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Scattering theory of the p-form Laplacian on manifolds
with generalized cusps

Eugenie Hunsicker, Nikolaos Roidos, and Alexander Strohmaier1

Abstract. In this paper we consider scattering theory on manifolds with special cusp-like metric
singularities of warped product type g D dx2 C x�2ah, where a > 0. These metrics form a
natural subset in the class of metrics with warped product singularities and they can be thought
of as interpolating between hyperbolic and cylindrical metrics. We prove that the resolvent of
the Laplace operator acting on p-forms on such a manifold extends to a meromorphic function
defined on the logarithmic cover of the complex plane with values in the bounded operators
between weightedL2-spaces. This allows for a construction of generalized eigenforms for the
Laplace operator as well as for a meromorphic continuation of the scattering matrix. We give
a precise description of the asymptotic expansion of generalized eigenforms on the cusp and
find that the scattering matrix satisfies a functional equation.
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1. Introduction

The study of spectral theory and scattering theory on non-compact manifolds with
ends of various shapes has a long and fruitful tradition in both mathematics and

1The work on this paper was supported in part by the Leverhulme Trust, grant F/00 261/Z.
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physics. One important and extensively studied family consists of manifolds with
hyperbolic cusps. These manifolds first appeared in mathematics in the context of
number theory as quotients of the upper half plane by arithmetic lattices. It was
discovered that the spectral theory on such constant negative curvature surfaces is
equivalent to the theory of automorphic functions and that their scattering theory may
be used to meromorphically continue Eisenstein series [19] and [12]. Later, methods
of scattering theory were applied to the more general case of manifolds with hyper-
bolic cusps that are of negative curvature outside a compact set [12], [16], and [18].
The continuous spectrum of the Laplace operator on such manifolds is known to be
Œ1=4;1/ and its generalized eigenfunctions are given by the meromorphically con-
tinued generalized Eisenstein functions. The multiplicity of the continuous spectrum
is constant and equals the number of cusps. Another important family of examples is
manifolds with cylindrical ends. The spectral theory and scattering theory of Dirac
type operators on such manifolds play an important role in the Atiyah–Patodi–Singer
index theorem [3] and scattering theory can be successfully applied to describe the
spectral subspaces explicitly [17]. More recently manifolds with cylindrical ends
have been studied from the point of view of inverse scattering in [11]. Here the fact
that the scattering matrix is meromorphic (considered as a function on a certain cover
of the complex plane) is essential. The continuous spectrum of the Laplace operator
on functions for a manifold with cylindrical end is Œ0;1/; its multiplicity at � > 0 is
the number of eigenvalues of the Laplace operator on the boundary that are smaller
than �.

In this paper we are interested in orientable manifolds with cusp-like singularities
that can be thought of as interpolating between these two cases. Let .N; h/ be a closed
oriented Riemannian manifold and endow the product Œ1;1/ � N with the warped
product metric

g D dx2 C x�2ah; (1)

where a is a fixed positive constant. As x becomes larger the distance between
the points .x; p/ and .x; q/ becomes smaller and thus geometrically this manifold
will look like a cusp. We will refer to such manifolds as generalized cusps. If we
define a D s

s�1
, where s 2 .0; 1/, the simple change of variables x D . 1

1�s
y/1�s

(y 2 Œ1 � s;1/) transforms the metric into

g D .1� s/2sy�2s.dy2 C h/:

Thus .1 � s/�2sg tends to a metric of hyperbolic type as s goes to 1 and to a metric
of cylindrical type as s tends to 0.

A manifold with generalized cusp is a Riemannian manifold .M; g/ that can be
decomposed as

M D M0 [N Œ1;1/ �N;
where M0 is a compact Riemannian manifold with boundary N and Œ1;1/ � N is
a generalized cusp over N . These manifolds are all complete, and may have either
finite or infinite volume depending on a and on the dimension of M .
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Over such manifolds, we consider the Laplace–Beltrami operator on differential
forms. This is defined as

�M D dı C ıd;

where d is the exterior derivative on forms and ı is its formal adjoint. Functions over
M are of course zero-degree forms, and the restriction of this operator to functions
is the standard Laplace operator. A general result of Gaffney [6] shows that when
M is complete, the Laplace–Beltrami operator is essentially self-adjoint, so unless
otherwise indicated, we will work with its unique self-adjoint extension in this paper.
For brevity, we will refer to this operator in the remainder of this paper simply as the
Laplace operator.

The Laplace operators associated to manifolds with such generalized cusps have
been studied by previous authors. In [1] and [2], Francesca Antoci identified the
essential spectrum of the Laplace–Beltrami operator on p-forms for such manifolds
by calculating directly on the cusps and using a result of Weyl that states the essential
spectrum is not changed by a compact change to the manifold. In [7], Sylvain
Golénia and Sergiou Moroianu refine these results to determine the multiplicity of
the spectrum of the p-form Laplacian on such manifolds and show that its essential
spectrum vanishes when the p and p�1 cohomology groups of the boundary vanish.
In this case, they obtain Weyl-type asymptotics for the eigenvalue counting function.
In the cases when there is essential spectrum, they give a limiting-absorption principle.
In fact, the results in [7], [8], [1], and [2] apply to metrics that generalize those in
equation 1 to the situation where h may depend on x but is asymptotically constant.
In this paper we focus on the more special case when h is independent of x but we
derive results that are stronger than those that can be obtained through the methods
of [7], [1], and [2]. In particular we construct a meromorphic continuation of the
resolvent, and explicitly describe the structure of the continuous spectrum and the
behavior of the generalized eigenfunctions.

Situations in which the resolvent or the scattering matrix continues analytically
across the spectrum appear quite often in mathematical physics. Our analysis adds an
important example to the class of such problems. Namely one for which the resolvent
admits a meromorphic continuation to a logarithmic cover of the complex plane but
not to a finite cover. This is known to occur in even dimensions on Euclidean spaces
or on globally symmetric spaces of non-compact type and odd rank. Our example,
however, is effectively one dimensional in the sense that the model operator used for
dynamical scattering theory is a second order operator on a half line. The analytic
continuation gives important additional control over the continuous spectrum. As in
the case of hyperbolic cusps and cylindrical ends, the scattering matrix can be shown
to satisfy a functional equation that allows its holomorphic continuation across the
continuous spectrum. The functional equation for generalized cusps has a more
complicated structure than in the hyperbolic cusp or cylindrical end setting, in that it
involves more than only quadratic expressions in the scattering matrix. Thus, whereas
some of our results are similar in nature to the cases of hyperbolic cusps and manifolds
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with cylindrical ends, some important features of the spectral theory for generalized
cusps are quite different. For instance, for generic values of a, zero is a branching
point of infinite order for both the resolvent and scattering matrix. This is in contrast
to the cases of hyperbolic cusps and cylinders, where only quadratic branching points
appear.

The paper is organized as follows. In Section 2 we discuss in detail the spectral
theory of the p-form Laplace operator �c;p on the cusp Œ1;1/ � N with Dirichlet
boundary conditions imposed at the boundary, @.Œ1;1/ � N/ D f.1; �/ j � 2 N g.
First, we prove that the distributional kernel of the resolvent .�c;p � �/�1 continues
meromorphically as a single-valued function to the logarithmic cover of C�f0g with
parameter z, where ez D � 2 Œ0;1/ is the original spectral parameter. Then, using
separation of variables we explicitly determine the continuous spectral subspace for
this case, as well as the generalized eigensections. In Section 3 we use our results
from Section 2 about�c;p together with techniques from stationary scattering theory
to prove the following result.

Theorem 1.1. LetM D M0 [N .Œ1;1/�N/ be an oriented n-dimensional manifold
with generalized cusp, with metric on the cusp given by dx2 C x�2ah, a > 0. Then
the resolvent .�M;p � �/�1 of the Laplace operator �M;p acting on p-forms has
a meromorphic continuation from the physical sheet to the logarithmic cover with
values in L.HC; H�/, where H˙ D �˙ � L2.M;^pT �M/ and �˙ 2 C.M/ is

the continuous extension by 1 of the function e� x2

2 defined on the cusp Œ1;1/ � N .
Moreover, the negative coefficients of the Laurent expansion at any pole are finite
rank operators.

