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Sharp spectral bounds on starlike domains
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Abstract. We prove sharp bounds on eigenvalues of the Laplacian that complement the Faber–
Krahn and Luttinger inequalities. In particular, we prove that the ball maximizes the first
eigenvalue and minimizes the spectral zeta function and heat trace. The normalization on the
domain incorporates volume and a computable geometric factor that measures the deviation of
the domain from roundness, in terms of moment of inertia and a support functional introduced
by Pólya and Szegő.

Additional functionals handled by our method include finite sums and products of eigen-
values. The results hold on convex and starlike domains, and for Dirichlet, Neumann or Robin
boundary conditions.
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1. Introduction

How do eigenvalues of the Laplacian depend on the shape of the domain? We will
obtain new quantitative estimates on the eigenvalues in terms of explicitly computable
geometric functionals.

Write �j for the Dirichlet eigenvalues of the Laplacian on the bounded domain �

in Rd ; d � 2, with corresponding L2-orthonormal eigenfunctions uj , so that

8<
:

��uj D �j uj in �

uj D 0 on @�

and

0 < �1 < �2 � �3 � : : : :

These eigenvalues represent physical quantities such as frequencies of vibration, rates
of decay to equilibrium in diffusion, and energy levels of quantum particles.

The problem of understanding how eigenvalues are affected by the shape of the
domain, and of identifying domains that extremize eigenvalues, is long-standing
and difficult. Numerous monographs and survey articles summarize the state of
knowledge in euclidean space [3], [4], [7], [19], [23], and [24]. Important results
have been obtained on closed surfaces too, for example, see [22], and [39].

Let us first describe our main result in the special case of 2 dimensions (Theo-
rem 1.1). Later we extend to all dimensions (Theorem 3.1) and to Neumann and Robin
analogues (Theorem 3.3 and Theorem 3.5), and finally to the sloshing eigenvalues
(Section 13).

Consider a starlike domain as in Figure 1 and define scale-invariant geometric
factors

G0 D 1

2�

Z
@�

1

x � N.x/
ds.x/ and G1 D 2�Iorigin

A2
; (1)

where N.x/ is the outward unit normal vector, A is the area of �, and

Iorigin D
Z

�

jxj2 dA

is the polar moment of inertia about the origin. Note that x � N.x/ > 0 because the
domain is starlike. In higher dimensions we will later define G0 and G1 differently,
although the definitions will reduce to (1) in 2 dimensions.
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x
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0

Figure 1. A starlike domain with outer normal N.x/.

Let G D maxfG0; G1g. Then G � 1 for all starlike domains with equality
for centered disks, by Lemma 2.2 below. Thus one may regard the value of G as
measuring the deviation of the domain from roundness. This deviation can arise in
two ways: a highly oscillatory starlike boundary would make G0 large, while an
elongated boundary (such as an eccentric ellipse) would make G1 large.

Now we can state the main result in the plane. We show that the disk maximizes
eigenvalues of the Laplacian under suitable geometric scaling.

Theorem 1.1 (Dirichlet in 2 dimensions). Suppose the function R.�/ is 2�-periodic,
positive, and Lipschitz continuous, and consider the starlike domain

� D frei� W 0 � r < R.�/g:
Let n � 1.

Then each of the following scale invariant eigenvalue functionals achieves its
maximum value when the domain � is a centered disk:

�1A=G0; �2A=G0; .�s
1 C � � � C �s

n/1=s A=G;
n
p

�1�2 � � � �n A=G;

for each exponent 0 < s � 1. Further, if ˆ W RC ! R is concave and increasing
then

Pn
j D1 ˆ.�j A=G/ is maximal when � is a disk centered at the origin

Hence the partial sums of the spectral zeta function and trace of the heat kernel
are minimal when � is a centered disk. That is, the functionals

nX
j D1

.�j A=G/s and
nX

j D1

exp.��j At=G/

attain their smallest value when � is a centered disk, for each s < 0 < t .

The theorem is better for the first and second eigenvalues than for other functionals,
in the sense that we normalize �1A=G0 and �2A=G0 with the quantity G0 instead of
with G, where obviously G0 � G by definition.
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It is natural in the theorem to multiply �j by A, because �j scales like 1=A.
(Intuitively, low frequencies come from large drums.)

Note the result for �2 follows immediately from the one for �1, because the ratio
�2=�1 is maximal on the disk by Ashbaugh and Benguria’s “sharp PPW inequal-
ity” [2].

The theorem improves on the standard “inradius bounds” for �1 and �2, on convex
domains, as we now show. Write Din for the largest open disk centered at the origin
and contained in �. Then �j .�/ � �j .Din/ for all j , by domain monotonicity of
the Dirichlet spectrum. Theorem 1.1 implies this inradius bound for j D 1; 2, as one
checks by using that Ain � A=G0 (Lemma 10.2); here Ain is the area of Din.

Our theorem significantly extends the only known result of its type, which is the
case (n D 1) of the fundamental tone �1 with Dirichlet boundary conditions. That
case is due to Pólya and Szegő in 2 dimensions and Freitas and Krejčiřík in higher
dimensions, as explained after Theorem 3.1.

To treat higher eigenvalues, we need a fundamentally new idea: we need to trans-
form � into a disk while controlling angular information in the Rayleigh quotients
of the eigenfunctions. Any such transformation will change the Rayleigh quotients
substantially, and so we must devise a scheme for extracting the geometric effect and
leaving behind the portion of the Rayleigh quotient that corresponds to the eigen-
function of the disk.

We construct a geometric transformation that maps linearly on rays and has con-
stant Jacobian. As Figure 2 indicates, wherever the transformation stretches radially
it must compress angularly. Section 2 gives the precise definition. We will extract the
geometric contribution to the Rayleigh quotient of the trial function on � by compos-
ing the transplanted eigenfunction with an arbitrary orthogonal transformation U of
the ball and then averaging over all such U (see Proposition 5.2 and Section 6). The
constant Jacobian requirement is used here to guarantee that transplanting orthogonal
eigenfunctions from the ball will yield orthogonal trial functions on �.

rotation U

u.x/

eigenfunction

1

'
0

T

linear on each ray,
area preserving

0

u.U T .x//

trial function

R.�/

�

Figure 2. A linear-on-rays transformation from a domain � of area � to the unit disk. To
insure that the mapping preserves area locally, we require R.�/2 d� D d'.

Note that Pólya and Szegő’s result on the first eigenvalue was proved by a linear-
on-rays transformation that does not distort angles and hence does not preserve area.
In other words, they took � D ' in Figure 2. They also did not average over rotations.
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Instead they relied on the special fact that the first Dirichlet eigenfunction of the disk
is radial.

Perturbations of the disk. To make the theorem more concrete, we examine the
case of nearly circular domains. Suppose P.�/ is a Lipschitz continuous, 2�-periodic
function. Define a plane domain �" D frei� W 0 � r < 1 C "P.�/g, and assume " is
small enough that the radius 1 C "P.�/ is positive for all � . We may regard �" as a
perturbation of the unit disk D, since �0 D D. Let j0;1 ' 2:4 be the first zero of the
Bessel function J0, and recall that �1.D/ D j 2

0;1.

Corollary 1.2 (Nearly circular domains). The first eigenvalue of the domain �" is
bounded above and below in terms of the boundary perturbation P :

1 � �1.�"/A.�"/

j 2
0;1�

� 1 C "2

Z 2�

0

P 0.�/2

.1 C "P.�//2

d�

2�

D 1 C "2

�Z 2�

0

P 0.�/2 d�

2�

�
C O."3/

(2)

as " ! 0 with P fixed.
Eigenvalue sums satisfy a similar upper bound, for n � 1 and s 2 .0; 1�:

� nX
j D1

�j .�"/
s
�1=s

A.�"/

� nX
j D1

�j .D/s
�1=s

A.D/

� max

´
1 C

Z 2�

0

"2P 0.�/2

.1 C "P.�//2

d�

2�
;

Z 2�

0

.1 C "P.�//4 d�=2�� Z 2�

0

.1 C "P.�//2 d�=2�

�2

μ

D 1 C O."2/:

The lower bound on the first eigenvalue in (2) is the famous Faber–Krahn inequal-
ity. The upper bounds are immediate from Theorem 1.1, by taking R D 1 C "P in
the formula for G0 in Proposition 10.1 and remembering that our two definitions of
G0 agree in 2 dimensions (Lemma 10.2).

The upper bound on the first eigenvalue in (2) is equivalent to the estimate of
Pólya and Szegő [38], pp. 14–15 and 91–92. The upper bound on eigenvalue sums
is new.

