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Spectral properties of bipolar surfaces to Otsuki tori
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Abstract. The i-th eigenvalue �i of the Laplace–Beltrami operator on a surface can be con-
sidered as a functional on the space of all Riemannian metrics of unit volume on this surface.
Surprisingly only few examples of extremal metrics for these functionals are known. In the
present paper a new countable family of extremal metrics on the torus is provided.
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1. Introduction

Let M be a closed surface and g be a Riemannian metric on M . Let us consider
the associated Laplace–Beltrami operator � acting on the space of smooth functions
on M ,
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�
:

It is well-known that the spectrum of� is non-negative and consists only of eigenval-
ues, each eigenvalue has finite multiplicity and the eigenfunctions are smooth. Let
us denote the eigenvalues of � by

0 D �0.M; g/ < �1.M; g/ 6 �2.M; g/ 6 �3.M; g/ 6 � � � ;
where eigenvalues are written with multiplicities.

The eigenvalues possess the property

�i .M; tg/ D �i .M; g/

t
; t > 0:

Therefore, given a fixed surface M one has sup�i .M; g/ D C1, where supremum
is taken over the space of all Riemannian metrics onM . But if we consider supremum
over the space of all Riemannian metrics on M of unit area then the question about
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the value of sup�i .M; g/ becomes more interesting. The alternative approach is to
investigate the functionals

ƒi .M; g/ D �i .M; g/Area.M; g/:

It is easy to see that ƒi .M; g/ D ƒi .M; tg/ for any t > 0. Thus the latter question
is equivalent to the question about the value of supƒi .M; g/, where supremum is
taken over the space of all Riemannian metrics on M .

It is known that functionals ƒi .M; g/ are bounded from above. Yang and Yau
proved in the paper [22] that for an orientable surface M of genus � the following
inequality holds,

ƒ1.M; g/ 6 8�.� C 1/:

Moreover, Korevaar proved in the paper [15] that there exists a constant C such that
for any i > 0 and any compact surface M of genus � the following inequality holds:

ƒi .M; g/ 6 C.� C 1/i:

However, Colbois and Dodziuk proved in the paper [5] that for any manifold M
of dimension dimM > 3 the functional �i.M; g/ is not bounded on the space of
Riemannian metrics g on M of unit volume.

The functionalƒi .M; g/ depends continuously on the metricg, but this functional
is not differentiable. However, it is known that for an analytic family of metrics gt

there exist the left and right derivatives with respect to t ; see the papers [1], [2],
and [8]. This is a motivation for the following definition; see the papers [9] and [18].

Definition 1. A Riemannian metric g on a closed surface M is called an extremal
metric for the functionalƒi .M; g/ if for any analytic deformationgt such thatg0 D g

the following inequality holds:

d

dt
ƒi .M; gt/

ˇ̌̌
tD0C6 0 6 d

dt
ƒi .M; gt /

ˇ̌̌
tD0�:

The detailed list of surfacesM and values of index i such that maximal or at least
extremal metrics are known is quite short and can be found in the introduction to the
paper [20].

It turns out that extremal metrics are closely related to minimal submanifolds of
the spheres. Let M # Sn be a minimally immersed submanifold of the unit sphere
Sn � RnC1. We denote by � the Laplace–Beltrami operator on M associated with
the induced metric g on M . Let us introduce the eigenvalues counting function

N.�/ D #fi j �i .M; g/ < �g:
This function is often called the Weyl’s function. The following theorem provides a
general approach to finding smooth extremal metrics.
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Theorem 1 (El Soufi and Ilias [8]). LetM # Sn be a minimally immersed subman-
ifold of the unit sphere Sn � RnC1. Then the metric induced onM by the immersion
is extremal for the functional ƒN.2/.M; g/.

We also need to recall another result concerning minimal submanifolds of the
sphere. This theorem can be found e.g. in the book [14].

Theorem 2. Let M # Sn be a minimally immersed submanifold of the unit sphere
Sn � RnC1. Then the restrictions x1jM ; : : : ; xnC1jM on M of the standard coordi-
nate functions of RnC1 are eigenfunctions of the Laplace–Beltrami operator on M
with eigenvalue dimM .

Thus, it is possible to take an immersed minimal surface M in the sphere, then
computeN.2/ and deduce that the metric induced onM by the immersion is extremal
for ƒN.2/.M; g/. This approach was successfully realized for the first time by Pen-
skoi in the papers [20] and [21] for Otsuki tori and Lawson tau-surfaces. Although,
we should mention that Lapointe in the paper [16] used some of these ideas in in-
vestigation of bipolar surfaces to Lawson tau-surfaces. The work of Lapointe was
inspired by the paper [12] where Jakobson, Nadirashvili and Polterovich proved that
the metric on the Lawson bipolar surface Q�3;1 is extremal for the functionalƒ1.Kl; g/.
Later, El Soufi, Giacomini and Jazar proved in the paper [6] that this metric is the
unique extremal metric.

In fact, all metrics extremal for the first positive eigenvalue are determined for
surfaces of genus 0 and 1. The case of a Klein bottle was mentioned above. In case
of a sphere and a projective plane the only metrics extremal for ƒ1 are the standard
metrics of constant curvature. For a torus there are two extremal metrics: the metric
on the flat torus with a square lattice (Clifford torus) and the metric on the flat torus
with an equilateral lattice. These results were obtained in the paper [9] by El Soufi
and Ilias based on their paper [7].

In the present paper the extremality of the bipolar surfaces to Otsuki tori is inves-
tigated. The definition of Otsuki tori and bipolar surfaces are given in Sections 2.2
and 2.3 respectively. At this point it is sufficient to know that for every rational
number p=q such that

.p; q/ D 1 and
1

2
<
p

q
<

p
2

2

there exists a minimal immersed surface in S4 denoted by zOp
q

. The main result of
this paper is the following theorem.