The existence of such a meromorphic continuation with finite rank poles implies
that the spectrum of the operator consists of eigenvalues of finite multiplicities that
cannot accumulate in .0;1/, together with an absolutely continuous part. In fact this
theorem can be slightly strengthened in order to also describe the analytic structure
of the continuation near � D 0. Namely, using the calculus developed in [15] our
proof shows that the resolvent is Hahn-meromorphic (in the sense of [15]) near zero
with finite rank poles and with values in L.HC; H�/. This implies in particular that
eigenvalues cannot accumulate near zero. The meromorphic continuation together
with the differential equation on the cusp can then be used to construct generalized
eigenforms. Suppose H p.N / is the space of harmonic p-forms on N . Our second
main result is

Theorem 1.2. LetM D M0 [N .Œ1;1/�N/ be an oriented n-dimensional manifold
with generalized cusp, with metric on the cusp given by dx2 C x�2ah, a > 0. Let
H p.N / be the space of square integrable harmonic p-forms on N , and �M;p be
the Laplace operator acting on smooth p-forms on M . For any .�; Q�/ 2 H p.N /˚
H p�1.N / and any z 2 C, there exists a p-formEz.y; �; Q�/ onM , called the u D ez

generalized eigenform of �p , with the following properties.
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(1) Ez.y; �; Q�/ is smooth in y 2 M and meromorphic in z 2 C.

(2) .�M;p � ezI /Ez.y; �; Q�/ D 0 for any y 2 M and z 2 C.

(3) For y D .x; �/ 2 Œ1;1/ �N and z 2 C, there is an expansion of the form

Ez.y; �; Q�/ D xbp H.2/

bp
.ez=2x/�

C dx ^ xbp�1 H.2/

bp�1�1
.ez=2x/ Q�

C xbp H.1/

bp
.ez=2x/Cp;z.�/

C dx ^ xbp�1 H.1/

bp�1�1
.ez=2x/Cp�1;z. Q�/

C‰z..x; �/; �; Q�/;

where H.1/

bp
and H.2/

bp
are the Hankel functions of the first and second kind, re-

spectively, of order

bp D a.n� 2p � 1/C 1

2

and where

Cp;z 2 End.H p.N //

is a linear endomorphism, meromorphic in z 2 C, called the (stationary) scat-
tering matrix associated to Ez.y; �; Q�/. The tail term in the expansion satisfies
the estimate

‰z..x; �/; �; Q�/ D O.xbp�1� 1
2 e.� k

aC1
C"/xaC1

/; " > 0;

where k > 0 is the square root of the smallest nonzero eigenvalue of the p-form
Laplacian of the boundary N . Finally, Ez.y; �; Q�/, Cp;z and ‰z.y; �; Q�/ are
uniquely determined by the above properties.

Our analysis implies (see end of Section 3) that the absolutely continuous subspace
of the Laplace operator on p-forms coincides with the closure of the span of the set� Z 1

�1
Ez.�; �; Q�/f .z/dz W f 2 C1

0 .R/; �; Q� 2 H p.N /˚ H p�1.N /

�
;

and that the forms Ez.x; �; Q�/ are indeed generalized � D ez-eigenforms for the
Laplacian overM in the sense that

�c;p

Z 1

�1
Ez.�; �; Q�/f .z/dz D

Z 1

�1
ezEz.�; �; Q�/f .z/dz:

Thus this theorem gives the spectral decomposition of the restriction of �p to its
absolutely continuous subspace.
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In Section 4 we show that the scattering matrix Cp;z defined in the previous
theorem is unitary, and satisfies a functional equation and a certain commutation
relation with the Hodge star operator. These results are summarized in our third main
theorem.

Theorem 1.3. Let Cp;z be the scattering matrix defined in the previous theorem. For
any z 2 C, we have that

C �
p; Nz B Cp;z D I (unitarity)

and
xCp; Nz B Cp;z D I:

If we denote

bp D a.n � 2p � 1/C 1

2
;

then the scattering matrix satisfies the following functional equation

..1C e2�ibp /I � Cp;z/ B Cp;z�2�i D e2�ibpI:

Also, if �N is the Hodge star operator on the boundary N , the commutation relation

�NCp;z.�/ D e2bp�iCn�p�1.�N�/

holds for all p � n�1
2

.

If e2�ibp D �1, then this is the scattering relation for the cylinder, i.e. we have
Cp;z B Cp;z�2�i D I: This implies that the stationary scattering matrix descends
meromorphically to the double cover of the punctured plane. We get this reduction
when p D .n� 1/=2, a is an even integer, or when a is an integer and n� 1 is even.
The parity n � 1, which can be interpreted as the dimension of the cross section, N ,
is known in the case of hyperbolic-type cusps (e.g. in [10]) to relate to the isolation
of 0 in the L2 spectrum of the Laplace operator.

2. Geometry and spectral theory on the generalized cusp

Suppose as before thatN is a closed Riemannian manifold and Œ1;1/�N is endowed
with the warped product metric

g D dx2 C x�2ah;

where a > 0 is fixed. The spectral decomposition of the Laplace operator on p-
forms on such a manifold can be determined using separation of variables. We work
with the Friedrichs extension, �c;p , of the operator �p on the space of smooth
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compactly supported forms on the cusp: �p
0 ..1;1/ � N/. By standard arguments,

this corresponds to the Laplacian with Dirichlet boundary conditions at the boundary
f1g � N .

Any smooth differential form ! 2 �p.Œ1;1/�N/ can be written uniquely as

! D !1.x/C dx ^ !2.x/

where !1 is a smooth family of p-forms onN and !2 is a smooth family of .p� 1/-
forms on N . This gives a decomposition

�
p
0 .Œ1;1/� N/ D .C1

0 .Œ1;1// Ő �p.N //˚ .C1
0 .Œ1;1// Ő �p�1.N //;

where Ő is the injective tensor product of the nuclear topological vector spaces. On
the level of Hilbert spaces we have

L2�p.Œ1;1/�N/ D .L2.Œ1;1/; x��pdx/˝ L2�p.N //

˚ .L2.Œ0;1/; x��p�1dx/˝ L2�p�1.N //;

where the tensor product symbol denotes the tensor product of Hilbert spaces and
�p D a.n � 2p � 1/. In L2��.N / we have the Hodge decomposition

L2�p.N / D H p.N /˚ Im.dp�1/˚ Im.ıpC1/:

Further, for each p and each eigenvalue 	i > 0 of�N onL2�p.N /, we can choose
	i -eigenforms 'i

p 2 Im.dN;p�1/ and f i
pg 2 Im.ıN;pC1/ in such a way that

dN;p�1 
i
p�1 D p

	i'
i
p ;

ıN;p'
i
p D p

	i 
i
p�1;

and such that the sets f'ig and f ig form orthonormal bases for Im.dN;p�1/ and
Im.ıN;pC1/, respectively. We can also choose orthonormal bases of harmonic forms
f�ig � H p.N / and f Q�ig � H p�1.N /. We define the spaces of fibre harmonic forms

V
p

H

defD
nX

i

˛i�i W ˛i 2 L2.Œ1;1/; x��pdx/
o

and

W
p

H

defD
n
dx ^

X
i

ˇi
Q�i W ˇi 2 L2.Œ1;1/; x��p�1dx/

o
:

Also, for each pair f'i
p;  

i
p�1g, we can define the subspace ofL2�p.Œ1;1/�N/

V
p
i

defD f˛i'
i
p C dx ^ ˇi 

i
p�1 W ˛i 2 L2.Œ1;1/; x��pdx/;

ˇi 2 L2.Œ1;1/; x��p�1dx/g;
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and for each pair of f i
p; '

i
p�1g, we can define

W
p
i

defD f˛i 
i
p C dx ^ ˇi'

i
p�1 W ˛i 2 L2.Œ1;1/; x��pdx/;

ˇi 2 L2.Œ1;1/; x��p�1dx/g:

Then we have the decomposition:

L2�p.Œ1;1/ �N/ D V
p

H
˚ W

p

H
˚
�M

i

V
p
i

�
˚
�M

i

W
p
i

�
: (2)

It is straightforward to show that the subspaces V
p

H
, W

p

H
, V

p
i and W

p
i are invariant

subspaces for�c;p in the sense that all spectral projections of�c;p leave these direct
summands invariant. This follows immediately as the associated quadratic forms can
be written as direct sums.

Recall that �p D a.n� 2p � 1/ and set

Dp D
0
@�@2

x C �p

x
@x 0

0 �@2
x C �p�1

x
@x

1
A ;

Ap D
0
@0 0

0 ��p�1

x2

1
A ;

and

U D
 
0 1

x2a 0

!
:

The Laplacian takes the following forms on the subspaces above:

�c;pjVp
H

˚W
p
H

D Dp C Ap; (3)

�c;pjVp
i

D Dp C Ap C 	ix
2aI C p

	i

2a

x
U;

and

�c;p jWp
i

D Dp C Ap C 	ix
2aI:

2.1. The spectral theorem for generalized cusps. The following is a detailed anal-
ysis of the continuous spectrum on the generalized cusp and a description of the
spectral subspaces.
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Theorem 2.1. The absolutely continuous spectral subspace of �c;p is

Hp
ac

defD V
p
H

˚ W
p
H
:

In particular the spectrum of �c;p restricted to .Hp
ac/

? D .
L

i V
p
i /˚ .

