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Best constants in Lieb—Thirring inequalities:
a numerical investigation

Antoine Levitt!

Abstract. We investigate numerically the optimal constants in Lieb—Thirring inequalities by
studying the associated maximization problem. Using a monotonic fixed-point algorithm and
a finite element discretization, we obtain radial trial potentials which provide lower bounds
on the optimal constants. These results confirm existing conjectures, and provide insight into
the behavior of the maximizers. Based on our numerical results, we formulate a complete
conjecture about the best constants for all possible values of the parameters.
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1. Introduction

In this paper we study the family of Lieb—Thirring inequalities [20] and [21], which
state that for any potential V € LY74/2(R4  R) and non-negative exponent y,

tr(—A+V)Y) < Ly,g4 / yr+d/2 (1)

where V_ = max(—V, 0) is the negative part of V', and (—A + V)Y is the y-th power
of the negative part of the operator (—A + V'), as defined by the functional calculus.
In other words, tr((—A + V)¥) = ) ;|A;|¥ is the y-th moment of the negative
eigenvalues of —A 4 V.

This inequality was originally used by Lieb and Thirring inthe case y = 1,d = 3
as an important tool to prove the stability of fermionic matter in [20] (see [17] and [18]
for an overview). The generalization (1) to any y and d has since then attracted a
great deal of attention (see for instance [11] for a review). Of particular interest are
the values of y and d for which this inequality holds, and the value of the optimal
constants L, 4.

'Support from the grant ANR-10-BLAN-0101 of the French Ministry of Research is gratefully ac-
knowledged.



154 A. Levitt

Despite the physical significance of the Lieb—Thirring inequality and the amount
of mathematical research on the subject, a number of questions are still open. This
paper aims to investigate some of these numerically. To our knowledge, this has not
been done since the work of Barnes in the appendix of the original paper by Lieb and
Thirring [21], in 1976.

It is easy to see that the bound (1) cannot hold for y < 1/2 when d = 1 by
scaling, and y = 0 when d = 2 (because any arbitrarily small potential in two
dimension creates at least one bound state). The inequality was proved for y > 1/2
in one dimension and y > 0 in other dimensions in the original paper by Lieb
and Thirring [21]. The proof in the case y = 1 was recently greatly simplified by
Rumin [25]. The case y = 0,d > 3 requires completely different methods and was
proven independently by Cwikel [3], Lieb [15], and Rozenblum [24]. The limit case
y = 1/2,d = 1 remained unsolved for twenty years until it was finally settled by
Weidl [27], and refined with a sharp constant by Hundertmark, Lieb and Thomas [9].

Inequality (1) can be interpreted as a comparison of the quantum mechanical
energy of a system with Hamiltonian —A + V to its semiclassical approximation.
The semiclassical regime is obtained by letting the Planck constant 7 tend to zero in
the Hamiltonian —A# A + V. In this paper, we have scaled # away from inequality (1)
for convenience, and the corresponding limit is a large (or extended) V. In this
limit, the eigenfunctions become localized in the region of the phase space defined
by p? + V(x) < 0 and explicit computations are possible. More precisely, using the
Weyl asymptotics, one can prove

i DA+ uV)Y)
JL—>00 I(MV)V'f‘d/z

= Ly,d,501

where
'y+1
C(y+d/2+1)
Therefore, denoting by L, 4 the optimal constant in (1), we have L, g > L, 4.
We set

—d _—d/2
Lygs=2"%n"4

Lya
Ryq=-—1%>1
’ L
y,d ,sc

The value of R, 4 describes by how much the quantum mechanical energy can
exceed its semiclassical counterpart. In this paper, we investigate numerically the
problem

Ryq = sup {tr((—A +V)), vV eLvtd? / yr+d/2 — 1}, (Py.q)

/Vy+d/2 =1

Ly,d,sc

where we impose the condition
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to eliminate the scaling invariance of the Lieb—Thirring inequality. As a global max-
imization of this non-concave functional is out of reach, we develop an algorithm to
maximize it locally, and present numerical results for different starting points.