Theorem 3. The bipolar surface zOp
q

to an Otsuki torus is a torus. If q is odd then the

metric on zOp
q

induced by the immersion is extremal forƒ2qC4p�2 .T 2; g/. If q is even

then the metric induced by the immersion on zOp
q

is extremal for ƒqC2p�2.T 2; g/.
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The paper is organized in the following way. The Otsuki tori and their bipolar
surfaces are defined in Sections 2.2 and 2.3. A convenient parametrization of bipolar
surfaces is given in Section 2.4. Section 3 contains the proof of the main theorem.

Acknowledgments. The author thanks A. V. Penskoi for statement of this problem,
fruitful discussions and invaluable help in the preparation of the manuscript.

2. Bipolar surfaces to Otsuki tori.

2.1. Reduction theorem for minimal submanifolds. LetM be a Riemannian man-
ifold equipped with a metric g0 and I.M/ be its full isometry group. LetG � I.M/

be a compact isometry group. Let us denote by � the natural projection

� W M �! M=G:

Denote by M� the union of all orbits of principal type, then M� is an open
dense submanifold of M . The subset M�=G of M=G is equipped with a natural
Riemannian metric g defined by the formula

g.X; Y / D g0.X 0; Y 0/;

where X; Y are tangent vectors at x 2 M�=G and X 0; Y 0 are tangent vectors at a
point x0 2 ��1.x/ � M� such that X 0 and Y 0 are orthogonal to the orbit ��1.x/

and d�.X 0/ D X; d�.Y 0/ D Y .
Let

f W N # M

be a G-invariant immersed submanifold, i.e. a manifold equipped with an action of
G by isometries such that

g � f .x/ D f .g � x/; x 2 N:
Definition 2. The cohomogeneity of a G-invariant immersed submanifold N is the
number dimN � �, where � is the dimension of the orbits of principal type.

Let us define for x 2 M�=G a volume function V.x/ by the formula

V.x/ D Vol.��1.x//:

Also for each integer k > 1 let us define a metric

gk D V
2
k g:

Proposition 1 (Hsiang and Lawson [11]). Let f W N # M� be a G-invariant
immersed submanifold of cohomogeneity k, and let M�=G be equipped with the
metric gk . Then f W N # M� is minimal if and only if Nf W N=G # M�=G is
minimal.
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2.2. Otsuki tori. Otsuki tori were introduced by Otsuki in the paper [19]. Let us
recall the concise description by Penskoi from the paper [20]. For more details see
Section 1.2 of the paper [20]. Consider the action of SO.2/ on the three-dimensional
unit sphere S3 � R4 given by the formula

˛ � .x; y; z; t / D .cos˛x C sin ˛y;� sin˛x C cos˛y; z; t /;

where ˛ 2 Œ0; 2�/ is a coordinate on SO.2/. The space of orbits S3=SO.2/ is the
closed half-sphere S2C,

q2 C z2 C t2 D 1; q > 0;

where a point .q; z; t / corresponds to the orbit .q cos˛; q sin ˛; z; t / 2 S3. The space
of principal orbits .S3/�=SO.2/ is the open half sphere S2

>0 D f.q; z; t / 2 S2jq > 0g.
It is natural to introduce the spherical coordinates in the space of orbits,8̂̂<

ˆ̂:
t D cos � sin �;

z D cos � cos�;

q D sin �:

Since we look for minimal submanifolds of cohomogeneity 1, the Hsiang–Lawson’s
metric is given by the formula

V 2.d�2 C cos2 �d�2/ D 4�2 sin2 �.d�2 C cos2 �d�2/: (1)

Definition 3. An immersed minimal SO.2/-invariant two-dimensional torus in S3

such that its image by the projection � W S3 ! S3=SO.2/ is a closed geodesics in
.S3/�=SO.2/ equipped with metric (1) is called an Otsuki torus.

The following proposition can be found in the paper [20].

Proposition 2. Except one particular case given by the equation  D �
4

, Otsuki tori
are in one-to-one correspondence with rational numbers p

q
such that

1

2
<
p

q
<

p
2

2
; p; q > 0; .p; q/ D 1:

Definition 4. ByOp
q

we denote the Otsuki torus corresponding to p
q

. Following the
paper [20] we reserve the term Otsuki tori for the tori Op

q
.

In order to fix notations we give a sketch of the proof of Proposition 2.
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Proof. Let us use the standard notation for the coefficients of metric (1),

E D 4�2 sin2 �; G D 4�2 sin2 � cos2 �:

The equation of geodesics for R� reads

R�C 1

G

@G

@�
P� P� D 0:

Hence, 2�c D G P� is an integral of motion and

P� D c

2� cos2 � sin2 �
: (2)

As we know the velocity vector of a geodesic has a constant length. Suppose this
length equals 1. Then

E P�2 CG P�2 D 1 () P�2 D sin2 � cos2 � � c2

4�2 sin4 � cos2 �
: (3)

This implies sin2 � cos2 � � c2 > 0 and sin2 � cos2 � D c2 if and only if P� D 0.
Since the point corresponding to � D 0 does not belong to .S3/�=SO.2/, there ex-

ists a minimal value a of the coordinate � on a geodesic. Therefore c D ˙ sin a cos a
and the geodesics are situated in the annulus a 6 � 6 �

2
� a. We choose a natural

parameter t such that �.0/ D a.
Equations (2) and (3) imply

d�

d�
D ˙ cos �

p
sin2 � cos2 � � sin2 a cos2 a

sin a cos a
:

The right hand side of this equation equals 0 only at � D a and � D �
2

� a.
Let us denote by�.a/ the distance between the value of � corresponding to � D a

and the closest to it value of � corresponding to � D �
2

� a. It is clear that

�.a/ D sin a cos a

�
2

�aZ
a

d�

cos �
p

sin2 � cos2 � � sin2 a cos2 a
:

The geodesic is closed if and only if �.a/ D p
q
� . The rest of the proof follows

from the properties of the function �.a/:

�.a/ is continuous and monotonous on
�
0;
�

4

i
;

and

lim
a!0C�.a/ D �

2
and �

��
4

�
D �p

2
I

see the paper [19].