Let us compare the upper bound on the first eigenvalue with recent work of van
den Berg [8], Theorem 1(ii). He obtained an estimate of the form

1 C C2.kP k2kP 0k2 C kP k2
2/"2 C C3kP 0k2

2 "3; (3)
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for perturbations normalized by kP k1 D 1. Note his formula involves kP k2kP 0k2

at second order whereas our corollary has kP 0k2
2. When applied to the main example

in van den Berg’s paper, his estimate beats our estimate (2) by a factor of "1=2 because
his P depends on " with kP k2 D O."1=4/ and kP 0k2 D O."�1=4/. On the other
hand, when applied to the “uniform” perturbation P � �1, equality holds in our
estimate (2) whereas (3) is not exact, due to the contribution of kP k2

2.
Next let us contrast with Rayleigh’s second order perturbation expansion of �1.

See either his formal derivation [40], §210, or Pólya and Szegő’s account [38],
pp. 132–133, or Henry’s more modern approach in all dimensions [18], p. 35. This
expansion gives no error bounds, and it holds only for P fixed with " tending to 0.
Both our corollary and van den Berg’s work establish approximation bounds, and al-
low P to vary with ". Rayleigh’s perturbation formula is better in one respect, though,
because it gives an exact second order term ("2-term) for �1A. This term behaves likeP jnjj yP .n/j2, that is, like the square of the H 1=2-norm of the boundary perturbation.
In contrast, both our corollary and van den Berg’s work have second order terms that
are bigger, being controlled by the square of the H 1-norm,

P
n2j yP .n/j2.

Prior work, and the new methods. The idea of obtaining eigenvalue bounds by
transforming a domain and averaging over rotations appeared already in Laugesen
and Morpurgo’s 2-dimensional conformal mapping approach [32]. Their averaging
task was much easier, though, since it needed only subharmonicity of the modulus
of an analytic function. Further, their “reciprocal eigenvalue” results are inherently
less powerful than the methods of this paper since, for example, they cannot yield the
heat trace for all t > 0.

More recently, sharp eigenvalue bounds on linear images of rotationally symmet-
ric domains (such as regular polygons) were obtained by the authors and collabora-
tors [30], [31], [33], and [34]. For example, they showed that the centered equilateral
triangle maximizes .�1 C� � �C�n/A=G1 among all triangles. The averaging in those
papers takes place over discrete groups of rotations (such as 3-fold rotations for trian-
gles), and relies on “tight frame” identities which are special cases of Schur’s Lemma
from representation theory. The transformations in those papers are globally linear,
and so are simpler than the linear-on-rays transformations constructed in this paper.
This simplicity comes at the cost of a severely restricted class of image domains.

We must push beyond these existing averaging methods, in this paper. One serious
obstacle is the nonlinear nature of our transformation, which causes the rotation
matrix U to appear multiple times in the transformed Rayleigh quotient, both inside
and outside the derivative of the transformation. We describe how to overcome these
obstacles in Section 6.

Faber–Krahn and Luttinger bounds in the reverse direction. Rayleigh conjec-
tured in 1877, and Faber and Krahn proved in the the 1920s, that

�1A is minimal for the disk.
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Many proofs and extensions are known [4], [7], [24], and [38]. The result holds
trivially for the first Neumann eigenvalue �1, which equals zero for each domain. The
result holds also for the first Robin eigenvalue, assuming a positive Robin parameter,
by work of Bossel and Daners [9], and [13] that was improved to irregular domains
by Bucur and Giacomini [11].

This Rayleigh–Faber–Krahn inequality does not extend to sums and products of
eigenvalues, as the results in this paper do. It does extend to the spectral zeta function
and heat trace, for s < �1 and t > 0 respectively, each of them being maximal
for the disk of the same area under Dirichlet boundary conditions. This important
extension is due to Luttinger [35], whose multiple integral rearrangement techniques
proved remarkably fertile in joint work with Brascamp and Lieb [10]. Note that
letting t ! 1 in the heat trace inequality yields a new proof of the Faber–Krahn
theorem.

Luttinger’s methods and results do not extend to Neumann boundary conditions.
In fact, for large t the area-normalized Neumann heat trace equals approximately
1 C e��2At , which is minimal for the disk (not maximal) by Szegő–Weinberger’s
result on the second Neumann eigenvalue [41]. One naturally conjectures that the
Neumann heat trace is minimal for the disk of the same area, for each t > 0. This
problem remains open. For the analogous problem of the heat trace on the sphere,
Morpurgo [37] has proved local minimality at the round metric.

To put this paper in context, then, one may regard our results as being analogous
to the classical Faber–Krahn and Luttinger results except with the direction of their
inequalities reversed. Such reversal is made possible by introducing the geometric
factor G into the geometric scaling. Further, our theorems improve in three respects
on the Faber–Krahn and Luttinger inequalities, because they hold: for finite sums
and products of eigenvalues, for each partial sum of the spectral zeta function and
heat trace, and for Neumann and Robin boundary conditions in addition to Dirichlet.
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in the meeting on “New Trends in Shape Optimization” (July 2012), at which this
paper was completed.
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Robin eigenvalues.
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2. The volume preserving transformation, and geometric factors

Write B D Bd for the unit ball centered at the origin, S D Sd�1 for the unit sphere,
and RC D .0; 1/ for the positive half-axis.

We say a domain � in Rd is Lipschitz-starlike if it can be expressed in the form

� D fr	 W 	 2 S; 0 � r < R.	/g
for some positive, Lipschitz continuous function R.	/ on S. Call R the radius function
of �. The gauge function is its reciprocal,


 D 1

R
:

Write V for volume in Rd . Note V.�/ D 1
d

R
S R.	/d dS.	/.

The volume preserving (constant Jacobian) transformation. Our work relies on
a map from the Lipschitz-starlike domain � to the ball that preserves volume locally
(up to a scale factor), and is linear on each ray from the origin. See Figure 2 for
an example in 2 dimensions. First we construct a “boundary homeomorphism” H

associated with the radius function R of �.

Lemma 2.1. There exists a bi-Lipschitz homeomorphism H W S ! S that distorts
surface area in proportion to the d -th power of the radius function

JacH .	/ D V.B/

V .�/
R.	/d : (4)

We prove the lemma in Section 11. Simply note at this stage that the left and right
sides of (4) both integrate over S to yield jSj.

Now define the mapping T W � ! B by mapping linearly in each direction and
transforming directions with H ; that is, define

T .r	/ D r

R.	/
H.	/ (5)

for vectors 	 2 S and numbers r 2 Œ0; R.	//. One can check that T is a bi-Lipschitz
homeomorphism of � to B. Its Jacobian determinant is constant, with

Jac.T / � V.B/=V .�/ and Jac.T �1/ � V.�/=V .B/;

as one deduces from the definition (5) and Jacobian formula (4).
The constant Jacobian property of T will be essential later, when we transplant an

orthonormal collection of eigenfunctions on the ball to a collection of functions on �.
The transplanted functions will remain orthogonal, thanks to the constant Jacobian
condition, and so we can use them as trial functions in the Rayleigh principle for the
eigenvalue sum.
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The geometric factors. From now on, we extend R and H by homogeneity to be
defined not just on the unit sphere but on all nonzero vectors:

R.r	/ D R.	/ and H.r	/ D H.	/

for all r > 0. Thus it makes sense to speak of the gradient vector rR, and the
derivative matrix DH .

Given a real matrix M , write its Hilbert–Schmidt norm as

kMkHS D
� X

j;k

M 2
jk

�1=2 D .tr M �M/1=2;

where M � denotes the transposed matrix. All matrices in this paper will be real.
Now define geometric quantities

G0.�/ D
1

jSj
Z

S
ŒR.	/d�2 C jrR.	/j2R.	/d�4� dS.	/

�
1

jSj
Z

S
R.	/d dS.	/

�.d�2/=d
; (6)

and

G1.�/ D
1

jSj
Z

S

kDH.	/k2
HS

d � 1
R.	/d�2 dS.	/

�
1

jSj
Z

S
R.	/d dS.	/

�.d�2/=d
: (7)

Clearly G0 and G1 are scale invariant, meaning that Gi .�/ D Gi .a�/ for all a > 0,
since a� has radius function aR.

Alternative formulas for G0 and G1 of a geometric nature will be developed in
Section 10. There we express G0 in terms of a support-type integral over the boundary
that was employed previously by Pólya and Szegő, and we show in two dimensions
that G1 D 2�Iorigin=A2. Thus these alternative formulas recover the definitions (1)
that we used in the plane, and show that in 2 dimensions, both G0 and G1 depend
only on the shape of � and on the choice of origin.

In higher dimensions, G1 depends also on the choice of homeomorphism H .

Example. If � is a centered ball one has R � const., so that G0 D 1. By convention,
for a centered ball we choose the homeomorphism H to be the identity on the sphere,
so that G1 D 1.