Several important facts about R,, 4 are known. A scaling argument by Aizenman
and Lieb [1] shows that R, 4 is decreasing with respect to y. Laptev and Weidl [12]
showed that R, ; = 1 for y > 3/2. Helffer and Robert [8] proved that R, ; > 1 for
y < 1 by expanding tr(—A + V)? for the harmonic potential V(x) = 1 — |x|? in
the semiclassical limit. From these results, we can deduce that for each dimension d
there exists a critical y, 4 such that

R,q>1 wheny <y.q,

Ry,d =1 wheny > Ye,d s

with

[SS RV

1< Ye,d =

A trial potential of [21] provides a lower bound on R, ;4 and therefore y.. In the
appendix of this paper, Barnes solved numerically the restricted problem

sup A1), ()
vdse [yytarr_y

Ry,d,l = 2

where A1 is the lowest eigenvalue of —A + V. This is equivalent to restricting (Py,4)
to the potentials V' such that —A + V' only has one negative eigenvalue. The solution
Vy,a,1 of this problem is negative, radial and only has bound state, i.e. —A + V), 41
only has one negative eigenvalue. The corresponding R, 4,1 is decreasing with y,
and intersects 1 at a critical y, 4,;. In low dimensions, y. 1,1 = %, Ve ~ 1.165,
Ye,3,1 ~ 0.863 (our numerical results agree with these values). Therefore, y.; = %
and y.» > 1.165, but nothing can be said about y, 4 for d > 3. A famous conjecture
of Lieb and Thirring states that Ry 3 = 1, i.e. y.,3 = 1. This would imply improved
bounds on the energy of a system of fermions, and is of great importance to the
Thomas-Fermi theory [16].

Better upper bounds on R, ; have also been derived recently. For instance, it is
provenin [6] that R, 4 < % ~ 3.63 for y > % Ryq < % ~ 1.82fory > 1.

Despite these advances on upper bounds, not much is known about lower bounds
for R, 4, except for the one-bound state potential V), 4,1 of [21] and the asymptotic
result in the semiclassical limit of [8]. In this paper, we attempt to bridge the gap
between these two results by looking numerically for maximizers of the variational
problem (P, 4). To our knowledge, this is the first numerical study of the Lieb—
Thirring inequalities since the work of Barnes [21] (and unpublished recent work by
Arnold and Dolbeault [4] in 1D).
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The method we use is a finite element discretization of a natural fixed point
algorithm. We describe this algorithm, and specialize it to the case of radial potentials.
Then we discretize it, and use it to obtain numerical results. The critical points we
obtain are the natural generalization of the potential with one bound state obtained by
Barnes. They serve as a partial bridge between this potential and asymptotic results,
and yield new lower bounds on R, 4.

Acknowledgments. I would like to thank Mathieu Lewin and Eric Séré for their
help and advice.

2. The optimization algorithm

2.1. Optimization scheme. Let us denote
EWV)=u((—A+V)),
so that
Lyqg=suplE(V),V e LV+"/2,/ yr+d/2 — 1§.
Let S, be the set of symmetric operators on L2(R%) with finite Schatten norm
lelp = tr(lz|)?.

The fixed point algorithm we use is based on the following property.

Proposition 1. Forany V € Ly+d/2([Rd, R) and any y > 1,
EWV)YY = max{—tr((=A + V)1)/T € S)i 7 > 0, |||,y = 1},

where

is the Holder conjugate of y.

Proof. Forany V € LYT4/2 ¢ € §, witht > 0, |||, = 1,
—tr((—A + V)7) < tr((—A + V)_1)
< =+ V)-lylelly
= (A + V)Y
=E)'Y.
and the equality is achieved when
=K (-A+ V) 3)

where K is a normalization constant chosen to ensure that |||, = 1. O
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From this, we see that, when y > 1,

LJI/,/dy = sup _tr((_A + V)‘C)/'C S Sy/, ”‘C”yl = 1, T > 0’

Ve Ly+d/2,/vy+d/2 =1,V <ol

What we gain from this formulation is that we can explicitly maximize
—u((=A+V)1)

with respect to V' and t separately. Indeed, for a fixed V', the maximum with respect
to 7 is given by (3), and for a fixed 7, the maximum with respect to V is given by

V(x) = —Kyt(x, x) 75T,

where Ky is a normalization parameter chosen to ensure that

/Vy+d/2 =1,

and t(x, y) is the integral kernel of 7.
This suggests the following maximization scheme. Given an approximate maxi-
mum V,,, we set

T = K (=A + V,)r!
and
Vat1(x) = =Kyt (x, x)W’
and iterate. Explicitly, this is described by the following algorithm.

