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On the distribution of perturbations
of propagated Schrödinger eigenfunctions

Yaiza Canzani, Dmitry Jakobson, and John Toth1

Abstract. Let .M; g0/ be a compact Riemannian manifold of dimension n. Let P0.h/
defD

�h2�g C V be the semiclassical Schrödinger operator for h 2 .0; h0�, and let E be a regular
value of its principal symbol. Write 'h for an L2-normalized eigenfunction of P0.h/ with
eigenvalueE.h/ 2 ŒE�o.1/;ECo.1/�. We consider a smooth family of metric perturbations
gu of g0 with u in the product space Bk."/ D .�"; "/k � Rk satisfying the admissibility
condition in Definition 1. For Pu.h/

defD �h2�gu
C V and small jt j > 0, we define the

propagated perturbed eigenfunctions

'
.u/

h;t

defD e� i
h

tPu.h/'h:

They appear in the mathematical description of the Loschmidt echo effect in physics.
Motivated by random wave conjectures in quantum chaos, we study the distribution of the

real part of the perturbed eigenfunctions regarded as random variables

Re.'.�/

h;t
.x// W Bk."/ �! R; x 2 M:

In particular, under an admissibility condition on the metric when .M;g/ is chaotic, we compute
the h ! 0C asymptotics of the variance VarŒRe.'.�/

h;t
.x//� and show that the odd moments

vanish as h ! 0C as long as x is not on the generalized caustic set where V.x/ D E:

Mathematics Subject Classification (2010). 35P20, 58J37, 58J40, 58J50, 58J51, 81Q15,
81Q50.

Keywords. Eigenfunctions, Schrödinger operators, Loschmidt echo, random wave conjecture,
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1. Introduction

Let .M; g0/ be a compact Riemannian manifold of dimensionnwith Laplace operator

�g0
D ıg0

d W C1.M/ �! C1.M/;

1Yaiza Canzani was supported by Schulich Fellowship. Dmitry Jakobson and John Toth were supported
by NSERC, FQRNT and Dawson Fellowships.
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and let V 2 C1.M/ denote a smooth potential over M . For h 2 .0; h0�, consider
the Schrödinger operator

P0.h/
defD �h2�g0

C V; (1)

and let E be a regular value of its principal symbol

p0.x; �/
defD j�j2g0.x/ C V.x/:

Write 'h for an L2-normalized eigenfunction of P.h/ with eigenvalue contained
in a shrinking interval centered at E; that is, P0.h/'h D E.h/'h and E.h/ 2
ŒE � o.1/; E C o.1/�.

Consider a smooth family of perturbations gu of the reference metric g0 with u
in the product space Bk."/ D .�"; "/k � Rk . The number of parameters k � n

is chosen sufficiently large (but finite) so that the admissibility condition on the
perturbation gu in Definition 1 is satisfied. We introduce the associated perturbed
Schrödinger operators

Pu.h/
defD �h2�gu

C V; (2)

with principal symbol

pu W T �M �! T �M; pu.x; �/
defD j�j2gu

C V.x/: (3)

Fix t ¤ 0 small, independent ofh, and define the perturbed propagated eigenfunctions

'
.u/

h;t

defD e� i
h

tPu.h/'h: (4)

The perturbations satisfy '.u/

h;t
D ˆ

.u/

h
.t / where ˆ.u/

h
.t / denotes the solution at time

t of the Schrödinger equation

8̂<
:̂
�
ih
@

@s
� Pu.h/

�
ˆ

.u/

h
.s/ D 0;

ˆ
.u/

h
.0/ D 'h:

The aim of this paper is to study the h ! 0C asymptotics of the distribution of
'

.u/

h;t
;where the latter are regarded as random variables in u 2 Bk."/. Specifically, we

compute the variance and all odd moments in the semiclassical limith ! 0C. To state
our results, we need to define an admissibility condition on the metric perturbations.
Here and throughout the rest of the manuscript we adopt the notation ıu˛

D @u˛

ˇ̌
uD0

.
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Definition 1 (admissibility condition). Let gu with u 2 Bk."/ be a C1 metric
perturbation of a reference metric g0. We say that gu is admissible at x 2 M if the
following conditions are satisfied.

A) There exists an n-tuple of coordinates of u, u0 D .u1; : : : ; un/, for which the
Hessian matrices du0d�.pu.x; �// are invertible for all u 2 Bk."/ and all � 2
T �

x M with .x; �/ 2 p�1
0 .E � c"; E C c"/ where the constant c D c."/ > 0 is

defined in (13).

B) There exists a parameter coordinate u˛ , a neighborhood W of x, and a function
a 2 C1.W ;Rnf0g/ such that ıu˛

g
�1

u .x/ D a.x/g
�1

0 .x/ for x 2 W :

Remark 1. If gu is an admissible at x, then there exists a neighborhood U � M of
x on which condition (A) holds.

We show in Section 5 that the admissibility condition in Definition 1 is satisfied by
a large class of metric perturbations and we also give a geometric interpretation of the
admissibility condition. The tangent space atg0 to the space of all Riemannian metrics
over M can be decomposed into the direct sum of the space of symmetric 2-tensors
with the fixed volume form dvolg0

, and the space of symmetric 2-tensors obtained
by pointwise multiplication of g0. We show that the notion of being admissible is
intrinsically related to having n D dimM volume preserving directions in which the
metric g0 is perturbed (this is condition (A)) and to having one direction in which the
metric can be conformally perturbed (this is condition (B)).

As a model example, suppose one wishes to perturb the flat metric g0 on the
2-torus T 2. Let x0 2 T 2 and in a neighborhood W of x0 consider any perturbation
gu with u D .u1; u2; u3; u

00/ 2 Bk."/, k � 3, of the form

g�1
u .x/ D g�1

0 .x/C h.u1;u2;u3/.x/C hu00.x/; x 2 W ;

where

h.u1;u2;u3/.x/

D u1

�
a1.x/ b1.x/

b1.x/ �a1.x/

�
C u2

�
a2.x/ b2.x/

b2.x/ �a2.x/

�
C u3

�
a3.x/ 0

0 a3.x/

�

and hu00 is any symmetric 2-tensor depending on the left-out variables u00 2 Bk�3."/

and higher powers of u1; u2 and u3. The perturbation gu is admissible at x0 provided
" is small, a2; a2; a3 2 C1.W/, a3 ¤ 0 in W , and the vector fields .a1.x0/; b1.x0//

and .a2.x0/; b2.x0// are linearly independent. We remark that this admissibility
condition is satisfied on open subsets in the space of all C1 metric perturbations
on T 2.

We next describe the sense in which the eigenfunctions '.u/

h;t
are regarded as

random variables in the deformation parameters u 2 Bk."/. Consider a cut-off



286 Y. Canzani, D. Jakobson, and J. Toth

function � 2 C1
0 .Bk."/I Œ0; 1�/ with �.u/ D 1 for u 2 Bk."=2/: We introduce the

normalization constant

ck."/
defD
�Z

Bk."/

�2.u/du

��1

; (5)

and define the probability measure � on Bk."/ by

d�.u/
defD ck."/�

2.u/du:

The introduction of the cut-off function in the definition of the probability measure is to
ensure that all the integrands we consider, regarded as functions of u, are compactly
supported in the interior of the ball, Bk."/. This is crucial for the h-microlocal
characterization of the variance in Proposition 5.

