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Rayleigh estimates for differential operators on graphs
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Abstract. We study the spectral gap, i.e. the distance between the two lowest eigenvalues for
Laplace operators on metric graphs. A universal lower estimate for the spectral gap is proven
and it is shown that it is attained if the graph is formed by just one interval. Uniqueness of the
minimizer allows to prove a geometric version of theAmbartsumian theorem derived originally
for Schrödinger operators.
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1. Introduction

Quantum graphs – coupled differential equations on metric graphs – proved to be an
important class of differential operators which can be used to model a wide variety
of physical phenomena: from wave propagation in microwave cavities to electron
transmission in nano systems. Such studies, motivated by possible applications,
intensified in the 80s; see [1], [5], [14], and [17]. It appeared that quantum graphs are
an ideal model for chaotic phenomena (see [20], [21], and [27]); their properties are
connected with nodal domains for eigenfunctions: see [2] and [4]. More about how to
define general quantum graphs and the description of their spectral and transmission
properties can be found in [19] and [26], and recent surveys [3], [22], and [23].

Differential equations on metric graphs are also interesting from purely mathe-
matical point of view and exhibit unusual spectral phenomena; see [6], [15], [24],
and [25]. Standard intuition does not always work and conventional methods lead
sometimes to unexpected results. This is shown in recent studies of the ground state
for quantum graphs carried out by P. Exner and M. Jex [12] and may be explained
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by the fact that quantum graphs possess properties of both ordinary and partial dif-
ferential equations. The present article is a nice illustration to the last statement.
More precisely, we study the spectral gap, i.e. the difference between the two lowest
eigenvalues for the Laplacian on a finite compact metric graph. The spectral gap
is an important parameter describing the stability of the corresponding dynamical
system (described by a non-stationary equation). For discrete graphs the spectral gap
is proven to be an important characterization of graph connectivity. The spectral gap
for differential operators on metric graphs has been studied by L. Friedlander, who
gave, using symmetrization method, not only a universal estimate for the spectral
gap, but universal estimates for all eigenvalues as well.

The main aim of this paper is to give an explicit geometric derivation of the
universal lower estimate for the spectral gap, originally obtained in [16]. In our
approach the graph � is compared to the “ball” in R. i.e. the interval of the same total
length as � . Surprisingly such a comparison does not give the upper estimate for the
spectral gap, but the lower one. It is natural to ask whether the graph minimizing the
spectral gap is unique, provided the total length is fixed. Answering this question we
prove a geometric analog of the classical Ambartsumian theorem. More precisely, we
prove that essentially only the graph formed by one interval gives the lowest possible
spectral gap. The geometric character of our approach allows us to prove a new
estimate for the spectral gap for balanced graphs, i.e. graphs having even valencies
of all vertices.

Acknowledgements. The authors would like to thank Gabriela Malenova for attract-
ing their interest to the problems discussed in the article. We thank Ketil Tveiten and
Rami Band for stimulating discussions and the anonymous referee for pointing out
reference [16].

2. Rayleigh estimate

Let � be a compact connected metric graph formed by a finite number of compact
edges En D Œx2n�1; x2n�; n D 1; 2; : : : ; N: Let us denote by L.�/ the correspond-
ing free Laplace operator defined on W 2

2 -functions u satisfying standard match-
ing/boundary conditions at every vertex:

8<
:
u is continuous;

the sum of normal derivatives is equal to zero:
(1)

The operatorL.�/ is self-adjoint and is completely determined by the metric graph� .
One may assume, without loss of generality, that no vertex of valency 2 is present.
Standard matching conditions for such vertices imply that the function and its first
derivative (N.B. not the normal derivative) are continuous along the vertex. Every
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such vertex can be removed and the attaching edges can be substituted by one edge
with the length equal to the sum of lengths in the two original edges. The free Laplace
operators on such graphs are unitary equivalent and there is no reason to distinguish
the corresponding graphs.

The spectrum of the free Laplacian is nonnegative and consists of an infinite
sequence of eigenvalues �j of finite multiplicity tending to C1: The lowest eigen-
value (the ground state) is zero �0 D 0 and the corresponding eigenfunction is just a
constant function on �: The multiplicity of �0 is one, since the graph is connected.
Our main interest here is the spectral gap, i.e. the distance between the first two
eigenvalues. Since �0 D 0 the spectral gap coincides with �1:

The classical Rayleigh theorem states that the maximum for the gap between
the lowest two eigenvalues of the Neumann Laplacian in a domain of fixed area is
attained if the domain is a circle. One might expect that for differential operators
on graphs the spectral gap attains its maximum for the graph being just one interval,
provided the total length is fixed. On the contrary it appears that the Laplacian on
a single interval can be used to estimate the spectral gap not from above, but from
below. In other words, the spectral gap among all graphs of the same total length is
minimal for the single interval. This fact shows once again that differential operators
on graphs possess properties of both ordinary and partial differential operators.

