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Spectral instability
for even non-selfadjoint anharmonic oscillators

Raphaël Henry

Abstract. We study the instability of the spectrum for a class of non-selfadjoint anharmonic
oscillators, estimating the behavior of the instability indices (i.e. the norm of spectral projec-
tions) associated with the large eigenvalues of these oscillators. More precisely, we consider
the operators

A.2k; �/ D � d2

dx2
C ei�x2k

defined on L2.R/, with k � 1 and j� j < .k C 1/�=2k. We get asymptotic expansions for the
instability indices, extending the results of [4] and [5].

Mathematics Subject Classification (2010). 34E20, 34L10, 35P05.

Keywords. Non-selfadjoint operators, complex WKB method, asymptotic expansions, com-
pleteness of eigenfunctions.

1. Introduction

It has been known for several years that the spectrum of a non-selfadjoint operator
A, acting on an Hilbert space H , can be very unstable under small perturbations of
A. In other words, unlike in the selfadjoint case, the norm of the resolvent of A

near the spectrum can blow up much faster than the inverse distance to the spectrum.
Equivalently, the spectrum of its perturbations A C "B, with " > 0 and any B 2
L.H /, kBk � 1, is not necessarily included in the set fz 2 C W d.z; �.A// � "g.

Let � 2 �.A/ be an isolated eigenvalue of A, and let …� denote the spectral
projection associated with �. In order to understand the instability of � (in the above
sense), we define the instability index of � as the number1

�.�/ D k…�k:
Of course �.�/ � 1 in any case, and �.�/ D 1 when A is selfadjoint.

1See [4].
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If …� has rank 1, that is, if � is simple in the sense of the algebraic multiplicity,
we have a convenient expression for �.�/, which we shall use extensively in the
following: if u and u� denote respectively eigenvectors of A and A� associated with
� and N�, one can easily check [3] that

�.�/ D kukku�k
jhu; u�ij : (1.1)

To understand the relation between spectral instability and instability indices, we
denote by �".A/ the "-pseudospectra of A, that is the family of sets, indexed by ",

�".A/ D
°
z 2 �.A/ W k.A � z/�1k > 1

"

±
[ �.A/:

From the perturbative point of view, �".A/ can be seen as the union of the perturbed
spectra, in the following sense:

�".A/ D
[

B2L.L2/;

kBk�1

�.A C "B/:

This equivalent formulation follows from a weak version of a theorem due to Roch
and Silbermann [16].

Instability indices are closely related to the size of "-pseudospectra around �
(see [3]). For instance, if A 2 Mn.C/ is a diagonalizable matrix with distinct
eigenvalues �1; : : : ; �n, Embree and Trefethen show [18] that the "-pseudospectra
are rather well approximated by disks of radius "�.�k/ around the eigenvalues. More
precisely, there exists "0 > 0 such that, for all " 2�0; "0Œ,[

�k2�.A/

D.�k; "�.�k/C O."2// � �".A/ �
[

�k2�.A/

D.�k; "�.�k/C O."2//:

(1.2)
In the case of an infinite dimensional space, the validity of this statement should be
investigated, as well as the dependence on �k of the O."2/ terms.

In the following, we will consider some anharmonic oscillators

A.2k; �/ D � d2

dx2
C ei� jxj2k ; (1.3)

where k � 1 and j� j < .k C 1/�=2k. These operators are defined on L2.R/ by
considering, first on C1

0 .R/, the associated quadratic form, which is sectorial if
j� j < .k C 1/�=2k, see [4]. As stated in [4], its spectrum consists of a sequence
of discrete simple eigenvalues, denoted in non-decreasing modulus order by �n D
�n.2k; �/, j�nj ! C1, and the associated instability indices will be denoted by
�n.2k; �/.
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All the spectral projections of A.2k; �/ are of rank 1 (see Lemma 5 of [4]), and
if un denotes an eigenfunction associated with �n.2k; �/, then formula (1.1) yields

�n.2k; �/ D

Z
R

jun.x/j2dxˇ̌̌
ˇ
Z

R
u2

n.x/dx

ˇ̌̌
ˇ
; (1.4)

since in this case we have A�	 D 	A where 	 denotes the complex conjugation,
and thus u�

n D Nun.
E. B. Davies showed in [4] that �n.2k; �/ grows as n ! C1 faster than any

power of n for any � ¤ 0, j� j < .kC 1/�=2k. This statement has been improved in
the case k D 1 of the harmonic oscillator (sometimes referred as the Davies operator),
since E. B. Davies and A. Kuijlaars showed [5] that �n.2; �/ grows exponentially fast
as n ! C1, with an explicit rate c.�/:

lim
n!C1

1

n
log �n.2; �/ D c.�/: (1.5)

The purpose of our work is to prove that this last statement actually holds for any
even anharmonic oscillators A.2k; �/, k � 1. More precisely, we will improve the
estimate by getting asymptotic expansions in powers of n�1 as n ! C1.