L
i W

p
i / is

purely discrete. Thus, the resolvent .�c;p � �/�1 restricted to the discrete spectral
subspace is a meromorphic family of compact operators parametrized by � 2 C.

Theorem 2.2. Suppose H p.N / ˚ H p�1.N / has non-zero dimension. Then the
Laplacian �c;p restricted to the space Hp

ac D V
p

H
˚ W

p

H
has domain

Dom.�c;p/ D .S ˝ H p.N //˚ dx ^ . zS ˝ H p�1.N //;

where

S D f˛.x/ 2 L2.Œ1;1/; x��pdx/ W
�2Wbp

.x�bp˛.x// 2 L2.Œ0;1/; d	bp
.�//g;

zS D fˇ.x/ 2 L2.Œ1;1/; x��p�1dx/ W
�2Wbp�1�1.x

�bp�1ˇ.x// 2 L2.Œ0;1/; d	bp�1�1.�//g;

Wb denotes the Weber transform of order b (see the Appendix), and

d	b.�/ D �

J2
b
.�/C Y2

b
.�/

d�:

The spectrum of �c;p can be decomposed as


sign.�c;p/ D ;;

ac.�c;p/ D Œ0;1/;

and


cont.�c;p/ D Œ0;1/:

Finally, restricted to Hp
ac , �c;p has the following spectral decomposition:

�c;p.˛� C dx ^ ˇ Q�/ D xbp W �1
bp
.�2Wbp

.t�bp˛.t///�

C dx ^ xbp�1W �1
bp�1�1.�

2Wbp�1�1.t
�bp�1ˇ.t/// Q�:
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Proof of Theorem 2.1 and Theorem 2.2. To show that the spectrum of�c;p restricted
to V

p

H
˚W

p

H
is absolutely continuous, we first note from equation (3) that the operator

�c;p �� decouples completely on this space, since the operatorsDp and Ap are both
diagonal. Thus it suffices to consider how �c;p acts on a form ˛i .x/�i or a form
dx^ˇi

Q�i .x/. We may transform the eigen-equation in these cases using the changes
of variables

˛i .x/ D xbpfi .x/; ˇi .x/ D xbp�1gi .x/;

where

bp D �p C 1

2
D a.n� 2p � 1/C 1

2
:

Then divide the fi equation by �xbp and the gi equation by �xbp�1 . This turns the
eigenform equations for ˛i and ˇi into transformed Bessel equations:

�f 00
i � 1

x
f 0

i C
hb2

p

x2
� �

i
fi D 0

and

�g00
i � 1

x
g0

i C
h .bp�1 � 1/2

x2
� �

i
gi D 0:

Thus for any � � 0we have generalized eigenfunctions of�c;pjVp

H
˚W

p

H
of the form

 
xbpGbp

.
p
�; x/�

xbp�1Gbp�1�1.
p
�; x/ Q�

!
; �; Q� 2 H p.N /˚ H p�1.N /;

where G
b;

p
�
.x/ is the cylinder function of order b (see the Appendix). Using the

properties of the Weber transform of order b, we can refine the description of the
absolutely continuous part of the spectrum of�c;p to the spectral Theorem 2.2. This
shows that the multiplicity of the continuous spectrum of�c;p jVp

H
˚W

p

H
for � � 0 is

dim.H p.N //C dim.H p�1.N //; see also [7].
Proving that the resolvent for the Laplacian on .Vp

H
˚ W

p

H
/? extends meromor-

phically to C as a family of bounded operators in the Hilbert space is equivalent to
showing that its spectrum on this subspace is discrete. We will do this by showing that
the spectrum of�c;p restricted to V

p
i and W

p
i is discrete and that the first eigenvalues

on these subspaces tend to infinity as i ! 1. Note that both operators are of the
form

Dp C 	ix
2a C Vi .x/;

where Vi D Ap C p
	i

k
x

U, k � 0 is a constant, and Dp is positive. We know that
x2a ! C1 as x ! 1, so the operator Dp C	ix

2a is the Laplacian plus a potential
that grows at infinity. Reflecting throughx D 1, we reduce to the standard theory (see,
e.g. [21], vol. 4), to show the operator has compact resolvent and discrete spectrum.
Further, since Vi .x/ is relatively form-bounded with respect to Dp C	ix

2a, we also
have that �c;p restricted to both V

p
i and W

p
i has compact resolvent. Thus overall,
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�c;p has discrete spectrum on V
p
i ˚W

p
i with no possible accumulation points except

at 1. Since 	i ! 1 as i ! 1 the lowest eigenvalue of the matrix valued function
	ix

2a C Vi .x/ is easily seen to be bounded from below by 	i � k0p	i for some
k0 > 0 and all x � 1. Therefore, also the lowest eigenvalue of �c;p restricted to
V

p
i ˚ W

p
i tends to 1 as i ! 1, so the spectrum on the infinite sum of V

p
i ˚ W

p
i

is still discrete.

2.2. Meromorphic extension of the resolvent. Using the spectral decomposition
fromTheorem 2.2 and the definition of theWeber transform, we get an explicit formula
for the kernel of

�
�c;p � u��1

on its absolutely continuous subspace in terms of the
Bessel functions Yb and Jb . To do this, for u 2 C n Œ0;1/, note that we have

.�c;p � u/�1.˛� C dx ^ ˇ Q�/

D xbp W �1
bp

� 1

�2 � uWbp
.t�bp˛.t//

�
�

C dx ^ xbp�1W �1
bp�1�1

� 1

�2 � uWbp�1�1.t
�bp�1ˇ.t//

� Q�:
If we let

mb.�; u; x; t / D �

�2 � u

Gb.�; x/Gb.�; t /

J2
b
.�/C Y2

b
.�/

and assume that ˛; ˇ 2 C1
0 .Œ1;1//, then this becomes

.�c;p � u/�1.˛� C dx ^ ˇ Q�/

D
�Z 1

0

Z 1

1

xbp t1�bpmbp
.�; u; x; t /˛.t/ dt d�

	
�

C dx ^
�Z 1

0

Z 1

1

xbp�1 t1�bp�1mbp�1�1.�; u; x; t /ˇ.t/ dt d�

	
Q�:

This formula can be used to construct a meromorphic continuation of the resolvent
of the operator using contour deformation similarly as in [23]. The integral over �
may however be explicitly computed, because the operator we consider is unitarily
equivalent to a direct sum of two Sturm-Liouville operators on the half line. Thus,
we have an explicit formula for the resolvent in terms of the fundamental system
Gb.

p
u; x/;H

.1/

b
.x

p
u/. HereGb.

p
u; x/ satisfies the boundary conditions at 1 and

H
.1/

b
.t

p
u/ satisfies the L2 condition at infinity. In this way one obtains for the

integral kernel of the resolvent

.�c;p � u/�1.˛� C dx ^ ˇ Q�/ D
Z 1

1

xbp t�bprbp
.u; x; t /˛.t/dt �

C
Z 1

1

xbp t�bprbp�1
.u; x; t /ˇ.t/dt dx ^ Q�;

(4)
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where

rb.u; x; t / D �
p
xt

2H.1/

b
.
p
u/

8<
:
Gb.

p
u; x/H.1/

b
.t

p
u/; 1 � x � t;

Gb.
p
u; t/H.1/

b
.x

p
u/; 1 � t � x:

Here 2

�
p

xt
H

.1/

b
.
p
u/ is the Wronskian of the two solutions. The above formula may

be checked by direct computation applying the differential operator to the integral
kernel above. The Hankel functions are not holomorphic at zero but lift to holomor-
phic functions on the logarithmic cover of the complex plane. We therefore make
a change of variable u D ez to account for that. With the convention

p
ez D ez=2

the functions rbp
.ez; x; t / are then meromorphic functions with poles at the zero set

ofH .1/

b
.ez=2/. Now of course the resolvent does not continue meromorphically as a

family of bounded operators on the original Hilbert space but merely as a family of
operators between weighted L2 spaces. More precisely define

H
p

H ;˙ D e� x2

2 .V
p

H
˚ W

p

H
/:

By the asymptotic behavior of Hankel functions (see Appendix, Section 6.2) and
their complex derivatives it is easy to see that the equation (4) defines a meromorphic
continuation of

.�c;p � ez/�1

as a function with values in B.H
p

H ;C; H
p

H ;�/ to the entire complex plane with at most

simple poles at the points z where the H.1/

b
.ez=2/ vanishes. Because �c;p restricted

to .Hp
ac/

? has discrete spectrum, its resolvent family can also be lifted trivially to the
logarithmic cover. Thus, putting the two families together yields an extension of the
resolvent family for the entire operator �c;p to the logarithmic cover. Thus, if we
define the weighted L2-spaces

H
p
˙

defD e� x2

2 L2.Œ1;1/�N;ƒpŒ1;1/� N/;
then the holomorphic family of operators

.�c � ez/�1

defined on fz j Im z 2 .0; 2�/g extends to a meromorphic family of operators with
values in B.H

p
C; Hp� / on the entire complex planes with at most simple poles of

finite rank at Zbp
[Zbp�1

, where

Zb D fz j H.1/.ez=2/ D 0g:
It was shown in [15] that the Hankel functions are Hahn-meromorphic at zero. Thus,
the above also implies that the resolvent continues near zero to a Hahn-meromorphic
function with values in B.H

p
C; Hp� /.
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3. Spectral theory for manifolds with generalized cusps

We can use the description and properties of the extensionRz.�c/ of the resolvent on
the cusp end (�c

defD P
p �c;p) to prove that the resolvent operator for the Laplacian

�M on all of M also extends meromorphically to the logarithmic cover of C n f0g.
We can then construct generalized eigenfunctions for�M and study properties of the
stationary scattering matrix for M . To extend the resolvent, we essentially compare
the Laplacian on M with weighted L2 boundary conditions to the Laplacian on
M with the same boundary conditions at x D 1, but with an additional Dirichlet
boundary condition at x D 1. We keep denoting this last Laplacian by �c.

