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A priori bounds and existence of non-real eigenvalues
of indefinite Sturm–Liouville problems
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Abstract. The present paper gives a priori bounds on the possible non-real eigenvalues of
regular indefinite Sturm–Liouville problems and obtains sufficient conditions for such problems
to admit non-real eigenvalues.
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1. Introduction

The present paper is concerned with the indefinite spectral problem

� y00 C qy D �wy; y.�1/ D y.1/ D 0; in L2
jwjŒ�1; 1� (1.1)

under the standing hypothesis that q and w are real-valued functions satisfying

q; w 2 L1Œ�1; 1�; w.x/ ¤ 0 a.e. on Œ�1; 1�; (1.2)

and w.x/ changes sign on Œ�1; 1�. The indefinite problem (1.1) has discrete, real
eigenvalues, unbounded from both below and above, and may also admit non-real
eigenvalues. Such problems occur in certain physical models, particularly in transport
theory and statistical physics. The indefinite nature of the problem was noticed by
Haupt [9] and Richardson [12] at the beginning of the last century. For a review of
the early work in this direction, see [11].

1This research was partially supported by the NSF of China (Grant 11271229), the NSF of Shandong
Province (Grants ZR2012AM002 and ZR2011AQ002) and the Teaching Research and Teaching Reform
Project of Shandong University, Weihai (Grant A201005).
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As a simple example of (1.1), the Richardson problem [13]

� y00 � �y D �sgn.x/y; x 2 Œ�1; 1�; y.�1/ D 0 D y.1/ (1.3)

was studied by many authors, such as Turyn [14], Atkinson and Jabon [1], Fleckinger
and Mingarelli [8], and P. Binding and H. Volkmer [6]. For the indefinite prob-
lem (1.1), non-real eigenvalues might appear only if the corresponding right-definite
problem

� y00 C qy D �jwjy; y.�1/ D y.1/ D 0 in L2
jwjŒ�1; 1� (1.4)

has negative eigenvalues, namely, here holds the following result.

Proposition 1.1 ([10], Theorem 2, p. 523, and [7], Corollary 1.7). If problem (1.4)
has n negative eigenvalues, then problem (1.1) has at most 2n non-real eigenvalues.

Although the upper bound given in Proposition 1.1 is sharp (see [12] and [2]),
determining a priori bounds and the exact number of non-real eigenvalues are still
difficult and interesting open problems in Sturm–Liouville theory (see [11] and [15],
p. 126). Recently, by means of the operator theory in Krein spaces, Behrndt, Katatbeh,
and Trunk [2], Theorem 2.3 and Corollary 2.4, have given sufficient conditions for the
existence of non-real eigenvalues of the singular indefinite Sturm–Liouville operator

.Af /.x/
defD sgn.x/.�f 00.x/ C V.x/f .x// D �f .x/; x 2 R; (1.5)

and if V 2 L1.R/, Behrndt, Philipp and Trunk [3], Theorem 4.2, have obtained
explicit bounds on the non-real eigenvalues of (1.5) in terms of V .

In the present paper, we will first obtain a priori bounds for possible non-real
eigenvalues and then find sufficient conditions for the existence of non-real eigen-
values of (1.1). These results will answer or partially answer several open problems
posed in [11]. We state these results in this section and prove them in Sections 2
and 3.

Denote by k � kp the norm of the space LpŒ�1; 1� and by k � kC the maximum
norm of C Œ�1; 1�. If xw.x/ > 0 a.e. on Œ�1; 1�, we set

S1."/ D fx 2 Œ�1; 1� W xw.x/ < "g; m1."/ D mes S1."/: (1.6)

If w 2 AClocŒ�1; 1�, w0 2 L2Œ�1; 1�, we set

S2."/ D fx 2 Œ�1; 1� W w2.x/ < "g; m2."/ D mes S2."/: (1.7)

A value of x about which w.x/ changes its sign will be called a turning point [10].
If w.x/ has only one turning point, we will obtain the following a priori bounds for
possible non-real eigenvalues.
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Theorem 1.2. Suppose that � exists and that it is a non-real eigenvalue of (1.1). If
xw.x/ > 0 a.e. on Œ�1; 1�, then

j Re �j � 4

"1

.kq�k1 C 4kq�k2
1/; j Im �j � 4

"1

kq�k1; (1.8)

where "1 > 0 satisfies 8kq�k2
1m1."1/ < 1 and q�.x/ D � minf0; q.x/g.

