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Minimal partitions for anisotropic tori

Bernard Helffer and Thomas Hoffmann-Ostenhof

Abstract. We analyze spectral minimal k-partitions for the torus. In continuation with what
we have obtained for thin annuli or thin strips on a cylinder (Neumann case), we get similar
results for anisotropic tori.
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1. Introduction

For a � b > 0, consider the Laplacian on the 2D-torus:

T .a; b/
defD S1

� a

2�

�
� S1

� b

2�

�
:

Concretely, we can also consider

R.a; b/ D .0; a/ � .0; b/; (1.1)

and the Laplacian on R.a; b/ with periodic boundary conditions but except for the
pictures this is not the most convenient point of view. It is indeed better to think of
the torus as a compact regular manifold.

We can, following [5], consider k-partitions D of the torus, i.e. families of dis-
joint open sets .D1; : : : ; Dk/ of the torus and the sequence of partition energies
Lk.T .a; b// obtained by minimizing over D of the torus some energy defined by

ƒk.D/ D max
j

�.Dj /; (1.2)

where �.Dj / is the ground state energy of the Dirichlet Laplacian in Dj . We then
define

Lk.T .a; b//
defD inf

D
ƒk.D/; (1.3)

where the infimum is over all the k-partitions of T .a; b/. A minimal k-partition is a
partition whose energy is Lk.T .a; b//. As in the case of an open set in R2, minimal
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k-partitions exist and are strong and regular (see Section 2). Without loss of generality,
we consider the case a D 1. Note that for the torus, when b < 1, �1 D 0 and that
�2 D �3 D 4�2. Hence L3 > �3 and using the results of [5] (extended to the case of
the torus) (see Theorem 2.1 in Section 2) the associated minimal 3-partition cannot
be nodal, i.e a partition obtained as the nodal domains of an eigenfunction. On the
other hand for k D 4, we see that �4 D 16�2 for b < 1

2
and that any corresponding

eigenfunction has four nodal domains. So the minimal 4-partition is nodal. Our aim
in this paper is to describe what are the minimal k-partitions. Our main result is the
following theorem.

Theorem 1.1. There exists bk > 0 such that, if b < bk , then Lk.T .1; b// D k2�2

and the corresponding minimal k-partition Dk D .D1; : : : ; Dk/ is represented in
R.1; b/ by

Di D ..i � 1/=k; i=k/ � Œ0; b/; for i D 1; : : : ; k: (1.4)

Moreover we can take bk D 2
k

for k even and bk D 1
k

for k odd.

Note that the boundaries of the Di in T .1; b/ are just k circles (see Figure 1 where
these circles are represented by vertical segments).

Figure 1. One candidate for the minimal 3-partition represented in R.1; b/.

Remark 1.2. This result is a complement to what we have obtained for thin annuli or
strips on a cylinder (in the case of the Neumann condition); see [4]. Its proof requires
new ideas which hopefully can be used for other compact surfaces. We recall that
the case of thin annuli with Dirichlet conditions is still open (k odd). For minimal
k-partitions of the torus, we will at the end of Section 2 prove that the statement of
the theorem holds for k even (the minimal partitions are nodal) and bk D 2

k
cannot be

improved (see also Section 7 for further discussion). For k even and 2
k

< b < 2
k�2

,
the k-th eigenfunction does not have k nodal domains. Hence it remains to give the
proof of our theorem for k odd (k � 3).



Minimal partitions for anisotropic tori 223

We also recall that in the case k D 3, the problem was solved in [6] for the
sphere S2 and is still open for the disk [6] and the square [1].

Acknowledgements. Thanks to P. de Soyres for his help for the pictures. The second
author had helpful discussions with Frank Morgan during the Dido conference in
Carthage 2010.

2. Reminder on the properties of minimal partitions

Let us first recall in more detail the properties of minimal k-partitions. The notion of
minimal partition was first introduced for an open set � in R2 in [5] (see references
therein). We just present the corresponding definitions for the torus (or more generally
on a compact Riemannian manifold). We recall that a k-partition on the torus is simply
a family D of k-disjoint open sets .Di/iD1;:::;k . Such a partition is called strong if
[Di D T .1; b/ and Int.Di/ D Di for any i . Attached to a strong partition, we
associate a closed set in T .1; b/, which is called the boundary set of the partition:

N.D/ D [i@Di : (2.1)

N.D/ plays the role of the nodal set (in the case of a nodal partition). We have
recalled in the introduction the notion of minimal k-partitions. As in the case of an
open set in R2, minimal k-partitions exist and are strong and regular in the following
sense. We call a partition D regular if its associated boundary set N.D/, has the
following properties.