Proof of Theorem 1.1. We use the following construction of the resolvent onM . We
glue the extended resolvent family of�c ,Rz.�c/, to the extended resolvent family for
�M0

with Dirichlet conditions at x D 1 (lifted to the logarithmic cover), Rz.�M0
/,

with smooth cutoffs to make the sum act on all L2 forms on M . Let �1.x/ be a
smooth cutoff function on R that is zero for x � 1=2 and 1 for x � 5=8. Similarly,
let �2.x/ be a smooth cutoff function on R that is zero for x � 3=4 and 1 for x � 7=8

and �5 be a smooth cutoff function on R that is zero for x � 1=8 and 1 for x � 1=4.
Let �3 D 1 � �1 and �4 D 1 � �5.

Define
Qz

defD �1Rz.�M0
/�2 C �3Rz.�c/�4:

It is straightforward that this is now a meromorphic function on C with values in
L.HC; H�/ with simple poles and residues that are finite rank operators. Moreover,
on the physical sheet the resolvent family of �M can be expressed as

Rz.�M /
defD .I C Tz/

�1Qz ;

where Tz D Qz.�M � ez/ � I , which is meromorphic with values in L.H�; H�/.
By construction Tz has support off the diagonal. We can see this as follows. Note
that

�1�2 C �3�4 D 1:

Also note that the distance from the support of �1 to the support of r.�2/ (and thus
also to the support of Œ�2; �M �) is greater than 1/8, as is the distance of the support
of �3 to the support of r.�4/ (and thus also to the support of Œ�4; �M �). Now we get

Tz D .�1Rz.�M0
/�2 C �3Rz.�c/�4/.�M � ez/ � I

D �1�2 C �3�4 C �1Rz.�M0
/Œ�2; �M �C �3Rz.�c/Œ�4; �M �� I

D �1Rz.�M0
/Œ�2; �M �C �3Rz.�c/Œ�4; �M �:

The integral kernel associated to Tz will thus be

KTz
.x; y/ D �1.x/Kz;M0

.x; y/Œ�2; �M �.y/C �3.x/Kz;c.x; y/Œ�4; �M �.y/;
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where Kz;M0
and Kz;c.x; y/ are the integral kernels for Rz.�M0

/ and Rz.�c/, re-
spectively. Since the support in x and the support in y are disjoint, the support ofKTz

is disjoint from the diagonal. Since Tz is a pseudodifferential operator, this implies it
has smooth kernel, and is a smoothing operator. We can also note thatKTz

has com-
pact support in y. Consequently, Tz is a meromorphic family of compact operators.
By the meromorphic Fredholm theorem, if I C T .z/ is invertible at some point, then
in fact .ICTz/

�1 is a meromorphic family of bounded operators in L.H�; H�/with
poles of finite rank. Then the above formula will define a meromorphic continuation,
Rz.�M /, of the Laplacian on all of M to the same domain for which Rz.�M0

/ is
meromorphic, namely, the logarithmic cover of C � f0g.

Thus it remains only to show that Tz has small norm as an element of L.H�; H�/
for some z on the physical sheet with Im.ez/ >> 0. For such z,Rz.�M0

/ is bounded
as an operator on L2.M0/ and Rz.�c/ is bounded as an operator from HC to H�
by k.dist.z; 
.�///�1 � k.Im ez/�1. The operators �1, �3, Œ�2; �� and Œ�4; �� are
compactly supported differential operators of degree � 1. Using the usual resolvent
bounds, we get that the norm of the operator Tz W H� ! H� goes to 0 as Im ez ! 1.
Thus the norm of Tz can be made as small as we like, which completes the proof.

For any z 2 C and any .�; Q�/ 2 H p.N /˚ H p�1.N / we can use this resolvent
extension to construct generalized ez-eigenforms for �M , which we will denote
by Ez.y; �; Q�/. Recall that on the cusp, the kernel of .�p � u/ on fibre-harmonic
forms with no boundary conditions imposed is spanned by forms xbpJbp

.
p
ux/� ,

xbpYbp
.
p
ux/� , dx^xbp�1Jbp�1�1.

p
ux/ Q� anddx^xbp�1Ybp�1�1.

p
ux/ Q� , where

� is any harmonic p-form onN and Q� is any harmonic p� 1-form. We can choose a
new basis using Hankel functions instead. We can also express these in terms of the
variable ez D u.

xbpH
.1/

bp
.ez=2x/�; xbpH

.2/

bp
.ez=2x/�;

dx ^ xbp�1H
.1/

bp�1�1
.ez=2x/ Q�; dx ^ xbp�1H

.2/

bp�1�1
.ez=2x/ Q�:

Note that when z is in the physical sheet, theH .1/ basis functions are inL2 at infinity,
and theH .2/ basis functions are not, as can be observed from the Hankel asymptotics
with complex argument recalled in the Appendix.

Now we may define the generalized eigenforms on M . Define a cutoff function
� 2 C1.R/, such that �.x/ D 0 if x < 1 and �.x/ D 1 if x > 1C ", for some " > 0
sufficiently small. Set

!�.y/ D
8<
:
0; y 2 M0;

�.x/.xbpH
.2/

bp
.ez=2x/� C dx ^ xbp�1H

.2/

bp�1�1
.ez=2x/ Q�/; y D .x; �/:
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This form satisfies .�c;p � ez/!� D 0 for x > 1C ", although the form without the
cutoff would not satisfy the Dirichlet boundary conditions of�c;p . Then for z in the
logarithmic cover, define a p-form on M by

Ez;�.y; �; Q�/ defD !� �Rz.�M /.�M � ezI /!�: (5)

Since .�M � ezI /!� D 0 for x > 1C ", we have that .�M � ezI /!� is compactly
supported, so it is in the domain of the resolvent R�.�M /, and Ez;�.y; �; Q�/ is well
defined. The p-form Ez;�.y; �; Q�/ is a generalized ez-eigenform for �M because
by construction, Ez;�.y; �; Q�/ is smooth over M and meromorphic over C. Since
Rz.�M / is the right inverse of �M � ezI for z in the physical sheet, we have

.�M � ezI /Ez;�.y; �; Q�/ D .�M � ezI /.!� �Rz.�M /.�M � ezI /!�/ D 0

in this region, and so by the meromorphicity of Ez;�.y; �; Q�/ over z, we have that
.�M � ezI /Ez;�.y; �; Q�/ D 0 for all z 2 C.

By our choice of second Hankel functions in the definition, for z in the physical
sheet, i.e. 0 � Im z < � , we have that !� … L2.M;^pT �M/. The extension of
the resolvent, Rz.�M / is only the left inverse of .�M � ezI / for L2 forms, so the
family Ez;�.y; �; Q�/ is not identically zero in this region. This completes the proof
of parts (1) and (2) of Theorem 1.2.

We can notice several properties of this family Ez;�.y; �; Q�/. First, the family
Ez;�.y; �; Q�/ does not depend on the choice of cutoff function � in the definition. To
see this, note that for difference of families constructed using two different choices
of � we get that

�M .Ez;�.y; �; Q�/ � Ez; Q�.y; �; Q�// D ez.Ez;�.y; �; Q�/ �Ez; Q�.y; �; Q�//
for ez … Œ0;1/. Further, the difference

.Ez;�.y; �; Q�/ �Ez; Q�.y; �; Q�// 2 L2.M;^pT �M/:

These two facts together imply that for such z, the difference must be zero, so the
extensions are equal. Then by the meromorphic dependence of E in z, we get that
they are equal everywhere in C. Thus we may simply write

Ez.y; �; Q�/ defD Ez;�.y; �; Q�/
for any choice of �.