We view the real part of the perturbed eigenfunctions '.u/

h;t
defined in (4) as random

variables
Re.'.�/

h;t
.x// W Bk."/ �! R

depending on the spatial parameters x 2 M . Since one can study the distribution of
a random variable such as Re.'.�/

h;t
.x// by understanding its moments, we dedicate

this paper to study the asymptotics of the variance VarŒRe.'.�/
h;t
.x//� and of the odd

moments EŒRe.'.�/
h;t
.x//�p in the semiclassical limit „ ! 0C.

Remark 2. Throughout the paper, we write that a condition holds locally uniformly
in a set U whenever it holds uniformly on compact subsets of U .

Our first result holds for general Riemannian manifolds .M; g0/.

Theorem 1. Let .M; g0/ be a compact Riemannian manifold of dimension n and let
E be a regular value of p0. Suppose gu is a perturbation of g0 with u 2 Bk."/ � Rk

that is admissible at every x 2 M . Fix a positive integer Qp 2 ZC: Then, for " > 0

and jt j > 0 sufficiently small, depending on .M; g0/ and Qp, there is h0.t; "/ > 0 such
that for h 2 .0; h0.t; "/� and x … V �1.E/,

(1) There exists a constant C > 0, independent of h, with

VarŒRe.'.�/
h;t
.x//� � C:

(2) For p 2 ZC odd with p � Qp,

EŒRe.'.�/
h;t
.x//�p D O.h1/:

These estimates are locally uniform for x … V �1.E/:
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Remark 3. We note that if gu is admissible for all x 2 M;we prove that as h ! 0C;Z
Bk."/

j'.u/

h;t
.x/j2d�.u/ D O.1/;

provided " > 0 and jt j > 0 are sufficiently small. Moreover, this estimate is uniform
in x 2 M: However, the statement of the corresponding result for the variance in
Theorem 1 (1) requires the asymptotic vanishing of the mean (the first moment) for
which we require the condition that x … V �1.E/ (see (8)).

The assumption x … V �1.E/ in Theorem 1 is used in the integration by parts
argument in (33) to estimate the odd moments. At present, we do not know whether
the estimates for odd moments away from these generalized turning points extend
uniformly to all x 2 M:This assumption is vacuous in the homogeneous case V D 0.

If the metric perturbation gu is admissible, there exist c > 0 and an n-tuple of u-
coordinates denoted byu0 D .u1; : : : ; un/ 2 Bn."/ for which jdu0d�p.u0;u00/.x; �/j ¤
0 at u D 0 provided .x; �/ 2 p�1

0 .E � c"; E C c"/. Using this, we show via an
Implicit Function Theorem argument that one can locally parametrize u0 as a smooth
function of .y; �/ 2 p�1

0 .E/, u0 D u0.y; �/ (see (42)). We write u00 2 Bk�n."/ for
the omitted parameters and the dependence of u0.y; �/ on .u00; x/ as parameters is
understood. Furthermore, without loss of generality, we assume that the coordinates
of u are ordered so that u D .u0; u00/.

Let Hpu
be the Hamiltonian vector field of pu 2 C1.T �M/ and denote by

Gs
u W S�

gu
M �! S�

gu
M

the bicharacteristic flow associated to Hpu
at time s. In the case where the manifold

.M; g0/ has an ergodic geodesic flow

Gs
0 W S�M �! S�M;

we get asymptotic results for the variance provided we consider quantum ergodic
sequences of eigenfunctions (for a precise definition see (9)). We continue to write �
for the cut-off function in the definition of the probability measure and ck."/ for the
corresponding normalizing factor (5).

Theorem 2. Let .M; g0/ be a compact Riemannian manifold of dimension n and let
E be a regular value of p0. Assume the geodesic flow on p�1

0 .E/ is ergodic and
that f'hgh2.0;h0� is a quantum ergodic sequence of L2-normalized eigenfunctions
of P0.h/. Suppose gu with u 2 Bk."/ is a perturbation of g0 that is admissible at
x … V �1.E/. Fix a positive integer Qp 2 ZC: Then, for jt j > 0 and " > 0 sufficiently
small, depending on .M; g0/ and Qp,
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(1) we have

lim
h!0C

VarŒRe.'.�/
h;t
.x//� D

Z
Bk�n."/

ˇk
t;x.u

00/du00;

where
ˇk

t;x W Bk�n."/ �! R

is defined by

ˇk
t;x.u

00/

defD ck."/.1C O.t //

jt jnjp�1
0 .E/j

�
Z

p�1
0

.E/

j det.dx�G
�t
.u0.y;�/;u00/

.x; �//j
j det.du0d�p.u0.y;�/;u00/.x; �//j�

2.u0.y; �/; u00/d!E .y; �/

(6)

and u0 D u0.y; �/ is defined in (42);

(2) for p 2 ZC odd with p � Qp,

lim
h!0C

EŒRe.'.�/
h;t
.x//�p D 0:

1.1. Motivation. We proceed to describe two ideas that motivate our work. We first
explain how the underlying ideas in our approach are motivated by the random wave
conjecture. We then relate our results to the physics notion of Loschmidt echo.

Random wave conjecture. In 1977, M. Berry conjectured that the real and imag-
inary parts of the eigenfunctions 'h in the chaotic case resemble random waves;
see [1]. It is also believed that the eigenfunctions 'h of quantum mixing systems
behave locally as independent Gaussian variables as h ! 0; see for example the
discussion in [9] and references therein. One of the common issues is to define a
probability model where the random functions mimic the chaotic eigenfunctions.
This is the role we give to the perturbations '.u/

h;t
.

Loschmidt echo. A natural way of measuring the noise affecting a given system is
the Loschmidt echo. The idea behind this concept is to measure the sensitivity of
quantum evolution to perturbations, by propagating forward an initial state  using
the unperturbed Hamiltonian p0, and propagating it back via the perturbed one pu

after time t . Thus, the objects of interest in this case are the states e
it
h

Pu.h/e� it
h

P0.h/ 

and the Loschmidt Echo, MLE.t /, is defined to be the return probability to the initial
state:

MLE.t / D jhe� it
h

Pu.h/e
it
h

P0.h/ ; ij2:
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e
� it

h
P0.h/

�������! e
it
h

Pu.h/

������!

Figure 1. Illustration of the state of particle initially placed in the center of a square billiard
with an irregular array of 10 circular scatterers with initial momentum pointing to the left [3].