Lemma 2.2. The geometric quantities are always at least 1 in value:

G0 � 1 and G1 � 1:

Equality statement: G0 D 1 if and only if � is a centered ball, and G1 D 1 if and
only if � is a centered ball and H is an orthogonal transformation of the sphere.
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This lemma helps us interpret the main theorem below. We do not otherwise need
the lemma though, and so we defer its proof to Section 10.

3. Main results

First we extend the eigenvalues estimates in Theorem 1.1 to all dimensions. Let

G D maxfG0; G1g:
Theorem 3.1 (Dirichlet). Assume � is a Lipschitz-starlike domain in Rd ; d � 2, and
let n � 1. Then the scale invariant eigenvalue functionals

�1V 2=d =G0; �2V 2=d =G0; .�s
1C� � �C�s

n/1=sV 2=d =G;
n
p

�1�2 � � � �nV 2=d =G;

are maximal when � is a centered ball, for each exponent 0 < s � 1. Further, if
ˆ W RC ! R is concave and increasing then

Pn
j D1 ˆ.�j V 2=d =G/ is maximal when

� is a centered ball. Hence for s < 0 < t the functionals

nX
j D1

.�j V 2=d =G/s and
nX

j D1

exp.��j V 2=d t=G/

are minimal when � is a centered ball.

Equality statement for the first eigenvalue: if �1V 2=d =G0

ˇ̌
�

D �1V 2=d =G0

ˇ̌
B

and R is C 2-smooth then � is a centered ball.

The proof is in Section 6.

The only part of the theorem known previously was the estimate on the first
eigenvalue. This extremal result for �1V 2=d =G0 was proved by Pólya and Szegő [38],
pp. 14–15 and 91–92, in 2 dimensions, and by Freitas and Krejčiřík [16], Theorem 3,
in higher dimensions. The geometric factors in those papers look different from our
G0, but they are equivalent, as we explain in Section 10.

Note that for the first (and second) eigenvalue, the conclusion of our theorem is
stronger than for the general case, because it uses G0 instead of G. The underlying
reason is that the first eigenfunction of a ball is purely radial, so that our proof does not
depend on the angular information encoded in the homeomorphism H and factor G1.

We strengthen the theorem in Section 9 by adapting the geometric factor to each
eigenvalue. There we replace G with a convex combination of G0 and G1 (rather
than their maximum).

Perturbations of the ball. Let us see what Theorem 3.1 says for nearly spherical
domains. Suppose P.	/ is a Lipschitz continuous function on the sphere S, and
define a domain �" D fr	 W 0 � r < 1 C "P.	/g, assuming 0 < 1 C "P.	/ for all 	.
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Corollary 3.2 (Nearly spherical domains). The first eigenvalue of the domain �" can
be bounded above and below in terms of the radial perturbation P :

1 � �1.�"/V .�"/
2=d

�1.B/V .B/2=d

� G0.�"/

D 1 C
� Z

S
jrP j2 dS

jSj � .d � 2/

Z
S
.P � xP /2 dS

jSj
�

"2 C O."3/

as " ! 0 with P fixed, where

xP D
Z

S
P dS=jSj

is the mean value of the perturbation.

The lower bound is simply the Faber–Krahn result. The upper bound appears not to
have been stated before. It follows by straightforward calculations from Theorem 3.1,
simply substituting R D 1 C "P into the definition (6) of G0. It can be compared
with van den Berg’s result [8], Theorem 1(ii), just like in 2 dimensions — see the
remarks after Corollary 1.2.

Amusingly, the corollary implies a Poincaré inequality on the sphere, since the
"2-term is necessarily nonnegative.

Neumann and Robin boundary conditions. Denote the Neumann eigenvalues by
�j , assuming that @� is Lipschitz so that the spectrum exists and is discrete. Write
uj for corresponding orthonormal eigenfunctions. Then8<

:
��uj D �j uj in �

@uj

@n
D 0 on @�

and
0 D �1 < �2 � �3 � : : : :

We will ignore the first eigenvalue, in the next theorem, since �1 D 0 for every
domain.

Theorem 3.3 (Neumann). Assume � is a Lipschitz-starlike domain in Rd ; d � 2.
Suppose ˆ W RC ! R is concave and increasing, and let n � 2. Then the scale in-
variant eigenvalue functional

Pn
j D2 ˆ.�j V 2=d =G/ is maximal when � is a centered

ball.
In particular, for 0 < s � 1 the functionals

�2V 2=d =G; .�s
2 C � � � C �s

n/1=s V 2=d =G; n�1
p

�2 � � � �n V 2=d =G;
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are maximal when � is a centered ball. For s < 0 < t the functionals

nX
j D2

.�j V 2=d =G/s and
nX

j D2

exp.��j V 2=d t=G/

are minimal when � is a centered ball.
Equality statement for the first nonzero eigenvalue: if R and H are C 2-smooth

and �2V 2=d =G
ˇ̌
�

D �2V 2=d =G
ˇ̌
B

then � is a centered ball.

Section 7 has the proof. Because G � 1, the bound on �2V 2=d =G in Theorem 3.3
follows from the Szegő–Weinberger theorem that �2V 2=d is maximal for the ball
(see [41] or [19], Theorem 7.1.1). Note that Theorem 3.3 holds for higher eigenvalue
functionals too, which the Szegő–Weinberger theorem does not.

Theorem 3.3 might hold with G replaced by the smaller quantity G1 (the moment
of inertia type functional), as we have conjectured elsewhere [33], §4.

Next we turn to Robin boundary conditions. The Robin eigenvalue problem is8<
:

�„2�uj D �j uj in �,

„2 @uj

@n
C �uj D 0 on @�,

with eigenvalues
�1 < �2 � �3 � : : : ;

where � 2 L1.@�/ is the Robin parameter and „ > 0 is the Planck constant.
Existence and discreteness of the Robin spectrum under these assumptions follows
from the usual quadratic form approach; see for example [29], Chapter 5. Note the
Robin parameter � will be fixed in our work. For interesting asymptotic behavior of
Robin eigenvalues as � varies and approaches ˙1, see [14] and [25] and references
therein.

The Robin eigenvalues reduce to Neumann when „ D 1; � � 0.
In the Dirichlet and Neumann eigenvalue problems we took „ D 1. That causes no

loss of generality, since one can always adjust the value of „ by rescaling the domain.
In our Robin result below, though, the Planck constant and Robin parameter will be
multiplied by different geometric factors. Accordingly we write �j D �j .�; „; �/ to
display the dependence of the j th Robin eigenvalue on the domain, Planck constant
and Robin parameter.

Our theorem will involve a new geometric factor,

GRobin D
� j@�j=V .�/.d�1/=d

j@Bj=V .B/.d�1/=d

�2

: (8)

Clearly GRobin � 1 by the isoperimetric inequality, with equality if and only if � is
a ball. And G0 is larger than GRobin.



Sharp spectral bounds on starlike domains 321

Lemma 3.4. G0 � GRobin � 1.

The lemma was proved in 2 dimensions by Aissen [1], Theorem 1. Our proof
appears in Section 10, and is valid in all dimensions.

Now we can state our sharp upper bound on Robin eigenvalues.

Theorem 3.5 (Robin). Assume � is a Lipschitz-starlike domain in Rd ; d � 2. Sup-
pose ˆ W R ! R is concave and increasing, and let n � 1. Then

nX
j D1

ˆ.�j .�; „V 1=d =G1=2; �V 1=d =G
1=2
Robin//

is maximal when � is a centered ball and � is replaced by its average value.
For the first eigenvalue one has a stronger result (with G0 instead of G):

�1.�; „ xR=G
1=2
0 ; � xR=G

1=2
Robin/ � �1.B; „; N�/ (9)

where xR is the radius of a ball having the same volume as � and

N� D
Z

@�

� dS=j@�j

is the average value of the Robin parameter. If equality holds in (9) and if R is
C 2-smooth, then � is a centered ball.

See Section 8 for the proof.

Note that if � > 0 then the Robin eigenvalues are all positive, in which case ˆ

need only be concave and increasing on the half-axis RC.
A particularly simple corollary holds for the ball: averaging the Robin parameter

increases the eigenvalue functionals on a ball, with

nX
j D1

ˆ.�j .B; „; �// �
nX

j D1

ˆ.�j .B; „; N�//:

Remark. Bareket [6], Appendix A, applied the Pólya–Szegő trial function technique
with a constant parameter � < 0 and got an upper bound on �1. She did not attach
geometric factors to the Planck constant or Robin parameter, though, and so her bound
looks different from ours in (9).

