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The Galerkin method for perturbed self-adjoint operators
and applications

Michael Strauss1

Abstract. We consider the Galerkin method for approximating the spectrum of an operator
T CA where T is semi-bounded self-adjoint and A satisfies a relative compactness condition.
We show that the method is reliable in all regions where it is reliable for the unperturbed
problem - which always contains CnR. The results lead to a new technique for identifying
eigenvalues ofT , and for identifying spectral pollution which arises from applying the Galerkin
method directly to T . The new technique benefits from being applicable on the form domain.
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1. Introduction

In general, the approximation of the spectrum of a semi-bounded self-adjoint operator
T with the Galerkin (finite section) method is reliable only for those eigenvalues lying
below the essential spectrum. Any element from the closed convex hull of �ess.T /[
f1g can in principle be the limit point of a sequence of Galerkin eigenvalues; see [12],
Theorem 2.1. This phenomenon is called spectral pollution and constitutes a serious
problem in computational spectral theory; see for example [1], [2], [6], and [15]. As is
well-known, under fairly mild assumptions on a sequence of trial spaces the Galerkin
method will capture the whole spectrum, although eigenvalues may be obscured by
spectral pollution. In the presence of essential spectrum, the Galerkin method applied
to non-self-adjoint operators is less well understood. Reliability of the Galerkin
method is assured in some situations, notably for compact operators or operators
with compact resolvent and satisfying ellipticity conditions; see for example [5] and
reference therein.
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The closed sesquilinear form associated to T we denote by t. Let A be a closed,
jT j 12 -compact operator, such that .T C A/� D T C A� and for some 0 � ˛ < 1,
ˇ � 0, satisfies

jhA'; 'ij � ˛tŒ'�C ˇk'k2; (1.1)

for all ' 2 Dom.t/ D Dom.jT j 12 /. We note that �ess.T C A/ D �ess.T /; see
for example [11], Theorem IV.5.35. In Section 2 we shall be concerned with the
approximation of the discrete spectrum (isolated eigenvalues of finite multiplicity)
of T C A by means of the Galerkin method. In Theorem 2.3 we show that if a
compact set � � �.T C A/ does not contain a limit point of Galerkin eigenvalues
for the self-adjoint operator T and sequence of trial spaces .Ln/, then � will not
contain a limit point of Galerkin eigenvalues for the operator T C A. Further, if in
a region U � C with U \ �ess.T / D ¿, the self-adjoint operator T does not suffer
from spectral pollution for a sequence of trial spaces .Ln/, then Theorem 2.5 states
that �.T C A/ \ U will be approximated and without spectral pollution, and by
Theorem 2.9 the Galerkin method will also capture the multiplicity of eigenvalues in
the region.

In Section 3 we employ the preceding results to aid the development of a new
technique for approximating those eigenvalues ofT which lie within the closed convex
hull of �ess.T /[ f1g – the region where a direct application of the Galerkin method
is unreliable. This is an issue which has received considerable attention in recent
decades. There are two approaches to the problem. Firstly, general methods which
may be applied to an arbitrary self-adjoint operator, and secondly, methods designed
for a specific class of operator. Examples of the former are proposed in [8], [12], [16],
and [18]. Application of these techniques can require a priori information about the
spectrum, and always require trial subspaces to belong to the operator domain rather
than the preferred form domain. The latter is due to requiring matrices with entries of
the form hT '; T  i, while the Galerkin method requires only matrices with entries of
the form t.';  /. A new method designed for operators of the form T D ��C q is
developed in [13] and [14]. The idea is to apply the Galerkin method to the perturbed
operator ��C qC is for a suitably chosen function s. The result of the perturbation
is to lift eigenvalues of T off the real line where they can be approximated without
encountering spectral pollution. Based on this idea and using the form domain, we
consider the Galerkin method applied to T CiQwhereQ is an orthogonal projection.
For a set J � R and a trial space L we chooseQ to be the orthogonal projection onto
the eigenspace associated to Galerkin eigenvalues contained in J , we then apply the
Galerkin method to T C iQ and a larger trial space. In Theorem 3.6 we show that
if � 2 �dis.T /\ J and our trial space L approximates the corresponding eigenspace
sufficiently well, then T C iQwill have eigenvalues in a neighbourhood of �C i with
total-multiplicity equally that of � 2 �dis.T /. Now applying results from Section 2,
we may approximate the non-real eigenvalues of T C iQ, their multiplicities, and
free from spectral pollution. The technique is effectively applied to examples where
eigenvalues are obscured by spectral pollution.
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2. The Truncated Eigenvalue Problem

We set
m

defD min �.T /

and denote by Ht the Hilbert space Dom.t/ equipped with the inner product

h';  it defD .t �m/.';  /C h';  i
and norm

k'k2t defD .t �m/Œ'�C k'k2:
Throughout, .Ln/ � Dom.t/ is a sequence of finite-dimensional subspaces. The or-
thogonal projections from H and Ht onto Ln will be denoted by Pn and yPn, respec-
tively. We always assume that the sequence .Ln/ is dense in Ht:

for all ' 2 Dom.t/ there exists 'n 2 Ln such that k' � 'nkt �! 0:

We define the form

s.';  /
defD t.';  /C hA'; i with Dom.s/ D Dom.t/;

the sets

�.T C A;Ln/
defD fz 2 C W there exists ' 2 Ln

such that s.';  / D zh';  i;  2 Lng
and

�.T;Ln/
defD fz 2 C W there exists ' 2 Ln

such that t.';  / D zh';  i;  2 Lng;
and the limit sets

�.T C A;L1/
defD fz 2 C W there exists zn 2 �.T C A;Ln/ such that zn ! zg

and

�.T;L1/
defD fz 2 C W there exists zn 2 �.T;Ln/ such that zn ! zg:

Associated to the restriction of s and t to Ln are operators Sn and Tn which act on
the Hilbert space Ln, and satisfy

hSn';  i D s.';  /
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and

hTn';  i D t.';  /:

Evidently, we have

�.T C A;Ln/ D �.Sn/

and

�.T;Ln/ D �.Tn/:

2.1. Regular Sets. We say that � � C is a Tn-regular set if there exist a ı > 0 and
N 2 N, with

min
'2Ln
k'kD1

max
 2Ln
k kD1

j.t � z/.';  /j � ı; z 2 �; n � N; (2.1)

or equivalently

k.Tn � z/'k � ık'k; z 2 �; ' 2 Ln; n � N: (2.2)

Similarly, we define Sn-regular sets, and we shall make use of the function

�n.z/
defD min

'2Ln
k'kD1

max
 2Ln
k kD1

j.s� z/.';  /j

D min
'2Ln
k'kD1

k.Sn � z/'k

D
8<
:
k.Sn � z/�1k�1 if z 2 �.Sn/;

0 if z 2 �.Sn/:

Lemma 2.1. If � is a Tn-regular set, then � � �.T /.

Proof. We suppose the contrary, so that � is a Tn-regular set and � 2 � \ �.T /.
There exists a normalised sequence . k/ � Dom.T / such that

k.T � �/ kk < k�1:

For a fixed k, let
O n D yPn k :
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Then for any normalised vn 2 Ln we have

jt. O n; vn/ � �h O n; vnij D jt. O n �  k; vn/C t. k ; vn/ � �h O n; vnij
D jh O n �  k ; vnit C .m � 1/h O n �  k ; vni
C h.T � �/ k; vni � �h O n �  k ; vnij

D jh. OPn � I / k; vnit C h.T � �/ k ; vni
� .� �mC 1/h O n �  k; vnij

D jh.T � �/ k; vni � .� �mC 1/h O n �  k ; vnij
< k�1 C j� �mC 1jk O n �  kk;

where the right hand side is less than k�1 for all sufficiently large n. Since k O nk ! 1

it follows that� is not aTn-regular set. The result follows from the contradiction.