Second, for z in the physical sheet, Ez.y; �; Q�/ differs from !� on the cusp by an
L2 form. This is because

Ez.y; �; Q�/ � !� D �Rz.�M /.�M � ezI /!�;
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and, on the physical sheet, Rz.�M / is a bounded map on L2 forms, and finally
.�M � ezI /!� is smooth and compactly supported. Since for such z the basis

elements involving Hankel functions H .1/

b
.w/ form a fundamental system for the

Laplacian on the cusp acting on L2 fibre harmonic forms, we obtain an expansion on
the cusp for Ez..x; �/; �; Q�/ for x > 1C " of the form

Ez..x; �/; �; Q�/ D xbp H.2/

bp
.ez=2x/�

C dx ^ xbp�1H.2/

bp�1�1
.ez=2x/ Q�

C xbp H.1/

bp
.ez=2x/
p;z.�; Q�/

C dx ^ xbp�1H.1/

bp�1�1
.ez=2x/ Q
p�1;z.�; Q�/

C‰z..x; �/; �; Q�/;

(6)

where

‰z..x; �/; �; Q�/ 2 L2
d;ı.Œ1;1/�N;^pT �Œ1;1/�N/
˚ L2

ı;d .Œ1;1/�N;^pT �Œ1;1/ �N/;

where

L2
d;ı.Œ1;1/� N;^pT �Œ1;1/� N/ defD

�M
i

V
p
i

�

and

L2
ı;d .Œ1;1/� N;^pT �Œ1;1/� N/ defD

�M
i

W
p
i

�
;

and where 
p;z.�; Q�/ and Q
p;z.�; Q�/ are in H p.N / and depend linearly on .�; Q�/.
According to the above decomposition, we write

‰z..x; �/; �; Q�/ D ‰z;d;ı..x; �/; �; Q�/C‰z;ı;d ..x; �/; �; Q�/:

Any generalized eigenfunction E 0
z..x; �/; �;

Q�/ that depends meromorphically on
z and has an expansion of the above type with tail term inL2 is automatically equal to
Ez..x; �/; �; Q�/. This follows from self-adjointness of the Laplace operator. Indeed,
E 0

z..x; �/; �;
Q�/�Ez..x; �/; �; Q�/ is an L2-form onM for any complex z and it is in

the eigenspace of the Laplace operator with eigenvalue ez . For all z with ez non-real
it follows that

E 0
z..x; �/; �;

Q�/ �Ez..x; �/; �; Q�/ D 0:

Since the dependence on z is meromorphic the difference vanishes everywhere. Note
that this also proves the uniqueness statement of Theorem 1.2.
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Lemma 3.1. The generalized eigenfunction satisfies the relation

dEz.y; �; Q�/ D Ez.y; 0; e
z=2�/

and

ıEz.y; �; Q�/ D Ez.y; ez=2�; 0/

and, moreover, the functions 
p;z and Q
p;z appearing in equation 6 satisfy


p;z.�; Q�/ D Q
p;z.0; �/ D 
p;z.�; 0/

and

Q
p;z.�; Q�/ D 
p;z. Q�; 0/ D Q
p;z.0; Q�/:

Proof. Since �M commutes with d , dEz.y; �; Q�/ is an ez-generalized eigenform of
the Laplacian. If the tail term ‰z.y; �; Q�/ is decomposed by

‰z.y; �; Q�/ D ‰1;z.y; �; Q�/C dx ^‰2;z.y; �; Q�/;
then on the cusp we have

dEz..x; �/; �; Q�/
D dN‰1;z..x; �/; �; Q�/

C dx ^ .@x.x
bp H.2/

bp
.ez=2x/� C xbp H.1/

bp
.ez=2x/
p;z.�; Q�//

C @x‰1;z..x; �/; �; Q�/ � dN‰2;z..x; �/; �; Q�//
D dx ^ .ez=2xbp H.2/

bp�1
.ez=2x/� C ez=2xbp H.1/

bp�1
.ez=2x/
p;z.�; Q�//

C dN‰1;z..x; �/; �; Q�/C dx ^ .@x‰1;z..x; �/; �; Q�/
� dN‰2;z..x; �/; �; Q�//;

where we have used the relations for the Hankel functions

d

dz
.zbH.1/

b
.z// D zbH.1/

b�1
.z/

and
d

dz
.zbH.2/

b
.z// D zbH.2/

b�1
.z/:

Here the branch cut of zb is chosen to coincide with the branch cut of the Hankel
functions. By uniqueness and part 1) of Theorem 1.2 applied with p replaced by
p C 1 the generalized eigenfunction Ez..x; �/; 0; ez=2 Q�/ has the expansion

Ez..x; �/; 0; ez=2�/ D dx^.ez=2xbp H.2/

bp�1
.ez=2x/�

C ez=2xbp H.1/

bp�1
.ez=2x/ Q
p;z.�; Q�//

C‰z..x; �/; 0; ez=2�/;
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and by uniqueness in Theorem 1.2 we end up with the equation

dEz.y; �; Q�/ D Ez.y; 0; e
z=2�/: (7)

Comparing coefficients in the expansion we get 
p;z.�; Q�/ D Q
p;z.0; �/. Exactly the
same argument applied to ıEz.y; �; Q�/ completes the proof.

This allows us to define the stationary scattering operator for �M at z by

Cp;z.�/
defD 
p;z.�; 0/: (8)

The scattering matrix Cp;z is uniquely determined by the choice of the solution

H
.2/

b
.z/ to define !� in equation (5). Note that since the " in the definition of

the cutoff function � used in this equation can be chosen arbitrarily small, and since
Ez.y; �; Q�/ is independent of �, the expansion (6) holds for x > 1. By construction,
Cp;z is meromorphic in z with values in End.H p.N //. This completes the proof that
there is an expansion of the form as claimed in Theorem 1.2.

All that remains to show of (3) in Theorem 1.2 is that that the tail term‰z.y; �; Q�/
in the expansion of Ez.y; �; Q�/ is not merely in L2, but in fact decays exponentially
in x on the cusp for any z 2 C. Since

‰z.y; �; Q�/ D ‰z;d;ı.y; �; Q�/˚‰z;ı;d .y; �; Q�/;
it suffices to show that ‰z;d;ı.y; �; Q�/ and ‰z;ı;d .y; �; Q�/ both decay exponentially
in x on the cusp. We prove this for the term ‰z;d;ı.y; �; Q�/, since the proof for the
second term is similar, but in fact easier as the equations for this term decouple.

The form ‰z;d;ı.y; �; Q�/ satisfies the eigenvalue equation for �jŒ1;1/�N , so by
the decomposition in Section 2, if we set

‰z;d;ı..x; �/; �; Q�/ D
X

i

˛i'
i C dx ^ ˇi

Q i ;

and apply the transformation

˛i .x/ D x�p=2wi .x/ and ˇi .x/ D x�p�1=2vi .x/;

we get that wi and vi satisfy the system

�w00
i .x/C Pi.x/wi .x/C qi .x/vi .x/ D 0; (9a)

�v00
i .x/C Ri .x/vi .x/C qi .x/wi .x/ D 0; (9b)

where

Pi.x/ D x2a	2
i C �p.�p C 2/

4x2
� ez;

Ri .x/ D x2a	2
i C �p�1.�p�1 � 2/

4x2
� ez;
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and

qi .x/ D 2a	2
i x

a�1:

Let Yi D .wi .x/; vi.x/; w
0
i.x/; v

0
i .x//. Then we get the equivalent first order system

Y0
i D FiYi ; where Fi D

�
0 1

Ti 0

	
and Ti D

�
Pi qi

qi Ri

	
: (10)

The eigenvalues of Fi , indexed by j , and their corresponding eigenvectors are given
by

.�i /j D .�1/j
p

Pi C Ri ˙
q
.Pi � Ri /2 C 4q2

i

2

and

si;j D
�
1;

Pi � �2
j

qi

; �j ; �j

Pi � �2
j

qi

�T

respectively. The matrix Si D .si;1; si;2; si;3; si;4/, then diagonalizes Fi . The diago-
nal matrix S�1

i FiSi can be written in the form .Bi C Gi /x
a, where Bi has diagonal

elements 	i , 	i , �	i and �	i , with 	i > 0, and the Hilbert–Schmidt norm of Gi

goes to zero when x ! 1.
Now apply the transformation

Yi D SiQi

to the system (10) to obtain the equation

Q0
i D .S�1

i FiSi � S�1
i S 0

i /Qi : (11)

If we explicitly calculate the Hilbert–Schmidt norm of the matrix S�1
i S 0

i , we can see
that it is, like Gi , of order o.xa/. Hence, if we apply the transformation

t D xaC1

aC 1

to (11), we obtain

dQi

dt
D .Bi C Ei /Qi ;

where the Hilbert–Schmidt norm of Ei goes to zero when t ! 1. We can now use
the following theorem from [20].