In the case where w.x/ is allowed to have more turning points, we will obtain the
following result.

Theorem 1.3. Suppose that � exists and that it is a non-real eigenvalue of (1.1). If
w 2 AC Œ�1; 1� and w0 2 L2Œ�1; 1�, then

j Re �j � 8

"2

kq�k2
1.3kwkC C kw0k2/; j Im �j � 8

"2

kw0k2kq�k2
1; (1.9)

where "2 > 0 is chosen such that 8kq�k2
1m2."2/ < 1:

In the particular case where q � 0, we see by Theorems 1.2 and 1.3 that (1.1) has
no any non-real eigenvalues, which is in accordance with the conclusion in Proposi-
tion 1.1 since now (1.4) does not have any negative eigenvalues.

In what follows, we impose the symmetry conditions on q and w, namely,

q.x/ D q.�x/ and w.�x/ D �w.x/: (1.10)

In this case, more accurate a priori bounds on imaginary eigenvalues can be found if
q is bounded below and w keeps away from zero.

Theorem 1.4. Suppose that (1.10) holds and xw.x/ > 0 a.e. on Œ�1; 1�. If, for some
q0 < 0 and w0 > 0,

q.x/ � q0; jw.x/j � w0 a.e. x 2 Œ�1; 1�; (1.11)

then for any possible pure imaginary eigenvalue � of (1.1), there holds

j Im �j � 4.�q0/3=2

w0

: (1.12)

In view of (1.10), using the spectral theory of operators in Krein spaces, we obtain
an existence result for non-real eigenvalues of the indefinite problem (1.1).

Theorem 1.5. Let (1.10) be fulfilled. If the eigenvalue problem

� y00 C q.x/y D �y; y.�1/ D y.1/ D 0 (1.13)

has one negative eigenvalue and the rest eigenvalues are all positive, then (1.1) has
exactly two purely imaginary eigenvalues.
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Immediate consequences of Proposition 1.1, Theorems 1.4, and Theorem 1.5 are
the existence and bounds for non-real eigenvalues of Richardson problem.

Corollary 1.6. For � 2 �
�2

4
; �2

�
, the Richardson eigenvalue problem (1.3) has

exactly two purely imaginary eigenvalues whose moduli are bounded by 4�3=2.

Remark 1. Theorems 1.2 and 1.5 can be generalized to the problem
8̂
<̂
ˆ̂:

� .p.x/y0/0 C q.x/y D �w.x/y;

˛1y.�1/ C ˇ1y0.�1/ D 0;

˛2y.1/ C ˇ2y0.1/ D 0;

where p.x/ > 0 a.e. on Œ�1; 1�, 1=p 2 L1Œ�1; 1�, j̨ ; ǰ 2 R for j D 1; 2 and
˛1ˇ2 C ˛2ˇ1 D 0, but we do not pursue this here.

Acknowledgments. The authors gratefully thank the referee for his or her helpful
suggestions which lead to the improvement of the result in and simplification of the
proof of Theorem 1.5.

2. A priori bounds of non-real eigenvalues

In this section we will prove Theorems 1.2, 1.3, and 1.4.

Proof of Theorem 1.2. Let � be a non-real eigenvalue of (1.1) and '.x/ the corre-
sponding eigenfunction with k'k2 D 1. Multiplying both sides of �'00 Cq' D �w'

by N' and integrating over the interval Œx; 1� we have

.'0 N'/.x/ C
Z 1

x

j'0j2 C
Z 1

x

qj'j2 D �

Z 1

x

wj'j2: (2.1)

Separating the real and imaginary parts of both sides of (2.1) yields

Re �

Z 1

x

wj'j2 D Re.'0 N'/.x/ C
Z 1

x

j'0j2 C
Z 1

x

qj'j2; (2.2)

Im �

Z 1

x

wj'j2 D Im.'0 N'/.x/: (2.3)

We will use (2.2) and (2.3) to estimate Re � and Im �. To do this, let x D �1 in (2.3).
From Im � 6D 0 and '.�1/ D 0, we have

R 1

�1
wj'j2 D 0, and hence, by (2.2),

Z 1

�1

.j'0j2 C qj'j2/ D 0: (2.4)
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Set