Lemma 2.2. Let .'n/ be a bounded sequence of vectors with 'n 2 Ln and

max
v2Ln
kvkD1

j.s � z/.'n; v/� hx; vij �! 0 as n!1:

There exists a u 2 H and a subsequence nk , such that

kA'nk � uk �! 0:

Moreover, if fzg is a Tn-regular set, then

k'nk � .T � z/�1.x � u/kt �! 0:

Proof. Suppose that A'n does not have a convergent subsequence. It follows that
kjT j 12'nk ! 1 and therefore also that tŒ'n�!1. We have

hx; 'ni � .s� z/.'n; 'n/ D tŒ'n�C hA'n; 'ni � zh'n; 'ni:
Let M 2 R be such that k'nk � M for all n 2 N. Using (1.1) and recalling that
m D min �.T /, we obtain

tŒ'n� � zh'n; 'ni � hA'n; 'ni C hx; 'ni
� jzjM 2 C jhA'n; 'nij C kxkM
� jzjM 2 C ˛hjT j'n; 'ni C ˇM 2 C kxkM
� jzjM 2 C ˛tŒ'n�C 2˛jmjM 2 C ˇM 2 C kxkM:

Therefore

tŒ'n� � jzjM
2 C 2˛jmjM 2 C ˇM 2 C kxkM

1 � ˛



118 M. Strauss

which is a contradiction since the left hand side converges to 1. We deduce that
A'nk ! u for some u 2 H and subsequence nk .

Suppose now that fzg is a Tn-regular set. Then by Lemma 2.1 we have z 2 �.T /,
hence there exists a vector  2 Dom.T / with

.T � z/ D x � u:
Let

 n D yPn I
then for any normalised vn 2 Ln we have

t. n; vn/ � zh n; vni D t. ; vn/ � zh ; vni C t. n �  ; vn/ � zh n �  ; vni
D h.T � z/ ; vni C .t�m/. n �  ; vn/C h n �  ; vni
� .z �mC 1/h n �  ; vni

D hx � u; vni C h n �  ; vnit
� .z �mC 1/h n �  ; vni

D hx � u; vni C h. yPn � I / ; vnit
� .z �mC 1/h n �  ; vni

D hx � u; vni � .z �mC 1/h n �  ; vni
and

t.'n; vn/C hA'n; vni � zh'n; vni D .s� z/.'n; vn/ � hx; vni:
Hence, we have

t.'nk ; vnk / � zh'nk ; vnk i � hx � u; vnk i
and

t.'nk �  nk ; vnk/ � zh'nk �  nk ; vnk i �! 0:

Since fzg is a Tn-regular set we deduce that 'nk �  nk and t.'nk �  nk ; vnk/ both
converge to zero. In particular, we have

tŒ'nk �  nk � �! 0;

and therefore
k'nk �  nkkt �! 0;

hence

k'nk �  kt � k'nk �  nkkt C k nk �  kt
D k'nk �  nkkt C k. yPnk � I / kt �! 0:
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Theorem 2.3. Let � � C be a compact Tn-regular set. If � � �.T C A/ then � is
an Sn-regular set.

Proof. Suppose the assertion is false. Then there exists a subsequence nk and a
sequence .znk / � � , such that

�nk .znk / �! 0; as k !1:
We assume without loss of generality that

�n.zn/ �! 0; for some .zn/ � �:
Since � is a compact set it follows that .zn/ has a convergent subsequence, and
without loss of generality we assume that zn ! z 2 � . Therefore, for a sequence of
normalised vectors 'n 2 Ln we have

max
v2Ln
kvkD1

j.s� z/.'n; v/j �! 0 as n!1:

By Lemma 2.2 there exists a u 2 H and subsequence nk with

kA'nk � uk �! 0 and k'nk C .T � z/�1ukt �! 0:

Without loss of generality we assume that

kA'n � uk �! 0 and k'n C .T � z/�1ukt �! 0:

We note that u ¤ 0. We have z 2 �.T C A/ and therefore Nz 2 �.T C A�/. Let
 2 Dom.T C A�/ be such that

.T C A� � Nz/ D �.T � z/�1u:

Set
 n D yPn :

Then
k n �  kt �! 0I

hence
t.'n;  n/ �! �t..T � z/�1u;  /I

see [11], Theorem VI.1.12. We obtain

0 �.s� z/.'n;  n/

D t.'n;  n/C hA'n;  ni � zh'n;  ni
�! �t..T � z/�1u;  / � hA.T � z/�1u;  i C zh.T � z/�1u;  i

D �h.T � z/�1u; T  i � h.T � z/�1u; A� i
C zh.T � z/�1u;  i

D �h.T � z/�1u; .T C A� � Nz/ i
D k.T � z/�1uk2;
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however, the right hand side is non-zero. From the contradiction we deduce that � is
an Sn-regular set.

2.2. Uniform Sets. We say that an open set U � C is a Tn-uniform set if

(1) any compact subset of U \ �.T / is Tn-regular;

(2) U \ �.T;L1/ D U \ �.T / � �dis.T /;

(3) if � 2 �.T /\U and� � U is a circle with center � and which neither intersects
nor encloses any other element from �.T /, then for all sufficiently large n the
total multiplicity of those eigenvalues ofTn enclosed by� equals the multiplicity
of the eigenvalue �.

The set U is assumed to be a Tn-uniform set for the remainder of this section.
For a � 2 �.T /\U we denote the corresponding spectral subspace by L.f�g/. Let
� � U be a circle with center � and which neither intersects nor encloses any other
element from �.T /. We denote by Ln.�/ the spectral subspace associated to those
elements from �.T;Ln/ which are enclosed by � .

We use the following notions of the gap between subspaces L and M:

ı.L;M/ D sup
x2L

kxkD1

distŒx;M� and Oı.L;M/ D maxfı.L;M/; ı.M;L/gI

see [11], Section IV.2, for further details. We shall write Oıt and ıt when the norm
employed is k � kt.
Lemma 2.4. Oıt.L.f�g/;Ln.�// D O.ıt.L.f�g/;Ln//.

Proof. Set

ıt.L.f�g/;Ln/ D "n;

Qm D m � 1;
and

QLn
defD .T � Qm/ 12Ln:

Then for any ' 2 L.f�g/with k'kt D 1 there exists a 2 Ln such that k'� kt �
"n. Noting that k'k2 D 1=.� � Qm/, we obtain

"2
n � k' �  k2t
D .t �m/Œ' �  �C k' �  k2
D .t � Qm/Œ' �  �C .1C Qm �m/k' �  k2
D k.T � Qm/ 12 .' �  /k2

D
���� '

k'k � .T � Qm/
1
2 

����
2

;



The Galerkin method for perturbed self-adjoint operators and applications 121

and therefore ı.L.f�g/; QLn/ � "n. Let � 2 �.Tn/ with eigenvector  , then for all
v 2 Ln we have

0 D .t � Qm/. ; v/� .� � Qm/h ; vi
D h.T � Qm/ 12 ; .T � Qm/ 12 vi � .� � Qm/h ; vi:

Setting Q D .T � Qm/ 12 and Qv D .T � Qm/ 12 v, the above equation may be rewritten

h.T � Qm/�1 Q ; Qvi D .� � Qm/�1h Q ; Qvi;
and therefore we have the following one-to-one correspondence between the sets
�..T � Qm/�1; QLn/ and �.Tn/:

� 2 �.Tn/ () 1

� � Qm 2 �..T � Qm/
�1; QLn/:

Let . QPn/ be the orthogonal projections from H onto QLn. Since the sequence .Ln/ is

dense in Ht it follows that the sequence . QLn/ is dense in H , i.e. that QPn
s�! I . Hence,

QPn.T � Qm/�1 QPn
s�! .T � Qm/�1, .�� Qm/�1 is isolated in �..T � Qm/�1; QL1/, and for

all sufficiently large n the total multiplicity of those elements from �..T � Qm/�1; QLn/

in a neighbourhood of .�� Qm/�1 equals dim L.�/. We denote by QLn.�/ the spectral
subspace corresponding to those eigenvalues from �..T � Qm/�1; QLn/ which are in
a neighbourhood of .� � Qm/�1. Then combining the estimate from the previous
paragraph with [5], Theorem 6.6 and Lemma 6.9, we obtain

Oı.L.f�g/; QLn.�// D O."n/: (2.3)

Let M � 0 be such that Oı.L.f�g/; QLn.�// �M"n for all n 2 N. It follows that
for some  2 Ln.�/ we have�����' � .T � Qm/

1
2 p

� � Qm

����� � M"np
� � Qm D k'kM"n:

Then

k' �  k2t D .t �m/Œ' �  �C k' �  k2

D k.T � Qm/ 12 .' �  /k2 C . Qm �mC 1/k' �  k2

D .� � Qm/
�����' � .T � Qm/

1
2 p

� � Qm

�����
2

�M 2"2
n
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and therefore ıt.L.f�g/;Ln.�// D O."n/. Since dim Ln.�/ D dim L.f�g/ < 1
for all sufficiently large n, we have the estimate

ıt.Ln.�/;L.f�g// � ıt.L.f�g/;Ln.�//

1� ıt.L.f�g/;Ln.�//
I

see [10], Lemma 213. We deduce that Qıt.L.f�g/;Ln.�// D O."n/.