196 E. Hunsicker, N. Roidos, and A. Strohmaier

Theorem 3.2 (Perron). Consider the first order n-dimensional system

dQ.t /

dt
D .B C E.t //Q.t /;

where Q.t / is a column vector and B , E.t / are (possible complex valued) matrices
such that B is independent of t , and the Hilbert–Schmidt norm of E.t / goes to zero
when t ! 1 (almost diagonal system). Then, the system hasn independent solutions
Qi , i 2 f1; :::; ng such that if jQi j is the length of the vector Qi , then

lim
t!1 t�1 log jQi j D �i ;

where �i D Re�i , and �i are the n eigenvalues of B .

From the above theorem, we obtain a system of solutions

.w
C;1
i .x/; v

C;1
i .x//T ; .w

C;2
i .x/; v

C;2
i .x//T ; (12)

.w
�;1
i .x/; v

�;1
i .x//T ; .w

�;2
i .x/; v

�;2
i .x//T ; (13)

of (9) satisfyingq
jwC;k

i .x/j2 C jvC;k
i .x/j2 C j.wC;k

i /0.x/j2 C j.vC;k
i /0.x/j2 � cıe.

�i
aC1

�"/xaC1

andq
jw�;k

i .x/j2 C jv�;k
i .x/j2 C j.w�;k

i /0.x/j2 C j.v�;k
i /0.x/j2 � cıe.� �i

aC1
C"/xaC1

;

for k D 1; 2 and any " > 0 with some constant cı depending on ı. The system (9)
can also be written as

L

 
wi

vi

!
� ez

 
wi

vi

!
D 0;

where

L D

0
B@� d2

dx2
C x2a	2

i C �p.�p C 2/

4x2
qi.x/

qi .x/ � d2

dx2
C x2a	2

i C �p�1.�p�1 � 2/
4x2

1
CA :

The differential operator L can be made self-adjoint by imposing Dirichlet boundary
conditions at x D 1. It then becomes an operator with compact resolvent. Thus,
if f 2 C1

0 .Œ1;1//˝ C2 is compactly supported, .L � ez/�1f will, for large x,
be a solution to (9) that is square integrable and depends meromorphically on z.
This solution can be chosen to construct a fundamental system satisfying the above
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estimates that depends meromorphically on z. By meromorphicity of Ez.�; Q�/, wi

and vi depend meromorphically on z. When z is in the physical sheet,

‰z;d;ı.y; �; Q�/ 2 L2
ı;d .Œ1;1/�N;^pT �Œ1;1/ �N/;

which implies wi and vi are both in L2.Œ1;1/; dx/. If we then expand .vi ; wi/ in
terms of the fundamental system of solutions, the coefficients depend meromorphi-
cally on z. The coefficients in front of the exponentially increasing terms vanish for z
in the physical sheet. They therefore have to vanish everywhere. Thus vi.x/, wi .x/

must be O.e.� �i
aC1

C"/xaC1

/ for any " > 0, which gives

˛i .x/ D O.x�p=2e.� �i
aC1

C"/xaC1

/

and

ˇi .x/ D O.x�p�1=2e.� �i
aC1

C"/xaC1

/

for all z. Using a similar argument for the term ‰z;ı;d .y; �; Q�/, we get the following
bound on the tail term on the cusp

‰z..x; �/; �; Q�/ D O.x�p�1=2e.� �0
aC1

C"/xaC1

/; z 2 C:

It is worth noting here thatCp;z is not the scattering matrix obtained by comparing
�with�0 so the notation “scattering matrix” forCp;z is a mild abuse of terminology.
The dynamical scattering matrix

Sp;z 2 End.H p.N /˚ H p�1.N //

can be obtained from Cp;z by

Sp;z D

0
BBBBB@

�
H.1/

bp
.ez=2/

H.2/

bp
.ez=2/

Cp;z 0

0 �
H.1/

bp�1�1
.ez=2/

H.2/

bp�1�1
.ez=2/

Cp�1;z

1
CCCCCA :

The paper [22] contains more details about the relationship of stationary to dynamical
scattering theory. In particular existence and completeness of the wave operators in
dynamical scattering theory follow from the fact that the difference .�c C 1/�n �
.�M C 1/�n is a trace class operator. Using an analysis completely analogous
to the one by Guillopé [9], one can also obtain the generalized eigensections of
Theorem 1.2 by applying the wave operators to the generalized eigenfunctions that
span the continuous spectrum of �c. As mentioned in the introduction, this implies
that the continuous spectral subspace is the closure of the span of� Z 1

�1
Ez.�; �; Q�/f .z/dz W f 2 C1

0 .R/; �; Q� 2 H p.N /˚ H p�1.N /

�
:
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In order to be self-contained we give here a short argument that proves this with-
out relying on time-dependent scattering theory. Let  2 C1

0 .M;^pT �M/ be a
compactly supported smooth section. Since the resolvent has a meromorphic contin-
uation, Stone’s formula implies that the spectral measure h ; dE� i is given by

h ; dE� i D h ; F�. /id�;
where

F�. / D 1

2� i
.FC

�
. / � F �

� . //;

is given by

F˙
� . /

defD lim
"!0

1

2� i
..�M;p � �	 i"/�1/ :

Since this is a distribution of order 0, the only contribution of poles to the spectral
measure are Dirac measures. These Dirac measures will give rise to eigenvalues of
finite multiplicities that cannot accumulate in .0;1/ because poles do not accumu-
late there. The continuous spectral subspace is therefore the closure of the span of
elements of the form Z 1

�1
F�. /f .�/d�;

where f 2 C1
0 .RC/ is supported away from the poles of the resolvents and  2

C1
0 .M;^pT �M/. The statement about the continuous spectrum follows if we are

able to show that away from poles, eachFez . / equals some generalized eigensection
Ez.�. /; Q�. //.

To show this, let z0 be a point on the real axis that is not a pole. Then each Fez . /

is holomorphic near z0 and satisfies the equation .� � ez/Fez . / D 0 there. By
uniqueness of generalized eigensections it is now enough to show that

FC
ez . / D .xbpH

.2/

bp
.ez=2x/� C dx ^ xbp�1H

.2/

bp�1�1
.ez=2x/ Q�/CˆC

ez . /;

where ˆC
ez . / is square integrable for z near z0.

Let � 2 C1.M/ be a function with support in Œ1;1/� N depending only on x
such that the support of � has positive distance from the support of  and such that
1 � � 2 C1

0 .M/. Since z0 2 R, there are values of z near z0 for which ez is in the
physical sheet (i.e., z is in the resolvent set). For these z, the section �.FC

ez . // is in
the domain of both �M and �c and therefore

�.FC
ez . // D .�c � ez/�1.�M � ez/.�.FC

ez . ///:

However, this relation is holomorphic and is therefore also valid at z0.
By the properties of the resolvent on the cusp shown earlier, this proves that the

restriction of FC
ez . / to the cusp can be written as a sum of two terms, one of the

form
.xbpH

.2/

bp
.ez=2x/� C dx ^ xbp�1H

.2/

bp�1�1
.ez=2x/ Q�/;
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and another one meromorphic with values in L2. Since FC
ez . / is holomorphic this

function is necessarily regular near z0. Thus, indeed Fez . / D Ez.�. /; Q�. //,
where .�. /; Q�. // can be read off from the asymptotic behavior of FC

ez . / on the
cusp as x ! 1.

4. Additional properties of the stationary scattering matrix

The stationary scattering matrix Cp;z of Theorem 1.2 has properties similar to the
scattering matrices in the cusp case, but with some interesting differences. In this
section, we use the rest of Theorem 1.2 in order to explore these properties. In
particular, we prove that Cp;z is a unitary endomorphism and find its functional
equation. The main idea for the proof of the unitarity is the well known behavior of
Ez.y; �; Q�/ at infinity along the cusp of M . For the functional equation, the proof is
based on the uniqueness from Theorem 1.2. Finally, we can use this uniqueness to
find the commutation relation between Cp;z and the Hodge star operator. The results
of this section are recorded in the introduction as Theorem 1.3.