Bareket raised an analogue of Rayleigh’s Conjecture for negative Robin parameter,
namely that

�1.�; 1; N�/ � �1.B; 1; N�/;
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whenever N� < 0 is constant and � has the same volume as B. Note the ball is
the maximizer here, which is the opposite of the Faber–Krahn type result by Bossel
and Daners that holds when N� � 0. Let us compare Bareket’s conjecture with our
result (9) for the first eigenvalue, which says (when „ D 1; xR D 1 and � � N� < 0)
that

�1.�; 1=G
1=2
0 ; �=G

1=2
Robin/ � �1.B; 1; N�/:

The factors G0 and GRobin are both greater than 1, and so the Planck constant and
Robin parameter are smaller in magnitude on the left side of our inequality than on the
left side of Bareket’s conjecture. In particular, our Robin parameter is less negative
than Bareket’s. Thus while our Planck constant tends to make the Rayleigh quotient
smaller than it would be with Bareket’s Planck constant, our Robin parameter tends
to make it bigger. Hence our result is most likely not comparable to her conjecture.

4. Averaging over rotations and reflections

Our proofs will involve averaging over the group of all orthogonal transformations.
Write  D d for the Haar probability measure on the group O.d/ of orthogonal,

real, d � d matrices. Let “Id” denote the identity matrix.

Lemma 4.1 (Averaging in a conjugacy class). Suppose M is a d � d real symmetric
matrix, for some d � 1. ThenZ

O.d/

U �1MU d.U / D 1

d
tr.M/ Id : (10)

Hence for each column vector m 2 Rd ,

Z
O.d/

�
U 0

0 1

��1 �
M m

m� 0

� �
U 0

0 1

�
d.U / D 1

d
tr.M/

�
Id 0

0 0

�
:

The lemma is a special case of Schur’s Lemma from representation theory. We
give a short proof, for the sake of completeness.

Proof of Lemma 4.1. Denote the left side of formula (10) by

L D
Z

O.d/

U �1MU d.U /:

For any U 2 O.d/, we have LU D UL by invariance of Haar measure. Let ˛ be a
real eigenvalue of L with eigenvector w 2 Rd (using here that L is symmetric, by
symmetry of M and orthogonality of U ). Then

L.Uw/ D U.Lw/ D U.˛w/ D ˛.Uw/:
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Hence each vector in the orbit fUw W U 2 O.d/g is an eigenvector of L with eigen-
value ˛. The orbit spans all of Rd , and so L equals ˛ times the identity. Taking the
trace yields

˛d D tr L D
Z

O.d/

tr.U �1MU / d.U / D
Z

O.d/

tr.M/ d.U / D tr.M/:

Hence L equals 1
d

tr.M/ times the identity.
The second formula in the lemma follows immediately, by multiplying out the

matrices and using that Z
O.d/

U d.U / D 0:

5. Averaging and spherical homeomorphisms

Consider a bi-Lipschitz homeomorphism H W S ! S, extended by homogeneity to
Rd n f0g so that H.r	/ D H.	/ for all r > 0; 	 2 S.

Lemma 5.1 (Orthogonality relation). For all 	 2 S, we have .DH/�.	/H.	/ D 0.

Proof of Lemma 5.1. We have jH.x/j2 � 1 for all x ¤ 0, because H takes values in
the unit sphere. Taking the gradient of this last identity yields that 2H.x/�DH.x/ �
0. Applying the transpose and evaluating at x D 	 completes the proof.

The lemma implies that DH.	/y � H.	/ D 0 for all vectors y, so that the range
of the derivative operator DH at 	 lies orthogonal to the image vector H.	/, as one
would expect since H maps into a sphere.

Some complicated expressions involving H can be simplified considerably, after
we average over all orthogonal matrices U . We will encounter expressions of the
following type when we prove our main theorem.

Proposition 5.2. Let H W S ! S be a bi-Lipschitz homeomorphism and let � 2 S be
a fixed unit vector.

If F 2 L1.SI Rd / is a bounded, row-vector valued function on the sphere, thenZ
O.d/

F.H �1.U�//.DH/�.H �1.U�//U d.U / D 0:

If f 2 L1.SI R/ is a bounded, real-valued function on the sphere, thenZ
O.d/

f .H �1.U�// U �1DH.H �1.U�//.DH/�.H �1.U�//U d.U /

D c.Id ����/
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where

c D 1

jSj
Z

S
f .	/

kDH.	/k2
HS

d � 1
JacH .	/ dS.	/:

Proof of Proposition 5.2. Choose an orthogonal matrix W that maps � to the north
pole, meaning W � D � where � D .0; : : : ; 0; 1/� is the north pole column vector.

We have thatZ
O.d/

F.H �1.U�//.DH/�.H �1.U�//U d.U / (11)

D
Z

O.d/

F.H �1.U�//.DH/�.H �1.U�//U V W d.U / (12)

by changing variable with U 7! U V W , where V is an arbitrary matrix in O.d/ that
fixes the north pole (that is, V� D �). We may write

V D
� zV 0

0 1

�
(13)

where zV 2 O.d � 1/.
We are permitted to average expression (12) with respect to zV , since formula (11)

does not depend on zV . Note V appears only once in (12). Averaging it yieldsZ
O.d�1/

V dd�1. zV / D
�

0 0

0 1

�
D ���:

Multiplying on the right by W givesZ
O.d�1/

V W dd�1. zV / D ���

because W � D � by construction. Hence after averaging (12) with respect to zV we
obtain that expression (11) equalsZ

O.d/

F.H �1.U�//.DH/�.H �1.U�//U��� d.U / D 0;

because
.DH/�.H �1.U�//U� D 0 (14)

by Lemma 5.1 applied with 	 D H �1.U�/.
Now we prove the second formula in the proposition. We findZ

O.d/

f .H �1.U�// U �1DH.H �1.U�//.DH/�.H �1.U�//U d.U / (15)

D
Z

O.d/

f .H �1.U�// W �1.V �1MV /W d.U / (16)
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by changing variable with U 7! U V W as before, where we have defined a matrix

M D U �1DH.H �1.U�//.DH/�.H �1.U�//U:

Note that M� D 0 by (14), and similarly ��M D 0 by symmetry of M . Hence M

has the form

M D
� zM 0

0 0

�
:

Thus using the decomposition (13) for V , we conclude from Lemma 4.1 thatZ
O.d�1/

V �1MV dd�1. zV / D 1

d � 1
.tr zM /

�
Idd�1 0

0 0

�
:

Note formula (15) does not depend on V . Thus after averaging expression (16)
with respect to zV and using the last formula, we find that expression (15) equals

Qc W �1

�
Idd�1 0

0 0

�
W

where

Qc D 1

d � 1

Z
O.d/

f .H �1.U�//.tr zM / d.U /:

Since

W �1

�
Idd�1 0

0 0

�
W D W �1.Id ����/W D Id ����;

we deduce that expression (15) equals Qc .Id ����/.
Note that

tr zM D tr M D tr
�
DH.H �1.U�//.DH/�.H �1.U�//

�
D kDH.H �1.U�//k2

HS :

Hence Qc can be evaluated by using the equivalence between orbital and spatial aver-
ages (Appendix B), which gives that

Qc D 1

d � 1

1

jSj
Z

S
f .H �1.�0//kDH.H �1.�0//k2

HS dS.�0/:

Lastly, changing variable with �0 D H.	/ shows that Qc equals the constant c defined
in the Proposition.

6. Dirichlet eigenvalues – Proof of Theorem 3.1

The idea is to obtain trial functions on � by transplanting eigenfunctions from B to
� with the volume-preserving map T , and then to average with respect to rotations
and reflections of B.
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Recall that the Rayleigh quotient associated with the Dirichlet spectrum is

RayŒu� D

Z
�

jruj2 dxZ
�

u2 dx

; u 2 H 1
0 .�/:

The Rayleigh–Poincaré Variational Principle [4], p. 98, characterizes the sum of the
first n Dirichlet eigenvalues as

�1 C � � � C �n

D min
˚

RayŒv1� C � � � C RayŒvn� W
v1; : : : ; vn 2 H 1

0 .�/ are pairwise orthogonal in L2.�/
�
:

To use this principle, let u1; u2; u3; : : : be orthonormal eigenfunctions on B cor-
responding to the eigenvalues �1.B/; �2.B/; �3.B/; : : :. Take an orthogonal matrix
U . Then define trial functions

vj D uj B U �1 B T

on the domain �, where the transformation T W � ! B was defined in Section 2 .
Clearly vj 2 L2.�/ since T has constant Jacobian. One can further show that vj

has weak derivatives in L2.�/, since uj is smooth with derivatives in L2.B/ and the
Lipschitz continuous mapping T has bounded weak derivatives. Thus vj 2 H 1.�/.
Further, vj D 0 on @� because uj D 0 on @B; more precisely, vj 2 H 1