Q.x/ D
Z x

�1

q�.t /dt:

Then max jQ.x/j � kq�k1 and

Z 1

�1

q�.x/j'.x/j2dx D
Z 1

�1

Q0.x/j'.x/j2dx � 2 Re

�Z 1

�1

Q.x/'0.x/'.x/dx

�
;

which, together with k'k2 D 1, yields that

Z 1

�1

q�j'j2 � 2kq�k1

Z 1

�1

j'0jj'j

� 2kq�k1k'0k2 � 2kq�k2
1 C 1

2
k'0k2

2:

(2.5)

Then, from (2.4), we get

k'0k2
2 � 4kq�k2

1;

Z 1

�1

q�j'j2 � 4kq�k2
1: (2.6)

From '.x/ D R x

�1 '0.t /dt , by Cauchy–Schwarz inequality, we have

j'.x/j2 D
ˇ̌̌
ˇ
Z x

�1

'0.t /dt

ˇ̌̌
ˇ
2

� .x C 1/

Z x

�1

j'0.t /j2dt �
Z 0

�1

j'0j2 � k'0k2
2

for �1 � x � 0. From '.x/ D � R 1

x
'0.t /dt , one similarly proves j'.x/j2 � k'0k2

2

for x 2 Œ0; 1�, and so,

j'.x/j2 � k'0k2
2; x 2 Œ�1; 1�: (2.7)

Since xw.x/ > 0, a.e. on Œ�1; 1�, one can find "1 > 0 such that8kq�k2
1m1."1/ < 1,

where m1."/ is defined in (1.6). Using
R 1

�1
wj'j2 D 0, from (2.6) and (2.7), we have

Z 1

�1

Z 1

x

w.t/j'.t/j2dtdx D
Z 1

�1

xw.x/j'.x/j2dx

� "1

�Z 1

�1

j'.x/j2dx �
Z

S1."1/

j'.x/j2dx

�

� "1Œ1 � 4kq�k2
1m1."1/�

� "1

2
:

(2.8)
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Set
qC.x/ D maxf0; q.x/g:

Then q D qC � q� and jqj D qC C q� D q C 2q�. Repeatedly using (2.4), we have

ˇ̌
ˇ̌Z 1

�1

Z 1

x

.j'0j2 C qj'j2/dtdx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z 1

�1

x.j'0j2 C qj'j2/dx

ˇ̌
ˇ̌

�
Z 1

�1

.j'0j2 C qj'j2 C 2q�j'j2/dx

D 2

Z 1

�1

q�j'j2dx:

Now, by (2.6), the integration of (2.2) gives

j Re �j
Z 1

�1

Z 1

x

wj'j2 D
ˇ̌
ˇ̌Z 1

�1

Re.'0 N'/dx C
Z 1

�1

Z 1

x

.j'0j2 C qj'j2/dtdx

ˇ̌
ˇ̌

� k'0k2 C 2

Z 1

�1

q�j'j2dx � 2kq�k1 C 8kq�k2
1:

Therefore, in view of (2.8), we conclude that

j Re �j � 4

"1

.kq�k1 C 4kq�k2
1/: (2.9)

Moreover, integrating (2.3) and using (2.8) and (2.6), we have

"1

2
j Im �j � j Im �j

Z 1

�1

Z 1

x

wj'j2 D
ˇ̌
ˇ̌Z 1

�1

Im.'0 N'/

ˇ̌
ˇ̌ � k'0k2 � 2kq�k1; (2.10)

and (1.8) follows immediately. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let � be a non-real eigenvalue of (1.1) and ' the corre-
sponding eigenfunction with k'k2 D 1. In this case we still can make use of (2.1),
(2.2), and (2.3). From (2.3), since Im � ¤ 0, one sees that

R 1

�1 wj'.x/j2dx D 0.
Thus, (2.4), (2.6), and (2.7) hold, and, in particular,

j'.x/j2 � k'0k2
2; x 2 Œ�1; 1�; k'0k2

2 �
Z 1

�1

q�j'j2 � 4kq�k2
1: (2.11)

Multiplying �'00 C q' D �w' by w N' and integrating by parts, we get

Z 1

�1

wj'0j2 C
Z 1

�1

w0'0 N' C
Z 1

�1

wqj'j2 D �

Z 1

�1

w2j'j2: (2.12)
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Separating the real and imaginary parts of the both sides of (2.12) yields