The following theorem provides a universal lower estimate for the spectral gap in
contrast to the Rayleigh theorem giving an upper estimate.

Theorem 1. Let � be a connected finite metric graph with total length L.�/ and let
L.�/ be the corresponding free Laplace operator defined on the domain of functions
satisfying standard matching conditions at the vertices. Consider the graph �L.�/

formed by one interval of length L.�/ and the corresponding Neumann Laplacian
L.�L.�//: The spectral gap for the Laplacian on � can be estimated as follows:1

�1.�/ � �1.�L.�// D
� �

L.�/

�2

: (2)

Proof. The first nontrivial eigenvalue of L.�/ can be calculated by minimizing the
Rayleigh quotient

�1.�/ D min
u?1

Z
�

ju0.x/j2dx
Z

�

ju.x/j2dx
; (3)

where the minimum is taken over all functions u belonging to the Sobolev space
W 1

2 on every edge and continuous on the whole �: The first eigenfunction  1 is the

1As we already mentioned this estimate is a particular case of the estimate obtained in [16].
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minimizer of (3) and therefore it satisfies

�1.�/ D

Z
�

j 0
1.x/j2dxZ

�

j 1.x/j2dx
: (4)

Consider the graph �� – a certain “double cover” of � – obtained from � by
doubling each edge. The new edges connect the same vertices as before, so that the
set of vertices is preserved. The corresponding valencies are just doubled as well.

Any function u from L2.�/ can be lifted up to a function u� 2 L2.�
�/ in a

symmetric way by assigning it the same values on any new pair of edges as on the
original edge in �:More precisely, consider any edgeEn 2 � and let us denote byE 0

n

andE 00
n the corresponding edge pair in��: It is natural to use the same parametrization

of the intervals En, E 0
n, and E 00

n :Then we have

u�jE 0

n
D u�jE 00

n
D ujEn

:

The function  �
1 obtained from  1 in this way obviously satisfies

�1.�/ D

Z
��

j �
1

0
.x/j2dx

Z
��

j �
1 .x/j2dx

;

where the numerator and denominator gain factor 2 compared to (4).
Every vertex in �� has even valency and therefore there exists a closed (Eulerian)

path P on �� coming along every edge in �� precisely one time; see [10] and [18].
The path goes through certain vertices several times, but we identify it with the loop
S2L.�/ of length 2L.�/:The loop is a metric graph and we consider the corresponding
Laplace operatorL.S2L.�//. The ground state forL.S2L.�// is again�0 D 0. Its first
nontrivial eigenvalue can be calculated by minimizing the corresponding Rayleigh
quotient. The set of trial functions consists of W 1

2 .S2L.�// functions having mean
value zero. The set of trial functions can be increased by considering all continuous
piece-wise W 1

2 functions. The corresponding minimizer will be the same as before,
since every minimizer will have equal limits of the first derivative on different sides
of possible points of discontinuity.

The function �
1 defined originally on the graph�� can be considered as a function

on the loop S2L.�/: It is a continuous piece-wise W 1
2 function with zero mean value

and therefore gives an upper estimate for the Laplacian eigenvalue on the loop

�1.S2L/ �

Z
S2L

j �
1

0
.x/j2dx

Z
S2L

j �
1 .x/j2dx

D �1.�/:
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We obtain the result by noticing that

�1.S2L/ D �1.�L/:

In other words, we have proven that the minimum of the spectral gap for metric
graphs of fixed total length is attained when the graph is formed by just one interval.

The obtained estimate can be improved if the original graph � possesses special
properties. For example, if we assume that all vertices are balanced, i.e. that they have
even valency, then there is no need to consider the “double covering” and the Euler
theorem can be applied to the graph � directly. We would like to note that balanced
vertices were considered recently by P. Exner in connection with momentum operators
on graphs [11]. It appeared that the momentum operator can be introduced on a graph
� if and only if it is balanced. Another recent example where balanced vertices play an
important role concerns asymptotics of resonances on graphs having several infinite
leads attached to a compact part. It appears that the asymptotics is of Weyl type if
and only if every external vertex (i.e. a vertex to which external leads are attached) is
not balanced; see [13], [8], and [9]. Our result shows that if we know that the graph
is balanced then the lower estimate for the spectral gap can be improved by a factor
4.