Theorem 2.5. If U is a Tn-uniform set, then �.T CA;L1/\U D �.T CA/\U .

Remark 2.6. If the essential spectrum of T is non-empty and

��
e D min �ess.T /;

then CnŒ��
e ;1/ is a Tn-uniform set (though not necessarily the largest). If the

essential spectrum is empty then C is a Tn-uniform set. If T is bounded and

�C
e D max �ess.T /;

then CnŒ��
e ; �

C
e � is a Tn-uniform set (though not necessarily the largest).

Proof of Theorem 2.5. First we show that �.T C A;L1/ \ U � �.T C A/. Let
z 2 �.T C A/ \ U . First suppose that z 2 �.T /. Then fzg is a Tn-regular set
and by Theorem 2.3 also an Sn-regular set. We deduce that z … �.T C A;L1/.
Suppose now that z 2 �.T / and that z 2 �.T CA;L1/. Therefore, for a sequence
of normalised vectors 'n 2 Ln we have

max
v2Ln

kvkD1

j.s � z/.'n; v/j �! 0 as n!1:

By Lemma 2.2 the sequence .A'n/ has a convergent subsequence. Without loss of
generality we assume that A'n ! u, and hence for a normalised v 2 Ln we have

t.'n; v/� zh'n; vi � �hu; vi: (2.4)

For any y 2 H there exists a  2 Dom.T C A�/ such that

.T C A� � Nz/ D y:

Let

 n D yPn I
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then

0 � .s� z/.'n;  n/

D t.'n;  n/C hA'n;  ni � zh'n;  ni
D t.'n;  n �  /C hA'n;  n �  i � zh'n;  n �  i C h'n; yi
D h'n;  n �  it C hA'n;  n �  i � .z �mC 1/h'n;  n �  i
C h'n; yi

D h'n; . yPn � I / it C hA'n;  n �  i � .z �mC 1/h'n;  n �  i
C h'n; yi

D hA'n;  n �  i � .z �mC 1/h'n;  n �  i C h'n; yi
� h'n; yi;

and therefore
'n

w�! 0:

For an arbitrary  2 Dom.T / let

 n D yPn I
then

t.'n;  /� zh'n;  i � t.'n;  n/C zh'n;  ni
D .m � 1 � z/h'n;  �  ni �! 0:

Then using (2.4) it follows that

� hu;  i  � t.'n;  /� zh'n;  i
D h'n; .T � z/ i �! 0;

which implies that u D 0. Therefore, we have

max
v2Ln

kvkD1

j.t � z/.'n; v/j �! 0 as n!1;

which together with Lemma 2.4 implies that dist.'n; ker.T � z// ! 0 which is a
contradiction since ker.T �z/ is finite dimensional and 'n converges weakly to zero.
We deduce that �.T C A;L1/ \ U � �.T C A/.

It remains to show that �.T CA/\U � �.T CA;L1/. Let z 2 �.T CA/\U .
Then z 2 �dis.T CA/ and we choose a circle � contained in .�.T CA/[�.T //\U
with center z and which encloses no other element from �.T CA/. By Theorem 2.3,
� is an Sn-regular set. Let .T C A � z/' D 0 and 'n D yPn', then k' � 'nkt ! 0
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and tŒ'n� ! tŒ'�. It follows that .jT j 12'n/ is a bounded sequence and therefore
that A'nj ! A' for some subsequence nj . We show that in fact A'n ! A'.
Suppose the contrary, then there exists a subsequence nk and a ı > 0 such that
kA'nk � A'k � ı for all k 2 N. However, .jT j 12'nk / is a bounded sequence and
therefore A'nk has a convergent subsequence which must converge to A'. From the
contradiction we deduce that A'n ! A'. We have

�n.z/ � max
v2Ln

kvkD1

j.s � z/.'n; v/j

D max jt.'n; v/C hA'n; vi � zh'n; vij
D max jt.'n � '; v/C hA.'n � '/; vi � zh'n � '; vij
D max jh. yPn � I /'; vit C hA.'n � '/; vi � .z �mC 1/h'n � '; vij
D max jhA.'n � '/; vi � .z Cm � 1/h'n � '; vij �! 0:

Hence, for all sufficiently large n, the function �n.�/ has a local minimum inside
the circle � and therefore �.T C A;Ln/ intersects the interior of �; see [7], Theo-
rem 9.2.8. The radius of � may be chosen arbitrarily small from which we deduce
that z 2 �.T C A;L1/, as required.

2.3. Multiplicity. We consider an eigenvalue z 2 �.T C A/ \ U where U is a
Tn-uniform set. We denote by � a circle contained in U with center z and which nei-
ther intersects nor encloses any additional element from �.T CA/[�.T /. The spec-
tral projections associated to the part of �.T C A/ and �.T C A;Ln/ enclosed by
the circle � are defined by

P.z/
defD � 1

2i	

Z
�

.T C A � 
/�1 d


and

Pn.�/
defD � 1

2i	

Z
�

.Sn � 
/�1 d
;

respectively. We denote by M.z/, K.z/, and Mn.�/ the range of P.z/, I � P.z/,
and Pn.�/, respectively. We denote by Ln.�/ the spectral subspace associated to
those elements from �.T;Ln/ which are enclosed by � .

We introduce the operator T with domain Dom.T / D Dom.T / 	 ker.T � z/
and action T ' D T '. Evidently, T is a self-adjoint operator on the Hilbert space
H 	 ker.T � z/ and we have z 2 �.T /. We do not assume that z 2 �.T /, so that in
the case where z 2 �.T / we have T D T and H 	 ker.T � z/ D H .
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Lemma 2.7. Let .'n/ be a bounded sequence of vectors with 'n 2 Ln and

max
v2Ln
kvkD1

j.s � z/.'n; v/� hx; vij �! 0 as n!1:

There exists a u 2 H and subsequence nk , such that

kA'nk � uk �! 0:

Moreover,
x � u ? ker.T � z/

and
disttŒ'nk � .T � z/�1.x � u/; ker.T � z/� �! 0:

Proof. For the first statement see Lemma 2.2. If z 2 �.T / then for the second
statement see Lemma 2.2. It remains to consider the case where z 2 �.T /. Let
' 2 ker.T � z/, then

hx � u; 'i � t.'nk ; '/ � zh'nk ; 'i D 0;
and therefore x�u ? ker.T � z/. There exists a vector  2 Dom.T /	 ker.T � z/
with .T � z/ D .T � z/ D x � u. Let  n D yPn and vn 2 Ln with kvnk D 1,
then arguing precisely as in Lemma 2.2 we have

t. n; vn/ � zh n; vni D hx � u; vni � .z �mC 1/h n �  ; vni
and

t.'n; vn/ � zh'n; vni D h.Sn � z/'n; vni � hA'n; vni � hx; vni � hA'n; vni:
Hence, we have

t.'nk �  nk ; vnk / � zh'nk �  nk ; vnki �! 0;

from which we deduce that

distŒ'nk �  nk ;Lnk .�/� �! 0:

Let xk 2 Lnk .�/ be such that

'nk �  nk � xk �! 0;

and note that .'nk �  nk / and therefore also .xk/ is a bounded sequence in H .
Furthermore, if 'nk �  nk ! 0 then we may choose xk D 0 for every k. If
d D dim ker.T � z/, then dim Lnk .�/ D d for all sufficiently large k. Hence
Lnk .�/ D spanfyk;1; : : : ; yk;d g where the yk;j are orthonormal and

t.yk;j ; v/ D zk;j hyk;j ; vi; v 2 Lnk ; zk;j � z:
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Hence xk D
P
˛k;jyk;j and

k'nk �  nk � xkk2t
D .t � z/Œ'nk �  nk � xk �C .z �mC 1/k'nk �  nk � xkk2

D .t � z/Œ'nk �  nk �C
X
N̨k;j .t � z/.'nk �  nk ; yk;j /

C
X

˛k;j .t � z/.yk;j ; 'nk �  nk /

C .t � z/
X
N̨k;i˛k;j .yk;j ; yk;i/

C .z �mC 1/k'nk �  nk � xkk2

D .t � z/Œ'nk �  nk �C
X
N̨k;j .zk;j � z/.'nk �  nk ; yk;j /

C
X

˛k;j .zk;j � z/.yk;j ; 'nk �  nk /

C
X
j˛k;j j2.zk;j � z/

C .z �mC 1/k'nk �  nk � xkk2 �! 0:

Using Lemma 2.4 it follows that there exists a sequence yk 2 ker.T � z/ such that
kxk � ykkt ! 0, and therefore

k'nk � .T � z/�1.x � u/ � ykkt
D k'nk �  � ykkt
� k'nk �  nk � xkkt C k nk �  kt C kxk � ykkt �! 0:

Lemma 2.8. If M.z/ � Ln for all n 2 N, then

Mn.�/ DM.z/

for all sufficiently large n.