(i) Except for finitely many distinct xi 2 N in the neighborhood of which N is the
union of �i D �.xi / smooth curves (�i � 3) with one end at xi , N is locally
diffeomorphic to a regular curve.

(ii) N has the equal angle meeting property. The xi are called the critical points and
define the set X.N /. By equal angle meeting property, we mean that the half
curves meet with equal angle at each critical point of N .

In the case of an open set we have also points yj at the boundary and we call this
set Y.N /.

Moreover, the minimal k-partitions are bipartite, i.e. can be colored by two colors
(neighboring domains have different colors), if and only if they are nodal (i.e. corre-
sponding to the nodal domains of an eigenfunction of the Laplace-Beltrami operator).

Another important statement established in [5] is the following theorem.

Theorem 2.1. A k-partition consisting of the k nodal domains of an eigenfunction
corresponding to the k-th eigenvalue �k of the Laplacian is a minimal k-partition.
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In general one could just say that by the well known Courant nodal theorem the
number of nodal domains of an eigenfunction uk associated with �k is at most k. The
eigenpair .uk ; �k/ is called Courant sharp if the number of nodal domains is exactly
k. Theorem 2.1 is moreover optimal as has been proven in [5].

Theorem 2.2. A nodal minimal k-partition corresponds necessarily to a Courant
sharp pair.

First application: proof of Theorem 1.1 in the even case. For the torus T .c; d/,
the eigenvalues are given by 4�2.m2

c2 C n2

d2 / (.m; n/ 2 N2 where N denotes the set
of the non-negative integers) with a corresponding basis given by

� .x; y/ 7! cos.2�mx
c
/ cos.2�n y

d
/,

� .x; y/ 7! cos.2�mx
c
/ sin.2�n y

d
/,

� .x; y/ 7! sin.2�mx
c
/ cos.2�n y

d
/,

� .x; y/ 7! sin.2�mx
c
/ sin.2�n y

d
/

(with suitable changes when m or n vanishes). For example, for n D 0, we get
.x; y/ 7! 1 for m D 0 and .x; y/ 7! cos.2�mx

c
/ and .x; y/ 7! sin.2�mx

c
/ for

m > 0. These eigenfunctions have .2m/ nodal domains on the torus. When k is
even and k < 2c

d
, we get the existence of an k-th eigenfunction with exactly k nodal

domains (corresponding to m D k
2

and n D 0). What will be important in our
problem is that Theorem 2.1 implies that for k even and c > d > 0 the minimal
k-partitions of T .c; d// are nodal for the case that k < 2c=d . The corresponding
energy is �2k2

c2 . Hence we have completed the proof of Theorem 1.1 for the even
case.

We also observe that for k odd (k > 1) the minimal k-partitions cannot be nodal.
We will prove that, when c

d
is small enough, the minimal k-partitions can be

lifted into a Courant sharp .2k/-partition on the covering T .2c; 2d/.The k-partition
appearing in Theorem 1.1 corresponds actually to a nodal partition on this covering
and this implies the result. The existence of this lifting will be proved in Section 5.

3. Necessary conditions

The computation of the energy of the k-partition (1.4) leads immediately to the
following upper bound for Lk .

Proposition 3.1. We have

k2�2 min.1; b�2/ � Lk.T .1; b//: (3.1)
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Using this upper-bound we can give necessary conditions on k-partitions to be
minimal.

Proposition 3.2. If b < 1
k

; there is no minimal k-partition D D .D1; : : : ; Dk/ of
the torus with one Di homeomorphic to a disk.

The proof is by contradiction. Let D D .D1; : : : ; Dk/ be a minimal k-partition
such that, say D1 is homeomorphic to a disk. Then, the pullback yD1 of D1 in the
universal covering R2 is a union of bounded components yDk;`

1 (with .k; `/ 2 Z2)

such that yDk;`
1 C .m; nb/ D yDkCm;`Cn

1 . Moreover yD0;0
1 has same area as D1 and

�.D1/ D �. yD0;0
1 /.