Theorem 2. Let all assumptions of Theorem 1 be satisfied. Assume in addition that
all vertices in � have even valencies. Then the spectral gap for the Laplacian on �
can be estimated as follows:

�1.�/ � �1.�L.�/=2/ D
� 2�

L.�/

�2

: (5)

Proof. The proof is almost identical to the one of Theorem 1. Let  1 be the eigen-
function corresponding to the eigenvalue �1.�/: Since the vertices in � are balanced
(the valencies are even) there exists a closed (Eulerian) path coming along each edge
in � precisely once. The length of any such path is L.�/ and the function  1 can
be identified with a unique function on SL.�/: The function  1 in L2.SL.�// is a
continuous piecewise W 1

2 function and can be used to estimate the first eigenvalue
for the corresponding Laplacian

�1.SL/ �

Z
SL

j 1
0.x/j2dx

Z
SL

j 1.x/j2dx
D �1.�/: (6)

Taking into account that �1.�L=2/ D �1.SL/ we get the estimate (5).

The second estimate shows that for balanced graphs the spectral gap is minimal
if the graph is a loop, provided the total length is preserved.



216 P. Kurasov and S. Naboko

Summing up our results we conclude that the minimum of the spectral gap is
attained for graphs having minimal branching under allowed conditions. If no con-
dition on the valency of vertices is imposed, then such graph is an interval. If one
requires that the vertices are balanced, then the minimizer is a loop.

3. Geometric version of Ambartsumian theorem

The classical Ambartsumian theorem states that the Schrödinger operator on a finite
interval has the same spectrum as the Neumann Laplacian if and only if the potential
is identically equal to zero. This theorem has been generalized for the case of graphs
in [7], where the spectrum of the Schrödinger and Laplace operators on the same
metric graph were compared. Our goal here is to compare the spectra of Laplacians
on two different graphs having the same total length. It appears that the spectral
gap for L.�/ coincides with the spectral gap for Neumann Laplacian on the single
interval of length L.�/ if an only if � itself is an interval. Remember that we agreed
to remove all vertices of valency 2 and therefore a series of chain-coupled intervals
is identified with one interval of length equal to the sum of lengths in the series. It is
interesting to note that the theorem does not require that all eigenvalues coincide
(like in the classical Ambartsumian theorem), but just the first two (the ground state
and �1).

Theorem 3. Let L.�/ be the free Laplace operator on a connected finite compact
metric graph � of total length L.�/: Assume that the first (nonzero) eigenvalue of
L.�/ coincides with the first (nonzero) eigenvalue of the Laplacian on the interval
of length L.�/

�1.�/ D �1.�L.�//I (7)

then the graph � coincides with the interval �L.�/:

Proof. Consider the functions 1 and �
1 introduced in the proof of Theorem 1. These

functions are defined on � and S2L respectively. Since �1.�/ D �1.�L.�// the
function  �

1 itself is an eigenfunction for the Laplacian on the loop. Choosing proper
parameterization of the loop this function just coincides with cos �

L
x: The function

 1 can be reconstructed from  �
1 by gluing its values on intervals from the same

pair. But the values of  �
1 cover the interval Œ�1; 1� twice, implying that there exists

just one way to glue points on the loop together to get � back. It follows that � is
essentially just one interval. It might happen that � is formally given by a series of
intervals, but then there exists just one way to glue these intervals together keeping 
continuous and having  0 D 0 at the end points. Since we agreed to remove vertices
of valency 2 the unique graph � is the interval of length L.�/:



Rayleigh estimates for differential operators on graphs 217

The last theorem implies that if the spectral gap for L.�/ coincides with the
spectral gap for the single interval of the same total length, then all other eigenvalues
coincide as well.

It is interesting to note that this theorem cannot be generalized by using higher
eigenvalues instead of the spectral gap, i.e. the first eigenvalue. The second eigenvalue
�2 for Laplacians on the interval�L and on the loop SL coincide (all nonzero eigen-
values on the loop are double degenerate). The same holds for all even eigenvalues.
Consider the graph �1 shown in Figure 1.

Figure 1. Graph �1: a loop with two intervals attached.