Proof. Evidently, we have z 2 �.T CA;Ln/ for every n 2 N. We denote by Mn.z/

the spectral subspace associated to Sn and the eigenvalue z 2 �.T C A;Ln/. We
note that M.z/ �Mn.z/ �Mn.�/ for all n.

Suppose that M.z/ ¤ Mnk .z/ for some subsequence nk , and without loss of
generality we assume that M.z/ ¤ Mn.z/ for every n 2 N. Then we may choose a
normalised sequence .'n/ with 'n 2Mn.z/ and

'n 2 K.z/ and xn
defD .Sn � z/'n 2M.z/:

To see this, we note that there is at least one vector y 2 K.z/ \Mn.z/, therefore

P.z/.Sn � z/y C .I � P.z//.Sn � z/y D .Sn � z/y 2Mn.z/

H) .I � P.z//.Sn � z/y 2Mn.z/:
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First consider the case where xnk ! 0 for some subsequence nk . We assume
without loss of generality that xn ! 0. Using Lemma 2.7 and the fact that 0 �
dim ker.T � z/ < 1, we have a u 2 H , a subsequence nk , and ' 2 ker.T � z/,
such that

kA'nk � uk �! 0

and

k'nk C .T � z/�1u � 'kt �! 0:

We assume without loss of generality that

kA'n � uk �! 0

and

k'n C .T � z/�1u � 'kt �! 0:

We note that

'n ! �.T � z/�1uC '
implies that

.T � z/�1u � ' 2 K.z/

and

A'n �! �A.T � z/�1uC A':

Let v 2 Dom.T C A�/ and vn D yPnv, then

0 � h.Sn � z/'n; vni
D t.'n; vn/C hA'n; vni � zh'n; vni
�! �t..T � z/�1u � '; v/ � hA.T � z/�1u � A'; vi

C zh.T � z/�1u� '; vi
D �h.T � z/�1u � '; T vi � h.T � z/�1u � '; A�vi
C zh.T � z/�1u� '; vi

D �h.T � z/�1u � '; .T C A� � Nz/vi:

It follows that .T � z/�1u � ' 2 Ker.T C A � z/ � M.z/, and we obtain a
contradiction since .T � z/�1u � ' 2 K.z/.
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We suppose now that kxnk � c > 0 for all sufficiently large n 2 N. Let
O'n D 'n=kxnk, then since M.z/ is finite dimensional we have for some subsequence
nk

.Snk � z/ O'nk �! x

for some normalised x 2M.z/. We assume without loss of generality that

.Sn � z/ O'n �! x:

Using Lemma 2.7 as above, we may assume that

kA O'n � uk �! 0

and

k O'n � .T � z/�1.x � u/ � 'kt �! 0; ' 2 ker.T � z/:
We note that O'n ! .T � z/�1.x � u/C ' implies that

.T � z/�1.x � u/C ' 2 K.z/

and

A O'n �! A.T � z/�1.x � u/C A':
We have

.T C A � z/..T � z/�1.x � u/C '/ D x � uC A.T � z/�1.x � u/C A'
D x 2M.z/

which is a contradiction since .T � z/�1.x � u/C ' 2 K.z/.
We have shown that M.z/ DMn.z/ for all sufficiently large n. It remains to show

that z is not the limit point of a sequence znk 2 �.T C A;Lnk / where znk ¤ z for
each k 2 N. Suppose the contrary and without loss of generality that .Sn�zn/'n D 0
for some normalised vectors 'n 2 Ln where zn ! z, and zn ¤ z for each n 2 N.
Therefore .Sn � z/'n ! 0, and using Lemma 2.7 as above, we may assume that

kA'n � uk �! 0

and

k'n C .T � z/�1u � 'kt �! 0; ' 2 ker.T � z/:

Arguing as above, we let v 2 Dom.T C A�/ and vn D yPnv, then

0 � h.Sn � z/'n; vni �! �h.T � z/�1u � '; .T C A� � Nz/vi:
It follows that .T � z/�1u � ' 2 Ker.T C A � z/ � M.z/, and therefore that
'n �  n 2 Ker.T C A � z/ where k nk D 1. We have

0 D .Sn � zn/'n D .Sn � zn/.I � P.z//'n C .Sn � zn/P.z/'n; (2.5)
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with 0 ¤ .I�P.z//'n ! 0 and .Sn�zn/P.z/'n ! 0. To see the latter let vn 2 Ln

and write
P.z/'n D  n C "nyn;

where kynk D 1 and "n ! 0, then

h.Sn � zn/P.z/'n; vni D t.P.z/'n; vn/C hAP.z/'n; vni � znhP.z/'n; vni
D h.T C A � zn/P.z/'n; vni
D .z � zn/h n; vni C "nh.T C A � zn/P.z/yn; vni:

That the first term on the right hand side converges to zero is clear, for the second
term we note that .T C A � zn/P.z/ is a bounded operator. We denote

O'n D .I � P.z//'n

k.Sn � zn/P.z/'nk 2 K.z/;

then using (2.5) we have for some subsequence nk

.Snk � znk / O'nk D �
.Snk � znk /P.z/'nk

k.Snk � znk /P.z/'nkk
�! x

for some normalised x 2M.z/:We assume without loss of generality that

.Sn � zn/ O'n �! x 2M.z/:

First consider the case where the sequence k O'nk is bounded. Using Lemma 2.7
as above, we may assume that

kA O'n � uk �! 0

and

k O'n � .T � z/�1.x � u/ � 'kt �! 0; ' 2 ker.T � z/:
We note that O'n ! .T � z/�1.x � u/C ' implies that

.T � z/�1.x � u/C ' 2 K.z/

and

A O'n �! A.T � z/�1.x � u/C A':
We have

.T C A � z/..T � z/�1.x � u/C '/ D x � uC A.T � z/�1.x � u/C A'
D x 2M.z/

which is a contradiction since .T � z/�1.x � u/C ' 2 K.z/.
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Suppose now that the sequence k O'nk is not bounded. In view of the previous
paragraph we assume that k O'nk ! 1. We set

Q'n D O'n

k O'nk
and obtain

.Sn � zn/ Q'n �! 0 H) .Sn � z/ Q'n �! 0:

Then using Lemma 2.7 as above, we may assume that

kA Q'n � uk �! 0

and

k Q'n C .T � z/�1u � 'kt �! 0; ' 2 ker.T � z/:
We note that Q'n ! �.T � z/�1uC ' implies that

.T � z/�1u � ' 2 K.z/

and

A Q'n �! �A.T � z/�1uC A':

Let v 2 Dom.T C A�/ and vn D yPnv, then

0 � h.Sn � z/ Q'n; vni
D t. Q'n; vn/C hA Q'n; vni � zh Q'n; vni
�! �t..T � z/�1u � '; v/ � hA.T � z/�1u � A'; vi

C zh.T � z/�1u� '; vi
D �h.T � z/�1u � '; T vi � h.T � z/�1u � '; A�vi

C zh.T � z/�1u� '; vi
D �h.T � z/�1u � '; .T C A� � Nz/vi:

It follows that .T � z/�1u � ' 2 Ker.T C A � z/ � M.z/, and we obtain a
contradiction since .T � z/�1u � ' 2 K.z/.