Algorithm 1 (Maximization algorithm).

(1) Compute the negative eigenvalues A; and thu corresponding eigenvectors ¥; of
—A+ V.

(2) Set
Pn = Z(_ki)y_lwiz-

(3) Compute

1
1 v+d/2 - d/2
K, = || y+d/2—1 ||—1 _ y+d/2—1 yd/
n = [|Pn y+d/2 = Pn .

1
(4) Set Voyr = —Knpl 77T,
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By construction, this algorithm ensures that

E(Vas D' = —tr((=A + Vi) Tas1)
> —tr((=A + Va)tn+1)
> —tr((—=A + Vi)tn)
= E(Vn)l/y-

Therefore, the sequence E (V) is non-decreasing, and since it is bounded from
above, it converges. In general though, V;, may not converge. We give examples in
Section 4 where, because of the translation invariance of the functional, V}, splits into
two bumps that separate from each other. Even when this behavior is forbidden, for
instance by imposing a finite domain as we do in numerical computations, a rigorous
convergence analysis of the algorithm is still an open problem.

Note that, even if Algorithm 1 was derived from Proposition 1 for y > 1, itremains
areasonable algorithm when y < 1. In this case, though, the monotonicity of E (V)
is not guaranteed.

This algorithm can be seen as a fixed-point scheme for the critical points of the
maximization problem. Indeed, the Euler-Lagrange equations for (P, 4) are

V(x) = —Kp[(=A + V)~ (x, x)]7¥arer, @

This is a self-consistent set of equations similar to systems such as the Hartree—
Fock equations of quantum chemistry [19]. Our algorithm is similar in spirit to the
Roothaan method [23]. In our case, at least for y > 1, the scheme monotonically
increases the objective function. Therefore, the oscillatory behavior often seen in the
Hartree—Fock model [2] and [14] cannot occur here. Even for y < 1, we did not
see any such oscillations numerically, and always observed linear convergence (i.e.
Vi — Vool < v" for some v, 0 < v < 1), or slow separation of bumps, as will be
discussed in Section 4.

We also note that this algorithm is used in the context of the Lieb—Thirring in-
equalities by Arnold and Dolbeault in 1D; see [4].

2.2. Radial algorithm. Most of our multidimensional computations were done in
a radial setting. To see why this is possible, consider the above iteration for d > 2,
when V,, is radial. Then, the Laplacian splits into A, + rd%lAg, where A, is the

radial Laplacian, and Ay the Laplace—Beltrami operator on S¢~!. The eigenvectors
of Ag are explicitly known to be the spherical harmonics, labeled by the integers
¢ and m. Since V,, is radial, —A, + V,, commutes with Ag and can therefore be
diagonalized in the same basis (separation of variables). We write these eigenvectors
in the form

Viem () = grellxDden (7).
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where Jy ,, is the spherical harmonic of degree ¢ and order m. The radial parts ¢; ¢
satisfy the equation

£(£+d— 2)

g+ Cig +Voie=Aiwis (5)

and each A; ; has multiplicity

d+0—1\ [(d+0-3
hw):( ) )—( o );
see [26].

Therefore, we can obtain all the negative eigenvectors and eigenvalues by solving
only (5). Furthermore, since the lowest eigenvalue decreases as £ increases, we can
iterate over £ and stop whenever the lowest eigenvalue becomes positive. Next, we
compute

pn() =D Y Y (i) Wim(x)?
L i m
=Y h(d.0) Y (—Ai0)  pie(r)?
12 i

where the sum only ranges over all negative eigenvalues. This is again radial, and
therefore so is V},4+1. To summarize, we have the following algorithm.

Algorithm 2 (Radial maximization algorithm).

(1) Compute all the negative eigenvalues A; ¢ and associated eigenvectors ¢; ¢ of (5)
by increasing ¢ until the lowest eigenvalue A ¢ becomes positive.