0 .�/ because
uj 2 H 1

0 .B/.
The functions vj are pairwise orthogonal, sinceZ

�

vj vk dx D Jac.T �1/

Z
B

uj uk dx � 0; (17)

whenever j ¤ k, using here that uj and uk are orthogonal and T �1 has constant
Jacobian. Thus by the Rayleigh–Poincaré principle, we have

nX
j D1

�j .�/ �
nX

j D1

Z
�

jrvj j2 dxZ
�

v2
j dx

: (18)

The denominator of this Rayleigh quotient isZ
�

v2
j dx D

Z
�

uj .U �1T .x//2 dx D Jac.T �1/

by (17) with j D k, since the eigenfunctions are normalized withZ
B

u2
j dx D 1:
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For the numerator of the Rayleigh quotient, we write v D vj and u D uj (to
simplify notation in what follows) and express v D v.r; 	/ and u D u.s; �/ in
spherical coordinates. Then the relation v D u B U �1 B T says

v.r; 	/ D u.r
.	/; U �1H.	//;

by recalling that 
 D 1=R and using the definition (5) of T . Differentiating, we find

vr.r; 	/ D 
.	/us.r
.	/; U �1H.	//;

and

.rSv/.r; 	/ D rus.r
.	/; U �1H.	//r
.	/

C .rSu/.r
.	/; U �1H.	//U �1DH.	/;

where the gradients are regarded as row vectors and by rS we mean the gradient with
respect to the angular variables. Writing the numerator of the Rayleigh quotient in
terms of spherical coordinates gives thatZ

�

jrvj2 dx D
Z

S

Z R.�/

0

.v2
r C r�2jrSvj2/ rd�1drdS.	/:

After changing variable with s D r
.	/ 2 .0; 1/ and using the above formulas for vr

and rSv, we find that Z
�

jrvj2 dx D Q1 C Q2 C Q3

where

Q1 D
Z

S

Z 1

0

Œ
.	/2 C jr
.	/j2� us.s; U �1H.	//2 sd�1ds R.	/d dS.	/;

Q2 D 2

Z
S

Z 1

0


.	/r
.	/.DH/�.	/U

.rSu/�.s; U �1H.	//us.s; U �1H.	// sd�2ds R.	/d dS.	/;

Q3 D
Z

S

Z 1

0


.	/2j.rSu/.s; U �1H.	//U �1DH.	/j2 sd�3ds R.	/ddS.	/:

The left side of (18) is independent of U . Hence by averaging (18) with respect
to U 2 O.d/ we find

nX
j D1

�j .�/ �
nX

j D1

R
O.d/.Q1 C Q2 C Q3/ d.U /

Jac.T �1/
; (19)

where we must remember that “u” means uj , in the quantities Q1; Q2; Q3.
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The quantity Q1 is easiest to average because it contains only one “U ”. We haveZ
O.d/

us.s; U �1H.	//2 d.U / D 1

jSj
Z

S
us.s; �/2 dS.�/

by the equivalence of orbital and spatial means (Appendix B). HenceZ
O.d/

Q1 d.U /

Jac.T �1/

D
1

jSj
Z

S
Œ
.	/2 C jr
.	/j2� R.	/ddS.	/

V .�/=V .B/

Z 1

0

Z
S

us.s; �/2 dS.�/ sd�1ds

D G0.�/
� V.B/

V .�/

�2=d
Z

B

�@uj

@s

�2
dx

(20)

by the definition (6) of G0.
For Q2 we begin by changing variable with 	 D H �1.U�/, which gives that

Q2 D
Z

S

Z 1

0


.H �1.U�//r
.H �1.U�//.DH/�.H �1.U�//U

.rSu/�.s; �/us.s; �/ sd�2ds
R.H �1.U�//d

JacH .H �1.U�//
dS.�/:

The integrand contains U in multiple locations, but averaging remains feasible; indeed
Proposition 5.2 applied with F D .
r
/Rd =JacH shows thatZ

O.d/

Q2 d.U / D 0: (21)

For Q3 we again change variable with 	 D H �1.U�/, and find that

Q3 D
Z

S

Z 1

0


.H �1.U�//2jrSu.s; �/U �1DH.H �1.U�//j2 sd�3ds

R.H �1.U�//d

JacH .H �1.U�//
dS.�/:

In this integrand U appears five times. Nonetheless, we can average Q3 with respect
to U by expanding j � � � j2 and using Proposition 5.2 with f D 
2Rd =JacH . We find
that Z

O.d/

Q3 d.U / D c

Z
S

Z 1

0

.rSu/.Id ����/.rSu/� sd�3dsdS.�/ (22)
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where

c D 1

jSj
Z

S

.	/2 kDH.	/k2

HS

d � 1
R.	/d dS.	/:

[Aside. The averaging results (21) and (22) for Q2 and Q3 hold independently of
the specific form of the Jacobian of H , provided the Jacobian is bounded away from
zero (since we want to avoid trouble when we divide by it).]

Note that .rSu/� D 0, because the spherical gradient rSu lies perpendicular to
the unit vector �. Hence we deduce thatR

O.d/
Q3 d.U /

Jac.T �1/
D V.B/

V .�/
c

Z
S

Z 1

0

.rSu/.rSu/� sd�3dsdS.�/

D G1.�/
� V.B/

V .�/

�2=d
Z

B
s�2jrSuj j2 dx

(23)

by definition of G1 in (7).
Combining (19)–(23) now shows that

nX
j D1

�j .�/ �
� V.B/

V .�/

�2=d
nX

j D1

h
G0.�/

Z
B
.
@uj

@s
/2 dx C G1.�/

Z
B

s�2jrSuj j2 dx
i

D
� V.B/

V .�/

�2=d
nX

j D1

Œ.1 � j̨ /G0.�/ C j̨ G1.�/�

Z
B

jruj j2 dx;

(24)

where

j̨ D

Z
B

s�2jrSuj j2 dxZ
B

jruj j2 dx

; j D 1; 2; : : : ; n:

(The coefficient j̨ 2 Œ0; 1� measures the “angular component” of the j th energy.)
Next we estimate G0 and G1 from above with their maximum G, and so conclude
that

nX
j D1

�j .�/V .�/2=d=G.�/ � V.B/2=d

nX
j D1

Z
B

jruj j2 dx D
nX

j D1

�j .B/V .B/2=d :

Since G.B/ D 1, we have proved the theorem in the case that ˆ.a/ � a is the identity
function.

The theorem now follows for any concave increasing ˆ, by Hardy–Littlewood–
Pólya majorization as in Appendix A.

Note that for the first eigenvalue our proof gives a stronger conclusion, namely
using G0 instead of G, because the fundamental mode u1 of the ball is a radial function
and so ˛1 D 0 in the argument above. Thus �1V 2=d =G0 is maximal for the ball.
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For the second Dirichlet eigenvalue, we may divide and multiply by the first
eigenvalue to obtain that

�2V 2=d

G0

D �1V 2=d

G0

�2

�1

:

We previously showed that the first factor is maximal for the ball, and the second
factor is maximal too, by the sharp Payne–Pólya–Weinberger result of Ashbaugh and
Benguria [2].

Particular cases. Applying the theorem with ˆ.a/ D as , which is concave and
increasing when 0 < s � 1, gives maximality of .�s

1 C � � � C �s
n/1=s V 2=d =G for the

ball. The limiting case s # 0 suggests we try choosing ˆ.a/ D log a, which yields
maximality of the ball for the functional

nX
j D1

log.�j V 2=d =G/ D n log.
n
p

�1 � � � �n V 2=d =G/:

When s < 0 we can choose the concave increasing function ˆ.a/ D �as , which leads
to minimality of the ball for

Pn
j D1.�j V 2=d =G/s . And for t > 0 we can consider

ˆ.a/ D �e�at , thus obtaining minimality at the ball of
Pn

j D1 exp.��j V 2=d t=G/.