We are interested in the case when the initial state  is an eigenfunction,  D 'h.
In this simpler case MLE.t / is called the survival probability [16] and we have

e
it
h

Pu.h/e� it
h

P0.h/'h D e� itE.h/
h '

.u/

h;t
:

To be precise, for an initial state 'h the Loschmidt Echo is simply

MLE.t / D jh'.u/

h;t
; 'hij2:

As the definition shows, the fidelityMLE.t / can be interpreted as the decaying overlap
between the evolution '.u/

h;t
and the unperturbed evolution 'h; see [11], [10], and [13].

In recent work [8], Eswarathasan and Toth have proved related results for magnetic
deformations of the Hamiltonian p0.x; �/ D j�j2

g0.x/
CV.x/. We extend their upper

bound results to large families of metric deformations. In addition, we characterize the
asymptotic results in terms of variance and show that all odd moments are negligible.
Although we do not have a rigorous argument at the moment, we hope that by further
developing the methods of the present paper, we will be able to compute the higher
even moments limh!0C EŒRe.'.�/

h;t
.x//�2p for p � 2; and compare them with the

Gaussian prediction of the random wave model. We plan to return to this question
elsewhere.

1.2. Outline of the paper In Section 2 we introduce the background material and
notation from semiclassical analysis that we shall use to prove our results. We first
show that the perturbations are semiclassically localized in p�1

0 .E/ and then explain

how to microlocally cut off the propagator e� it
h

Pu.h/ to obtain a localized approxi-
mation of '.u/

h;t
.

In Section 3, we study the odd moments of Re.'.�/
h;t
.x//. Provided the metric

perturbation satisfies part (B) of the admissibility condition at x� 2 M , we prove in
Lemma 4 that for fixed Qp 2 ZC and `; q 2 ZC with 1 � ` � Qp and 2q � Qp,Z

Bk."/

.'
.u/

h;t
.x//`j'.u/

h;t
.x/j2qd�.u/ D O.h1/ as h ! 0C;



290 Y. Canzani, D. Jakobson, and J. Toth

for " > 0 and jt j > 0 sufficiently small depending on .M; g0/ and Qp. The error is
locally uniform in x 2 W \ .V �1.E//c where W is the open neighborhood of x�
given by part (B) of the admissibility condition.

Using Lemma 4 and the binomial expansion for .'C N'/p D .2Re '/p , we prove
that for p 2 ZC odd,

EŒRe.'.�/
h;t
.x//�p D O.h1/; (7)

locally uniformly in W \ .V �1.E//c .

In Section 4 we study the variance of Re.'.�/
h;t
.x//: Provided the perturbation is

admissible at x 2 .V �1.E//c , the case p D 1 in (7) shows that our variables are
semiclassically centered in the sense

EŒRe.'.�/
h;t
.x//� D O.h1/:

Therefore,

VarŒRe.'.�/
h;t
.x//� D

Z
Bk."/

j'.u/

h;t
.x/j2d�.u/C O.h1/: (8)

It follows that studying the variance is equivalent to understanding the behavior of the
right hand side in the previous equality. In Proposition 5 we compute the asymptotics
of the RHS in (8) and consequently prove Theorems 1 and 2.

In Section 5 we show that there always exist large families of admissible perturba-
tions. We show that the notion of admissibility is related to having sufficiently many
volume preserving directions in which the metric tensor g0 is perturbed (this is Con-
dition A), and to having at least one direction in which g0 is conformally perturbed
(this is Condition B).

Remark 4. We note here that there is an easy consequence of Theorem 1 (see also
Remark 3) that concerns restriction bounds of '.u/

h;t
to smooth submanifolds H � M

under the assumption that the family gu is admissible for all x 2 M: Indeed, since
our upper bounds are then uniform in x 2 M (see Remark 3), by integrating over
H and applying Fubini, one gets that for h 2 .0; h0�; there exist a constant C D
C.H; h0/ > 0 with Z

Bk."/

Z
H

j'.u/

h;t
.s/j2d	H .s/d�.u/ � C:

By the Tschebyshev inequality, it then follows that for any sequence !.h/ D o.1/ as
h ! 0C; there is a measurable D.h/ � Bk."/ with limh!0C

jD.h/j
jBk."/j D 1 such that

for u 2 D.h/; Z
H

j'.u/

h;t
.s/j2d	H .s/ D O.j!.h/j�1/:

Therefore, the restriction bounds for most perturbed eigenfunctions are much smaller
than the universal bounds for

R
H

j'.0/

h;t
.s/j2d	H .s/ in [2], Theorem 3, and tend to be

consistent with the ergodic case; see [5] and [15].
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2. Background and Notation

In this section we introduce some background material on eigenfunction localization
and semiclassically cut off propagators. Most of this is standard in semiclassical
analysis, but we include it for the benefit of the reader. We refer to [17] for further
details.

Let M be a compact Riemannian manifold of dimension n. We work with the
class of semiclassical symbols

S
m;k
cl .T �M/

defD
n
a 2 C1.T �M � .0; h0�/ W a.x; �I h/ �h!0C h�m

1X
j D1

aj .x; �/h
j

with j@˛
x@

ˇ

�
aj .x; �/j � C˛;ˇ .1C j�j2/k�jˇj

2

o
:

For a 2 Sm;k
cl .T �M/, we consider the Schwartz kernel inM �M locally of the form

Oph.a/.x; y/ D 1

.2�h/n

Z
Rn

e
i
h

hx�y;�ia.x; �I h/d�;

for .x; y/ 2 U �V whereU; V � Rn are local coordinate charts. The corresponding
space of pseudodifferential operators is defined to be

‰
m;k
cl .M/

defD fOph.a/ W a 2 Sm;k
cl .T �M/g:

Let N be another compact n-dimensional Riemannian manifold. We also consider
the class of Fourier integral operators Im;k

cl .M �N; 
/with Schwartz kernels defined
in the form

Fh.x; y/ D 1

.2�h/n

Z
Rn

e
i
h

'.x;y;�/a.x; y; �I h/d�

for .x; y/ 2 U � V where U; V � Rn are local coordinate charts and

a 2 C1
0 .U � V � Rn � .0; h0�/

with

a.x; y; �I h/ �h!0C h�m

1X
j D1

aj .x; y; �/h
j :
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Here ' denotes a non-degenerate phase function in the sense of Hörmander [4],
Definition (2.3.10), and 
 is an immersed Lagrangian submanifold of T �M � T �M
with


 D f.x; dx'; y;�dy'/ W d�'.x; y; �/ D 0g � T �M � T �N:
Finally, throughout the manuscript we say that a sequence of L2-normalized eigen-
functions f'hj

gj �1 of P0.hj / with P0.hj /'hj
D E.hj /'hj

and E.hj / D E C o.1/

is quantum ergodic (QE) if for any

a.x; �; h/ �
1X

kD0

ak.x; �/h
k 2 S0;0

cl .T
�M � Œ0; h0//

we have

hOphj
.a/'hj

; 'hj
i ����!

j !1

Z
p�1

0
.E/

a0.x; �/d!E .x; �/ (9)

where, d!E is normalized Liouville measure on p�1
0 .E/:

2.1. Eigenfunction localization. Fix t ¤ 0 and let E be a regular value of p0:

Then, for u 2 Bk."/ we introduce the cut-off functions on T �M

�
.u/
E .x; �/ D �0.p0.G

�t
u .x; �// �E/; (10)

where �0 2 C1
0 .Œ�"; "�I Œ0; 1�/ equal to 1 on Œ�"=2; "=2�: Consequently,

supp�.0/
E � p�1

0 .ŒE � "; E C "�/: (11)

Since �.u/
E .x; �/ D �0.p0.x; �/�ECO.juj//, the support of �.u/

E remains localized
near the hypersurface p�1

0 .E/ for all u 2 Bk."/ (see (13) below for precise control)

and that '.u/

h;t
is a normalized eigenfunction of the operator

Qu.h/
defD e� i

h
tPu.h/P0.h/e

i
h

tPu.h/ 2 ‰0;2
cl .M/

with eigenvalueE.h/. By Egorov’sTheoremQu.h/ D Oph.p0BG�t
u /COL2!L2.h/,

and since E.h/ 2 ŒE � o.1/; E C o.1/�, it follows that .Qu.h/ � E/'
.u/

h;t
D o.1/.

Using that Qu.h/ is h-elliptic off .p0 B G�t
u /�1.E/, a parametric construction [17],

Theorem 6.4, gives k'.u/

h;t
�Oph.�

.u/
E /'

.u/

h;t
kL2 D O.h1/ and thereforeWFh.'

.u/

h;t
/ �

.p0 B G�t
u /�1.E/. Fix t ¤ 0 and " > 0 small. Given x 2 M , there is a coordinate

chart U with x 2 U and such that �.G�t
u .x; �// � U for u 2 Bk."/: Then, since

p0.G
�t
0 .x; �// D p0.x; �/; by Taylor expansion around u D 0;

p0.G
�t
u .x; �// D p0.x; �/CR1.x; �Iu; t/ (12)

where
jR1.x; �; uI t /j �

p
k max

u2Bk."/
kdu.p0 B G�t

u /.x; �/kjuj:
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Here, given a arbitrary matrix A D .aij / we write

kAk defD max
i;j

jaij j:

For t ¤ 0 fixed, we define the constant

c
defD k max

u2Bk."/
max

.p0BG�t
u /�1.E/

kdu.p0 BG�t
u /.x; �/k: (13)

It then follows from (12) that

.p0 BG�t
u /�1.E/ � p�1

0 .E � ckuk; E C ckuk// (14)

for c > 0 in (13) and u 2 Bk."/: Consequently, WFh.'
.u/

h;t
/ � p�1

0 .E � c"; EC c"/

and by a Sobolev lemma argument one can also prove k'.u/

h;t
�Oph.�

.u/
E /'

.u/

h;t
kC k D

OC k .h1/. It follows that

'
.u/

h;t
D Oph.�

.u/
E / B e� it

h
Pu.h/ BOph.�

.0/
E /'h C OC k .h

1/; (15)

and from (14) and (11), with c > 0 in (13),

supp�.u/
E � p�1

0 .ŒE � " � ckuk; E C "C ckuk�/: (16)

2.2. Semiclassically cut off propagators. Motivated by the approximation (15),
for h 2 .0; h0�, u 2 Bk."/ and jt j > 0 small, we define the semiclassically cut off
Fourier integral operators Wt;u.h/ 2 I 0;�1

cl .M �M;
u;t/;

Wt;u.h/
defD Oph.�

.u/
E / B e� it

h
Pu.h/ BOph.�

.0/
E /; (17)

with immersed Lagrangian,


u;t D f.x; �I y; �/ W .x; �/ D G�t
u .y; �/; .y; �/ 2 supp�.0/

E g � T �M � T �M:

We note that since G�t
u is then a symplectomorphism that is close to the iden-

tity, there exists a local generating function S.s; u; �I x/ with .x; dxS.s; u; �I x// D
G�t

u .d�S.s; u; �I x; �/; �/ for s close to t . It follows that


u;t D f.x; dxS.t; u; �I x/I d�S.t; u; �I x/; �/ 2 supp�.u/
E � supp�.0/

E g
� T �M � T �M:

(18)

The generating functionS.s; u; �I x/ solves the Hamilton-Jacobi initial value problem8<
:
@sS.s; u; �I x/C pu.x; dxS.s; u; �I x// D 0;

S.0; u; �I x/ D hx; �i;
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and therefore, a Taylor expansion in s around s D 0 gives

S.s; u; �I x/ D hx; �i � spu.x; �/C O.s2/: (19)

Given local coordinate charts U; V � Rn consider the local phase function 't 2
C1.V � Bk."/ � Rn/,

't .y; u; �I x/ defD S.t; u; �I x/� hy; �i: (20)

The Schwartz kernel of Wt;u.h/ is locally of the form

Wt;u.h/.x; y/ D 1

.2�h/n

Z
Rn

e
i
h

't .y;u;�Ix/at .u; y; �I x; h/d� CKx.y; u/; (21)

where j@˛
x@

ˇ
yKx.y; u/j D O˛;ˇ .h

1/ uniformly for .y; x; u/ 2 V � U � Bk."/:

The amplitude at .u; y; �I x; h/ � P1
j D0 at;j .u; y; �I x/hj with

at;j .u; �; �I �/ 2 C1.Bk."/; C1
0 .V � Rn � U//:

From (14) it is clear that the support of �.u/
E remains localized near the hypersurface

p�1
0 .E/ for all u 2 Bk."/I indeed, with the constant c > 0 in (13),

supp.at .u; �; �I �; h//� f.y; �; x/ 2 T �U � V W
.y; �/ 2 supp�.0/

E � p�1
0 .E � "; E C "/;

y D d�S.t; u; �I x/ D x C Ou.t /g:
(22)

We note that since t ¤ 0 is a fixed small parameter and u 2 Bk."/ with " > 0

small, it follows from (22) that the amplitudes at;j .u; �; �I �/ are supported near the set
f.y; �; y/ 2 T �U � U g: Similarly, the Lagrangian manifolds 
t;u � T �M � T �M
are localized near the diagonal �T �M �T �M D f.x; �I x; �/ 2 T �M � T �M g:

3. Odd moments

The purpose of this section is to show that provided the metric g0 is conformally
deformed in at least one direction, its odd moments are negligible for general geodesic
flows. Throughout this section we continue to assume that .M; g0/ is a compact
Riemannian manifold and E is a regular value of p0. We prove

Proposition 3. Let gu with u 2 Bk."/ be a perturbation of g0 that satisfies part (B)
of the admissibility condition at x� 2 M . Fix Qp 2 ZC and suppose p 2 ZC is odd
with p � Qp: Then, for " > 0 and jt j > 0 sufficiently small depending on .M; g0/

and Qp;
EŒRe.'.�/

h;t
.x//�p D O.h1/ as h ! 0C; (23)

locally uniformly for x 2 W \ .V �1.E//c : Here W is the open neighborhood of x�
given by part (B) of the admissibility condition.
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Proof. Given p � Qp odd,

EŒRe.'.�/
h;t
.x//�p D

Z
Bk."/

.Re.'.u/

h;t
.x///pd�.u/;

and for any complex ' the binomial expansion of .' C N'/p D .2Re '/p for p odd
gives

.Re '/p D 1

2p

X
0�j <

p
2

�
p

j

�
'p�2j j'j2j C 1

2p

X
p
2 <j �p

�
p

j

�
N'2j �p j'j2.p�j /: (24)

Therefore, to prove Proposition 3, it suffices to show thatZ
Bk."/

.'
.u/

h;t
.x//`j'.u/

h;t
.x/j2qd�.u/ D O.h1/; 1 � ` � Qp; 2q � Qp; (25)

locally uniformly in x 2 W \ .V �1.E//c as h ! 0C.
Since the proof of (25) is somewhat technical, we prove it separately as Lemma 4.