Spectral properties of bipolar surfaces to Otsuki tori 93

The Otsuki tori Op
q

are minimally immersed into S3 by the map

Ia W Œ0; 2�/ � Œ0; Qt/ �! R4

given by

Ia.˛; t / D .cos˛ sin �.t/; sin˛ sin �.t/; cos �.t/ cos�.t/; cos�.t/ sin�.t//;

where�.a/ D p
q
� and t is a natural parameter on the corresponding closed geodesic

�.Op
q
/ such that

min
t
�.t/ D �.0/ D a

and Qt is the length of this geodesic.

2.3. Construction of bipolar surfaces. Following the papers [13] and [17], we
define the surface zOp

q
bipolar to Op

q
as an exterior product of I and I�, where I�

is a unit vector normal to the torus Op
q

and tangent to S3. By a straightforward
computation one obtains

I�
a D 2� sin �. P� cos2 � cos˛;

P� cos2 � sin ˛;

P� sin � � P� cos � sin � cos�;

� P� cos� � P� cos � sin � sin �/;

where the dot denotes the derivative with respect to t , and

Ia ^ I�
a D 2� sin �.0;

cos˛. P� cos� cos � � P� sin � sin �/;

cos˛. P� sin � cos � C P� cos� sin �/;

sin ˛. P� cos� cos � � P� sin � sin �/;

sin ˛. P� sin � cos � C P� cos� sin �/;

P� cos �/:

(4)

The parametrized surface Ia ^ I�
a is a minimal (see a proof in the paper [17])

immersed submanifold in the equator S4 � S5. But formula (4) is inconvenient. In
the next section another parametrization of zOp

q
is proposed.

2.4. Parametrization of zOp
q

. Let us now apply the Hsiang–Lawson’s reduction

theorem (Proposition 1) in the case of M D S4 and G D SO.2/. Let x; y; z; u; v
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be the standard coordinates in R5 and S4 be the standard unit sphere in R5. Let us
consider an action of SO.2/ given by the formula

˛ � .x; y; z; u; v/D . cos˛x � sin ˛y;

sin ˛x C cos˛y;

cos˛z � sin ˛u;

sin ˛z C cos˛u; v/;

where ˛ 2 Œ0; 2�/ is a coordinate on SO.2/.
The principal orbits are circles of radius

p
x2 C y2 C z2 C u2, the exceptional

orbits are the poles N D .0; 0; 0; 0; 1/ and S D .0; 0; 0; 0;�1/. It is easy to see,
that for each principal orbit there are exactly two points on the equatorial sphere S3

of the unit sphere S4 given by the equation y D 0. Therefore, the space of orbits
.S4/�=SO.2/ can be identified with the quotient of this equatorial sphere S3 by the
action of Z2 given by

	.x; 0; z; u; v/D .�x; 0;�z;�u; v/; (5)

where 	 is the nontrivial element of Z2. Let us call the equatorial sphere given by
the equation y D 0 a generalized space of orbits. Let us denote by p the quotient
map from the generalized space of orbits to the space of orbits,

p W S3nfN; Sg �! .S4/�=SO.2/:

Let us denote by Q� the natural projection of .S4/� onto the space of orbits.
Let g1 be the Hsiang–Lawson’s metric on the space of orbits. The preimage

p�1.s/ of a closed geodesic s in the space of orbits is either a closed geodesic �
in .S3nfN; Sg; p�g1/ such that 	� D � , or a pair of closed geodesics f�1; �2g in
.S3nfN; Sg; p�g1/ such that 	�1 D �2. Thus, each geodesic in the space of orbits
is the image p.�/ of some geodesic � in the generalized space of orbits.

It is useful to introduce the spherical coordinates in the generalized space of orbits,

8̂̂̂
<
ˆ̂̂:
x D cos' sin 
;

z D cos' cos 
 cos �;

u D cos' cos 
 sin �;

v D sin ':

Then the pullback of the volume function to the generalized space of orbits is given
by the formula

V.'; 
; �/ D 2� cos':
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These coordinates induce coordinates on S4 by the following formulae8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

x D cos˛ cos' sin 
;

y D sin ˛ cos' sin 
;

z D cos˛ cos' cos 
 cos � � sin ˛ cos' cos 
 sin �;

u D sin ˛ cos' cos 
 cos �C cos˛ cos' cos 
 sin �;

v D sin ';

where ˛ 2 Œ0; �/. The metric on S4 is given by the formula,

cos2 'd˛2 C d'2 C cos2 'd
2 C cos2 ' cos2 
.d˛d� C d�2/; (6)

and the induced metric on the generalized space of orbits is given by the formula,

g D d'2 C cos2 'd
2 C cos2 ' cos2 
 sin2 
d�2:

Minimal SO.2/-invariant submanifolds of cohomogeneity 1 of the sphere S4 cor-
respond to closed geodesics in the space of orbits .S4/�=SO.2/. According to the
discussion at the beginning of this section, in order to find these submanifolds it is
sufficient to find closed geodesics in S3nfN; Sg equipped with the metric

g1 D V 2g D 4�2 cos2 '.d'2 C cos2 'd
2 C cos2 ' cos2 
 sin2 
d�2/:

Indeed, for any closed geodesic s in the space of orbits there exists a closed geodesic
� in the generalized space of orbits such that p.�/ D s. Therefore, the minimal
submanifold Q��1.s/ coincides with the submanifold Q��1.p.�//. Moreover, the im-
age by p of a geodesic in the generalized space of orbits is a geodesic in the space
of orbits. Hence, the set of submanifolds Q��1.p.�// is exactly the set of minimal
SO.2/-invariant submanifolds of cohomogeneity 1.