Re �

Z 1

�1

w2j'j2 D Re

�Z 1

�1

w0'0 N'
�

C
Z 1

�1

w.j'0j2 C qj'j2/; (2.13)

Im �

Z 1

�1

w2j'j2 D Im

�Z 1

�1

w0'0 N'
�

: (2.14)

Now, using (2.11), jqj D q C 2q� and

Z 1

�1

qj'j2 D �
Z 1

�1

j'0j2 < 0;

we obtain ˇ̌
ˇ̌Z 1

�1

wj'0j2
ˇ̌
ˇ̌ � kwkC k'0k2

2 � 4kwkC kq�k2
1;

ˇ̌̌
ˇ
Z 1

�1

wqj'j2
ˇ̌̌
ˇ � kwkC

Z 1

�1

jqjj'j2 � 8kwkC kq�k2
1;

ˇ̌
ˇ̌Z 1

�1

w0'0 N'
ˇ̌
ˇ̌ � k'0k2kw0k2k'0k2 � 4kw0k2kq�k2

1:

(2.15)

Recall that m2."2/ D mes S2."2/ defined in (1.7) and w2.x/ � "2 on the set
�."2/

defD Œ�1; 1� n S2."2/. Then 8kq�k2
1m."2/ < 1 yields that

Z 1

�1

w2.x/j'.x/j2dx � "2

Z
�."2/

j'j2

D "2

�
1 �

Z
S."2/

j'j2
�

� "2

�
1 � 4kq�k2

1m."2/
�

� "2

2
;

(2.16)

which, together with (2.13), (2.14), and (2.15), gives (1.9) and completes the proof.

Under conditions (1.2) and (1.10), it is easy to see that if � 2 C is an eigen-
value of (1.1) with an eigenfunction ', then �N� is an eigenvalue of (1.1) with the
eigenfunction '.��/. Thus, if � D i˛ with ˛ 2 R, then '.�x/ D C '.x/ for some
C 6D 0 since the geometric multiplicity is one. Then it follows that jC j D 1 from
'.0/ D C '.0/, '0.0/ D �C '0.0/, and j'.0/j C j'0.0/j ¤ 0. To sum up, we have
the following result.
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Lemma 2.1. Let (1.2) and (1.10) hold. If � 2 C is an eigenvalue of (1.1) with an
eigenfunction ', then �N� is an eigenvalue of (1.1) with the eigenfunction '.��/. In
particular, if � D i˛ with ˛ 2 R and ˛ ¤ 0, then '.��/ D C ' for some C 2 C with
jC j D 1.

Proof of Theorem 1.4. Let ' be an eigenfunction corresponding to � D i˛ with
k'k2 D 1. It follows from Lemma 2.1 that there exists an ! 2 Œ0; 2�/ such that
'.�x/ D ei!'.x/ and �'0.�x/ D ei!'0.x/. So, j'.x/j and j'0.x/j are even func-
tions. We see that (2.1)–(2.4) hold for this '. Similarly to (2.7), we have

j'.x/j2 � .x C 1/

Z x

�1

j'0.t /j2dt

�
Z 0

�1

j'0.t /j2dt D 1

2
k'0k2

2; x 2 Œ�1; 0�;

(2.17)

since j'0.x/j is even. Actually, (2.17) is true for x 2 Œ�1; 1� since j'.x/j is even.
Since q.x/ � q0 on Œ�1; 1�, it follows from (2.4) and k'k2 D 1 that

k'0k2
2 D �

Z 1

�1

qj'j2 � �q0;

and then the integration of (2.3) produces

j Im �j
ˇ̌
ˇ
Z 1

�1

Z 1

x

wj'j2
ˇ̌
ˇ D

ˇ̌
ˇ
Z 1

�1

Im.'0 N'/
ˇ̌
ˇ � k'0k2 � .�q0/1=2: (2.18)

Let ı D 1=.�2q0/. By (2.17), we have 1 D R 1

�1 j'j2 � k'0k2
2 � �q0 and

ˇ̌̌
ˇ
Z 1

�1

Z 1

x

wj'j2
ˇ̌̌
ˇ D

Z 1

�1

xw.x/j'j2dx

� w0

Z 1

�1

jxjj'j2dx

� w0ı

Z
jxj�ı

j'j2 D w0ı

�
1 �

Z ı

�ı

j'j2
�

� w0ı.1 � ı.�q0//

D � w0

4q0

:

(2.19)

Now, (1.12) follows from (2.18) and (2.19). The proof is complete.
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3. Existence of non-real eigenvalues

In this section we prove Theorem 1.5 and in the proof we will use the following result
which was proved, e.g., in [7] and [5].