Combining (25) with the binomial expansion (24) completes the proof.

We have reduced the proof of Proposition 3 to establishing the following Lemma.

Lemma 4. Let gu with u 2 Bk."/ be a perturbation of g0 that satisfies part (B) of
the admissibility condition at x� 2 M . Fix Qp 2 ZC and suppose `; q 2 ZC with
1 � ` � Qp and 2q � Qp. Then, for " > 0 and jt j > 0 sufficiently small depending on
.M; g0/ and Qp,Z

Bk."/

.'
.u/

h;t
.x//`j'.u/

h;t
.x/j2qd�.u/ D O.h1/ as h ! 0C;

locally uniformly for x 2 W \ .V �1.E//c . Here W is the open neighborhood of x�
given by part (B) of the admissibility condition.

Proof. We identify the product manifold M .`C2q/ with M .`/ � M .q/ � M .q/ and
write

. Qy; Qz; Qz0/ defD .y.1/; : : : ; y.`/; z.1/; : : : ; z.q/; z0.1/; : : : ; z0.q// 2 V .`C2q/

for the local coordinates.
By assumption, there exists a 2 C1.M/ so that ıu˛

g�1
u .x/ D a.x/g�1

0 .x/ with
a.x/ ¤ 0 for all x 2 W . Let us continue to write � for the cut-off function appear-
ing in the definition of the probability measure �, and ck."/ for the corresponding
normalizing factor in (5). Since from (15), '.u/

h;t
.x/ D ŒWt;u.h/'h�.x/ C O.h1/;
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writing Wt;u.x; y/ for the kernel of Wt;u we getZ
Bk."/

.'
.u/

h;t
.x//`j'.u/

h;t
.x/j2qd�.u/

D
Z

Bk."/

.ŒWt;u.h/'h�.x//
`jŒWt;u.h/'h�.x/j2qd�.u/C O.h1/

D ck."/

Z
Bk."/

Z
M `C2q

B
Œ`;q�
t;u . Qy; Qz; Qz0I x; h/'h.y

.i//'h.z
.j //'h.z0.j //

� �2.u/d Qyd Qzd Qz0duC O.h1/;

(26)

where B Œ`;q�
t;u 2 C1.V .`C2q/ � U � Œ0; h0// is defined by the formula

B
Œ`;q�
t;u . Qy; Qz; Qz0I x; h/ defD

Y
1�i�`

1�j �q

Wt;u.x; y
.i//Wt;u.x; z

.j //Wt;u.x; z0.j //:

From (21) we deduce the kernel expansion

B
Œ`;q�
t;u . Qy; Qz; Qz0I x; h/

D 1

.2�h/n.2qC`/

Z
Rnq

Z
Rnq

Z
Rn`

e
i
h

ˆ
Œ`;q�
t . Qy;Qz;Qz0;u;Q�; Q�; Q�0Ix/

� cŒ`;q�
t .u; Qy; Qz; Qz0; Q�; Q�; Q�0I x; h/d Q�d Q�d Q�0

CKx. Qy; Qz; Qz0; u/;

(27)

for ˆŒ`;q�
t , cŒ`;q� and Kx as follows.

(1) The phase function ˆŒ`;q�
t is defined by

ˆ
Œ`;q�
t . Qy; Qz; Qz0; u; Q�; Q�; Q�0I x/

defD
X̀
j D1

't .y
.j /; u; �.j /I x/C

qX
j D1

't .z
.j /; u; �.j /I x/ � 't .z

0.j /; u; �0.j /I x/;

(28)

where 't is given in (20).

(2) The amplitude cŒ`;q�
t satisfies

c
Œ`;q�
t .u; Qy; Qz; Qz0; Q�; Q�; Q�0I x; h/ �h!0C

1X
j D0

c
Œ`;q�
t;j .u; Qy; Qz; Qz0; Q�; Q�; Q�0I x/hj
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with cŒ`;q�
t;j .u; �; �I �/ 2 C1.Bk."/; C1

0 .V .`C2q/ �Rn.`C2q/ �U// forU; V � Rn

local coordinate charts as in (20). Moreover,

supp.cŒ`;q�
t .u; Qy; Qz; Qz0; �I x; h//

� f. Q�; Q�; Q�0/ W .x; �.i//; .x; �.j //; .x; �0.j /
/ 2 p�1

0 .E � c"; E C c"/;

x 2 U; i � `; j � qg
� Rn.`C2q/:

(29)

(3) The residual operator Kx satisfies

j@˛
x@

ˇ

. Qy;Qz;Qz0/
Kx. Qy; Qz; Qz0; u/j D O˛;ˇ .h

1/

locally uniformly in . Qy; Qz; Qz0; u/ 2 V .`C2q/ � Bk."/:

Claim. For " > 0 and jt j > 0 sufficiently small, there exists C D C.t; "; E; g0/ > 0

such that for . Q�; Q�; Q�0/ 2 supp.cŒ`;q�
t .u; Qy; Qz; Qz0; �I x; h//,

j@u˛
ˆ

Œ`;q�
t . Qy; Qz; Qz0; u; Q�; Q� 0; Q�; Q�0I x/j � C > 0; (30)

where this bound holds locally uniformly for . Qy; Qz; Qz0/ 2 M .`C2q/, u 2 Bk."/, and
x 2 W \ .V �1.E//c .