(2) Set
=D hd O 0

14

(3) Compute

__ 1
y+d/2 1 yz,}—-ld—;g/il v+arz
Ko = 10777 10 = (1541 (r)dr

4 Set Vyt1 = —KNPy+d/2 g

Note that this algorithm is not an approximation: the iterates generated by this
algorithm coincide with the ones from Algorithm 1 when the initial guess V} is radial.
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3. Discretization

3.1. Galerkin basis and weak formulation. To discretize this algorithm, we use
a Galerkin finite element basis on which we expand V' and the eigenvectors. This
variational discretization has the advantage that numerical computations can provide
accurate lower bounds on the best constants R, 4. A disadvantage is that the algorithm
we use involves taking powers of functions. There is no exact way to do that in a
Galerkin basis, and we must use an approximation, which causes a loss of accuracy
in the fixed-point algorithm.

For the non-radial 1D and 2D cases, we simply use standard finite elements. The
radial case is less standard, and we must derive a weak formulation of (5). There are
several possibilities here. The simplest is to use a change of variable

o(r) = r'T o(r)

to transform the equation back to the more standard form

I (s

p ¢+ V(e = Ag.

We obtain a weak formulation by multiplying by a test function u and integrating:

/[W/ . ((l + 51+ 45 £V )pu] = ,\/W. ©6)

72

Expanding the function ¢ on a Galerkin basis ¢(r) = ), x; x; (r), this problem
transforms into the generalized matrix eigenvalue problem

Ax = AMx, (7
where
(1 —4=Ly(1 4 42
Aij =/x§X}+( 2 + V)it )
and
M;; :/Xinv )

are the stiffness and mass matrices.
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When V' is expanded on the same basis, we can compute the matrix elements, solve
the eigenvalue problem (7), and transform back to ¢. However, ford = 2,1 = 0,
@ behaves like /r at 0, and the singularity of the derivative prevents an accurate
discretization.

Another possibility is to obtain a weak formulation of (5) directly. We have to
remember that since the ¢ functions are only radial parts of a d -dimensional function,
the L? inner product between two functions ¢; and ¢, is

/fﬂlﬁl)zrd_l-

This has to be taken into account in the weak formulation in order to obtain a self-
adjoint equation. Multiplying (5) by ¢ ~u, where u is a test function, and integrating
by parts, we obtain

/[rd_lgo/u/—i- (M 4 V)rd_lq)u] = /\/rd_lgou. (10)

72

Then, as with (6), we can transform this into a matrix equation and solve it.
The disadvantage is that the integrations required for the assembly step are more
involved, and therefore we only use it for the case d = 2,/ = 0 where the other
method fails.

3.2. Finite elements. We use a Finite Element basis of piecewise linear functions
ona grid of [0, L]. The grid we use is a nonuniform grid of N points, with more points
around 0, to accommodate for the singularity of (5). L is chosen large enough so that
all the eigenvectors associated to negative eigenvalues of —A + V can be represented
accurately in the basis. But if 1 is an eigenvector with negative eigenvalue A, then,
¥ decays as exp(—+/—Ar). This shows that the discretization is problematic for
eigenvalues close to zero, as we shall see in Section 4.

For our piecewise linear basis functions, it is easy to compute the matrix ele-
ments (8) and (9) when V,, is expanded on this same basis y;. We then solve the

eigenproblem (7), and obtain the eigenvectors. To expand pw on the basis, we
simply chose the expansion that is exact on the grid points. Then the normalization
can be performed exactly, and the iteration is carried out.