Looking at a lower bound for �. yD0;0
1 /, one could first think of using Faber–Krahn’s

inequality but it is better to come back to the first step of one proof of the Faber–
Krahn inequality which is based on the Steiner symmetrization (see for example the
book [7], Section 2.2, or the expository talk [9]).

We now observe that each vertical slice has a total length less than b. We now
apply the Steiner symmetrization with respect to the horizontal line y D b

2
. It is

immediate to see that the image S. yD0;0
1 / of yD0;0

1 is contained in a rectangle yRb in
the form .�`b; `b/ � .0; b/ for some `b > 0. Now it is well known that in this
symmetrization we have

�. yD0;0
1 / � �.S. yD0;0

1 //;

and by monotonicity

�.S. yD0;0
1 // � �. yRb/ D �2.b�2 C `�2

b / > �2b�2:

This leads to
�.D1/ > �2b�2; (3.2)

hence, using (3.1), to

b >
1

k
: (3.3)

This gives the contradiction.

4. Around Euler’s formula

4.1. Standard Euler’s formula. In the case of an open set � in R2, observing that
the Euler characteristic of � is 2, we have for a regular minimal k-partition D

k D b1 � b0 C 1 C
X

i

��.xi /

2
� 1

�
C 1

2

X
j

�.yj /: (4.1)
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where b0 is the number of components of @�, b1 is the number of components of
@� [ N , �.xi / and �.yj / the numbers of arcs associated with the singular points xi

of the boundary set N D N.D/ in �, respectively with the points yj of the boundary
set contained in @�. We denote by X.N / the set of the xi ’s and by Y.N / the set of
the yj ’s.

4.2. Euler’s formula on the torus and applications. In the case of a flat com-
pact surface M without boundary, it is easier to formulate Euler’s formula by us-
ing the Euler’s characteristics �.M/ of M and of the elements of the partition
D D .D1; : : : ; Dk/. The formula reads

X
`

�.D`/ D �.M/ C
X

i

��.xi /

2
� 1

�
; (4.2)

and is a direct consequence1 of the Gauss–Bonnet formula applied in each Di (see
for example [8]).

We recall that for the torus we have �.T .a; b// D 0; for the disk B we have
�.B/ D 1; for the annulus A we have �.A/ D 0; and for the sphere S2 we have
�.S2/ D 2. Hence, in the case of the torus, (4.2) becomes

kX
`D1

�.D`/ D
X

i

��.xi /

2
� 1

�
: (4.3)

Proposition 4.1. A minimal partition D D .D1; : : : ; Dk/ for which no D` is home-
omorphic to the disk satisfies X.N.D// D ;.

Proof. The assumption implies that �.D`/ � 0, for ` D 1; : : : ; k. Then we immedi-
ately get from (4.3) that �.D`/ D 0 and that X.N / D ;.

5. Lifting argument

Proposition 5.1. Suppose D D .D1; : : : ; Dk/ is a minimal k-partition on the torus
T .1; b/ for which all the Di are not homeomorphic to the disk and X.N.D// D ;.
Then D can be lifted to a bipartite .2k/- partition of T .2; 2b/.

The initial guess was that a double covering will suffice but this is not always
the case. One can construct (see Figure 2) a 3-partition of the torus without critical
point, for which it is necessary to construct a covering of order 4, T .2; 2b/ of the
torus (doubling in each direction) in order to get a bipartite 6-partition (see Figure 3).

1Thanks to P. Bérard for giving us the reference.



Minimal partitions for anisotropic tori 227

Figure 2. A 3-partition of the torus without critical point.

Figure 3. The lifted 3-partition on the four-fold covering of the torus.
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Proof of Proposition 5.1. One can classify all the possible topological types of these
partitions. The k open sets of the partition have the same topological type. Each open
set can be deformed by a retraction onto a simple closed line without self-intersection.
Hence the classification corresponds to the classification of closed lines on the torus
without self-intersection that are not homotopic to a point (the so-called torus knots).
They correspond (see [2], p. 47, Example 1.24) to lines generically denoted by p̀;q

turning p times around one horizontal circle and q times around the vertical one,
with p and q mutually prime (except if q D 0 , p D 1 or p D 1, q D 0). Figure 2
corresponds to p D 1, q D 1. The candidate for the minimal 3-partition when b is
small corresponds to p D 1, q D 0. Another example is given in the top picture in
Figure 4, which represents a closed line on the torus with p D 3 and q D 2.