Theorem 2.9. Rank Pn.�/ D Rank P.z/ for all sufficiently large n 2 N.

Proof. Let
spanf'1; : : : ; 'd g DM.z/

where the 'j are orthonormal in H , and set

'n;j D yPn'j :
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Note that there exists a sequence "n ! 0 such that

k.I � yPn/'j k � "n (2.6a)

and

jh'n;j ; 'n;iij � "n; i ¤ j: (2.6b)

Evidently, the vectors f'n;1; : : : ; 'n;d g form a linearly independent set for all suffi-
ciently large n 2 N. There exist orthonormal vectors 'n;dC1; : : : ; 'n;n (we assume
without loss of generality that dim Ln D n) such that

Ln D spanf'n;1; : : : ; 'n;d ; 'n;dC1; : : : ; 'n;ng (2.7)

and
spanf'n;1; : : : ; 'n;d g ? spanf'n;dC1; : : : ; 'n;ng; (2.8)

where on both occasions the orthogonality is with respect to H . We set

'n;j .t / D t'j C .1� t /'n;j ; 1 � j � d; t 2 R:

Let ˛ 2 Cn, then

dX
j D1

j̨'n;j .t /C
nX

j DdC1

j̨'n;j D
dX

j D1

j̨ .t'j C .1� t /'n;j /C
nX

j DdC1

j̨'n;j

D
nX

j D1

j̨'n;j C
dX

j D1

j̨ t .'j � 'n;j /

D
nX

j D1

j̨'n;j C .I � yPn/

dX
j D1

j̨ t'j :

The two summations on the right hand side are orthogonal in Ht. Hence the left hand
side can only vanish if both terms on the right hand side vanish, that is, if ˛ D 0.
We deduce that the vectors f'n;1.t /; : : : ; 'n;d .t /; 'n;dC1; : : : ; 'n;mg form a linearly
independent set for every t 2 R. We define the family of n-dimensional subspaces

Ln.t /
defD spanf'n;1.t /; : : : ; 'n;d .t /; 'n;dC1; : : : ; 'n;ng:

For any  2 Dom.t/, there exist vectors  n 2 Ln such that k �  nkt ! 0.
Using (2.7) we have

 n D
nX

j D1

˛n;j'n;j for some ˛ 2 Cn:



132 M. Strauss

Note that for someM 2 R we have k nk2 �M for all n. Using (2.6), (2.7), and (2.8)
we have

M �
��� nX

j D1

˛n;j'n;j

���2

D
nX

j D1

j˛n;j j2k'n;jk2 C
dX

i¤j

˛n;j N̨n;i h'n;j ; 'n;i i

�
nX

j D1

j˛n;j j2k'n;j k2 �
dX

i¤j

j˛n;j N̨n;i j"n

�
nX

j D1

j˛n;j j2k'n;j k2 � .d2 � d/ max
1�j �d

fj˛n;j j2g"n

� . min
1�j �n

fk'n;j k2g � .d2 � d/"n/ max
1�j �d

fj˛n;j j2g;

from which it follows that, for some K 2 R we have max1�j �d fj˛n;j jg � K for all
n. Consider a sequence .tn/ � Œ0; 1� and the vectors  n.tn/ 2 Ln.tn/ given by

 n.tn/ D
dX

j D1

˛n;j'n;j .tn/C
nX

j DdC1

˛n;j'n;j

D
nX

j D1

˛n;j'n;j C .I � yPn/

dX
j D1

˛n;j tn'j

D  n C .I � yPn/

dX
j D1

˛n;j tn'j :

We have

k n.tn/ �  nkt �
dX

j D1

tnj˛n;j jk.I � yPn/'j kt � K
dX

j D1

k.I � yPn/'j kt �! 0;

and therefore the sequence .Ln.tn// is dense in Ht.
Let Sn.t / be the operator acting on Ln.t /which is associated to the restriction of

the form s to Ln.t /. We now show that for all sufficiently large n 2 N we have

� � �.Sn.t //; t 2 Œ0; 1�: (2.9)

We suppose that (2.9) is false. Then there exist sequences .wj / � � and .tj / � Œ0; 1�,
and a subsequence nj , such that

min
'2Lnj .tj /nf0g

nk.Snj .tj / �wj /'k
k'k

o
D 0:
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However, the sequence of subspaces .Lnj .tj // is dense in Ht, then by Theorem 2.3
the set � is an Snj .tj /-regular set. The assertion (2.9) follows from the contradiction.
Consider the projection

Pn.�; t/
defD � 1

2i	

Z
�

.Sn.t / � 
/�1 d
 W Ln.t / �! Ln.t /

which is the spectral projection associated to Sn.t / and the part of the spectrum
enclosed by the circle � . By employing the Gram-Schmidt procedure we may obtain

Ln.t / D spanf O'n;1.t /; : : : ; O'n;k.t /; O'n;kC1.t /; : : : ; O'n;n.t /g
where the vectors f O'n;1.t /; : : : ; O'n;k.t /; O'n;kC1.t /; : : : ; O'n;n.t /g are analytic in t and
orthonormal for each fixed t 2 Œ0; 1�. Let �n.t / be the matrix representation of Sn.t /

with respect to this orthonormal basis, then �n.t / W Cn ! Cn clearly has the same
eigenvalues as Sn.t /, and the eigenvalues have the same multiplicities. Evidently,
the spectral projection associated to �n.t / and the part of the spectrum enclosed by
the circle � is analytic in t , and therefore has constant rank for t 2 Œ0; 1�. We deduce
that Rank.Pn.�; t// is also is constant for t 2 Œ0; 1�. The result now follows from
Lemma 2.8.

3. Approximation of �dis.T /

We consider now the perturbation T C iQ for an orthogonal projection Q. If

.T C iQ � z/ D 0
for some  ¤ 0 and z … R, then we have

.T � Re z/ D i Im z � iQ ; hT ; i D Re zk k2; kQ k2 D Im zk k2;
and hence

k.T � Re z/ k2 D .Im z/2k k2 C .1 � 2 Im z/kQ k2

D Im z.1� Im z/k k2

from which we obtain the estimate

dist.Re z; �.T // �
p

Im z.1� Im z/: (3.1)

Therefore, information about the location of �.T / may be gleamed by studying the
perturbation T C iQ for a suitably chosen projection. In fact, the estimate (3.1) could
be significantly improved if some a priori information is at hand. Let

.a; b/ \ �.T / D �I
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then using [9], Lemma 1 and Lemma 2, we obtain

� 2
�

Re z � Im z.1 � Im z/

b � Re z
;Re z C Im z.1� Im z/

Re z � a
�

(3.2)

whenever the interval on the right hand side is contained in .a; b/.
Let a; b 2 �.T / with a < b and set � D Œa; b�. For the remainder of this section

we assume that

� \ �.T / D f�1; : : : ; �dg � �dis.T /;

where the eigenvalues are repeated according to multiplicity. The corresponding
spectral projection and eigenspace are denoted by E.�/ and L.�/, respectively.
Denote by �a and �b , circles with radius 1 and centers a and b, respectively. We
define

U.a; b/
defD fz 2 C W a < Re z < b; z belongs to the exterior of circles �a and �b;

z ¤ �j C i for 1 � j � dg;

and, for a compact set X � U.a; b/

dX
defD dist.X; �.T /n�/

and

d�
defD dist.f�1 C i : : : ; �d C ig; X/:

Lemma 3.1. Let

" D k.I �Q/E.�/k
and

c D minfdX � 1� 2"; d� � 3"gI
then

k.T C iQ � z/uk � ckuk; z 2 X; u 2 Dom.T /: (3.3)

Proof. Let z 2 X , u 2 Dom.T / and

E
defD E.�/:

We have k.I�E/QEk � " and therefore kEQ.I�E/k � ", then, using the equality

Q D EQE C .I �E/QE CEQ.I �E/C .I �E/Q.I � E/;
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we obtain

k.T C iQ � z/uk
D k.T � z/.I �E/uC .T � z/EuC iQuk
D k.T � z/.I �E/uC .T � z/Eu
C i.EQE C .I �E/QE CEQ.I �E/C .I �E/Q.I �E//uk

� k.T � z/.I � E/uC i.I �E/Q.I �E/u
C .T � z/EuC iEQEuk � k.I �E/QE CEQ.I � E/k

� k.T � z/.I � E/uC i.I �E/Q.I �E/u
C .T � z/EuC iEQEuk � 2"kuk:

The vector .T � z/.I � E/u satisfies the estimate

k.T � z/.I �E/uk � dXk.I �E/uk;
hence

k.T � z/.I � E/uC i.I �E/Q.I �E/uk � .dX � 1/k.I �E/uk:
The vector .T � z/EuC iEQEu satisfies the estimate

k.T � z/EuC iEQEuk D k.T � z C i/EuC iE.Q � I /Euk
� .d� � "/kEuk:

Combining these estimates yields required result.