Lemma 3.1 ([7], Proposition 2.6). If wj 2 L1Œ�1; 1� and wj .x/ > 0 a.e. on Œ�1; 1�

for j D 1; 2, then the two eigenvalue problems

� y00 C q.x/y D �wj .x/y; y.�1/ D y.1/ D 0; j D 1; 2 (3.1)

have the same number of negative eigenvalues.

Let K be the Krein space L2
jwjŒ�1; 1�, equipped with the indefinite inner product

Œf; g� D
Z 1

�1

f .x/g.x/w.x/dx; f; g 2 L2
jwjŒ�1; 1� (3.2)

and T a self-adjoint operator in K with domain D.T /; see [4], [2], and [7]. We say
that the operator T has k negative squares, k 2 N0, if there exists a k-dimensional
subspace X of K in D.T / such that ŒTf; f � < 0 if f 2 X and f 6D 0, but no
.k C 1/-dimensional subspace with this property.

Proof ofTheorem 1.5. Let A and B be the operators associated with �y00 Cq.x/y D
�w.x/y and �y00 C q.x/y D �jw.x/jy with the Dirichlet boundary conditions,
respectively. Then B is self-adjoint with respect to the definite inner product

.f; g/ D
Z 1

�1

f .x/g.x/jw.x/jdx; f; g 2 L2
jwjŒ�1; 1�

and A is self-adjoint with respect to the indefinite inner product (3.2).
It follows from Lemma 3.1 and the assumption in Theorem 1.5 that B has one

negative eigenvalue and the rest are positive, and hence, A has exactly one negative
square since ŒAf; f � D .Bf; f / and 0 is a resolvent point of A. It is well known
(see, e.g., [7], Proposition 1.5, or [4], Theorem 3.1) that this implies the existence of
exactly one eigenvalue � of (1.1) in R or the upper half-plane CC and that if � 2 R
with eigenfunction ' then ŒA'; '� D �Œ'; '� � 0. Let � be such an eigenvalue
with eigenfunction '. If � is real, then �� D �N� is also an eigenvalue with the
eigenfunction '.��/ by Lemma 2.1 and

��Œ'.��/; '.��/� D �Œ'; '� � 0

by the odd symmetry of w. Thus, we get that � and �� are two such eigenvalues,
which is a contradiction. Since � 2 CC implies �N� 2 CC, we see that � D �N�, i.e.,
� is purely imaginary. The proof of Theorem 1.5 is complete.



62 J. Qi and S. Chen

References

[1] F. Atkinson and D. Jabon, Indefinite Sturm–Liouville problems. In H. Kaper,
M.-K. Kwong, and A. Zettl (eds.), Proceedings of the Focused Research Program on
Spectral Theory and Boundary Value Problems. Vol. I. Argonne National Laboratory,
Mathematics and Computer Science Division, Argonne, IL, 1987, 31–45.

[2] J. Behrndt, Q. Katatbeh and C. Trunk, Non-real eigenvalues of singular indefinite
Sturm–Liouville operators. Proc. Amer. Math. Soc. 137 (2009), 3797–3806. MR 2529889
Zbl 1182.47036

[3] J. Behrndt, F. Philipp and C. Trunk, Bounds on the non-real spectrum of differen-
tial operators with indefinite weights. Math. Ann. 357 (2013), 185–213. MR 3084346
Zbl 06210502

[4] J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm–Liouville operators.
J. Diff. Equations 238 (2007), 491–519. MR 2341434 Zbl 1123.47033

[5] P. Binding and M. Möller, Negativity indices for definite and indefinite Sturm–Liouville
problems. Math. Nachr. 283 (2010), 180–192. MR 2604116 Zbl 1193.34054

[6] P. Binding and H. Volkmer, Eigencurves for two-parameter Sturm–Liouville equations.
SIAM Review 38 (1996), 27–48. MR 1379040 Zbl 0869.34020

[7] B. C̆urgus and H. Langer,A Krein space approach to symmetric ordinary differential oper-
ators with an indefinite weigth function. J. Diff. Equations 79 (1989), 31–61.MR 0997608
Zbl 0693.34020

[8] J. Fleckinger and A. B. Mingarelli, On the eigenfunctions of non-definite elliptic oper-
ators. In I. W. Knowles and R. T. Lewis (eds.), Differential Equations. North-Holland,
Amsterdam, 1984, 229–228.