Dirichlet equality statement. Assume equality holds for the first eigenvalue, that
is,

�1V 2=d =G0j� D �1V 2=d =G0jB:

By enforcing equality in our proof above, we see that the trial function v1 on � must
attain equality in the Rayleigh characterization of �1.�/, and hence must be a first
eigenfunction for �. In particular this holds when the orthogonal matrix U is the
identity, so that the function v1.x/ D u1.T .x// satisfies

�v1 D ��1.�/v1: (25)

The fundamental Dirichlet mode u1 of the ball is radial, with u1.x/ D J.jxj/ for
some positive function J , and so we have v1.x/ D J.r=R.	//. That is,

v1.x/ D J.r
.	//

where 
 D 1=R. Note R is C 2-smooth by assumption, in this part of the theorem.
The Laplacian of v1 is given in spherical coordinates by

�v1.x/ D J 00.r
.	//
.	/2 C d � 1

r
J 0.r
.	//
.	/ C 1

r2
�SŒJ.r
.	//�:

This spherical Laplacian can be computed by the chain rule. It equals

�SŒJ.r
.	//� D J 00.r
.	//r2jr
.	/j2 C J 0.r
.	//r�S
.	/:
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We substitute this formula into the preceding one, and make the substitution s D
r
.	/. Then the eigenfunction equation (25) reads

Œ
.	/2 C jr
.	/j2�J 00.s/ C Œ.d � 1/
.	/2 C 
.	/�S
.	/�
1

s
J 0.s/ D ��1.�/J.s/:

Integrating over 	 2 S yields that

k
k2
H 1J 00.s/ C Œ.d � 1/k
k2

2 � kr
k2
2�

1

s
J 0.s/ D ��1.�/jSjJ.s/:

The eigenfunction equation for the unit ball (the case 
 � 1) says that

J 00.s/ C d � 1

s
J 0.s/ D ��1.B/J.s/: (26)

We subtract k
k2
H 1 times this equation from the previous equation, thereby obtaining

a first order equation for J :

kr
k2
2J 0.s/ D 1

d
.�1.�/jSj � �1.B/k
k2

H 1/ sJ.s/; 0 < s < 1:

Suppose 
 6� const., which ensures that kr
k2 > 0. Then the last equation for
J has the form

J 0.s/ D asJ.s/

for some a 2 R, and so J 00.s/ D .a2s2 C a/J.s/. Substituting these relations into
the eigenfunction equation (26) implies a2s2 C ad D ��1.B/ for all s 2 .0; 1/, and
so a D 0 and then �1.B/ D 0. This contradiction tells us that 
 � const., and so
R � const., which means that � is a centered ball.

7. Neumann eigenvalues – Proof of Theorem 3.3

For Neumann boundary conditions, the Rayleigh quotient and Rayleigh–Poincaré
Principle are just as for the Dirichlet case, except using trial functions in H 1.�/

rather than H 1
0 .�/. Thus we may follow the proof of Theorem 3.1, except using

Neumann eigenfunctions of the ball instead of Dirichlet eigenfunctions, to prove that

nX
j D1

�j .�/V .�/2=d=G.�/ �
nX

j D1

�j .B/V .B/2=d :

On each side, the term with j D 1 may now be discarded because �1 D 0. Then the
proof can be completed by majorization.

For the equality statement, rather than adapting the Dirichlet case we present a
simpler approach. Suppose equality holds for the first nonzero eigenvalue, that is,

�2V 2=d =G
ˇ̌
�

D �2V 2=d =G
ˇ̌
B
: (27)
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Since �2V 2=d
ˇ̌
�

� �2V 2=d
ˇ̌
B

by the Szegő–Weinberger result [41] (or see [19],
Theorem 7.1.1), and since G.�/ � 1 D G.B/, we conclude from equality holding
in (27) that G.�/ D 1. Hence G0.�/ D 1, and so � is a centered ball by the equality
statement in Lemma 2.2.

8. Robin eigenvalues – Proof of Theorem 3.5

The Rayleigh quotient for the Robin problem is

RayŒu� D
„2

Z
�

jruj2 dx C
Z

@�

�u2 dSZ
�

u2 dx

; u 2 H 1.�/: (28)

Let fuj g be orthonormal eigenfunctions on the unit ball B that correspond to the
Robin eigenvalues �j .B; „V.B/1=d ; N�V.B/1=d /, for j D 1; 2; 3; : : :. By constructing
trial functions and using the Rayleigh–Poincaré principle as in the Dirichlet case
(Section 6), we find the following analogue of (18):

nX
j D1

�j .�; „V 1=d=G1=2; �V 1=d =G
1=2
Robin/

�
nX

j D1

„2V 2=d

G

Z
�

jrvj j2 dxZ
�

v2
j dx

C
nX

j D1

V 1=d

G
1=2
Robin

Z
@�

�v2
j dSZ

�

v2
j dx

;

(29)

where vj D uj B U �1 B T . Averaging over U 2 O.d/ (as explained in Section 6
leading up to (24)) shows that the first sum in (29) is bounded from above by

nX
j D1

„2V.B/2=d

Z
B

jruj j2 dx: (30)

For the principal eigenvalue (n D 1) this part of the argument also works with G0

in place of G, since u1 is radial. (When finding u1 by separation of variables, the
spherical harmonics with angular dependence cannot arise, because u1 is positive.
Hence u1 is radial.)

We will show below that averaging the second sum in (29) gives

nX
j D1

N�V.B/1=d

Z
S

u2
j dS: (31)
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The theorem then follows, because adding (30) and (31) gives

nX
j D1

�j .B; „V.B/1=d ; N�V.B/1=d /:

For (31) it suffices to consider one value of j at a time, and so we consider an
arbitrary function u 2 H 1.�/ with L2-norm equal to 1, and write v D u B U �1 B T .
The second sum in (29) has terms of the form

V 1=d

G
1=2
Robin

Z
@�

�v2 dSZ
�

v2 dx

D V 1=d

G
1=2
Robin

Z
@�

�u.U �1T .x//2 dS.x/

V .�/=V .B/
; (32)

where in the denominator we changed variable and used that T has constant Jacobian
and u has L2-norm equal to 1. Averaging the right side of (32) over matrices U 2
O.d/ gives (by the equivalence of orbital and spatial means, as in Appendix B) the
expression

V.�/1=d

GRobin.�/1=2

V.B/

V .�/

� Z
@�

� dS.x/

��
1

jSj
Z

S
u2 dS

�
:

This last expression equals V.B/1=d N� R
S u2 dS by definition of GRobin and N� , prov-

ing (31).
To prove inequality (9) for the first eigenvalue, apply the theorem with n D 1 and

G0 instead of G (as remarked above), and replace „ by „=V .B/1=d and replace � by
�=V.B/1=d .

For the equality statement on the first eigenvalue, one simply adapts the proof of
the Dirichlet equality statement in Section 6.

9. Improvement to the main results

Our main theorems attach the geometric factor G D maxfG0; G1g to each eigenvalue.
An inspection of the proofs yields a stronger result, in which each eigenvalue is paired
with a smaller geometric factor arising from a convex combination of G0 and G1. We
state this improved result below, restricting for simplicity to the case of eigenvalue
sums. (The reader can then deduce inequalities on spectral zeta functions and so on,
by applying the majorization result from Appendix A.) To simplify the exposition we
do not treat the Robin case.

Define a convex combination of the geometric factors by

G.˛I �/ D .1 � ˛/G0.�/ C ˛G1.�/; ˛ 2 Œ0; 1�:
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To choose the relevant values of ˛, we fix an orthonormal basis of eigenfunc-
tions u1; u2; u3; : : : of the unit ball B corresponding to the Dirichlet eigenvalues
�1.B/; �2.B/; �3.B/; � � � . The radial energy fraction of the j th Dirichlet eigenfunc-
tion is defined to be

"D
j D

Z
B
.@uj =@s/2 dxZ
B

jruj j2 dx

;

where s 2 Œ0; 1� denotes the radial variable. This energy fraction can be computed
explicitly by writing uj in terms of Bessel functions. Obviously 0 < "D

j � 1, with

"D
j D 1 if and only if uj is purely radial.

The angular energy fraction is then

˛D
j D 1 � "D

j :

For example, the principal Dirichlet mode of the ball is radial, and so ˛D
1 D 0.

Similarly, we may define the angular energy fraction ˛N
j for the Neumann eigen-

functions of the unit ball.

Theorem 9.1 (Improved inequalities). Assume � is a Lipschitz-starlike domain in
Rd . Then the Dirichlet and Neumann eigenvalues satisfy

nX
j D1

�j .�/V .�/2=d �
nX

j D1

�j .B/V .B/2=d G.˛D
j I �/; n � 1;

and

nX
j D2

�j .�/V .�/2=d �
nX

j D2

�j .B/V .B/2=d G.˛N
j I �/; n � 2:

Proof of Theorem 9.1. See (24) in the proof of Theorem 3.1. The Neumann case is
analogous.

10. Properties of the geometric factors

G1 does not depend on H in 2 dimensions. The quantity G1 defined in (7) depends
only on R and not on H , in 2 dimensions, by the following result.

Proposition 10.1. In dimension d D 2,

G0 D 1 C 1

2�

Z 2�

0

.log R/0.�/2 d�; (33)
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and

G1 D
1

2�

Z 2�

0

R.�/4 d��
1

2�

Z 2�

0

R.�/2 d�

�2
D 2�Iorigin

A2
; (34)

where A is the area of � and

Iorigin D
Z

�

jxj2 dA

is its polar moment of inertia about the origin. Further,

GRobin D L2

4�A

where L is the perimeter of �.

These formulas imply immediately that G0; G1; GRobin are � 1 and are scale
invariant with respect to dilations of the domain, in 2 dimensions.

Proof of Proposition 10.1. To prove the first and third formulas, simply substitute
d D 2 into the definitions (6) and (8) of G0 and GRobin.