We assume that the length of the loop is 2=3L and the lengths of the outgrowths
are 1=6L: The eigenvalues of the Laplacian on �1 are

�0 D 0; �1 D
�2�

L

�2

; �2 D �3 D
�3�

L

�2

; : : : :

We see that the third eigenvalue coincides with the third eigenvalue for the interval
of the same length.

The theorem cannot be generalized directly to include balanced graphs. The graph
�2 shown in Figure 2 has the same spectral gap as the loop graph of the same total
length, also the first eigenvalue is not degenerate.

Figure 2. Graph �2: two loops attached.



218 P. Kurasov and S. Naboko

References

[1] J. E. Avron and L. Sadun, Adiabatic quantum transport in networks with macroscopic
components. Ann. Physics 206 (1991), 440–493. MR 1098129

[2] R. Band, G. Berkolaiko, H. Raz, and U. Smilansky, The number of nodal domains on
quantum graphs as a stability index of graph partitions. Comm. Math. Phys. 311 (2012),
815–838. MR 1244.81026 Zbl 1244.81026

[3] G. Berkolaiko, R. Carlson, S. A. Fulling, and P. Kuchment (eds.), Quantum graphs and
their applications. Proceedings of theAMS–IMS–SIAM Joint Summer Research Confer-
ence held in Snowbird, UT, June 19–23, 2005. Contemporary Mathematics, 415. Amer-
ican Mathematical Society, Providence, RI, 2006. MR 2279143 Zbl 1098.81007

[4] G. Berkolaiko, H. Raz, and U. Smilansky, Stability of nodal structures in graph eigenfunc-
tions and its relation to the nodal domain count. J. Phys. A 45 (2012), Article Id. 165203.
MR 2910498 Zbl 1242.05159

[5] M. Büttiker,Y. Imry, and M.Ya. Azbel, Quantum oscillations in one-dimensional normal-
metal rings. Phys. Rev A 30 (1984), 1982–1989.

[6] Y. Colin de Verdière, Spectres de graphes. Cours Spécialisés 4. Société Mathématiques
de France, Paris, 1998. MR 1652692 Zbl 0913.05071

[7] E. B. Davies, An Inverse spectral theorem. J. Operator Theory 69 (2013), 195–208.
MR 3029494 Zbl 1274.35410

[8] E. B. Davies, P. Exner, and J. Lipovský, Non-Weyl asymptotics for quantum graphs
with general coupling conditions. J. Phys. A 43 (2010), Article Id. 474013. MR 2738108
Zbl 1204.81078

[9] E. B. Davies and A. Pushnitski, Non-Weyl resonance asymptotics for quantum graphs.
Anal. PDE 4 (2011), 729–756. MR 2901564 Zbl 1268.34056

[10] L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Academiae Sci.
I. Petropolitanae 8 (1736), 128–140.

[11] P. Exner, Momentum operators on graphs. Proprint 2012. arXiv:1205.5941

[12] P. Exner and M. Jex, On the ground state of quantum graphs with attractive ı-coupling.
Phys. Lett. A 376 (2012), 713–717. MR 2880105 Zbl 1255.81160

[13] P. Exner and J. Lipovský, Non-Weyl resonance asymptotics for quantum graphs in a
magnetic field. Phys. Lett. A 375 (2011), 805–807. MR 2748811 Zbl 1241.81078

[14] P. Exner and P. Šeba, Free quantum motion on a branching graph. Rep. Math. Phys. 28
(1989), 7–26. MR 1109248 Zbl 0749.47038

[15] L. Friedlander, Genericity of simple eigenvalues for a metric. Israel J. Math. 146 (2005),
149–156. MR 2151598 Zbl 1077.58016

[16] L. Friedlander, Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier 55
(2005), 199–211. MR 2141695 Zbl 1074.34078

[17] N. I. Gerasimenko and B. S. Pavlov, Scattering problems on noncompact graphs. Teo-
ret. Mat. Fiz. 74 (1988), 345–359. English transl., Theoret. and Math. Phys. 74 (1988),
230–240. MR 0953298 Zbl 0659.47006