Since the coefficients of the metric g1 do not depend on �, the 2-dimensional
sphere defined by � D 0 is the totally geodesic 2-sphere equipped with the metric

Qg1 D 4�2 cos2 '.d'2 C cos2 'd
2/:

Let us now look for minimal submanifolds of the special type. Consider the sphere
S2 � S4 defined by y D 0; � D 0. Then for a closed geodesic �.t/ D .'.t/; 
.t// in
the space .S2nfN; Sg; Qg1/ one has the corresponding immersed minimal submanifold
Q��1.p.�// in S4. The immersion J is given by the formula8̂̂̂

ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

x D cos˛ cos'.t/ sin 
.t/;

y D sin ˛ cos'.t/ sin 
.t/;

z D cos˛ cos'.t/ cos 
.t/;

u D sin ˛ cos'.t/ cos 
.t/;

v D sin '.t/;

(7)

where ˛ 2 Œ0; 2�/.
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Proposition 3. The set of bipolar surfaces zOp
q

coincides with the set of minimal

surfaces Q��1.p.�// � S4, where � is a closed geodesic in the space .S2nfN; Sg; Qg1/.

Proof. In the same way as in the proof of Proposition 2, one obtains

P
 D cos2 b

2� cos4 '
(8)

and

P' D ˙
p

cos4 ' � cos4 b

2� cos3 '
: (9)

By Jb.˛; t / denote the immersion of the minimal submanifold corresponding to a
geodesic such that the minimal value of'.t/ equals to b, where t is a natural parameter
on the geodesic Q�.Jb/. Let us show that for any point �.t/ on the geodesic �.Ia/

there exists a neighborhood U of a point t 2 R=.lZ/, where l is the length of the
geodesic �.Ia/, and a function �.t/ defined on U , such that

Ia ^ I�
a .˛; �.t// D Jb.a/.˛; t /;

where cos4 b.a/ D 4 sin2 a cos2 a. Comparing equations (4) and (7) one obtains

sin '.t/ D 2� P�.�.t// cos �.�.t// sin �.�.t//: (10)

Let us consider the case P� > 0 and P' > 0. On the one hand, using formula (3),
one has

sin '.t/ D
p

cos2 �.�.t// sin2 �.�.t// � c2

sin �
; (11)

where c D sin a cos a. Applying d
dt

to equation (11) and using formula (3) one
obtains

P'.t/ cos'.t/ D P�.t/ c2 � sin4 �.�.t//

2� sin4 �.�.t// cos�.�.t//
:

On the other hand, combining equations (9) and (10) one has the following formula,

P'.t/ cos'.t/ D c2 � sin4 �.�.t//

2�.sin4 �.�.t//C c2/
:

Therefore, one obtains a differential equation for �.t/,

P� D sin4 �.�/ cos �.�/

sin4 �.�/C c2
: (12)

Let �.t/ be a solution of this equation. Comparing equations (4) and (7) one has the
formulae
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cos'.t/ sin 
.t/ D 2� sin .�.t//. P� cos� cos � P� sin � sin �/.�.t//; (13a)

and

cos'.t/ cos 
.t/ D 2� sin .�.t//. P� sin � cos C P� cos� cos �/.�.t//: (13b)

One should prove that for a function 
.t/ defined by implicit formulae (13) dif-
ferential equation (8) holds. This can be shown by a straightforward calculation (we
omit it in order to shorten the paper). This completes the proof.

2.5. Properties of the new parametrization. Let us denote by t0 the length of the
geodesic Q�. zOp

q
/ with respect to the metric Qg1. As coordinates on the torus zOp

q
we

take the parameter ˛ 2 Œ0; 2�/ on SO.2/ and a natural parameter t 2 Œ0; t0/ on the
geodesic Q�. zOp

q
/ D .'.t/; 
.t// such that min

t
'.t/ D '.0/ D b.

Proposition 4. The function sin '.t/ has exactly 2q zeroes on Œ0; t0/, the functions
cos 
.t/ and sin 
.t/ both have exactly 2p zeroes on Œ0; t0/. If q is even then the
immersion Jb is invariant under the transformation

.˛; t / 7�!
�
˛ C �; t C t0

2

�
:

The immersion J is not invariant under any other transformations.

Proof. Let us remark that the immersions Ia and Jb are well-defined even if the
corresponding geodesics are not closed. We proved in Proposition 3 that the bipolar
surface to Ia corresponds to the geodesic Q�.Jb/, where

cos4 b D 4 sin2 a cos2 a: (14)

Hence, �.Ia/ is closed if and only if Q�.Jb/ is closed.
According to formula (4), the geodesic Q�.Jb/ admits another parametrization in

terms of �.s/ and �.s/, where s is a natural parameter on �.Ia/. It is easy to see that
this parametrization is one-to-one outside of self-intersection points, i.e. for the map

ˇ.s/ D 2� sin �. P� cos� cos � � P� sin � sin �;

P� sin � cos � C P� cos� sin �;

P� cos �/;

where s 2 Œ0; Qt/, there is no point Qs such that ˇ.Œ0; Qs// D ˇ.ŒQs; Qt// D ˇ.Œ0; Qt//.
Indeed, since a 6 � 6 �

2
� a, the last coordinate is equal to zero only at zeroes of

P�.s/, i.e. at sd D Qtd
2q

, where d D 0; 1; : : : ; 2q � 1 and �.sd / D pd
q
� . Hence, there

exists d D 0; 1; : : : ; 2q � 1 such that Qs D sd . Moreover, �.sd / D a if d is even
and �.sd / D �

2
� a if d is odd. The value of 2� P� sin � cos � D sin a=.sin � cos �/

is equal to 1= cos a for each point sd . Therefore, cos�.sd / D cos�.0/ D 1 and
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sin �.sd / D sin �.0/ D 0. This holds for s0 D 0 and possibly for sq . In the latter
case �.sq/ D �

2
� a and .2� P� sin � cos �/.sq C "/ < 0 for sufficiently small ". This

contradicts the fact that .2� P� sin � cos �/."/ > 0.
The previous statement implies that the function sin '.t/ has the same quantity of

zeroes as 2� P�.t/ sin �.t/ cos �.t/, i.e. sin '.t/ has exactly 2q zeroes.
Let us introduce a function analogous to �.a/. The function „.b/ equals the

distance between the nearest points on the geodesic Q�.Jb/ with ' D b and ' D �b,

„.b/ D cos2 b

�bZ
b

1

cos'
p

cos4 ' � cos4 b
d':

In Section 3.7 the following proposition is proved.

Proposition 5. The function „.b/ is increasing and continuous on the interval� � �
2
; 0

�
. The following equality holds:

lim
b!0�

„.b/ D
p
2

2
�:

The geodesic Q�.Jb/ is closed if and only if „.b/ D r
s
� , where r; s 2 Z>0.

Without loss of generality one can assume that .r; s/ D 1. Since sin '.t/ has 2q
zeroes, one has s D q. According to formula (14), the function b.a/ increases as a
increases. So, we have two increasing continuous functions �.a/ and „.b.a// such
that their values at the point a D �

4
coincide and

�.a/ D p

q
� () „.b.a// D r

q
�: (15)

We claim that such two functions coincide. Indeed, let us introduce the following
sets:

A�.s/ D
np
s
� W �.0/ < p

s
� < �

��
4

�
; .p; s/ D 1

o
and

A„.s/ D
np
s
� W „.b.0// < p

s
� < „

�
b

��
4

��
; .p; s/ D 1

o
:

On the one hand, condition (15) implies that jA�.s/j D jA„.s/j for any s. On
the other hand, suppose that �.0/ ¤ „.b.0//. Then for a sufficiently large s one
has jA�.s/j ¤ jA„.s/j. This observation leads to a contradiction, hence �.0/ D
„.b.0// D 1

2
� . Then A�.s/ D A„.s/ and we denote this set simply by A.s/. Let

us consider the inverse functions

f D ��1 and g D .„ B b/�1:
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These functions are monotonous and continuous on the interval
�

1
2
�;

p
2

2
�

�
. Condi-

tion (15) means that for any s one has f .A.s// D g.A.s//. By monotonicity of f and
g, we have f .x/ D g.x/ for any x 2 A.s/. Therefore f and g coincide on the dense
subset

S
s

A.s/ of interval, hence by continuity f .x/ � g.x/ and �.a/ D „.b.a//.

Then, since �.a/ D „.b.a//, the functions cos 
.t/ and sin 
.t/ have 2p zeroes.
Since each orbit has exactly two intersection points with the generalized space

of orbits, the immersion Jb is invariant under some transformation if and only if
the corresponding geodesic � D Q�. zOp

q
/ is invariant under the action of Z2 given

by formula (5). This means that Im� contains the point .b; �/. According to the
first statement of this proposition, if .'.t1/; 
.t1// D �.t1/ and '.t1/ D b then

.t1/ D 2kp

q
� , where k D 0; 1; : : : ; q � 1. Hence, 
.t1/ can be equal to .2l C 1/�

if and only if q � 0 mod 2 and k D q
2

. This implies that t1 D t0
2

. Since the map
.'; 
/ 7! .'; 
 C �/ is an isometry of the orbit space, Jb is invariant under the
transformation .˛; t / 7! �

˛ C �; t C t0
2

�
.

3. Proof of the Theorem

3.1. Relation to the theory of periodic Sturm–Liouville problems. In this section
the eigenvalue counting problem for the Laplace–Beltrami operator on the bipolar
Otsuki torus zOp

q
is reduced to the same problem for the periodic Sturm–Liouville

operator.

Proposition 6. Let zOp
q

be a bipolar surface to an Otsuki torus Op
q

parametrized

by immersion Jb.˛; t / as in Section 2.5. Then the corresponding Laplace–Beltrami
operator is given by the formula

�f D � 1

cos2 '.t/

@2f

@˛2
� @

@t

�
4�2 cos2 '.t/

@f

@t

�
: (16)

Proof. The metric on the sphere S4 is given by formula (6). Since � D 0, the metric
on zOp

q
is given by the formula

cos2 '.t/d˛2 C . P'.t/2 C P
.t/2 cos2 '.t//dt2:

But the length of the velocity vector of Q�.Op
q
/ is equal to 1, therefore,

4�2 cos2 '.t/. P'.t/2 C P
.t/2 cos2 '.t// D 1:

Hence the metric on zOp
q

equals to

h D cos2 '.t/d˛2 C 1

4�2 cos2 '.t/
dt2 (17)

and formula (16) could be obtained by a direct calculation.
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Proposition 7. A number � is an eigenvalue of � if and only if there exists l 2 Z>0

and an eigenvalue �.l/ of the following periodic Sturm–Liouville problem8̂<
:̂
d

dt

�
4�2 cos2 '.t/

dh.t/

dt

�
C

�
� � l2

cos2 '.t/

�
h.t/ D 0;

h.t C t0/ � h.t/;

(18)

such that �.l/ D �.

Proof. Let us remark that � commutes with @
@˛

. It follows that � has a basis of
eigenfunctions of the form h.l; t / cos.l˛/ and h.l; t / sin.l˛/. Substituting these
eigenfunctions into the formula �f D �f one obtains equation (18). Since

f .˛ C 2�; t/ � f .˛; t C t0/ � f .˛; t/;

one has l 2 Z and the boundary condition in formula (18).