We denote by U".a; b/ the open set contained in U.a; b/ and which is exterior to
the circles with centers a, b and radius 1C 2" and the circles with center �j C i and
radius 3" for 1 � j � d . An immediate consequence of Lemma 3.1 is the inclusion

U".a; b/ � �.T C iQ/: (3.4)

Lemma 3.2. Let
k.I �Q/E.�/k D 0I

then
�1 C i; : : : ; �d C i 2 �.T C iQ/

with spectral subspace L.�/, and

U.a; b/ � �.T C iQ/:
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Proof. The last assertion is an immediate consequence of (3.4). Let

.T C iQ � .�j C i//' D 0I
then .T � �j /' D i.I �Q/' and therefore

h.T � �j /'; 'i D ih.I �Q/'; 'i:
The left hand side is real and the right hand side is purely imaginary, from which
we deduce that .I � Q/' D 0, therefore .T � �j /' D 0 and hence ' 2 L.�/.
It follows that L.�/ is the space spanned by the eigenvectors associated to T C iQ
and the eigenvalues �1 C i; : : : ; �d C i . Suppose that �j C i is not semi-simple.
The geometric eigenspace associated to T C iQ and eigenvalue �j C i is precisely
L.f�j g/ the eigenspace associated to T and eigenvalue �j . There exists a non-zero
vector  ? L.f�j g/ with .T C iQ � �j � i/ D ' 2 L.f�j g/. We have

.T � .�j C i// ? L.f�j g/ with k.T � .�j C i// k > k k
and

iQ D ' � .T � .�j C i// where ' ? .T � .�j C i// :
It follows that

kQ k2 D k'k2 C k.T � .�j C i// k2 > k k2;
which is a contradiction since kQk D 1.

Theorem 3.3. Let Q be finite rank,

k.I �Q/E.�/k D " < 1=
p
d;

3" < r < min
nq
.�j � a/2 C 1;

q
.b � �j /2 C 1

o
� 1 � 2"; 1 � j � d; (3.5)

and �j the circle with center �j C i and radius r , and set

X D
d[

j D1

�j :

If �i \ �j D ¿ whenever i ¤ j , then

�j � �.T C iQ/;
dist.�j C i; �.T C iQ// < r;

and

k.T C iQ � z/uk � ckuk; u 2 Dom.T /; z 2 �j ;

with c > 0 as in Lemma 3.1, and the dimension of the spectral subspace associated
to T C iQ and the region enclosed by �j equals the dimension of L.f�j g/.
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Proof. An immediate consequence of the condition (3.5) is that the circle �j does
not intersect the circles �a and �b . Furthermore,

c � min
n

min
1�j �d

nq
.�j � a/2 C 1;

q
.b � �j /2 C 1

o
� r � 1 � 2"; r � 3"

o
> 0I

hence �j � �.T C iQ/ follows from Lemma 3.1. It now suffices to prove the last
assertion.

Let '1; : : : ; 'e form an orthonormal basis for L.f�j g/. Set

O'k D Q'k

and

O'k.t / D t'k C .1� t / O'k; t 2 Œ0; 1�:

It is straightforward to show that the condition k.I�Q/Ek < 1=pd � 1=pe implies
that f O'1.t /; : : : ; O'e.t /g form a linearly independent for any t 2 Œ0; 1�. Furthermore,
if we set n D Rank.Q/, then similarly to the proof of Theorem 2.9 there exist vectors
f'eC1; : : : ; 'ng such that

Range.Q/ D spanf O'1; : : : ; O'e; 'eC1; : : : ; 'ng
and f O'1.t /; : : : ; O'e.t /; 'eC1; : : : ; 'ng is a linearly independent set for every t 2 Œ0; 1�.
We define the family of orthogonal projections Q.t/ such that

Range.Q.t// D spanf O'1.t /; : : : ; O'e.t /; 'eC1; : : : ; 'ng:
Let ' 2 L.f�j g/ with k'k D 1, then ' D ˛1'1 C � � � C ˛e'e and k.I �Q/'k � ",
therefore

k.I �Q.t//'k � k' � ˛1 O'1.t /C � � � C ˛e O'e.t /k
D .1� t /k˛1.'1 � O'1/C � � � C ˛e.'e � O'e/k
D .1� t /k.I �Q/'k
� "

and we deduce that �j � �.T C iQ.t// for all t 2 Œ0; 1�. If P.t/ is the spectral
projection associated to the operatorT CiQ.t/ and the region enclosed by the circle� ,
then we have

P.t/ D � 1

2i	

Z
�

.T C iQ.t/� z/�1 dz:

Evidently, P.t/ is a continuous family of projections, therefore Rank.P.t// D e for
all t 2 Œ0; 1� follows from Lemma 3.2.
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3.1. Convergence of �.T C iQn/. We now assume that T is a bounded self-adjoint
operator. Denote by En the spectral measure associated to PnT jLn and let

Qn D En.�/Pn:

Evidently, .Qn/ is a sequence of finite rank orthogonal projections.

Lemma 3.4. We have
Qn

s�! E.�/

and
k.I �Qn/E.�/k D O.ı.L.�/;Ln//:

Proof. Let ' 2 H , then

' D E.�/' C .I �E.�//':
For each 1 � j � d we have

PnTPnE.f�j g/' ! TE.f�j g/' D �jE.f�j g/';
then it follows from the spectral theorem that

QnE.�/' ! E.�/':

For any � 2 � \ �.T / we have

En.�/Pn
s�! E.�/

(see [11], Theorem VIII.1.15), from which we deduce that

Qn.I � E.�//' �! 0:

For the second assertion let

.T � �j / D 0
with k k D 1 and set

 n D Pn :

Then

k.PnT � �j / nk D k.PnT � �j / n � Pn.T � �j / k
D kPnT . n �  /k
� kPnT kk.I � Pn/ k
� kT kdist. ;Ln/

� kT kı.L.�/;Ln/
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and

k.I � En.�// nk2 D
Z

Rn�

d h.En/� n;  ni

<

Z
Rn.a;b/

j� � �j j2
distŒ�j ; fa; bg�2 d h.En/� n;  ni

� 1

distŒ�j ; fa; bg�2
Z

R
j� � �j j2 d h.En/� n;  ni

D k.PnT � �j / nk2
dist.�j ; fa; bg/2

� kT k
2ı.L.�/;Ln/

2

dist.�j ; fa; bg/2
:

Therefore

k.I �En.�/Pn/ k � k.I �En.�// nk C k.I � En.�/Pn/. �  n/k

� kT kı.L.�/;Ln/

dist.�j ; fa; bg/ C k.I � Pn/ k

�
� kT k

dist.�j ; fa; bg/ C 1
�
ı.L.�/;Ln/;

from which the result follows.

In particular, we have

T C iQn
s�! T C iE.�/:

Let Ln.j / be the spectral subspace associated to those eigenvalues �n;1; : : : ; �n;e

(repeated according to multiplicity) of T C iQn which lie in a neighbourhood of
�j C i (see Theorem 3.3) and

"n
defD k.I �Qn/E.�/k:

Theorem 3.3, Lemma 3.4 and [5], Theorem 6.6, together imply the following estimate

Oı.L.f�j g/;Ln.j // D O.ı.L.�/;Ln//: (3.6)
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Lemma 3.5. max1�k�e j�n;k � �j � i j D O.ı.L.�/;Ln/
2/.