For the second formula, when d D 2 the definition (7) of G1 implies

G1 D
Z 2�

0

kDH. cos �
sin �

/k2
HS d�=2�: (35)

The homeomorphism H of the unit circle can be written H. cos �
sin �

/ D .
cos '.�/
sin '.�/

/.

Homogeneity of H then gives H. x1
x2

/ D .
cos '.�/
sin '.�/

/ where � D arg.x1 C ix2/ D
arctan.x2=x1/. Calculating the derivative matrix DH. x1

x2
/ results in

kDH. cos �
sin �

/k2
HS D '0.�/2:

Further, the distortion formula (4) for H says in 2 dimensions that

'0.�/2 D
� A.B/

A.�/
R.�/2

�2

:

Substituting the last two formulas into (35) shows that

G1 D

Z 2�

0

R.�/4 d�=2�

.A.�/=�/2
:

Now (34) follows by evaluating area and moment of inertia in polar coordinates.
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Expressing G0 as a support-type functional, in all dimensions. The geometric
meaning of G0 is highlighted by the following lemma.

Lemma 10.2 (Equivalence of our G0 with the definitions of Pólya–Szegő and Fre-
itas–Krejčiřík). If � is a Lipschitz-starlike domain then

G0 D 1

jSj
Z

@�

1

x � N.x/
dS.x/

� V.B/

V .�/

�.d�2/=d

:

Thus in 2 dimensions,

G0 D 1

2�

Z
@�

1

x � N.x/
ds.x/: (36)

Hence if � is convex then G0 � .V=Vin/2=d , where Vin is the volume of the
largest open ball centered at the origin and contained in �. .

Pólya and Szegő’s calculations already prove the lemma in dimension 2 (see [38],
p. 92), but the lemma is new in higher dimensions because Freitas and Krejčiřík
proceeded along somewhat different lines in their proof.

Proof of Lemma 10.2. Our first task is to evaluate x � N.x/ in terms of the radius
function. The boundary of � is the level set fx W jxj2 D R.x/2g and so taking the
gradient gives an outward normal vector n.x/ D x � R.x/rR.x/. We evaluate at
x D R.	/	 2 @� to obtain n.x/ D R.	/	 � R.	/rR.R.	/	/. The homogeneity
relation R.r	/ D R.	/ implies that rrR.r	/ D rR.	/ for each r > 0, and so
n.x/ D R.	/	 � rR.	/. Thus for the unit normal N.x/ D n.x/=jn.x/j we compute

x � N.x/ D R.	/2p
R.	/2 C jrR.	/j2 :

where we used that 	 � rR.	/ D 0 (by homogeneity of R).
Next we need a formula for surface area element on the boundary of �:

dS.x/ D R.	/d�2
p

R.	/2 C jrR.	/j2 dS.	/;

as one proves straightforwardly by parameterizing @� as fx D R.	/	 W 	 2 Sg.
By substituting the preceding formulas into the formula for G0 in the lemma, we

see that it reduces to the definition of G0 in Section 2.
Now write Bin for the ball of volume Vin centered at the origin, and write Rin

for its radius. If � is convex then Rin � x � N.x/ for all x 2 �, as one sees by
considering a support plane at x, and so

1

x � N.x/
� x � N.x/

R2
in

:

By integrating over @� and using the formula in the lemma for G0, on the left side,
and the divergence theorem on the right side, we find that G0 � .V=Vin/2=d .
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Evaluation of G0 for polygons with an inscribed circle. If � is a triangle with
incenter at the origin, or more generally if � is any polygon with an inscribed circle
centered at the origin, then the geometric factor G0 can be evaluated in terms of area
and perimeter. For such domains G0 D L2=4�A D GRobin, as was proved by Aissen
[1], Theorem 1. To prove this fact observe that x � N.x/ equals the inradius, for each
point x on the boundary. Hence formula (36) gives that G0 equals L=2� divided by
the inradius, which evaluates to L2=4�A because A D 1

2
LRin (by triangulating the

domain with respect to the origin).

Proof that G0 � GRobin � 1 and G1 � 1 (for Lemmas 2.2 and 3.4). We have
from Lemma 10.2 and Cauchy–Schwarz that

G0 � 1

jSj
j@�j2R

@� x � N.x/ dS.x/

� V.B/

V .�/

�.d�2/=d

D 1

jSj
j@�j2

V.�/d

� V.B/

V .�/

�.d�2/=d

D GRobin

(37)

by the divergence theorem (noting r � x � d ), and by definition of GRobin in (8).
Note that if equality holds then x � N.x/ is constant, by the equality conditions for
Cauchy–Schwarz.

Further, GRobin � 1 by the isoperimetric inequality, as remarked after (8), with
equality if and only if � is a ball.

Hence G0 � GRobin � 1, and G0 D 1 if and only if � is a centered ball.
(Aside. This inequality was established in 2 dimensions byAissen [1], Theorem 1.)
Now we prove G1 � 1. By applying the quadratic-geometric mean inequality to

the nonzero singular values of DH we deduce that

kDH.	/k2
HS

d � 1
� JacH .	/2=.d�1/ D

� V.B/

V .�/

�2=.d�1/

R.	/2d=.d�1/;

where the last step uses the distortion formula for H in (4). Substituting this estimate
into the definition of G1 in (7) shows that

G1 �
� V.B/

V .�/

�2=.d�1/� 1

jSj
Z

S
.Rd /1C2=d.d�1/ dS

�
=
� 1

jSj
Z

S
Rd dS

�.d�2/=d

�
� V.B/

V .�/

�2=.d�1/� 1

jSj
Z

S
Rd dS

�2=.d�1/

by Jensen’s inequality. Since
R

S Rd dS D V.�/d and jSj D V.B/d , we deduce that
G1 � 1.
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If G1 D 1 then R is constant (by the equality conditions for Jensen), and so
� is a centered ball. Then H maps S to S with constant distortion JacH � 1,
by (4). In 2 dimensions that is enough to imply H is an orthogonal transformation
(cf. Section 11). So suppose d � 3. Note the nonzero singular values of DH all have
equal magnitude (and hence have magnitude 1), by the equality conditions for the
quadratic-geometric mean inequality. Therefore by the singular value decomposition,
DH acts as an orthogonal matrix on the tangent space, at almost every point of the
sphere. Liouville’s theorem [21] implies that H is a Möbius transformation that
fixes the sphere. Since also the Jacobian of H equals 1 identically on the sphere, we
conclude that H is an orthogonal transformation.

Good choices of origin. What is a good choice of origin within the domain, given
that for Theorem 3.1 we would like to make the geometric factors G0 and G1 as small
as possible?

To minimize G1 one should choose the origin at the center of mass, because
Proposition 10.1 expresses G1 in terms of moment of inertia (at least in 2 dimensions).

The center of mass is not generally the best choice of origin for G0. For a polygon
with an inscribed circle, G0 is minimal when the origin coincides with the center of
the circle; this observation is due to Aissen [1], §3, with the key step being the use
of Cauchy–Schwarz as in (37). For a triangle, for example, the inscribed circle is
centered where the angle bisectors intersect, which can be quite far from the center
of mass (as happens for a thin acute isosceles triangle). Thus in general one cannot
hope to minimize both G0 and G1 with a single choice of origin. An exception is
for domains having two axes of symmetry, in which case both factors are minimized
when the origin is at the intersection (for G1 because the intersection point is the
centroid, and for G0 by work of Aissen [1], Corollaries 1, 2, and 3).

The question of whether G0 or G1 is larger can be subtle to resolve. For example,
consider the ellipse with semi-axes 3 and 1, shown in Figure 3. Choosing the origin
at the center would minimize both factors, and in fact would make them equal (as one
finds by direct computation). Nearby choices of origin, though, could lead to either
G0 or G1 being larger. Thus for domains like perturbed ellipses it is unclear which
factor will dominate, until computations have been performed.

Figure 3. Choices of origin in the dark shaded region give G0 < G1.
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11. Existence of homeomorphism H – Proof of Theorem 2.1

Here we construct a bi-Lipschitz homeomorphism H W S ! S with specified Jacobian
determinant, as required in Section 2. We apply the construction to ellipsoids in the
next section, in order to better understand the geometric factor G1.

Write K.	/ D R.	/d V.B/=V .�/ for the desired Jacobian determinant of H ,
which one regards as the mass density for the H -pullback of the uniform mass den-
sity on the sphere. The following construction of H remains valid whenever K is
continuous and positive with

R
S K.	/ d	 D jSj; the specific form of K is irrelevant.