We go to a suitable double covering so that either p or q is multiplied by 2; so the
greatest common divisor D.p; q/ D 2. There are two cases:

� pq odd or

� pq even (with p or q odd).

In the first case we choose T .2; 2b/ and in the second case the minimal choice
is T .1; 2b/ or T .2; b/ but T .2; 2b/ is also suitable, the important point being that
D.2p; 2q/ D 2. On the covering T .2; 2b/, the pull-back of our closed line p̀;q in
T .1; b/ is the union of two distinct closed lines in T .2; 2b/. Coming back to the
k-partition, the lifting to T .2; 2b/ leads to a .2k/-partition. This ends the proof of
the proposition.

Remark 5.2. When p and q are not mutually prime, our constructions lead, as
explained in [2] to D.p; q/ connected closed lines, where D.p; q/ is the greatest
common divisor of p and q. The bottom picture in Figure 4 corresponds to the case
p D 4 and q D 2.

To understand the point, take the closure of R.p; q/ (see (1.1)) and consider the
intersection of the lines of equation y D �x C c (c 2 Z) with R.p; q/. If we project
on the corresponding torus and look at the number of connected components obtained
on the torus, then we observe that this number is D.p; q/ (see the bottom picture in
Figure 4 which has two components). When D.p; q/ D 1, we get a single closed
line on the torus. After a suitable dilation, we can then come back to T .1; b/.

When D.p; q/ ¤ 1, it is not possible to find a continuous closed line on the torus
without self-intersection with winding pair .p; q/.

6. End of the proof of Theorem 1.1

We deduce from Propositions 3.2, 4.1, and 5.1 that, if b < 1
k

(k odd), then any
minimal k-partition can be lifted into a .2k/-partition of T .2; 2b/ with the same
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Figure 4. (p=3, q=2) and (p=4, q=2).

energy Lk.T .1; b//. We need to look at the spectrum of the Laplacian on the 4-
covering T .2; 2b/ and to determine under which condition the .2k/-th eigenvalue
is Courant sharp. The eigenvalues are given by �2.`2 C m2=b2/. If b < 1

k
, the

.2k/� th eigenvalue corresponds to m D 0 and ` D k, and we are in a Courant sharp
situation. Theorem 2.1 implies that

�2k2 D Lk.T .2; 2b// � Lk.T .1; b//:

Having in mind (3.1), this ends the proof of the theorem in the odd case.

Remark 6.1. The ideas in the proof might lead to results concerning minimal parti-
tions for other “thin” compact surfaces.
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7. More on the Courant sharpness of eigenfunctions

for the case that b2 is irrational

We recall (see after Theorem 2.2) that on T .1; b/, the associated eigenvalues are given
by

�m;n.1; b/ D 4�2
�
m2 C n2

b2

�
: (7.1)

If m; n > 0 and if b2 is irrational, then we have multiplicity 4. Following some ideas
which we presented already in [5] for rectangles and the disk we have the following
result.

Theorem 7.1. Suppose b2 is irrational. If min.m; n/ � 1, then there is no Courant
sharp pair .u; �m;n/.

The proof is based on the following proposition.

Proposition 7.2. For m; n > 0 any eigenfunction u corresponding to �m;n has at
most 4mn nodal domains. Moreover the only eigenfunctions with exactly 4mn nodal
domains have the form cos.2�mx C �1/ cos.2�ny

b
C �2/ for some constants �1 and

�2. The other eigenfunctions have 2D.m; n/ nodal domains, where D.m; n/ is the
greatest common divisor of m and n.

Proof of the proposition. We first observe that a general eigenfunction associated
with �m;n can be written in the form

u D 	
�

cos 2�mx cos.2�n
y

b
C �1/ C � sin 2�mx cos

�
2�n

y

b
C �2

��
; (7.2)

with 	 ¤ 0.
Note that it is only here that we use the fact that b2 is irrational. By rotation, we

can reduce to the case when �2 D 0 and we write � D �1.
Then after dilation and rotation, the proof is based on the following lemma.