[9] O. Haupt, Über eine methode zum beweis von oszillations theoremen. Math. Ann. 76
(1915), 67–104.

[10] A. B. Mingarelli, Indefinite Sturm–Liouville problems. In W. N. Everitt and B. D. Slee-
man (eds.), Ordinary and partial differential equations. Proceedings of the Seventh Con-
ference held at the University of Dundee, Dundee, March 29–April 2, 1982. Lecture
Notes in Mathematics 964. Springer Verlag, Berlin etc., 1982, 519-528. MR 0693136
Zbl 0488.00008 (collection)

[11] A. B. Mingarelli, A survey of the regular weighted Sturm–Liouville problem – The
non-definite case. In S. T. Xiao and F. Q. Pu (eds.), International workshop on ap-
plied differential equations. Proceedings of the workshop held at Tsinghua University,
Beijing, June 4–7, 1985. World Scientific, Singapore, 1986, 109–137. MR 0901329
Zbl 0624.34021

[12] R. G. D. Richardson, Theorems of oscillation for two linear differential equations of sec-
ond order with two parameters. Trans. Amer. Math. Soc. 13 (1912), 22–34. MR 1500902
JFM 43.0400.03

[13] R. G. D. Richardson, Contributions to the study of oscillation properties of the solutions
of linear differential equations of the second order. Amer. J. Math. 40 (1918), 283–316.
MR 1506360 JFM 46.0698.03

[14] L. Turyn, Sturm–Liouville problems with several parameters. J. Differential Equations 38
(1980), 239–259. MR 0597803 Zbl 0421.34023

http://www.ams.org/mathscinet-getitem?mr=2529889
http://zbmath.org/?q=an:1182.47036
http://www.ams.org/mathscinet-getitem?mr=3084346
http://zbmath.org/?q=an:06210502
http://www.ams.org/mathscinet-getitem?mr=2341434
http://zbmath.org/?q=an:1123.47033
http://www.ams.org/mathscinet-getitem?mr=2604116
http://zbmath.org/?q=an:1193.34054
http://www.ams.org/mathscinet-getitem?mr=1379040
http://zbmath.org/?q=an:0869.34020
http://www.ams.org/mathscinet-getitem?mr=0997608
http://zbmath.org/?q=an:0693.34020
http://www.ams.org/mathscinet-getitem?mr=0693136
http://zbmath.org/?q=an:0488.00008
http://www.ams.org/mathscinet-getitem?mr=0901329
http://zbmath.org/?q=an:0624.34021
http://www.ams.org/mathscinet-getitem?mr=1500902
http://zbmath.org/?q=an:43.0400.03
http://www.ams.org/mathscinet-getitem?mr=1506360
http://zbmath.org/?q=an:46.0698.03
http://www.ams.org/mathscinet-getitem?mr=0597803
http://zbmath.org/?q=an:0421.34023


Non-real eigenvalues of indefinite Sturm–Liouville problems 63

[15] A. Zettl, Sturm–Liouville Theory. Mathematical Surveys and Monographs 121. American
Mathematical Society, Providence, RI, 2005. MR 2170950 Zbl 1103.34001

Received December 17, 2012

Jiangang Qi, Department of Mathematics, Shandong University (Weihai), Weihai 264209,
P. R. China

E-mail: qjg816@163.com

Shaozhu Chen, Department of Mathematics, Shandong University (Weihai), Weihai
264209, P. R. China

E-mail: szchen@sdu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=2170950
http://zbmath.org/?q=an:1103.34001
mailto:qjg816@163.com
mailto:szchen@sdu.edu.cn

	Introduction
	A priori bounds of non-real eigenvalues
	Existence of non-real eigenvalues
	References