We present convergence results in Figure 1. As expected from piecewise linear
basis functions, we obtain O(1/N) convergence of the eigenfunctions ¢ in H ! norm,
and O(1/N?) convergence of the eigenvalues A (and therefore of E(V)). For a
given stepsize, the discretization error is exponential with respect to L, with a decay
rate equal to the decay rate of the eigenfunctions, i.e.~/—A. Although we used a
uniform grid in one dimension in Figure 1, similar results were checked to hold for
our non-uniform grid in d dimensions, using the weak formulation (6), except for
d = 2,1 = 0, where the convergence was slower and the weak formulation (10) had
to be used to get the same convergence rates.
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Figure 1. Convergence analysis with respect to N and L. The figure on the left illustrates
the convergence of the eigenfunctions and eigenvalues with respect to the number of grid
points N, with a fixed L = 40, large enough to cause a negligible error. The slopes, found
by linear regression, are —1.043 for the eigenvectors and —1.999 for the eigenvalues, close
to their theoretical values of —1 and —2. The figure on the right illustrates the convergence
of the eigenfunctions and eigenvalues with respect to the domain size, with constant stepsize
h = 5x 10~*. The slope for the eigenvectors is —0.5285 ~ +/—A = —0.5283. When the
domain size gets large enough, the error due to & dominates, and causes a plateau.
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3.3. Diagonalization. The most computationally challenging step in our algorithm
is the problem of computing all the negative eigenvalues and associated eigenvectors
of a generalized eigenvalue problem Ax = M x, where A and M are large sparse
symmetric matrices. The spectrum of A consists of 7 negative eigenvalues, and a large
number of positive eigenvalues, which can be seen as perturbations of the spectrum
of the discrete Laplacian.

In order to compute the n negative eigenvalues, where n is unknown, we compute
the k lowest eigenvalues, check if the k-th one is positive, and repeat the process
with a larger k if not. The computation of the k first eigenvalues can be done by
standard packages such as ARPACK; see [13]. However, standard algorithms such as
Arnoldi iteration are not suited for the computation of inner eigenvalues, and one has
to solve for the largest eigenvalues of the shifted and inverted problem (4 —o0)~!x =
(A — o)~ 'x instead to ensure reasonably fast convergence. This requires an adequate
shift (one that is close to the bottom of the spectrum of A4). Even with this shift-
and-invert strategy, the group of eigenvalues one needs to locate is not well-separated
from the rest of the spectrum, and becomes less and less so as L increases. This leads
to slow convergence for large L.

3.4. Implementation. Using the Numpy/Scipy libraries [10], we implemented the
algorithm in Python, with the ARPACK eigenvalue solver [13].

3.5. Error control. Our numerical methods introduce errors. For each V' we con-
struct, we can get a lower bound of L, 4, provided we can accurately compute E (V')
and the normalization constant [ V7 *+4/2,

Because the basis functions we use are piecewise linear, all the integrals involved
in our computations, such as [ Vv+4/2 can be reduced to integrals of piecewise
polynomials, which can be computed explicitly, up to machine precision.

It now remains to examine the accuracy of E(V'), i.e. of the computation of
eigenvalues of —A + V. Because we use a Galerkin discretization, the min-max
theorem guarantees that the eigenvalues of the matrix problem we solve are larger
than the true eigenvalues. The matrix problem is solved using ARPACK, which
yields a collection of orthogonal approximate eigenvectors. Again using the min-
max theorem, the eigenvalues of the submatrix formed by restricting the eigenvalue
problem to the subspace spanned by the approximate eigenvectors are upper bounds on
the true eigenvalues of —A + V. This submatrix is of modest size, and its eigenvalues
can be computed accurately by ARPACK.

For the reasons mentioned above, we believe our method to yield lower bounds
on L, 4 with an accuracy comparable to machine precision (about 107'6). However,
guaranteed lower bounds would require methods such as interval arithmetic, which
we have not implemented.
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4. Numerical results

We used the algorithm described above to compute critical points of the variational
problem (P, 4), thatis, a solution to the self-consistent equation (4). Our strategy was
to find a critical point by running the algorithm on a suitable initial potential Vy (for
instance, a Gaussian of specified width). Once convergence is achieved for a specific
y, we can run the algorithm for y + Ay, using as initial potential the one found for y.
We have been unable to analytically prove the correctness of this method, for instance
by checking the conditions of the implicit function theorem. However, we found it
reliable enough for our purpose, as long as Ay was chosen small enough.

4.1. The 1D case. In one dimension we simply used a grid of size [—L, L] with
Dirichlet boundary conditions. We reproduced the potential with one bound state
Vy.1,1 of [21] by using for V,, a Gaussian of relatively small variance (see Figure 2).
In this case, the algorithm converges linearly (i.e. ||V,+1 — Vi| & V", for some
convergencerate v < 1), and very quickly (about twenty iterations to achieve machine
precision).