To prove this claim we first observe that since ıu˛
g

�1

u .x/ D a.x/g
�1

0 .x/ for x 2 W ,

ıu˛
pu.x; �/ D a.x/j�j2g0.x/: (31)

Also, from the Taylor expansion of the generating function (19) around s D 0,
together with (20), we know that for x 2 W

't .y; u; �I x/ D hx � y; �i � tpu.x; �/C O.t2/; (32)

where in (32), the error O.t2/ depends on Qp: Combining (28) with (32) and (31), for
x 2 W we get

@u˛
ˆ

Œ`;q�
t . Qy; Qz; Qz0; u; Q�; Q�; Q�0I x/ D

D �ta.x/
�X̀

iD1

j�.i/j2g0.x/ C
qX

j D1

j�.j /j2g0.x/ �
qX

j D1

j�0.j /j2g0.x/ C O.juj/
�

C O.t2/:

From the support conditions on the amplitude cŒl;q�
t in (29), we have that

j�.j /j2g0.x/ C V.x/ D E C O."/;

j�.j /j2g0.x/ C V.x/ D E C O."/;
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and

j�0.j /j2g0.x/ C V.x/ D E C O."/;

for i � ` and j � q. Therefore, for x 2 W ,

@u˛
ˆ

Œ`;q�
t . Qy; Qz; Qz0; u; Q�; Q�; Q�0I x/

D �ta.x/.`.E � V.x//C .`C 2q C 1/O."//C O.t2/;
(33)

and so

j@u˛
ˆ

Œ`;q�
t . Qy; Qz; Qz0; u; Q�; Q� 0; Q�; Q�0I x/j

� jta.x/j � j`.E � V.x//C 2 QpO."/j C O.t2/;
(34)

uniformly in all variables. Given a compact subsetK � W \ .V �1.E//c ; for x 2 K;
one has jV.x/ � Ej � 1

C0
> 0 for some constant C0 > 0: Since a.x/ ¤ 0 for all

x 2 W ; from (34) it follows that for such a given compact set K and number of odd
moments Qp 2 ZC; we can choose " > 0 and t ¤ 0 sufficiently small (depending on
Qp andK) so that the RHS of (34) is uniformly bounded away from zero. We conclude

that the claim in (30) holds for x 2 W \ .V �1.E//c.

We then use the operator
�

h

i@u˛ ˆ
Œ`;q�
t

�
@

@u˛
; to repeatedly integrate by parts in (26)

and obtain
B

Œ`;q�
t;u .h/. Qy; Qz; Qz0I x; h/ D O.h1/

locally uniformly for . Qy; Qz; Qz0/ 2 M .`C2q/, u 2 Bk."/ and x 2 W \ .V �1.E//c .
We note that there are no boundary term contributions arising from the integration by
parts since �.u/ D 0 for u 2 @Bk."/. From (26) it follows thatZ

Bk."/

.'
.u/

h;t
.x//` j'.u/

h;t
.x/j2qd�.u/ D O.h1/;

locally uniformly in x 2 W \ .V �1.E//c .

4. Variance

As explained in the Introduction (see (8)), provided the perturbation is admissible at
x 2 .V �1.E//c, the case p D 1 in Proposition 3 shows that our random variables
are semiclassically centered in the sense

EŒRe.'.�/
h;t
.x//� D O.h1/:

Therefore,

VarŒRe.'.�/
h;t
.x//� D

Z
Bk."/

j'.u/

h;t
.x/j2d�.u/C O.h1/:
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It then follows that studying the variance is equivalent to understanding the behavior
of the right hand side in the previous equality. We compute the asymptotics of the
RHS in the next Proposition.

Proposition 5. Let gu be admissible at x� 2 M and let U be the neighborhood of
x� given in Remark 1. For " > 0 and jt j > 0 sufficiently small, there exist a choice of
coordinates u00 2 Bk�n."/ and corresponding operators At;x;u00.h/ 2 ‰

0;�1
cl .M/

defined for all .x; u00/ 2 U � Bk�n."/; such thatZ
Bk."/

j'.u/

h;t
.x/j2d�.u/ D ck."/

Z
Bk�n."/

hAt;x;u00.h/'„; '„iL2.M /du
00 C O.h1/:

(35)

Proof. By Remark 1, we choose U � M to be an open neighborhood of x� so that
the admissibility condition (A) holds on U . That is, given the constant c > 0 in (13)
and some subset of n coordinates of u, which we denote u0 2 Bn."/, so that the
matrix

du0d�.pu.x; �// is invertible for .x; �/ 2 p�1
0 .E � c"; E C c"/;

.x; u/ 2 U � Bk."/:
(36)

We write u00 2 Bk�n."/ for the omitted variables and assume that the coordinates of
u are ordered so that u D .u0; u00/.

Write Wt;u.h/.x; y/ for the Schwartz kernel ofWt;u.h/: Then, for u00 2 Bk�n."/

and x 2 U; we define a new family of operators

yWt;x;u00.h/ W C1.M/ �! C1
0 .Bn."//; (37)

with Schwartz kernels

yWt;x;u00.h/.u0; y/ defD �.u/ �Wt;u.h/.x; y/; u D .u0; u00/ 2 Bk."/;

where we continue to write � for the cut-off function appearing in the definition of
the probability measure � in (5). By (15),

�.u/'
.u/

h;t
.x/ D �.u/ŒWt;u.h/'h�.x/C O.h1/ D Œ yWt;x;u00.h/'h�.u

0/C O.h1/;

and so,Z
Bk."/

j'.u/

h;t
.x/j2d�.u/

D ck."/

Z
Bk."/

j yWt;x;u00.h/'„.u0/j2duC O.h1/

D ck."/

Z
Bk�n."/

h yWt;x;u00.h/'„; yWt;x;u00.h/'„iL2.Bn."//du
00 C O.h1/:

(38)
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From (21), the Schwartz kernel of yWt;x;u00.h/ is given by

yWt;x;u00.h/.u0; y/

D 1

.2�h/n

Z
Rn

e
i
h

't .y;u0;u00;�Ix/at .u; y; �I x; h/�.u/d� CKx.y; u/;
(39)

where j@˛
x@

ˇ
yKx.y; u/j D O˛;ˇ .h

1/ uniformly in .x; y; u/ 2 U � V � Bk."/ for
" > 0 small, where U; V � Rn are local coordinate charts with U � U: The
amplitude

at .u; y; �I x; h/ �
1X

j D0

aj .u; y; �I x/hj

with
aj .u; �; �I �/ 2 C1.Bk."/; C1

0 .V � Rn � U//:
Moreover, we recall from (22) that

supp.at .u; �; �I �; h//� f.y; �; x/ 2 T �U � V W .x; �/ 2 p�1
0 .E � c"; E C c"/;

y D d�S.t; u; �I x/ D x C Ou.t /g:
By the same argument presented in [8], Proposition 4.1, it can be shown that for

x 2 U; " > 0 and jt j ¤ 0 small enough, yWt;x;u00 .h/ 2 I
0;�1
cl .M � Bn."/I
t;x;u00/

with


t;x;u00

defD f.u0; du0S.t; u; �I x//; d�S.t; u; �I x/; �/ W .d�S.t; u; �I x/; �/ 2 supp�.0/
E g

� T �Bn."/ � T �M:
(40)

where u
defD .u0; u00/ 2 Bk."/ for " small, and x 2 U . It remains to show that 
t;x;u00

is a canonical graph.