Lemma 7.3. Except when � D 0 or � � �
2

mod.�/, the nodal set of the function

u�;�
defD cos 2�x cos.2�y C �/ C � sin 2�x sin 2�y

has no critical zero.

Let us look at the critical zeroes of this functions. They should satisfy

cos 2�x cos.2�y C �/ C � sin 2�x sin 2�y D 0;

� sin 2�x cos.2�y C �/ C � cos 2�x sin 2�y D 0;

� cos 2�x sin.2�y C �/ C � sin 2�x cos 2�y D 0:
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We assume � ¤ 0. Suppose that this system has a solution. The two first equations
imply cos.2�y C �/ D 0 and sin 2�y D 0. This implies cos � D 0.

Hence, when cos � ¤ 0, our function u�;� has no critical zero.

Lemma 7.4. For � ¤ 0, �2 D 0, and cos � ¤ 0, the nodal partition of the function
u of (7.2) has 2D.m; n/ components.

In each connected component of the set A
defD f.�; �/ j � ¤ 0; cos � ¤ 0g in

R2 the number of nodal domains is constant. Hence it is enough to determine this
number for one specific pair .�; �/ in each component of A. It is enough to consider
� D ˙1 and � � 0.mod�/, where the computation of the number of nodal domains
is immediate (see Remark 5.2) and equal to 2D.m; n/.

Note that when cos � D 0, we get a product

u�;�
defD sin 2�ny.� sin 2�mx ˙ cos 2�mx/

which has 4mn nodal domains.

Remark 7.5. This is not clear for the case that b2 is rational, since then higher
multiplicities could occur and we do not know how to exclude the possibility of a
higher number of nodal domains in higher dimensional eigenspaces.

Proof of Theorem 7.1. We give two alternative proofs (the second is geometric and
inspired by arguments developed in [5]).

1. If inf.n; m/ � 1, then �m;n D �k.n;m/ with k.m; n/ � 4mn C 2m C 2n � 2.
This is obtained by just adding the multiplicities of the eigenvalues �m0;n0 with m0 �
m, n0 � n, .m0; n0/ ¤ .m; n/. On the other hand, Proposition 7.2 says that any
eigenfunction has at most 4mn domains (if inf.m; n/ � 1). Hence it cannot be
Courant sharp.

2. According to Proposition 7.2 it is enough to consider eigenfunctions in the form
sin.2�mx C �1/ sin.2�ny

b
C �2/ and to show that it cannot correspond to a Courant

sharp case. Consider for simplicity the situation that m D 1 D n and �2 D �1 D 0.
Then (up to a rotation) the eigenfunction is given by u1;1 D sin 2�x sin.2�y=b/.
The zeros are given by the zeros of the sines. In particular we can for instance
consider the zero given by y D b=2 and y D 0. Consider the P1 D f.x; y/ 2
T .1; b/ j 0 < y < b=2g and P2 D f.x; y/ 2 T .1; b/ j b=2 < y < bg and consider
Ni D f.x; y/ 2 xPi j .x; y/ 2 N.u1;1.x; y//g, where N.u/ denotes the zeroset of
u. Suppose we have a minimal partition corresponding to this eigenfunction. Then
we can rotate for instance N1, so that the zeros x D 0; x D 1=2 are shifted but keep
N2 fixed. The associated partition will still have the same energy. But this cannot
correspond to a minimal partition since the equal angle property does not hold; see
also [5]. This argument extends to arbitrary m; n > 0 and .�1; �2/.
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Remark 7.6. There exists 0 < b0 < 1 sufficiently close to 1, so that, for each irra-
tional b2 satisfying b0 < b < 1, only the first and the second eigenvalue together with
their eigenfunctions are Courant sharp pairs. This follows by counting. Remember
b < 1. The eigenvalues all have multiplicity 2 or 4. Suppose n D 0 then um;0 has
2m nodal domains. So Courant sharpness can occur only for �m;0 D �2m. This will
not be the case if j1 � bj is small since then �0;n will be eventually be below �m;0

hence �m;0 > �2m. The case m; n � 1 has been treated above.
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