K˛
0 .0/

(4.2)

and

A.˛/ D K˛1.0/

K˛
0 .0/

; C.˛/ D b0.1/
K

˛��1
01 .1/

K˛1.1/
: (4.3)

Proof. A.˛/ is defined by the following orthogonal decompositions:

K˛
0 D A.˛/K˛1 C

p
1 � jA.˛/j2b1K

˛��1
1

0

b0K
˛��1

01 D
p

1 � jA.˛/j2K˛1� A.˛/b1K
˛��1

1
0

Indeed,

A.˛/ D K˛
0 .1/

K˛1.1/

and we get (4.2).
Since, in addition,

K˛1 D A.˛/K˛
0 C

p
1 � jA.˛/j2b0K

˛��1
01

b1K
˛��1

1
0 D

p
1 � jA.˛/j2K˛

0 � A.˛/b0K
˛��1

01

we have (4.3).
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In what follows without loss of generality we assume that t.�1/ D 1 in (2.12). In
the given case �0 D 0, so t0 is the new notation for t�0

, and this is not the same as
the initial t.0/. Since

.b1b0z/.1/ D .b1�/.1/b0.1/ and .b1b0z/.0/ D �.b0=�/.0/b1.0/;

we have t1 D '1=j'1j and t0 D �'0=j'0j, where

'1 D
�b1�

b0

�
.1/ and '0 D

� b0

b1�

�
.0/:

Also, recall that t1=t0 D e2�i� .

Theorem 4.2. The multiplication operator by � with respect to the basis (2.10) is a
periodic SMP matrix A D A.˛; t.0// with the following coefficients

Np2n D '1t.0/e
2�i�nA.˛
�n/B�1.˛
�n/C.˛
1
�n/B.˛
1
�n/;

p2nC1 D � N'1t.0/t1e2�i�nC.˛
�n/B.˛
�n/A.˛
1
�n/B�1.˛
1
�n/;

q2n D �'1A.˛
�n/B�1.˛
�n/A.˛
1
�n/B.˛
1
�n/;

(4.4)

and

�2nC1 D t.0/t1e2�i�n N'0C.˛
�n/B.˛
�n/A.˛
1
�.nC1//B�1.˛
1
�.nC1//;

N�2nC2 D �t.0/e
2�i�.nC1/'0A.˛
�n/B�1.˛
�n/

C.˛
1
�.nC1//B.˛
1
�.nC1//;

�2nC1 D �'0A.˛
�n/B�1.˛
�n/A.˛
1
�.nC1//B.˛
1
�.nC1//:

(4.5)

Proof. Note that b1�k˛
0 2 H 2.˛
1/ and it is orthogonal to b0b21H 2.˛
�1

0 
�21 /.
Therefore, in fact, we have the three-terms recurrence relation,

�e2n D Np2ne2n�1 C q2ne2n C p2nC1e2nC1:

Moreover

Np2n D t.0/e
2�i�n.�b1/.1/

K
˛��n

0 .1/

K
˛�1��n

1 .1/
;
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q2n D h�K
˛��n

0 ; K
˛��n

0 i

D
D
�K

˛��n

0 � .�b1/.1/K
˛�1��n

1
b1K

˛�1��n

1 .1/
K

˛��n

0 .1/; K
˛��n

0

E

D � .�b1/.1/

b1.0/

K
˛�1��n

1 .0/

K
˛�1��n

1 .1/

K
˛��n

0 .1/

K
˛��n

0 .0/
;

and

p2nC1

D h�t.0/t
�n
0 K

˛��n

0 ; t�n�11 b0K
˛��1

0 ��n

1 i

D t.0/e
2�i�nt1

D
K

˛��n

0 ;

�b0K
˛��1

0
��n

1 � .�b0b1/.1/K
˛��1

0
��n

1 .1/K
˛�1��n

1
b1K

˛�1��n

1 .1/

E

D �t.0/e
2�i�nt1

.�b1/.1/

b1.0/

K
˛�1��n

1 .0/

K
˛�1��n

1 .1/

b0.1/K
˛��1

0 ��n

1 .1/

K
˛��n

0 .0/
:

In its turn,

1

�
e2nC1 D N�2nC1e2n C �2nC1e2nC1 C �2nC2e2nC2;

where

N�2nC1 D Nt.0/ Nt1e�2�i�n
�b0

�

�
.0/

K
˛��1

0
��n

1 .0/

K
˛��n

0 .0/
;