We recall that if .d�S.t; u; �I x/; �/ 2 supp�.0/
E for u 2 Bk."/ then one gets

that .x; dxS.t; u; �I x// 2 supp�.u/
E � p�1

0 ..E � .c C 1/"; E C .c C 1/"// with
c > 0 as in (13). By (40) and the admissibility assumption (B) it follows that by
possibly shrinking t ¤ 0, we can ensure that there is a constant C0 > 0; such that the
non-degeneracy condition

det.du0d�'t .y; u
0; u00; �I x// D jt jn.det.du0d�pu.x; �//C O.t2// � C0jt jn; (41)

holds uniformly for .u; y; �/ with .y; �/ 2 supp�.0
E and y D d�S.t; u; �I x/: Now,

for u00 fixed and x 2 U , consider the map

.u0; y; �/ 7�! d�'t .y; u
0; u00; �I x/; .u0; � I y; �/ 2 
t;x;u00 :
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We claim that due to the non-degeneracy condition (41), the Lagrangian (40) is a
canonical graph. Indeed, equation (41) allows us to apply the Implicit Function
Theorem and locally write u0 D u0.y; �/ satisfying

u0 D u0.y; �/ when d�'t .y; u
0; u00; �I x/ D 0; (42)

for x 2 U . Then, taking into account that for x 2 U
d�'t .y; u

0; u00; �I x/ D 0 when y D d�S.t; u
0; u00; �I x/;

we write .y; �/ 2 V � Rn as local parametrizing variables for 
t;x;u00 as in (40) and
get


t;x;u00 D f.u0.y; �/; du0S.t; u0.y; �/; u00; �I x/I y; �/ W
.y; �/ 2 supp�.0/

E ; y D d�S.t; u
0; u00; �I x/g: (43)

For u00 2 Bk�n."/ and x 2 U define the operators

At;x;u00.h/ W C1.M/ �! C1.M/; At;x;u00.h/
defD . yWt;x;u00.h//� B . yWt;x;u00.h//:

(44)
Since yWt;x;u00.h/ 2 I

0;�1
cl .M � Bn."/I
t;x;u00/ and the immersed Lagrangian


t;x;u00 is a canonical graph, the operator

At;x;u00.h/ 2 ‰0;�1
cl .M/;

for x 2 U and u00 2 Bk�n."/. From (38) and (44) it follows thatZ
Bk."/

j'.u/

h;t
.x/j2d�.u/ D ck."/

Z
Bk�n."/

hAt;x;u00 .h/'„; '„iL2.M /du
00 C O.h1/:

4.1. Proof of Theorem 1. Since M is compact we choose a finite covering

M �
N[

j D1

Vxj

where xj 2 M and Vxj
D Wxj

\ Uxj
. Here Wxj

is given by part (B) of the
admissibility condition at xj , and Uxj

is given in Remark 1.

Fix j 2 f1; : : : ; N g and let x 2 Vxj
. To prove the first part of Theorem 1 we note

that Proposition 5 gives At;x;u00.h/ 2 ‰
0;�1
cl .M/: Thus, by L2 boundedness there

exists a constant Cj D Cj ."; t; E; g0/ > 0 such that

hAt;x;u00.h/'„; '„iL2.M / � Cj
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uniformly in .x; u00; h/ 2 Vxj
� Bk�n."/ � .0; h0�. Therefore, from (8) and (35)

one can choose a positive constant C > 0 so that the first part of the statement of
Theorem 1 holds uniformly for x 2 K; where K � .V �1.E//c is any compact
subset.

To prove the second part of Theorem 1 regarding the odd moments we simply
apply Proposition 3 in each neighborhood Vxj

.

4.2. Proof of Theorem 2. From Proposition 5 and equation (8),

lim
h!0C

VarŒRe.'.�/
h;t
.x//� D lim

h!0C

Z
Bk."/

j'.u/

h;t
.x/j2d�.u/

D lim
h!0C

ck."/

Z
Bk�n."/

hAt;x;u00.h/'„; '„iL2.M /du
00:

(45)

Since .'h/ is a quantum ergodic sequence,

lim
h!0C

hAt;x;u00.h/'„; '„iL2.M /

D 1

jp�1
0 .E/j

Z
p�1

0
.E/

	0.At;x;u00.h//.y; �/d!E.y; �/:
(46)

In addition, following the same argument presented in Corollary 4.2 of [8], the
principal symbol can be locally written as

	0.At;x;u00.h//.y; �/

D j�.u0;u00/
E .x; �/j2 j det.dx�G

�t
.u0;u00/

.x; �//j
j det.du0d�S.t; x; �Iu0; u00//j�

2.u0; u00/

D j�.u0;u00/
E .x; �/j2 j det.dx�G

�t
.u0;u00/

.x; �//j
jt jnj det.du0d�p.u0;u00/.x; �//j.1C O.t //�2.u0; u00/

(47)

for u0 D u0.y; �/parametrizing the Lagrangian
t;x;u00 regarded as a canonical graph.
The first statement of Theorem 2 then follows by combining (45), (46) and the ex-
pression for the principal symbol (47).

The second statement of Theorem 2 about odd moments is a direct application of
the second part of Theorem 1.

5. Admissible perturbations

In this section we study the geometry behind the admissibility condition and show that
perturbations satisfying such conditions always exist. It is clear that one can always
have perturbations satisfying part (B) of the admissibility condition. We therefore
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focus on proving the existence of metric perturbations satisfying condition (A). The
symbol pu W T �M ! T �M defined in (3) has the form

pu.x; �/ D
nX

i;j D1

gij
u .x/�i�j C V.x/:

Write M for the space of Riemannian metrics on M . For each coordinate us of
u define the symmetric tensor hus

defD ıus
g�1

u and write in local coordinates

hus
D hij

us
dxi ˝ dxj ; hij

us

defD ıus
gij

u : (48)

It is straight forward to check that @us
@�i
pu.x; �/

ˇ̌
uD0

D 2
Pn

lD1 h
li
us
.x/�l : Thereby,

a metric perturbation satisfies condition (A) provided there exist c > 0 and an n-tuple
u0 D .u1; : : : ; un/ of coordinates of u so that for all .x; �/ 2 p�1

0 .E � c"; E C
c"/, the matrix .

Pn
lD1 h

li
uj
.x/�l /i;j D1;:::;n is invertible. By definition, the notion of

admissibility depends on the direction, inside the space of symmetric tensors, in which
g0 is deformed. In what follows we show that the admissibility condition is directly
related to performing the deformation gu in sufficiently many volume preserving
directions, described below.

Let P denote the multiplicative group of positive smooth functions onM , which
we refer to as pointwise conformal deformations. P acts on M by multiplication

P � M �! M; .p; g/ 7�! pg:

Given g0 2 M, the orbit of g0 under P denoted by P � g0, is a closed submanifold
of M with tangent space at g0 given by

Tg0
.P � g0/ D fv 2 S2.M/ W v D fg0; f 2 C1.M;R/g: (49)

Let � be a volume form on M and define

N�
defD fg 2 M W � D �gg

where �g denotes the Riemannian volume measure associated to g. Pointwise con-
formal transformations g0 7! fg0 multiply the volume form �g0

.x/ at a point x by
.f .x//n=2. Transverse to the orbit ofg0 by the action of pointwise conformal transfor-
mations is the sub manifold N�g0

of all metrics g onM with the fixed volume form;
equivalently, the determinant det.gij .x// is preserved for all x. It is well-known that
the tangent space to the space of symmetric matrices with fixed determinant con-
sists of symmetric traceless matrices. Accordingly, it can be shown (cf. [6]) that the
tangent space Tg0

N�g0
is given by

Tg0
.N�g0

/ D fv 2 S2.M/ W .trg0
v/.x/ D 0; x 2 M g: (50)
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For every metric g0 2 M the space of symmetric tensors has the pointwise orthogonal
splitting

Tg0
M D Tg0

.N�g0
/˚ Tg0

.P � g0/

where every v 2 S2.M/ is decomposed as

v D .v � trg0
v

n
g0/C 1

n
.trg0

v/g0:

Let gu be a metric deformation of g0; we continue to write hus
D ıus

g�1
u .