We begin with the unitarity claim in Theorem 1.3. Consider the manifold

Mt D M0 [ .Œ1; t / �N/;

for some t > 1, together with the inner product .�; �/Mt
induced by the metric g when

it is restricted to Mt , namely

.v; w/Mt
D
Z

Mt

Nv ^ �w; v; w 2 �p.Mt /:

Since Ez.y; �; 0/ is in the kernel of �M � ezI , we have the equality

..�M � e NzI /E Nz.y; �; 0/; Ez.y; �; 0//Mt

D .E Nz.y; �; 0/; .�M � ezI /Ez.y; �; 0//Mt
;

which implies

.�ME Nz.y; �; 0/; Ez.y; �; 0//Mt
� .E Nz.y; �; 0/; �MEz.y; �; 0//Mt

D 0:

For any v; w 2 �p.Mt / we have the following Green’s formula (see [5])

.�Mu;w/Mt
� .u;�Mw/Mt

D
Z

@Mt

Nu ^ �dw �w ^ �d NuC ı Nu ^ �w � ıw ^ � Nu:
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If we apply this to the previous equation we getZ
N;xDt

. xE Nz..x; �/; �; 0/^ �dEz..x; �/; �; 0/

�Ez..x; �/; �; 0/^ �d xE Nz..x; �/; �; 0/
C ı xE Nz..x; �/; �; 0/^ �Ez..x; �/; �; 0/

� ıEz..x; �/; �; 0/^ � xE Nz..x; �/; �; 0// D 0:

(14)

Let us use the notation

f1;z.x/ D xbp H.1/

bp
.ez=2x/;

f2;z.x/ D xbp H.2/

bp
.ez=2x/:

Then,
Ez..x; �/; �; 0/ D f2;z� C f1;zCp;z.�/C‰z..x; �/; �; 0/;

for x > 1. By the expression of g on the cusp and Theorem 1.2, we have

dEz..x; �/; �; 0/ 
 dx ^ .@xf2;z� C @xf1;zCp;z.�//; (15a)

�dEz..x; �/; �; 0/ 
 x��p �N .@xf2;z� C @xf1;zCp;z.�//; (15b)

�Ez..x; �/; �; Q�/ 
 .�1/px��pdx ^ �N .f2;z� C f1;zCp;z.�//; (15c)

and
ıEz.�; 0/ 
 0;

where �p and bp are defined in Section 2. Hence, equation (14) becomes

lim
t!0

Z
N;xDt

. Nf2; Nz N� C Nf1; Nz xCp; Nz.�// ^ x��p �N .@xf2;z� C @xf1;zCp;z.�//

.f2;z� C f1;zCp;z.�// ^ x��p �N .@x
Nf2; Nz N� C @x

Nf1; Nz xCp; Nz.�// D 0:

(16)

Since the scattering matrix is holomorphic and unitarity is a holomorphic condition,
it is enough to prove unitarity in a nonempty open set. We therefore restrict the proof
to the physical sheet, where equations (21) and (22) of the Appendix hold. We obtain
the following asymptotic behaviors

f1;z.t / 

r
2

�
t�p=2eiez=2t e�z=4.1CO.e�z=2t�1//;

f2;z.t / 

r
2

�
t�p=2e�iez=2t e�z=4.1CO.e�z=2t�1//;

@tf1;z.t / 
 i

r
2

�
ez=4t�p=2eiez=2

.1CO.e�z=2t�1//;
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and

@tf2;z.t / 
 �i

r
2

�
ez=4t�p=2e�iez=2

.1CO.e�z=2t�1//:

If we take the limit of equation (16) as t goes to infinity and use the previous asymp-
totic expansions, we find that all the terms in equation (16) that contain exactly one
occurrence of a scattering matrix cancel out. The non mixed terms remain and are
constant in t , and thus give the relation

C4i

�
..�; �/N � .Cp; Nz.�/; Cp;z.�//N / D 0;

which proves the unitarity of Cp;z .
We may note in addition the following. Since

xH.1/

b
.�x/ D H.2/

b
. N�x/ andxH.2/

b
.�x/ D H.1/

b
. N�x/;

by Theorem 1.2, on the cusp we get

Ez..x; �/; �; 0/ D xbp H.1/

bp
.e Nz=2x/ N� C xbp H.2/

bp
.e Nz=2x/Cp;z.�/C‰z..x; �/; �; 0/;

and

E Nz..x; �/; Cp;z.�/; 0/ D xbp H.2/

bp
.e Nz=2x/Cp;z.�/C xbp H.1/

bp
.e Nz=2x/Cp; Nz B Cp;z.�/

C‰e Nz ..x; �/; Cp;z.�/; 0/:

Comparing the above equations, by using uniqueness from Theorem 1.2, we get that
Cp; Nz B Cp;z.�/ D N� .

Next we use the uniqueness ofEz.y; �; Q�/ in Theorem 1.2 to derive the functional
equation for Cp;z that forms the second part of Theorem 1.3. By Theorem 1.2, we
find on the cusp

Ez�2�i..x; �/; �; 0/ D xbp H.2/

bp
.ez=2��ix/� C xbp H.1/

bp
.ez=2��ix/Cp;z�2�i.�/

C‰z�2�i..x; �/; �; 0/:

Using equation (23) of the Appendix this gives on the cusp

Ez�2�i..x; �/; �; 0/

D �ei�bpxbp H.1/

bp
.ez=2x/�

C xbp.2 cos .�bp/H
.1/

bp
.ez=2x/C e�i�bp H.2/

bp
.ez=2x//Cp;z�2�i.�/

C ‰z�2�i..x; �/; �; 0/:



202 E. Hunsicker, N. Roidos, and A. Strohmaier

BothEz�2�i.y; �1; 0/ andEz.y; �2; 0/ are ez eigenforms for any p-forms �1 and �2.
Setting �1 D � and �2 D e�i�bpCp;z�2�i.�/, the terms in the expansion containing

H.2/

bp
.ez=2x/ coincide. By uniqueness of the expansion, we get

Ez�2�i.y; �; 0/ D Ez.y; e
�i�bpCp;z�2�i.�/; 0/:

Comparing coefficients in the two expansions gives

e�i�bpCp;z B Cp;z�2�i D 2 cos .�bp/Cp;z�2�i � ei�bp ;

which can be further simplified to the functional equation

..1C e2�ibp /id � Cp;z/ B Cp;z�2�i D e2�ibp id:

Finally, we again use the uniqueness from Theorem 1.2 to prove a commutation
relation between the scattering matrix and the Hodge star operator on N that is the
third part of Theorem 1.3. Apply Theorem 1.2 to the case of n � p forms, i.e.
.�; Q�/ 2 H n�p.N / ˚ H n�p�1.N /. Since the Hodge star operator commutes with
the Laplacian, �Ez.y; �; Q�/ is an ez-eigenform of � acting on p-forms. We assume
here that p � n�1

2
so that bp > 0. By equation 15, if � is a p-form on N then

�M Ez..x; �/; �; 0/

D .�1/px��bCbpdx ^ ŒH.2/

bp
.ez=2x/ �N � C H.1/

bp
.ez=2x/ �N Cp;z.�/�

C �M‰bp
..x; �/; �; 0/:

The form �N � is an n� p � 1-form, so by Theorem 1.2,

Ez..x; �/; 0; .�1/pebp�i �N �/

D dx ^ xbn�p�1 ŒH.2/

bn�p�1�1
.ez=2x/.�1/pebp�i �N �

C H.1/

bn�p�1�1
.ez=2x/Cn�p�1;z..�1/pebp�i �N �/�

C‰bn�p�1
..x; �/; 0; .�1/pebp�i �N �/

D .�1/px��pCbpdx ^ ŒH.2/

bp
.ez=2x/ �N �

C e2bp�iH.1/

bp
.ez=2x/Cn�p�1;z.�N �/�

C‰bn�p�1
..x; �/; 0; .�1/pebp�i �N �/:

We have used that bp � �p D 1 � bp and 1 � bn�p�1 D bp . Comparing these
expansions, we get the relation

�NCp;z.�/ D e2bp�iCn�p�1.�N�/:
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5. Outlook

Both the resolvent as well as the scattering matrix for zero energy were shown in
this paper to have meromorphic continuations to a logarithmic cover of the complex
plane. The type of singularity appearing near zero inspired the second author and
J. Müller in [15] to develop a framework to deal with resolvents near such logarithmic
branching points. This framework of Hahn-holomorphic functions fits very well with
the results of this paper and is expected to also apply to manifolds that look like cones
at infinity or even to asymptotically Euclidian manifolds.

In recent work, the first author and D. Grieser have developed a pseudodifferential
operator framework that permits the construction of parametrices for the Laplacian
on the manifolds considered in this paper in the special case when a 2 N. Whereas
the functional equation clearly simplifies in the case when a is an integer the general
formulas show even an analytic dependence on a. It is thus natural to ask if a more
general pseudodifferential operator calculus would be suitable for tackling spectral
problems in settings such as the generalized cusp and which would reflect the analytic
properties of the Hankel functions near zero. Our analysis would be an important test
case for such a calculus.