Proof. We argue similarly to the proof of [5], Theorem 6.11. Let  1; : : : ;  e be an
orthonormal basis for L.f�j g/, then the restriction of T C iE.�/ to L.f�j g/ has the
matrix representation

Al;k D h.T C iE.�// k ;  li D .�j C i/ılk: (3.7)

It follows from (3.6) that

E.f�j g/jLn.j / W Ln.j / �! L.f�j g/
is a bijection for all sufficiently large n. We set

 n;k
defD ŒE.f�j g/jLn.j /�

�1 k:

Since
h n;k ;  li D h n;k ; E.f�j g/ li D h k ;  li D ılk; (3.8)

the restriction of T C iEn.�/ to Ln.j / has the matrix representation

Bl;k D h.T C iEn.�// n;k;  li;
and �n;1; : : : ; �n;e are the eigenvalues of the matrix B . We have

jAlk � Blk j D jh.T C iE.�// k ;  li � h.T C iEn.�// n;k;  lij
D jh.T C iE.�//E.�/ n;k ;  li � h.T C iEn.�// n;k;  lij
D jh.iE.�/ � iEn.�// n;k;  lij
D jh.I � En.�// n;k;  lij
D jh.I � En.�// n;k; .I �En.�//Pn lij
� k.I � En.�// n;kkk.I �En.�//Pn lk:

Using Lemma 3.4, the second term on the right hand side satisfies

k.I �En.�//Pn lk � k.I �Qn/ lk C k.I � Pn/ lk
D O.ı.L.�/;Ln//:

Since
 n;k D ŒE.f�j g/jLn.j /�

�1 k
defD un 2 Ln.j /

and
kŒE.f�j g/jLn.j /�

�1k �M
for some M > 0 and all sufficiently large n, it follows from (3.6) that

un D vn C wn



The Galerkin method for perturbed self-adjoint operators and applications 141

where vn 2 L.�/ and kwnk � O.ı.L.�/;Ln//. Hence

k.I �En.�// n;kk D k.I �En.�//unk
� k.I � En.�//Pnvnk CO.ı.L.�/;Ln//

D O.ı.L.�/;Ln//:

Combining these estimates we obtain

kA � BkCe D O.ı.L.�/;Ln/
2/:

The result follows from this estimate, (3.7) and (3.8).

We denote by U�;r.a; b/ the compact set enclosed by the rectangle

fz 2 C W a � Re z � b and 0 � Im z � 1g
and exterior to the circles with centers a, b and radius 1 C � and the circles with
center �j C i and radius r2 for 1 � j � d . We have proved the following theorem.

Theorem 3.6. There exist sequences .�n/ and .rn/ of non-negative reals, with

0 � �n D O.ı.L.�/;Ln//

and

0 � rn D O.ı.L.�/;Ln/
2/;

such thatU�n;rn.a; b/nR � �.T C iQn/ for all sufficiently large n. Moreover, if �j is
the circle with center �j C i and radius rn, then �j � �.T C iQn/ and the dimension
of the spectral subspace associated to T C iQn and the region enclosed by �j equals
the dimension of L.f�j g/.

3.2. Convergence of �.T CiQm; Ln/. In this section we assume that T is bounded
andm 2 N is fixed. We consider the Galerkin approximation of a non-real eigenvalue
� 2 �.T C iQm/ which lies in a neighbourhood of �j C i . First, we note that by
Theorem 2.5 there is no spectral pollution away from the real line, hence

�.T C iQm;L1/nR D �.T C iQm/nR:
If � � �.T C iQm/ is a circle with center �, which encloses no other element from
�.T C iQm/ and does not intersect R, then by Theorem 2.9, for all sufficiently large n
the multiplicity of those elements from �.T C iQm;Ln/ enclosed by� is equal to the
multiplicity of�. Furthermore, by Theorem 2.3, � is aPn.T C iQm/jLn-regular set.
With these three properties, the sequence of operators Pn.T C iQm/Pn is said to be
a strongly stable approximation of T C iQm in the interior of �; see [5], Sections 5.2
and 5.3. This allows the application of the following well-known super-convergence
result for strongly stable approximations.
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Let M (respectively M�) be the spectral subspace associated to the operator

T C iQm (respectively T � iQm)

and eigenvalue � (respectively N�). Let � have algebraic multiplicity e and let
z1; : : : ; ze be those (repeated) eigenvalues from �.T C iQm;Ln/ which lie in a
neighbourhood of � and set

Ozn D .z1 C � � � C ze/=eI
then

j Ozn � �j D O.ı.M;Ln/ı.M
�;Ln//I (3.9)

see [5], Theorem 6.11.
We therefore have the following strategy for approximating the eigenvalues in the

region �:

(1) calculate �.T;Lm/ and choose Qm D Em.�/Pm;

(2) calculate �.T C iQm;Ln/ for dim Lm 
 dim Ln.

Example 3.7. With H D L2.�	; 	/ we consider the bounded self-adjoint operator

T ' D a.x/' C 10h';  0i 0

where

a.x/ D
8<
:
�2	 � x for � 	 < x � 0;
2	 � x for 0 < x � 	;

and
 k D e�ikx; k 2 Z:

We have
�ess.T / D Œ�2	;�	�[ Œ	; 2	�;

and �dis.T / consists of the two simple eigenvalues

�1 � �1:64834270 and �2 � 11:97518502I
see [8], Lemma 12. We note that the eigenvalue �1 lies in the gap in �ess.T /.

Let
L2nC1 D spanfe�inx; : : : ; einxg:

We find that �.T;L51/ has four eigenvalues in the interval .�	; 	/. With Q51 D
E51..�	; 	//P51 we calculate �.T C iQ51;L2nC1/ for n D 50; 200 and 800. The
results are displayed in Figure 1, and, consistent with Theorem 3.6, suggest that
�.T C iQ51/ has a simple eigenvalue near �1 C i .
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i

 

 
�.T C iQ51;L101/

�.T C iQ51;L401/

�.T C iQ51;L1601/

�.T;L51/

Figure 1. �.T C iQ51; Ln/ for n D 101; 401; 1601 and �.T;L51/.

Calculating �.T C iQ2nC1;L20nC1/ with n D 4; 8; 12; : : : ; 40 suggests that we
have

dist.�1 C i; �.T C iQ2nC1;L20nC1// � O.n�1/: (3.10)

The following estimate holds:

ı.L.f�1g/;L2nC1/ D O.n�1=2/I (3.11)

see for example [3], Lemma 3.1. Combining this estimate with Theorem 3.6 we
obtain

dist.�1 C i; �.T C iQn// D O.n�1/ (3.12)

which is consistent with (3.10). The latter suggests that in Theorem 3.6 the conver-
gence rate for rn is sharp.

For a fixed and sufficiently large m we denote by M (respectively M�) the
eigenspace associated to the simple eigenvalue of T C iQm (respectively T � iQm)
which lies in a neighbourhood of �1 C i (respectively �1 � i ). Then the following
estimates hold:

ı.M;Ln/ D O.n�1=2/ and ı.M�;Ln/ D O.n�1=2/I (3.13)

see for example [3], Lemma 3. For the approximation of the eigenvalue �j we
calculate �.T C iQ2nC1;L4nC1/ with n D 50; 100; 150; : : : ; 500. For comparison,
we also approximate the eigenvalue �2 which lies outside the convex hull of the
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essential spectrum and may therefore be approximated without encountering spectral
pollution. The results are displayed in Figure 2 and suggest that

dist.�1 C i; �.T C iQ2nC1;L4nC1// D O.n�1/ (3.14)

and

dist.�2; �.T;L4nC1// D O.n�1/: (3.15)

The convergence in (3.14) is consistent with (3.12), (3.13), and (3.9). The conver-
gence in (3.15) follows from (3.11) and the well-known superconvergence result for
an eigenvalue lying outside the convex hull of the essential spectrum of bounded
self-adjoint operator.

10
2

10
−3

10
−2

 

 

distŒ�1 C i; �.T CQ2nC1;L4nC1/�

distŒ�2;�.T;L4nC1/�

n

Figure 2. Convergence to �1C i using �.T C iQ2nC1; L4nC1/ compared to the convergence
to �2 using �.T;L4nC1/.