Contrary to what we observe in higher dimensions, initializing the algorithm with
a Gaussian of larger variance did not make the algorithm converge to other critical
points. Instead, it leads to a slow divergence where “bumps” separate, each bump
corresponding to the potential of V), 1 1 (see Figure 3).

This effect occurred regardless of the value of y in the range y € (1/2,3/2). The
divergence appears to be logarithmic. More precisely, a numerical fit showed the
asymptotic relationship for the distance L, between the two bumps

1
24/—A

where A is the unique negative eigenvalue of —A + V1 1.

This strikingly simple relationship can heuristically be understood by the fact that,
because the eigenfunctions ¢; and ¢, corresponding to the two bumps have expo-

nential decay with decay constant ~/—A, their interaction is of order exp(—+v —AL;,).
Due to cancellations, this interaction leads to a correction of order exp(—2+/—A L) in

n~

logn, (11)

Vi+1, and we have the approximate relationship L,4+1 ~ L, + K exp(—2ﬂLn),
which yields (11). A rigorous explanation of this is an interesting question.

Based on these results, we conjecture that V), 4 ; is, up to translation, the only
maximizer of the functional. This would imply that

y — 1/2)y—1/z

Ry,l = 2(m

fory < %, in agreement with the original conjecture of Lieb and Thirring [21].
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Figure 2. Linear convergence from a Gaussian initial data towards V), 4 1. This plot is for
y =1.2.
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Figure 3. Divergence from a sum of Gaussian bumps at y = 1.2. Initializing to a single
Gaussian of large width yields similar results. The two bumps separate slowly, until the
finiteness of L forces convergence. Although not displayed here, the asymptotic logarithmic
divergence (11) can be checked graphically, e.g. the spacing between Vigo and Vipoo is the
same than between V1000 and Vi0o00. The asymptotic slope of the log-log convergence plot
is —1, which fits with the heuristic arguments given.
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4.2. The 2D case. Due to the high cost of accurately solving the maximization
problem in more than one dimension, we only obtained partial results in the non-
radial 2D case. The results indicate that the algorithm either converges to radial
critical points, or form slowly separating bumps, as in one dimension. We have been
unable to find any example of non-radial critical points, although this does not mean
that they do not exist. An example of separation in bumps is provided in Figure 4.

Yo Vioo
T T 0.000
30} + :
4 —0.025
o | o®e
30l 1 { -0.050
| ‘/400 | | ‘/800 |
30} +
-0.075
' 09® - e
—-0.100
—30} 1
-30 0 30 -30 0 30
Figure 4. Separation in bumps of 2D non-radial initial data at y = 1.2, computed from

Algorithm 1 with standard FEM. The initial data is taken to be a Gaussian in r multiplied by
an angular factor (1 + cos(46)).

In the radial case, we followed branches of critical points of (P, 4) using the con-
tinuation method on y we described in Section 4. We found this branch continuation
procedure robust. By varying the shape of the initial data, and in particular its width,
we were able to obtain different branches of critical points. Generally speaking, as
the width of the initial potential increases, the number of negative eigenvalues of
—A + V increases.

We display the energy of these branches as a function of y in Figure 5.

First, we see that as the number of eigenvalues increases, R(V,) tends to 1, the
semiclassical limit. For a given y, the Lieb-Thirring constant will be given by the
supremum of R(V)) over such curves. From the branches depicted here, we see
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that the supremum is always given by either V, 4 ; for y < y! ~ 1.16, and by the
semiclassical limit for y > y!. All the other curves are below these two (although
not depicted in this zoomed plot, this holds true for 0.5 < y < 1.5).

1.020

1.015

1.010

1.005
&
&< 1.000 81,112,139
28,33,37,39,54
24
0.995 20 23
13
0.990
0.985
0.980

1.15 1.20 1.25 1.30

14

1.00 1.05 1.10

Figure 5. R(V) as a function of y for d = 2 using the branch continuation procedure in the
radial setting (Algorithm 2). The branches are labeled by the number of bound states they
have. Based on these results, the maximizer seems to be V), 4.1, up to y ~ 1.16. Above this,
no branches were above the semiclassical regime R = 1.