http://www.ams.org/mathscinet-getitem?mr=1098129
http://www.ams.org/mathscinet-getitem?mr=1244.81026
http://zbmath.org/?q=an:1244.81026
http://www.ams.org/mathscinet-getitem?mr=2279143
http://zbmath.org/?q=an:1098.81007
http://www.ams.org/mathscinet-getitem?mr=2910498
http://zbmath.org/?q=an:1242.05159
http://www.ams.org/mathscinet-getitem?mr=1652692
http://zbmath.org/?q=an:0913.05071
http://www.ams.org/mathscinet-getitem?mr=3029494
http://zbmath.org/?q=an:1274.35410
http://www.ams.org/mathscinet-getitem?mr=2738108
http://zbmath.org/?q=an:1204.81078
http://www.ams.org/mathscinet-getitem?mr=2901564
http://zbmath.org/?q=an:1268.34056
http://arxiv.org/abs/1205.5941
http://www.ams.org/mathscinet-getitem?mr=2880105
http://zbmath.org/?q=an:1255.81160
http://www.ams.org/mathscinet-getitem?mr=2748811
http://zbmath.org/?q=an:1241.81078
http://www.ams.org/mathscinet-getitem?mr=1109248
http://zbmath.org/?q=an:0749.47038
http://www.ams.org/mathscinet-getitem?mr=2151598
http://zbmath.org/?q=an:1077.58016
http://www.ams.org/mathscinet-getitem?mr=2141695
http://zbmath.org/?q=an:1074.34078
http://www.ams.org/mathscinet-getitem?mr=0953298
http://zbmath.org/?q=an:0659.47006


Rayleigh estimates for differential operators on graphs 219

[18] C. Hierholzer atd Ch.Wiener, Ueber die Möglichkeit, einen Linienzug ohneWiederholung
und ohne Unterbrechung zu umfahren. Math. Ann. 6 (1873), 30–32. MR 1509807

[19] V. Kostrykin and R. Schrader, Kirchoff’s rule for quantum wires. J. Phys. A 32 (1999),
595–630.

[20] T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum
graphs. Ann. Physics 274 (1999), 76–124. MR 1694731 Zbl 1036.81014

[21] T. Kottos and U. Smilansky, Quantum graphs: a simple model for chaotic scattering.
Random matrix theory. J. Phys. A 36 (2003), 3501–3524. MR 1986432 Zbl 1038.81031

[22] P. Kuchment, Quantum graphs. I. Some basic structures. Special section on quantum
graphs. Waves Random Media 14 (2004), S107–S128. MR 2042548 Zbl 1063.81058

[23] P. Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial
graphs. J. Phys. A 38 (2005), 4887–4900. MR 2148631 Zbl 1070.81062

[24] P. Kurasov, Graph Laplacians and topology. Ark. Mat. 46 (2008), 95–111. MR 2379686
Zbl 1205.47044

[25] P. Kurasov, Schrödinger operators on graphs and geometry. I. Essentially bounded po-
tentials. J. Funct. Anal. 254 (2008), 934–953. MR 2381199 Zbl 1140.81387

[26] P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs.
J. Phys. A. 35 (2002), 101–121. MR 1891815 Zbl 1012.81053

[27] U. Smilansky, Quantum chaos on discrete graphs. J. Phys. A 40 (2007), F621–F630.
MR 2369953 Zbl 1124.81024

Received November 20, 2012, revised February 13, 2013

Pavel Kurasov, Department of Mathematics, Stockholm University, 106 91 Stockholm,
Sweden

E-mail: pak@math.su.se

Sergey Naboko, Department of Mathematical Physics, St. Petersburg University, 198904
St. Petersburg, Russia

E-mail: sergey.naboko@gmail.com

http://www.ams.org/mathscinet-getitem?mr=1509807
http://www.ams.org/mathscinet-getitem?mr=1694731
http://zbmath.org/?q=an:1036.81014
http://www.ams.org/mathscinet-getitem?mr=1986432
http://zbmath.org/?q=an:1038.81031
http://www.ams.org/mathscinet-getitem?mr=2042548
http://zbmath.org/?q=an:1063.81058
http://www.ams.org/mathscinet-getitem?mr=2148631
http://zbmath.org/?q=an:1070.81062
http://www.ams.org/mathscinet-getitem?mr=2379686
http://zbmath.org/?q=an:1205.47044
http://www.ams.org/mathscinet-getitem?mr=2381199
http://zbmath.org/?q=an:1140.81387
http://www.ams.org/mathscinet-getitem?mr=1891815
http://zbmath.org/?q=an:1012.81053
http://www.ams.org/mathscinet-getitem?mr=2369953
http://zbmath.org/?q=an:1124.81024
mailto:pak@math.su.se
mailto:sergey.naboko@gmail.com

	Introduction
	Rayleigh estimate
	Geometric version of Ambartsumian theorem
	References