Equation (18) is written in the classical form of the periodic Sturm–Liouville
problem, and the following proposition holds, see e.g. the book [4].

Proposition 8. Consider a periodic Sturm–Liouville problem in the form

� d

dt

�
p.t/

d

dt
h.t/

�
C q.t/h.t/ D �h.t/; (19)

where
p.t/ > 0; p.t C t0/ � p.t/; q.t C t0/ � q.t/:

Let us denote by �i and hi .t / (for i D 0; 1; 2; : : :) the eigenvalues and eigenfunctions
of problem (19) with the periodic boundary conditions

h.t C t0/ � h.t/: (20)

Let us also denote by Q�i and Qhi .t / (for i D 1; 2; : : :) the eigenvalues and eigenfunc-
tions of problem (19) with antiperiodic boundary conditions

h.t C t0/ � �h.t/: (21)

Then the following inequalities hold,

�0 < Q�1 6 Q�2 < �1 6 �2 < Q�3 6 Q�4 < �3 6 �4 < � � � :
For � D �0 there exists a unique (up to multiplication by a non-zero constant) eigen-
function h0.t /. If �2iC1 < �2iC2, for i > 0, there is a unique (up to multiplication by
a non-zero constant) eigenfunction h2iC1.t / with eigenvalue �2iC1 of multiplicity 1
and there is a unique (up to multiplication by a non-zero constant) eigenfunction
h2iC2.t / with eigenvalue �2iC2 of multiplicity 1. If �2iC1 D �2iC2 then there
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is two-dimensional eigenspace spanned by h2iC1.t / and h2iC2.t / with eigenvalue

� D �2iC1 D �2iC2 of multiplicity 2. The same holds in case Q�2iC1 < Q�2iC2 and
Q�2iC1 D Q�2iC2.

The eigenfunction h0.t / has no zeros on Œ0; t0/. The eigenfunctions h2iC1.t / and

h2iC2.t / each have exactly 2i C 2 zeros on Œ0; t0/. The eigenfunctions Qh2iC1.t / and
Qh2iC2.t / each have exactly 2i C 1 zeros on Œ0; t0/.

Corollary 1. Let hi .l; t / and �i .l/ be the i -th eigenfunction and the i -th eigenvalue
of problem (18) for a fixed l . Then the eigenspace of the Laplace–Beltrami operator
� with eigenvalue � has a basis consisting of functions of the form

hi .l; t / cos.l˛/;

where l 2 Z>0 and there exists i such that �i .l/ D �, and

hi .l; t / sin.l˛/;

where l 2 N and there exists i such that �i .l/ D �.

Proof. The statement follows from Propositions 7 and 8 for a fixed l .

3.2. Rayleigh quotient. Let us now investigate properties of eigenvalues �i .l/ as
functions of l . One of the most efficient tools for this investigation is a Rayleigh
quotient. The Rayleigh quotient for problem (19) is defined by

RŒv� D

Z t0

0

p.t/ Pv2 C q.t/v2dtZ t0

0

v2dt

:

The following proposition can be found e.g. in the book [10].

Proposition 9 (Variational principle). For the eigenvalue �0 of problem (19) with the
boundary condition (20) one has

�0 D inf
v
RŒv�;

where infimum is taken over the space of t0-periodic functions v 2 H 1.
For the first eigenvalue Q�1 of problem (19) with the boundary condition (21) one

has
Q�1 D inf

u
RŒu�;

where infimum is taken over the space of t0-antiperiodic functions v 2 H 1.
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Corollary 2. For any smooth t0-periodic function f one has the inequality

�0 6 RŒf �:

For any smooth t0-antiperiodic function g one has the inequality

Q�1 6 RŒg�:

Corollary 3. For the family of the periodic Sturm–Liouville problems in (18) one has
�0.l/ > �0.l

0/ as long as l > l 0.

Proposition 10. The following inequality holds,

�0.2/ > 2:

Proof. Let us use the variational principle for problem (18) with l D 2,

�0.2/ D inf
v

t0Z
0

�
4�2 cos2 '.t/ Pv2 C 4

cos2 '.t/

�
v2dt

t0Z
0

v2dt

> inf
v

t0Z
0

4

cos2 '.t/
v2dt

t0Z
0

v2dt

> 4 > 2:

By Theorem 2, functions (7) are eigenfunctions of the Laplace–Beltrami operator
on the zOp

q
. It follows from formulae (7) that the functions cos'.t/ sin 
.t/ and

cos'.t/ cos 
.t/ are eigenfunctions of problem (18) with l D 1. Proposition 4
implies that both functions have exactly 2p zeros. Hence, one can set h2p�1.1; t / D
cos'.t/ sin 
.t/ and h2p.1; t / D cos'.t/ cos 
.t/. In the same way sin '.t/ is an
eigenfunction of problem (18) with l D 0 and sin '.t/ has exactly 2q zeros. Hence,
either h2q�1.0; t / D sin '.t/ or h2q.0; t / D sin '.t/.

It turns out that the most difficult part of this paper is to prove that h2q.0; t / D
sin '.t/.
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3.3. Periods of eigenfunctions. Suppose that the coefficients p.t/; q.t/ have a pe-
riod less than t0. We are interested in the eigenfunctions with the same period.

Proposition 11. Let hi .t / be the eigenfunctions of the periodic Sturm–Liouville
problem in (19) and (20) with t0

2n
-periodic coefficients enumerated as in Proposi-

tion 8. Then the t0
2n

-antiperiodic solutions of problem (19) are h2n.2kC1/�1.t / and
h2n.2kC1/.t /, where k 2 Z.