Table 1. Values y. > x of y at which some branches with k bound states cross the threshold
R=1.

k 1 4 6 8 11
Veor | 1.165 | 1.150 | 1.141 | 1.135 | 1.126
k 13 17 28 54 81 139
Yeox | 1124 | 1.124 | 1.119 | 1.110 | 1.105 | 1.100

It is important to keep in mind that these branches only represent critical points of
the functional. They are generically local maxima with respect to radial perturbations,
but might not be stable with respect to non-radial ones. For instance, Figure 6 depicts
what happens when the radial potential with eight bound states is perturbed non-
radially by a Gaussian multiplicative noise, with y = 1.1. Because the potential with
one bound state has a higher energy, the potential splits into eight bumps. Performing
the same experiment y larger than about 1.17, where the potential with one bound
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state has alower energy, when the potential with eight bound states has a larger energy,
we found that no splitting occurs, which suggests that the potentials are stable beyond
their crossing with the one with one bound state.

Vo Vi
‘ ‘ 0.000
30} 1 |
1 _0.015
O - 4 -
30} + 1
1 _0.030
Il ‘/20 Il Il ‘/]V50 Il
L 4 3 L
30 ~0.045
O - 4
30l 1 - . ~0.060
—30 0 30 ~30 0 30

Figure 6. Separation in bumps of the randomly perturbed radial potential with eight bound
states, y = 1.1.

Based on our numerical results, we conjecture that y. = y} ~ 1.16. The only
way this conjecture could be false is if some other curve is above the one with one
bound state. We have not been able to find such a curve.

4.3. The 3D case. Due to the high cost of computation, we were unable to get
meaningful results in the non-radial setting, and only present our findings in the
radial case. Some of the radial potentials we found are presented in Figure 7, with
numerical data about the crossings of the curves in Table 2.

Contrary to the dimension 2, here some potentials with a higher number of bound
states have a higher R than V), 5 ;. The corresponding curves in the y — R plane are
flatter and flatter, and intersect at a sequence of increasing y!‘ . This sequence seems
to accumulate at 1, in accordance to Helffer and Robert’s result [8], which predicts
the existence of similar potentials with a R larger than 1 for every y < 1 in the nearly
semiclassical regime. However, their study of an harmonic potential of varying
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width showed a highly oscillatory behavior of E (V') with respect to the width of the
potential. Although our numerical methods do not permit us to investigate this regime
(it would require a very large domain size, with a correspondingly large number of
points, and a very poor conditioning of the eigenvalue problem), we expect the same
behavior to occur. This means that the computation of the maximizing branches (here,
those with 1, 5, 14 and 140 bound states) becomes harder and harder.

1.010
;
1.005 B
§ ‘7\ \ 14
< 1.000 \ I —

111,115,288,341

55
30,39

21
0.995 | N

0'99%.84 0.85 0.86 0.87 0.88 0.89 0.90

¥
Figure 7. R(V) as a function of y for d = 3, with the same methodology as in Figure 5.
As y increases, different branches become maximizers, until y = 1. The fact that only some
branches are above the threshold R = 1 when the number of bound states increases results
from the highly oscillatory behavior near y = 1, as predicted in [8].

Table 2. Values y. 3 x of y at which some branches with k bound states cross the threshold
R=1.

k 1 4 5 10 14
Ve 3.k | 0.863 | 0.852 | 0.875 | 0.851 | 0.880

k 21 30 55 111 140 341
Yes.k | 0.857 | 0.862 | 0.860 | 0.854 | 0.891 | 0.853

The relative energies of the branches display a greater variety than in the case
d = 2, reflecting a more complicated energy landscape. Figure 8 shows the profiles
of some critical potentials. Note that the potentials in dashed lines can be regarded
as “anomalous” versions of their similarly extended counterparts, and have a lower
energy. As can be expected, the potential branches which are maximizers for some
y have a profile that is decreasing in r.
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Figure 8. Shape of some critical points of E(1'), at y = 1. The qualitative shape of the curves
does not change much when varying y.