Two dimensions, d D 2. In two dimensions we may regard K as a 2�-periodic
function of an angle � . The Jacobian condition JacH D K says H 0.�/ D K.�/,
which we satisfy by defining

H.�/ D
Z �

0

K.!/ d!:

Note H increases by 2� each time � increases by 2� , since
R 2�

0
K.!/ d! D jS1j D

2� . Also, H 0 D K is continuous, and is bounded above and below away from 0.
Hence H defines a C 1-diffeomorphism of the circle.

Incidentally, this construction shows that H is uniquely determined on the circle,
except for post-rotations (adding a constant to H ). We need not consider reflections
because H has positive Jacobian and so it must be orientation preserving.

Three dimensions, d D 3: the latitude–longitude construction. Let .�1; �2/ be
the standard spherical coordinates, with 0 � �1 � � and 0 � �2 � 2� . We assume
H has the form

H.�1; �2/ D .f .�1/; g.�1; �2//;

which means that each line of latitude (�1 D const.) is mapped to another line of
latitude, and the longitudinal position is transformed by g. We will first determine f

by studying how the spacing between lines of latitude must be distorted, and then will
determine g by applying the earlier 2-dimensional method on each line of latitude.

Fix the north and south poles (meaning f .0/ D 0; f .�/ D �) and require that g

increase by 2� for each trip around a line of latitude (meaning g.�; �C2�/�g D 2�).
Note that

�.cos f .�1//0g�2
.�1; �2/ D .sin f .�1//f 0.�1/g�2

.�1; �2/

D K.�1; �2/ sin �1;
(38)

by the Jacobian condition JacH D K. Integrating over �2 2 Œ0; 2�� gives an equation
involving only �1:

� .cos f .�1//0 D
�

1

2�

Z 2�

0

K.�1; �2/ d�2

�
sin �1: (39)
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This equation can be solved for cos f .�1/ by direct integration, using the north pole
condition cos f .0/ D 1. (The south pole condition cos f .�/ D �1 then follows
automatically, since we have

R �

0

R 2�

0 K sin �1 d�2d�1 D R
S2 K dS D jS2j D 4� .)

Next, we substitute (39) into the left side of (38) to get an equation for g�2
that can

be integrated directly to obtain g; we fix the constant of integration by requiring
g.�1; 0/ D 0 (which means geometrically that H fixes the prime meridian). One
checks easily from (38) and (39) that the construction gives g.�1; 2�/ D 2� as
required.

The above construction guarantees f 0 > 0 and g�2
> 0 away from the poles,

and one can check that the resulting H gives a bi-Lipschitz homeomorphism of the
sphere.

Remark. The point of this section is to provide a construction of H that can be imple-
mented in practical examples. Many other homeomorphisms also satisfy the Jacobian
condition (4). See Dacorogna and Moser [12] for an account of the amazingly varied
possibilities.

Higher dimensions. In dimensions 4 and higher, one extends the 3-dimensional
construction by means of generalized spherical coordinates. Induction on the dimen-
sion provides the analogue of g on lower dimensional “latitudinal spheres”. We leave
the details to the reader.

12. Ellipsoidal examples and the geometric factor G1

The homeomorphism H W S ! S constructed in the preceding section induces a
volume-preserving map T W � ! B, as defined in Section 2. For ellipsoids one could
alternatively use the linear map provided by a matrix M with M.E/ D B. Which of
these two maps will give a better estimate on the eigenvalues in Theorem 3.1? That
is, which will give a smaller value for the geometric factor G1?

For the linear map one has

T .r	/ D M.r	/ D rM	;

R.	/ D 1

jM	j ; H.	/ D M	

jM	j :

Extending R and H to be homogeneous functions gives

R.x/ D jxj
jMxj ; H.x/ D Mx

jMxj :

Somewhat tedious calculations then show that

G0 D G1 D ŒV .E/=V .B/�2=d kMk2
HS=d:
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Thus for ellipsoids we recover our earlier results about linear transformations [33]
and [34]. (Those papers treat more general domains than just ellipsoids, of course.)

Let us now compare this “linear” map T with the map T constructed from “spher-
ical coordinates” as in the previous section. Table 1 shows the values of G1 in the
linear case, and also shows numerical values from the spherical coordinates construc-
tion, for various choices of north pole. Note in the table that if the ellipsoid has two
equal semi-axes (so that it is a body of revolution), and if we take the remaining
axis as the north pole, then we obtain the same value for G1 as in the linear case.
That equality no longer holds for a generic ellipsoid with unequal semi-axes, and in
general the linear construction gives better results than the spherical coordinates one
does.

These observations provide some guidance as to how to choose the north pole
when constructing H by the spherical coordinates method, for an arbitrary starlike
domain.

Table 1. Values of G1 for the “linear” construction of T , and for various choices of north pole
in the “spherical coordinates” construction of T .

semiaxes (a,b,c) linear: G1 D G0 North a North b North c

(1,1,1) 1 1 1 1
(1,1,2) 1.19055 1.24002 1.24002 1.19055
(1,2,2) 1.25992 1.25992 1.32057 1.32057
(1,2,3) 1.49810 1.51620 1.73826 1.53697

13. Sloshing problem

We finish the paper by transferring our results to “sloshing eigenvalues”. On a cylinder
C D � � Œ�L; 0�, we consider the following two eigenvalue problems:

�u D 0 in C ,

u D 0 on @C n �,

@u

@n
D Q�u on �,

and

�u D 0 in C ,

@u

@n
D 0 on @C n �,

@u

@n
D Q�u on �.
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See Figure 4. The second eigenvalue problem describes frequencies of sloshing of a
fluid in the special case of a cylindrical “glass” with uniform cross-sections. (See [15]
for a historical review and [5], [20], [26], [27], and [28] for recent developments.)

L C

�

Figure 4. A sloshing cylinder C with height L and starlike cross-section �.

When we want to emphasize the dependence on the cylinder depth, we write the
eigenvalues as Q�j .L/ and Q�j .L/. The eigenvalues are determined by separating the
vertical and horizontal variables. One finds

Q�j .L/ D
q

�j coth.

q
�j L/ and Q�j .L/ D p

�j tanh.
p

�j L/;

where �j and �j are the Dirichlet and Neumann eigenvalues of �. The functions
ˆD.a/ D p

a coth.
p

aL/ and ˆN .a/ D p
a tanh.

p
aL/ are concave increasing,

and so majorization (Appendix A) extends our theorems on Dirichlet and Neumann
eigenvalues of the Laplacian to sloshing eigenvalues. The Neumann sloshing con-
clusion, in 2 dimensions, is that the normalized eigenvalue sum

nX
j D2

Q�j

�
L

r
A

G

�r
A

G
D

nX
j D2

ˆN .�j A=G/

is maximal for the disk, for each L > 0. (Note here that the depth L
p

A=G of the
cylinder depends on the area and geometric factor of the cross-section.) One can then
extend to more general functionals of the Q�j , by performing a second majorization.

These methods handle only sloshing in cylindrical glasses, although one can use
domain monotonicity (see [5]) to obtain bounds for some other shapes of glass. It
would be interesting to prove sharp bounds on eigenvalues of non-cylindrical sloshing
regions, by comparing somehow with a domain having rotational symmetry about
the vertical axis, as in [26].
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A. Majorization

To extend from eigenvalue sums to sums of concave functions of eigenvalues we use
the following proposition.

Proposition A.1. Assume faj g and fbj g are increasing sequences of positive real
numbers. Then the following statements are equivalent:

(i)
Pn

j D1 aj � Pn
j D1 bj for each n � 1;

(ii)
Pn

j D1 ˆ.aj / � Pn
j D1 ˆ.bj / for each n � 1 and all concave increasing func-

tions ˆ W RC ! R.

The result is due to Hardy, Littlewood and Pólya [17], §3.17. They treated decreas-
ing sequences faj g and fbj g and a convex increasing function ˆ, which is equivalent
to Proposition A.1 after replacing ˆ.a/ with �ˆ.�a/. A comprehensive account
of majorization methods can be found in the monograph of Marshall, Olkin and In-
gram [36]. For equality statements in (i) and (ii), including the infinite series case
n D 1, see a paper by Laugesen and Morpurgo [32], Proposition 10.

B. Orbital and spatial averages

Equality of orbital and spatial averages on the sphere was needed several times in the
paper.

Lemma B.1. Z
O.d/

f .U�/ d.U / D 1

jSj
Z

S
f .�0/ dS.�0/

for any f 2 L1.S/ and each � 2 S.

Proof of Lemma B.1. The right side of the formula equals

1

jSj
Z

S
f .U�0/ dS.�0/

by a change of variable, for each U . Integrating with respect to U gives (by Fubini)
that

1

jSj
Z

S
f .�0/ dS.�0/ D 1

jSj
Z

S

Z
O.d/

f .U�0/ d.U /dS.�0/:

For each �0 we change variable with U 7! U V , where V is chosen so that V �0 D �.
The lemma follows.
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