3.3. Unbounded Operators. We now assume that T is bounded from below and
unbounded from above. Let � < min �.T / and consider the operator T � � . We
have

Œa � �; b � ��\ �ess.T � �/ D ¿;
and, in particular

h 1

b � � ;
1

a � �
i
\ �ess..T � �/�1/ D ¿: (3.16)
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We shall approximate the eigenvalues �.T /\ Œa; b� by applying the results from the
preceding sections to approximate eigenvalues of .T � �/�1 in

�..T � �/�1/ \ Œ.b � �/�1; .a � �/�1�:

Let
f�1; : : : ; �kg D Œa; b�\ �.T;Ln/

where the eigenvalues are repeated according to multiplicity. Let fu1; : : : ; ukg be a
corresponding set of orthonormal eigenvectors. We write

Ox D .T � �/ 12x
and

yLn D .T � �/ 12Ln;

and note that
Oui ? Ouj ; i ¤ j I

since

h Oui ; Ouj i D .t� �/.ui ; uj /

D .�i � �/hui ; uj i
D 0:

Furthermore, we have for some �i 2 Œa; b� and any y 2 Ln

0 D .t � �/.ui ; y/ � .�i � �/hui ; yi
D h Oui ; Oyi � .�i � �/h.T � �/�1 Oui ; Oyi;

so that
.�i � �/�1 2 �..T � �/�1; yLn/:

Evidently, there is a one-to-one correspondence between �.T;Ln/ and �..T �
�/�1; yLn/:

�..T � �/�1; yLn/ D
n 1

� � � W � 2 �.T;Ln/
o
:

In particular, we have

�..T � �/�1; yLn/ \
h 1

b � � ;
1

a � �
i
D
n 1

�1 � � ; : : : ;
1

�k � �
o

with corresponding orthogonal eigenvectors given by f Ou1; : : : ; Oukg. Denote by Qn

the orthogonal projection onto spanf Ou1; : : : ; Oukg � yLn. From the first paragraph in
the proof of Lemma 2.4 it follows that

ı.L.�/; yLn/ D O.ıt.L.�/;Ln//I
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then by Lemma 3.4 we have

Qn

s�! E.�/

and
k.I �Qn/Ek D O.ıt.L.�/;Ln//:

Hence, a direct application of Theorem 3.6 to the bounded self-adjoint operator
.T � �/�1 and subspaces . yLn/ yields the following corollary.

Corollary 3.8. There exists sequences .�n/ and .rn/ of non-negative reals, with

0 � �n D O.ıt.L.�/;Ln//

and
0 � rn D O.ıt.L.�/;Ln/

2/;

such that

U�n;rn.1=.b � �/; 1=.a � �//nR � �..T � �/�1 C iQn/

for all sufficiently large n. Moreover, if �j is the circle with center 1=.�j � �/C i
and radius rn, then

�j � �..T � �/�1 C iQn/

and the dimension of the spectral subspace associated to .T � �/�1 C iQn and the
region enclosed by �j equals the dimension of L.f�j g/.

For a fixed m, let u1; : : : ; uk be as above, and consider the eigenvalue problem:
find z 2 C for which there exists an x 2 Lnnf0g with

.t��/.x; y/�iz
kX

j D1

.t � �/.x; uj /.t� �/.uj ; y/

.t� �/Œuj �
�zhx; yi D 0; y 2 Ln: (3.17)

Evidently, this is equivalent to the eigenvalue problem: find z 2 C for which there
exists a Ox 2 yLnnf0g and

h Ox; Oyi � iz
kX

j D1

h Ox; Ouj ih Ouj ; Oyi
k Oujk2 � zh.T � �/�1 Ox; Oyi D 0; Oy 2 yLn: (3.18)

The solutions to (3.18) are precisely the set

fw�1 W w 2 �..T � �/�1 C iQm; yLn/g:
Therefore, we may approximate the eigenvalues�..T ��/�1/\Œ.b��/�1; .a��/�1�

by solving (3.17).
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Example 3.9. With
H D L2.0; 1/˚ L2.0; 1/

we consider the block operator matrix

T D
 
�d2=dx2 �d=dx
d=dx 2I

!

with homogeneous Dirichlet boundary conditions in the first component. The same
matrix (but with different boundary conditions) has been studied in [12]. We have

�ess.T / D f1g
(see for example [17], Example 2.4.11) while�dis.T / consists of the simple eigenvalue
f2g with eigenvector .0; 1/T , and the two sequences of simple eigenvalues

�˙
k

defD 2C k2	2 ˙p.k2	2 C 2/2 � 4k2	2

2
:

The sequence ��
k

lies below, and accumulates at, the essential spectrum. While the
sequence �C

k
lies above the eigenvalue 2 and accumulates at1. Therefore, we have

�ess.T
�1/ D f0; 1g

and

�dis.T
�1/ D

1[
kD1

n 1
�C

k

o 1[
kD1

n 1
��

k

o[n1
2

o
:

Denote by L0
h

the FEM space of piecewise linear functions on a uniform mesh
of size h and satisfying homogeneous Dirichlet boundary conditions, and by Lh the
space without boundary conditions. The subspaces L0

h
˚Lh belong to Dom.t/. We

define
Lh D T 1

2 .L0
h ˚Lh/:

Figure 3 shows �.T �1; L1=49/. The interval .1=2; 1/ is filled with Galerkin
eigenvalues, however, the interval .1=2; 1/ belongs to the resolvent set of T �1. This
is an example of spectral pollution, the interval lies in the gap in the essential spectrum
which is where the Galerkin method is known to be unreliable. We note that the
eigenvalue 1=2 is obscured by the spectral pollution.

Figure 4 shows�.T �1CiQ1=49; L1=576/whereQ1=49 is the orthogonal projection
associated to �.T �1; L1=49/ and the interval Œ1=4; 9=10�. Since �.T �1/\Œ1=4; 9=10�
consists only of the simple eigenvalue 1=2, the set �.T �1C iQ1=49; L1=576/ has only
one element with imaginary part near 1, in fact, 1=2C i 2 �.T �1C iQ1=49; L1=576/

because the eigenvector associated to this eigenvalue is  D .0; 1/T 2 L0
h
˚ Lh,

hence the eigenvalue also belongs to Lh. Therefore, our method has identified this
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eigenvalue, and Figure 4 suggests that all elements �.T �1; L1=49/ \ .1=2; 1/ are
points of spectral pollution.

0 0.2 0.4 0.6 0.8 1 1.2

−i

i

 

 

�.T�1;L1=49/

Figure 3. �.T�1; L1=49/ displaying spectral pollution in the interval .1=2; 1/.

0 0.2 0.4 0.6 0.8 1 1.2

i

0

 

 

�.T�1 C iQ1=49;L1=576/

Figure 4. �.T�1C iQ1=49; L1=576/ displaying the approximation of the eigenvalue 1=2C i .
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We now turn to the approximation of the eigenvalue 1=�C
1 which lies in the gap

in the essential spectrum .0; 1/. Figure 5 shows �.T �1 C iQ1=49; L1=576/ where
Q1=49 is now the orthogonal projection associated to �.T �1; L1=49/ and the interval
Œ1=20; 1=5�.

Since �.T �1/ \ Œ1=20; 1=5� consists only of the simple eigenvalue f1=�C
1 g, the

set �.T �1 C iQ1=49; L1=576/ has only one element with imaginary part near 1, this
is an approximation of 1=�C

1 C i . The Galerkin method does not appear to suffer
from spectral pollution in the interval .0; 1=2/. Table 1 shows the approximation of
1=�C

1 using �.T �1; Lh=2/ and �.T �1 C iQh; Lh=2/. Both converge to 1=�C
1 with

order O.h2/.

0 0.2 0.4 0.6 0.8 1 1.2

0

i

 

 

�.T�1 C iQ1=49;L1=576/

Figure 5. �.T�1CiQ1=49; L1=576/ displaying the approximation of the eigenvalue1=�C
1
Ci .

Table 1. A comparison of the approximation of .�C

1
/�1 using either �.T�1; Lh=2/ or

�.T�1 C iQh; Lh=2/.
h dist(.�C

1 /
�1; �.T �1; Lh=2/) dist(.�C

1 /
�1 C i; �.T�1 C iQh; Lh=2/)

1/9 1.852226448408184e-004 7.356900130780202e-004
1/19 4.159849994125886e-005 1.656338892411880e-004
1/39 9.875177553464454e-006 3.934129644715903e-005
1/79 2.406805040600091e-006 9.589568304944231e-006
1/159 5.941634519252004e-007 2.367430965052093e-006
1/319 1.476118197535348e-007 5.882392223781511e-007
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