Table 3 displays the eigenvalue repartitions of a particular potential, the one with
140 bound states, at y = 0.88. Several patterns can be noted. First, for low values
of k and [, the approximate relationship Ag41,; = Ak 42 holds. This is because
the associated eigenfunctions are localized close to 0. In this region, the potential
can be approximated by a harmonic potential V' (0) + %V/ ’(0)x2, which leads to the
approximation

Mg = V() + VV"(0)(2k + 1 + %),

explaining the relationship Ax4+1; ~ Ak ;4. This is only valid for small k and /,
where the harmonic approximation is valid. When the eigenvalues are close to zero,
another pattern emerges: the last negative eigenvalues have the same value of k + /,
leading to a triangular pattern in Table 3. This seems to be true for the maximizing
branches (1, 5, 14, 140), but not for the others (which tend to have a different ordering
of the eigenvalues close to zero). We do not have an explanation for this.

Every potential we were able to compute was below the R = 1 threshold for
y > 1. These results confirm the Lieb-Thirring conjecture that y. 3 = 1. However,
the subtle behavior near y = 1 means that there might exist maximizing potentials
for y > 1 we were unable to find.
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Table 3. Eigenvalue repartition for the branch with 140 bound states, with y = 0.88, in units
of 107° for readability. As in Section 2.2, A ; is the k-th eigenvalue of equation (5). The
positive eigenvalues are finite size effects and have no physical meaning, therefore we do not
write them beyond the first one.

Mg |k=1]k=2 k=3 | k=4 k=5 ]k=6k=7]k=38

=0 -85 -54 -30 -13 -4 -0.7 -0.02 | +0.25
[=1 -69 -41 -20 -1.6 -1.8 -0.1 +0.02

=2 -54 -29 -12 -3.4 -0.3 +0.03

=3 -39 -18 -5.8 -0.7 +0.04

=5 -26 -9 -1.3 +0.06

=6 -14 -2.3 +0.08
=7 -38 +0.1

4.4. The case d > 4. The results we obtained in the case d > 4 are similar to the
case d = 3, with V,, 4.1 as the maximizer for small y, until it is outperformed by
branches with a larger number of bound states, which all fall under the semiclassical
limit before y = 1. However, the high cost of computation (the higher the dimension,
the more ill-conditioned the eigenvalue problem is) prevents us from performing a
systematic study.

5. Conclusion

In this paper, we used a maximization algorithm to investigate the best constants of
the Lieb—Thirring inequalities, an important open problem of quantum mechanics.
Discretizing the problem using finite elements, we were able to numerically compute
critical points of the functional. Our main findings are listed below.

* In one dimension, the only critical point we found is the potential with exactly
one bound-state V), 1,;. For all initial data, the algorithm seems to either converge
to this potential, or to split in separating bumps. This supports the conjecture

that these potentials are the only maximizers of the functional for % <y< %

* In two dimensions, the only critical points we found were radial. For all initial
data, the algorithm seems to either converge to a radial potential, or to split in
diverging bumps. Among the radial potentials we were able to compute, V), 5 ;
was the maximizer for y < 1.16. After this point, the maximum corresponds to
the semiclassical regime. The natural conjecture is that V,, 4 ; is the maximizer
for y < 1.16, and therefore that y. » ~ 1.16.

 In three dimensions, branches of radial potentials with more than one bound
state outperformed V), 4 ;. This confirms the theoretical result from [8], and
provides new lower bounds (see Figure 7). The natural conjecture is that there
is a non-decreasing sequence of integers n, with n,, — oo as y — 1 such that
the maximizer of the functional (P, 4) has n, bound states.
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e In dimension d > 4, the results are similar to the three-dimensional case, and
we conjecture the same behavior.

Beyond these results, the study hinted at a very rich and highly nonlinear behav-
ior of the maximizers of Lieb—Thirring inequalities. This study is based on a simple
numerical method (finite element discretization). More involved computations could
use a more appropriate Galerkin basis. This could allow for a more accurate com-
putation of potentials with a larger number of bound states, and a more detailed
exploration of the energy landscape.

On the theoretical side, the properties of the functional (P, 4) remain unexplored.
An open question is whether one can prove the existence of maximizers. The behavior
of the maximization algorithm is also an interesting question, with the separation in
bumps particularly interesting. Finally, we believe that our method could be adapted
to generalizations such as models with positive temperatures or positive density [7],
negative values of y (see [5]) or polyharmonic operators (—A)! + V (see [22]).
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