Working in geodesic normal coordinates at x�, it is not difficult to show that volume-
preserving deformations are characterized by the condition trg�1

0
.hus

.x// D 0 for all
s. We shall show below that the admissibility condition holds for such deformations.

5.1. Surfaces. On surfaces, we claim that perturbations gu that have two linearly
independent u-derivatives in the volume preserving directions are admissible.

Proposition 6. Let .M; g0/ be a compact Riemannian surface. Let E be a regular
value of p0. Suppose gu with u 2 Bk."/ is a perturbation of g0 such that there exist
two coordinates u0 D .u1; u2/ of u for which hu1

.x/ and hu2
.x/, as defined in (48),

are linearly independent tensors with trg�1
0
.hu1

/.x/ D trg�1
0
.hu2

/.x/ D 0 at some

x … V �1.E/. Then, for " small enough, the perturbation gu satisfies part (A) of the
admissibility condition at x.

Proof. Let x� 2 M be such that x belongs to a geodesic ball cantered at x�, and
consider normal coordinates at x�. In these coordinates, g0ij

.x/ D ıij C O.jxj2/
for x being at a small distance jxj from x�. Therefore, since trg�1

0
.hus

/.x/ D 0 for

s D 1; 2, we have h11
us
.x/ D �h22

us
.x/C O.jxj2/ for s D 1; 2. It is straight forward

to check

det
� 2X

j D1

hij
us
.x/�j

�
s;iD1;2

D j�j2g0.x/

 
det

 
h11

u1
.x/ h11

u2
.x/

h12
u1
.x/ h12

u2
.x/

!
C O.jxj2/

!
:

Since we are only interested in what happens when j�j2
g0.x/

CV.x/ D EC O."/,
the result follows from the assumption V.x/ ¤ E and the fact that hu1

.x/ and hu2
.x/

are linearly independent tensors.

5.2. Manifolds. In what follows we show that on an n-dimensional manifold we
can always have admissible perturbations.
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Let M be an n-dimensional compact manifold and fix x� 2 M . Consider a
geodesic normal coordinate system at x�. We shall consider deformations of the
reference metric g0 that, as in the surface case, preserve the volume form. Infinitesi-
mally, as explained in (50), the corresponding quadratic form is given by a traceless
symmetric matrix. The space of traceless symmetric tensors atx 2 M/ has dimension

n
defD n2 C n � 2

2
; (51)

and the basis of the space of such forms is given by

�2
1 � �2

i ; 2 � i � nI and �j �k ; 1 � j < k � n;

for � D .�1; : : : ; �n/ 2 T �
x M ; we denote these polynomials evaluated at x D x� by

qj .�/ for j D 1; : : : ; n.

Note that since we are using normal coordinates centered at x� then j�j2
g0.x�/

DP
i �

2
i , and remark that the polynomials qj .�/ form a basis in the space of spherical

harmonics of degree two on the sphere Sn�1
x�

D f� 2 T �
x�
M W j�jg0.x�/ D 1g with the

round metric gSn�1
x�

. In the proof we shall use a computation showing that the round

metric on Sn�1
x�

is an extremal for the second eigenvalue of the Laplacian in the space
of nearby Riemannian metrics. We refer to [7], [12], and [14] and references therein
for a description of general theory of such metrics.

Below we summarize several well-known facts about extremal metrics. Let g0

be an extremal metric on a compact d -dimensional manifold N . Then

a) if .N; g0/ is a homogeneous space (e.g. a round Sn�1), then the metric g0 is
extremal for all eigenvalues of the Laplacian �g0

;

b) if g0 is extremal for an eigenvalue � (of multiplicity m), and '1; : : : ; 'm form
an orthonormal basis of the corresponding eigenspace E�, then

mX
j D1

d'j ˝ d'j D .�=2/g0: (52)

We remark that one can show that m > d in (52).

Claim 1. Assume that f'1; : : : ; 'mg satisfy (52). Then the (Jacobian) matrix

@.'1; : : : ; 'm/

@.x1; : : : ; xd /

has the maximal possible rank d .

Proof. Assume that the rank is less than d . Than the quadratic form
Pm

j D1 d'j ˝d'j

cannot be positive-definite; however by assumption it is proportional to the positive-
definite Riemannian metric g0 on N . Contradiction finishes the proof.
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The existence of admissible perturbations will follow from Claim 1.

We shall show that a metric perturbation is admissible if it is of the form

g�1
u .x/ D g�1

0 .x/C
�nX

j D1

ujhj .x/; (53)

where hj .x/.�; �/ are homogeneous of degree 2 in the � variables and are required
to satisfy the following conditions:

(a) hj .x�/.�; �/ D qj .�/; 1 � j � n;

(b) hj are C 2 tensors.

Proposition 7. Let a perturbation of gu of g0 have the form (53) with hj satisfying
conditions (a) and (b). Then there exist " > 0and ı > 0 such that for allu 2 Bn."/ the
perturbation gu satisfies part (A) of the admissibility condition at x for x 2 B.x�; ı/.

Proof. Clearly, @uj
.j�jgu.x�// D qj .�/, and hence the j -th column (say) of the mixed

hessian matrix d�dupu.x�; �/ corresponds to the gradient d�qj .�/.
Now, since the sphere Sn�1

x�
is a homogeneous space, the round metric gSn�1

x�
is

a critical metric for the corresponding eigenvalue functional g 7! �.g/ � Vol.g/2=n,
where � denotes the second positive eigenvalue (without multiplicity) of the Lapla-
cian.

By (52), see [7], [12], and [14], the L2-normalized basis of the eigenspace E.�/
(which can be chosen as fq1.�/; : : : ; q�n

.�/g in our case) satisfies

�nX
j D1

d�qj ˝ d�qj D c�gSn�1
x�

; c ¤ 0:

By Claim 1, the subspace spanned by d�q1.�/; : : : ; d�q�n
.�/ has the full dimension

n � 1 in T �
�
.Sn�1

x�
/ at any point � 2 Sn�1

x�
. This shows that fd�qj .�/ W 1 � j � ng

span the full T �
�
.Sn�1

x�
/, which proves the required non-degeneracy condition.

Next, since hj areC 2 in .x; �/ by condition (b), the rank of d�dupu.x; �/ changes
continuously in x and so is equal to n�1 for x 2 B.x�; ı/ onM for some ı > 0.
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