Proof. Let us consider the Sturm–Liouville problem8̂<
:̂

� d

dt

�
p.t/

dh.t/

dt

�
C q.t/h.t/ D �h.t/;

h.t/ � �h
�
t C t0

2n

�
:

By Proposition 8, its eigenvalues Q�i form a sequence

Q�1 6 Q�2 < Q�3 6 Q�4 < � � � :
Since t0

2n
-antiperiodic solutions are also t0-periodic, the corresponding eigen-

functions Qhi .t / are solutions of the problem in (19) and (20). The eigenfunctions
Qh2i�1.t / and Qh2i.t / have exactly 2i�1 zeros on the interval

�
0; t0

2n

�
. Hence, they have

2n.2iC1/ zeros on the interval Œ0; t0/. There are only two solutions of equations (19)
and (20) possessing this quantity of zeroes, therefore Qh2i�1.t / � h2n.2i�1/�1.t / and
Qh2i .t / � h2n.2i�1/.

The following proposition can be proved in the same way.

Proposition 12. Let hi.t / be the eigenfunctions of the periodic Sturm–Liouville prob-
lem in (19) and (20) with t0

n
-periodic coefficients enumerated as in Proposition 8.

Then t0
n

-periodic solutions of problem (19) are h0, h2nk�1 and h2nk , where k 2 Z.

3.4. Estimates for �2q�1.0/. The main goal of this section is to prove that the
inequality �2q�1.0/ < 2 holds. Due to Proposition 11, �2q�1.0/ is equal to the first
eigenvalue of the following problem:8̂̂<

ˆ̂:
� d

dt

�
4�2 cos2 '.t/

dh.t/

dt

�
D �h.t/;

h
�
t C t0

2q

�
� �h.t/:

The application of Corollary 2 with

f .t/ D sin
2q�t

t0
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yields

�2q�1.0/ < RŒf �

D
16q2�4

t0
2qZ

0

cos2 '.t/ cos2 2q�t

t0
dt

t20

t0
2qZ

0

sin2 2q�t

t0
dt

D 32�4q3

t30

t0
2qZ

0

cos2 '.t/
�
1C cos

4q�t

t0

�
dt:

According to Proposition 4, the integrand has a symmetry of the form

t 7�! t0

2q
� t

and cos'.t/ is increasing on
�
0; t0

4q

�
. Hence, one obtains

t0
2qZ

0

cos2 '.t/ cos
4q�t

t0
dt D 2

t0
4qZ

0

cos2 '.t/ cos
4q�t

t0
dt

< 2 cos2 '
� t0
8q

� t0
4qZ

0

cos
4q�t

t0
dt

D 0:

Therefore, it is sufficient to prove that

32�4q3

t30

t0
2qZ

0

cos2 '.t/dt < 2:

It follows from formula (9) and Proposition 4 that '.t/ is a smooth monotonous
function on

�
0; t0

2q

�
. The obvious equality

t0 D 2q

t0
2qZ

0

dt
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holds. Thus, using the change of variables t ! '.t/ one obtains

32�4q3

t30

t0
2qZ

0

cos2 '.t/dt D �2

bZ
�b

cos5 'p
cos4 ' � cos4 b

d'

� bZ
�b

cos3 'p
cos4 ' � cos4 b

d'
�3

:

Hence, the question is reduced to estimating this ratio of integrals. Let us denote
the numerator by I1.b/ and the denominator by I2.b/, where b 2 �

0; �
2

�
. We use

notationsK;E and… for the complete elliptic integrals of first, second and third kind
respectively (see e.g. the book [3]),

K.k/ D
1Z

0

1p
1 � x2

p
1� k2x2

dx;

E.k/ D
1Z

0

p
1 � k2x2

p
1 � x2

dx;

….n; k/ D
1Z

0

1

.1� nx2/
p
1 � x2

p
1 � k2x2

dx:

Proposition 13. The function I1.b/

I 3
2

.b/
is decreasing on

�
0; �

2

�
.

Proof. One has

I2.b/ D
sin bZ

� sin b

1� y2p
.1� y2/2 � cos4 b

dy

D
1Z

�1

1 � x2 sin2 bp
1 � x2

p
1C cos2 b � x2 sin2 b

dx:

Here the following changes of variables were used, sin ' D y, y D x sin b. In the
same way

I1.b/ D
1Z

�1

.1 � x2 sin2 b/2p
1 � x2

p
1C cos2 b � x2 sin2 b

dx:



106 M. A. Karpukhin

Let us remark that

d.x
p
1 � x2

p
1C cos2 b � x2 sin2 b/

dx
D 3x4 sin2 b � 4x2 C 1C cos2 bp

1� x2
p
1C cos2 b � x2 sin2 b

:

Integrating over the interval Œ�1; 1�, one obtains the following equality,

1

3

1Z
�1

3x4 sin2 b � 4x2 C 1C cos2 bp
1 � x2

p
1C cos2 b � x2 sin2 b

dx D 0:

One can subtract this formula from the I1.b/. Hence, the following equality holds,

I1.b/ D 2

3

1Z
�1

.3� sin2 b � sin2 b cos2 b/ � 2x2 sin2 b

2
p
1 � x2

p
1C cos2 b � x2 sin2 b

:

Let us introduce the notation

k2 D sin2 b

1C cos2 b
:

Then, it follows, that

I1.b/ D 4

3

r
2

1C k2

�
E.k/ � .1� k2/.1C 3k2/

4.1C k2/
K.k/

�
and

I2.b/ D 2

r
2

1C k2

�
E.k/ � 1� k2

2
K.k/

�
:

Since k.b/ is an increasing function, it is sufficient to prove that I1

I 3
2

is a decreasing

function of k. Using classical formulae for the derivatives of the elliptic integrals

dE.k/

dk
D E.k/ �K.k/

k
(22a)

and
dK.k/

dk
D E.k/

k.1� k2/
� K.k/

k
; (22b)

one gets

dI2.k/

dk
D 2

s
2

.1C k2/3
1� k2

2k
.E.k/ �K.k// (23)

and
dI1.k/

dk
D 2

s
2

.1C k2/3
1� k2

2k

�
E.k/ � 1C 3k2

1C k2
K.k/

�
:
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Since � I1.k/

I 3
2 .k/

�0 D I 0
1.k/I2.k/ � 3I1.k/I

0
2.k/

I 4
2 .k/

;

it is sufficient to prove that

I 0
1.k/I2.k/ � 3I1.k/I

0
2.k/ < 0:

Using two previous formulae one has

I 0
1.k/I2.k/ � 3I1.k/I

0
2.k/ D 2.1� k2/

k.1C k2/2
E.k/

�
.1 � k2/K.k/ �E.k/� : (24)

It is well-known that K.k/ is an increasing function. Equality (22) implies that

k.1� k2/
dK.k/

dk
D E.k/ � .1 � k2/K.k/ > 0:

Hence, the last factor in formula (24) is negative. Therefore, the right hand side of
formula (24) is negative.

Corollary 4. The following inequality holds:

2 < I2.a/ <
�p
2
:

Proof. It is well-known that E.k/ < K.k/. Therefore, according to formula (23),
the function I2.b/ is decreasing. Thus, one obtains the inequality

2 D I2

��
2

�
< I2.b/ < I2.0/ D 1p

2

1Z
�1

dxp
1 � x2

D �p
2
:

Proposition 14. For b 2 .0; �
2
/ the following inequality holds:

�2 I1.b/

I2.b/3
< 2:

Proof. The statement follows from Proposition 13 and the equality

�2 I1.0/

I 3
2 .0/

D 2:

This completes the proof of the inequality �2q�1.0/ < 2.
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3.5. Proof of the theorem. It follows from Theorem 1 that in order to prove Theo-
rem 3 it is sufficient to prove that

N.2/ D 2q C 4p � 2 if q is odd

and
N.2/ D q C 2p � 2 if q is even.

According to Proposition 10, �0.2/ > 2. By Corollary 3, one has �0.l/ > 2 as l > 2.
Then due to Proposition 8, �i .l/ > 2, when l > 2 and k > 0. For l D 0, we get
�2q�1.0/ < �2q.0/ D 2. Hence, we have 2q eigenfunctions of problem (18) with
l D 0 with eigenvalues less than 2. If q is even, then we need to take into account
the invariance under the transformation

.˛; t / 7�!
�
˛ C �; t C t0

2

�
:

The application of Proposition 12 forn D 2 leaves q eigenfunctions. By Proposition 8
one has �2kC1 > �2k . Hence, for l D 1 the following inequality holds, �2p�2.1/ <

�2p�1.1/ D �2p�2 D 2. In the same way one obtains 2p � 1 eigenfunctions if q
is odd and p � 1 eigenfunctions if q is even (here one should apply Proposition 11).
According to Corollary 1, any eigenfunction of problem (18) with l > 1 provides
exactly two eigenfunctions of the Laplace–Beltrami operator on zOp

q
. Thus, if q is

odd then one has N.2/ D 2qC 2.2p � 1/ D 2qC 4p � 2. If q is even then one has
N.2/ D q C 2.p � 1/ D q C 2p � 2.

3.6. The value of the corresponding functional.

Proposition 15. If q is odd then

16q� < ƒ2qC4p�2. zOp
q
/ D 8q�I2.a/ < 4

p
2q�2:

If q is even then

8q� < ƒqC2p�2. zOp
q
/ D 4q�I2.a/ < 2

p
2q�2:

Proof. By formula (17) for the metric h on the torus zOp
q

one has
p

det h D 1
2�

.
Hence the corresponding value of the functional is equal to

2

t0Z
0

2�Z
0

1

2�
d'd˛ D 2t0:

For even q one need to take into account the invariance under the transformation

.˛; t / 7�!
�
˛ C �; t C t0

2

�
;
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so this value has to be divided by two. Arguing as in Section 3.4 one obtains that

t0 D 2q

t0
2qZ

0

dt D 4q�I.b/:

The application of Corollary 3.4 yields the desired inequalities.

3.7. Proof of Proposition 5. Let us consider„.b/ as a function of b 2 �
0; �

2

�
. One

has to prove that „.b/ is decreasing on this interval. Let us begin with expressing
„.b/ in terms of elliptic integrals:

cos2 b

bZ
�b

1

cos'
p

cos4 ' � cos4 b
d'

D cos2 b

sin bZ
� sin b

1

.1� y2/
p
.1 � x2/2 � cos4 b

d'

D cos2 b

1Z
�1

1

.1� x2 sin2 b/
p
1 � x2

p
1C cos2 b � x2 sin2 b

D 2
cos2 bp
1C cos2 b

…
�

sin2 b;
sin bp

1C cos2 b

�

D 2
1 � np
2� n

…
�
n;

r
n

2� n

�
;

where n D sin2 b. Here the following changes of variables were used, sin ' D y,

y D x sin b. Now the equality lim
b!0

„.b/ D
p

2
2
� follows from substituting n D 0

into this formula. Using the formulae for the derivatives of ….n; k/,

@….n; k/

@n
D 1

2.k2 � n/.n� 1/

�
E.k/C 1

n
.k2 � n/K.k/C 1

n
.n2 � k2/….n; k/

�
;

and

@….n; k/

@k
D k

n� k2

� E.k/
k2 � 1

C….n; k/
�
;

one obtains

d„.n/

dn
D 1

2n
p
2 � n

�
E

�r
n

2� n

�
�K

�r
n

2� n
��
< 0:
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