�2nC1 D
D 1

�
K

˛��1
0

��n

1 ; K
˛��1

0
��n

1
E

D
D 1

�
K

˛��1
0 ��n

1 �
�b0

�

�
.0/

K
˛��n

0

b0K
˛��n

0 .0/
K

˛��1
0 ��n

1 .0/; K
˛��1

0 ��n

1
E

D �
�b0

�

�
.0/

1

b0.1/

K
˛��n

0 .1/

K
˛��n

0 .0/

K
˛��1

0
��n

1 .0/

K
˛��1

0
��n

1 .1/

;
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and

�2nC2

D
D 1

�
t�n�11 K

˛��1
0

��n

1 ; t.0/t
�n�1
0 b1K

˛��1��n

0

E

D Nt.0/e
�2�i�.nC1/

D
K

˛��1
0

��n

1 ;

b1
�

K
˛��n�1

0 � K
˛��n

0

�
b0b1

�
K

˛��n�1

0

�
.0/

b0K
˛��n

0 .0/

E

D �Nt.0/e
�2�i�.nC1/

�b0b1
�

�
.0/

1

b0.1/

K
˛��n

0 .1/

K
˛��n

0 .0/

K
˛��n�1

0 .0/

K
˛��1

0
��n

1 .1/

:

Now by making use of (4.1), (4.3), and (4.2), we obtain (4.4)

q2n D � '1A.˛
1
�n/B.˛
1
�n/A.˛
�n/B�1.˛
�n/;

Np2n D '1t.0/e
2�i�nb1.0/

K
˛��n

0 .1/

K
˛�1��n

1 .1/

D '1t.0/e
2�i�n K

˛��n

0 .1/

K
˛��n

1 .1/

K
˛��n

1 .1/

K
˛�1��n

1 .1/
b1.0/

D '1t.0/e
2�i�nA.˛
�n/B�1.˛
�n/C.˛
1
�n/B.˛
1
�n/;

Np2nC1 D �'1 Nt.0/ Nt1e�2�i�nA.˛
1
�n/B.˛
1
�n/

� b0.1/K
˛��1

0
��n

1 .1/

K
˛��n

1 .1/

K
˛��n

1 .1/

K
˛��n

0 .0/

D �'1 Nt.0/ Nt1e�2�i�nA.˛
1
�n/B.˛
1
�n/C.˛
�n/B�1.˛
�n/;

as well as (4.5)

N�2nC1

D Nt.0/ Nt1e�2�i�n'0

K
˛��1

0
��n

1 .0/

K
˛��1

0
��n

1 .1/

b0.1/
K

˛��1
0

��n

1 .1/

K
˛��n

1 .1/

K
˛��n

1 .1/

K
˛��n

0 .0/

D Nt.0/ Nt1e�2�i�n'0A.˛
1
�.1Cn//B.˛
1
�.1Cn//C.˛
�n/B�1.˛
�n/;

�2nC1 D �'0A.˛
�n/B�1.˛
�n/A.˛
1
�.nC1//B.˛
1
�.nC1//;
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and

N�2nC2 D �t.0/e
2�i�.nC1/'0A.˛
�n/B�1.˛
�n/

� b0.1/
K

˛��.nC1/

0 .0/

K
˛�

�.nC1/
0

0 .0/

K
˛��1

0 ��n

0 .0/

K
˛��1

0
��n

1 .1/

D �t.0/e
2�i�.nC1/'0A.˛
�n/B�1.˛
�n/

C.˛
1
�.nC1//B.˛
1
�.nC1//:

Remark 4.3. The structure of the reproducing kernels on the hyperelliptic Riemann
surfaces is well known, see e.g. [32]. In particular, indeed K˛1.0/ D 0, i.e., for some
˛, A.˛/ D 0. According to (4.4) and (4.5) it means that the corresponding A D
A.˛; t.0// may degenerate, that is, q2n or �2n�1 vanishes for some n. Nevertheless
all entries of A and A�1 have perfect sense. For example,

r2nC1 D Np2n Np2nC1

q2n

D j'1jC.˛
�n/B.˛
�n/C.˛
1
�n/B�1.˛
1
�n/;

and

��2n D N�2n�1 N�2n

��2n�1

D j'0jC.˛
�.n�1//B.˛
�.n�1//C.˛
1
�n/B�1.˛
1
�n/;

where

Ae2n�1 D r2n�1e2n�3 C Np2n�1e2n�2 C q2n�1e2n�1 C p2ne2n C r2nC1e2nC1;

and

A�1e2n D �2ne2n�2 C N�2ne2n�1 C �2ne2n C �2nC1e2nC1 C �2nC2e2nC2:
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