6. Appendix

6.1. The Weber transform. The Weber transform decomposes functions in an ap-
propriate domain of functions on the half-line Œ1;1/ in terms of cylinder functions
for � 2 Œ0;1/:

Gb.�; x/ D Yb.�/Jb.�x/ � Jb.�/Yb.�x/;

where as usual, Jb and Yb are the Bessel functions of order b of the first and second
kinds, respectively. The cylinder functionGb.�; x/ is a generalized �2 eigenfunction
for the operator

Bb
defD �@2

x � @x

x
C b2

x2

on the interval Œ1;1/ with Dirichlet boundary conditions at x D 1. Formally, there-
fore, if a function f on Œ1;1/ satisfying Dirichlet conditions at x D 1 is written in
terms of Bb generalized eigenfunctions as

f .x/ D
Z 1

0

g.�/Gb.�; x/ d	b.�/

for some spectral measure d	b.�/, then when we apply Bb to both sides we will get

.Bbf /.x/ D
Z 1

0

�2g.�/Gb.�; x/ d	b.�/: (17)
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That is, the transformation of f into its spectral coefficient function g should turn the
operator Bb into the multiplication operator by �2. This can be made rigorous, and
gives us the Weber transform. In this Appendix, we will briefly recall the definition
and properties of the Weber transform and its inverse. The material in this Appendix
is treated in greater detail in [25] and [22].

We first define the Weber transform for smooth compactly supported functions in
the “space” variable x 2 Œ1;1/ using the geometrically given measure x dx.

Definition 6.1 (Weber transform). Let f 2 C1
0 .1;1/. For any real b, define the

transform Wb.f / of f to be the function

Wb.f /.�/ D
Z 1

1

f .x/Gb.�; x/ x dx:

We want to determine the correct measure for the inverse transform. For this we
use the Weber integral formula, see Section 14.52 in [25]).

Theorem 6.1 (Weber). Let h 2 C1
0 .0;1/. Then

h.u/ D 1

J 2
b
.u/C Y 2

b
.u/

Z 1

1

�Z 1

0

h.�/Gb.�; x/ � d�

	
Gb.u; x/ x dx: (18)

If we set
k.u/ D .J 2

b .u/C Y 2
b .u//h.u/;

then k 2 C1
0 .0;1/ if and only if h is, and we can rewrite (18) as

k.u/ D
Z 1

1

 Z 1

0

k.�/Gb.�; x/
�

J 2
b
.�/C Y 2

b
.�/

d�

!
Gb.u; x/ x dx: (19)

Thus we define the inverse transform for k 2 C1
0 .0;1/ by:

.W �1
b k/.x/

defD
Z 1

0

k.�/Gb.�; x/ d	b.�/; (20)

where

d	b.�/ D �

J 2
b
.�/C Y 2

b
.�/

d�:

We can rewrite (19) as

Wb.W
�1
b /k D k; k 2 C1

0 .0;1/:

In [24], Titchmarsh proved the opposite composition gives the following identity.

Theorem 6.2. Let f 2 C1
0 .1;1/. Then W �1

b
Wbf D f .
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We can extend these theorems to L2 spaces to obtain the following result.

Proposition 6.3. The inverse transform extends to a bijective isometry

W �1
b W L2.Œ0;1/; d	b.�// �! L2.Œ1;1/; x dx/

with inverse Wb .

Proof. To show that the inverse transform extends to an isometry onto a subspace of
L2.Œ1;1/; x dx/, it suffices to check that it is an isometry for g; k 2 C1

0 .0;1/.
This is seen as follows:

.W �1
b g;W �1

b k/L2.Œ1;1/;xdx/

D
Z 1

1

�Z 1

0

g.�/Gb.�; x/d	b.�/

	�Z 1

0

k.u/Gb.u; x/d	b.u/

	
xdx

D
Z 1

0

g.�/

�Z 1

1

�Z 1

0

k.u/Gb.u; x/d	b.u/

	
Gb.�; x/ xdx

	
d	b.�/

by Fubini’s theorem. Now let h.u/ D k.u/=.J 2
b
.u/ C Y 2

b
.u//. This is still in

C1
0 .0;1/, so using (18) we get

.W �1
b g;W �1

b k/L2.Œ1;1/;xdx/ D
Z 1

0

g.�/.J 2
b .�/C Y 2

b .�//h.�/ � d�

D .g; k/L2.Œ0;1/;d�b.�//:

The map W �1
b

is surjective because it is an isometry and by Theorem 6.2, its image
contains the dense subset C1

0 .1;1/ � L2.Œ1;1/; x dx/.

We also have the following additional properties describing how the Weber trans-
form interacts with operators of relevance to this paper:

Lemma 6.4. (1) The domain of Bb in L2.Œ1;1/; x dx/ consists of f such that
�2Wbf 2 L2.Œ0;1/; d	b.�//. For such f , Wb.Bbf /.�/ D �2.Wbf /.�/.

(2) Let �; Q� 2 H p.N /˚H p�1.N / and ˛.x/; ˇ.x/ 2 L2 .Œ1;1/; xdx/ such that
˛ D Wbp

Q̨ and ˇ D Wbp�1�1
Q̌ for some Q̨ ; Q̌ such that�2 Q̨ 2 L2.Œ0;1/; d	bp

.�//

and �2 Q̌ 2 L2.Œ0;1/; d	bp�1�1.�//. Then

�.xbp˛� C dx ^ xbp�1ˇ Q�/
D xbp Wbp

.�2 Q̨/� C dx ^ xbp�1Wbp�1�1.�
2 Q̌/ Q�

2 L2
H .Œ1;1/� N;^pT �Œ1;1/� N/:

Proof. These follow from the local coordinate form of � and from equation (17),
which holds for g 2 C1

0 .0;1/ by bringing Bb inside the integral, and extends to
the domain of Bb by continuity.
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6.2. Asymptotics of Bessel functions. In this section, we recall identities and
asymptotics of the Bessel functions Jb and Yb , as well as the Hankel functions H .1/

b

andH .2/

b
, and their extensions to the logarithmic cover of C n f0g (see, e.g. [4]). We

have the following asymptotic estimates. First, for jzj ! 1, we have

Jb.z/ �!
r

2

z�
cos

�
z � b�

2
� �

4

�
as z ! 1 for jpv.z/j � � � ı

and

Yb.z/ �!
r

2

z�
sin

�
z � b�

2
� �

4

�
as z ! 1 for jpv.z/j � � � ı;

where pv denotes principal value. In addition, for any path to infinity along which
pv.z/ 2 Œ�� C ı; 2� � ı� we have the estimates

H
.1/

b
.z/ 


� 2
�z

�1=2

ei.z� b�
2

� �
4

/

1X
kD0

ik
ak.b/

zk
(21)

and

H
.2/

b


� 2
�z

�1=2

e�i.z� b�
2

� �
4

/

1X
kD0

.�i/k ak.b/

zk
: (22)

These imply in particular that for real � > ",

ˇ̌̌Gb.�; x/Gb.�; t /

J 2
b
.�/C Y 2

b
.�/

�
ˇ̌̌

� c."/.xt/�1=2:

We also recall that xH .1/

b
. Nz/ D H.2/

b
.z/.

For j�j ! 0, we have for real � < K

Jb.�/ �! 1

�.b C 1/

��
2

�b

.1CO.�2Cb// as � ! 0

and

Yb.�/ �! ��.b/
2

� 2
�

�b

.1CO.�2�b// as � ! 0:

Thus

ˇ̌̌Gb.�; x/Gb.�; t /

J 2
b
.�/C Y 2

b
.�/

�
ˇ̌̌

�

8̂̂̂
<
ˆ̂̂:
cb

ˇ̌̌
.xt/b �

�x
t

�b �
� t
x

�b C .xt/�b
ˇ̌̌

if b > 0;

cb j ln xjj ln t j if b D 0;

cb if b < 0;

for an appropriate constant cb > 0, x; t � 1 and � 2 Œ0; "�.
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The Bessel functions Jb and Yb have meromorphic extensions zJb and zYb to the
logarithmic cover, C, of C n f0g. If es D �, then for Im.s/ 2 Œ2�k; 2�.k C 1//,

zJb.�/ D e2k�ibJb.s/

and
zYb.�/ D e�2k�ibYb.s/C 2i sin.2k�b/

cos.�b/

sin.�b/
Jb.s/:

Also, if �1 D e�i� , then

H
.1/

b
.�z/ D 2 cos�b �H .1/

b
.z/C e�i�bH

.2/

b
.z/ (23a)

and

H
.2/

b
.�z/ D �ei�bH

.1/

b
.z/; (23b)

which hold for any b 2 C (by taking the limit when b is an integer) and any z in the
logarithmic cover (i.e. replace z with es , s 2 C). Finally, we have in case b > 0:

H.1/

�b
.z/ D ebi�H

.1/

b
.z/ and H.2/

�b
.z/ D e�bi�H

.2/

b
.z/:
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