Let us stress that such a growth of the instability indices implies that the family
of eigenfunctions of A.2k; �/ can not possess any of the “good” properties usually
expected. It does not form a basis, neither in the Hilbert sense nor in the Riesz or
Schauder sense (see [4] and [12]). This excludes any hope of decomposing properly
an L2 function along the eigenspaces of the operator.

We will prove in section 3, however, that the eigenfunctions form complete sets
of the L2 space (Theorem 1.3).

Before stating the results of our work, let us specify some notation. Given two
functions f , g and a real sequence . j̨ /j �0, we will write

f .
/ �
�!C1 g.
/

C1X
j D0

j̨ 

�j (1.6)

to mean that, for all N � 1,

f .
/ D g.
/
� NX

j D0

j̨ 

�j C O.
�N �1/

�
(1.7)

as 
 ! C1.
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In the case when f D f .x; 
/, g D g.x; 
/ and j̨ D j̨ .x; 
/ depend on another
variable x, we will say that (1.6) is uniform with respect to x if the remainder term
O.
�N �1/ in (1.7) is uniform with respect to x. We define likewise the symbol �

�!0
.

The following theorem was announced in [11].

Theorem 1.1. Let k 2 N� and � be such that 0 < j� j < .kC1/�
2k

. If �n.2k; �/

denotes the n-th instability index of A.2k; �/ D � d2

dx2 C ei�x2k ; then there exist
K.2k; �/ > 0 and a real sequence .C j .2k; �//j �1 such that

�n.2k; �/ �
n!C1

K.2k; �/p
n

eck.�/n
�
1C

C1X
j D1

C j .2k; �/n�j
�
; (1.8)

as n ! C1, with

ck.�/ D
2.k C 1/

p
�	

�k C 1

2k

�
'�;k.x�;k/

	
� 1
2k

� > 0; (1.9)

where

x�;k D
� tan.j� j=.k C 1//

sin.kj� j=.k C 1//C cos.kj� j=.k C 1// tan.j� j=.k C 1//

� 1
2k
;

and

'�;k.x/ D Im
Z xe

i �
2.kC1/

0

.1 � t2k/1=2dt :

In [11], the well-known asymptotic properties of the Airy function [1] have been
used to obtain a similar asymptotic expansion for the instability indices of the complex
Airy operator

� d2

dx2
C ei� jxj;

which can be decomposed as its Dirichlet and Neumann realizations in RC. It is an
example of an odd non-selfadjoint anharmonic oscillator. The other odd cases

A.2k C 1; �/ D � d2

dx2
C ei� jxj2kC1

are excluded from our work because of the singularity at x D 0 of their potential, and
because their eigenfunctions can not be expressed as easily as those of the complex
Airy operator in terms of special functions. However, the instability indices of odd
anharmonic oscillators are expected to behave as in (1.8).
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Remark 1.2. In the harmonic case k D 1 (Davies operator), we recover from the
first term of (1.8) the Davies–Kuijlaars theorem [5]:

lim
n!C1

1

n
log k…nk D c1.�/ D 4'1

� 1p
2 cos.�=2/

�
D 2Re f

� ei�=4p
2 cos.�=2/

�

where f .z/ D log.z C p
z2 � 1/ � zpz2 � 1.

We are also interested in the completeness of the family of eigenfunctions of
operator A.2k; �/. The following theorem has been proved in [2] in the case of Airy
operator AD.1; �/, and in [4] in the harmonic oscillator case, as well as for A.2k; �/,
k � 2, j� j < �

2
. We extend the result to any operator A.2k; �/ with j� j < .kC1/�

2k
:

Theorem 1.3. For all k � 1, and for j� j < .kC1/�
2k

, the eigenfunctions of A.2k; �/

form a complete set of the space L2.R/.

Theorem 1.3 and the previous estimates enable us to study the convergence of
the operator series defining the semigroup e�tA.2k;�/ associated with A.2k; �/when
decomposed along the projections …n.2k; �/.

The following statement extends the result of [5] in the harmonic oscillator case.

Corollary 1.4. Let j� j � �=2, e�tA.2k;�/ be the semigroup generated by A.2k; �/,
�n D �n.2k; �/ the eigenvalues of A.2k; �/, and …n D …n.2k; �/ the associated
spectral projections.

Let T .�/ D c1.�/= cos.�=2/, where c1.�/ is the constant in (1.9). The series

†2k;� .t / D
C1X
nD1

e�t�n.2k;�/…n.2k; �/

is not normally convergent in the case k D 1 for t < T .�/ ; in cases k D 1

for t > T .�/, and k � 2 for any t > 0, the series converges normally towards
e�tA.2k;�/.

We prove Theorem 1.1 in Section 2, while Section 3 is dedicated to the proof of
Theorem 1.3 and Corollary 1.4.

Acknowledgments. The author was greatly indebted to Bernard Helffer for his help,
advice and comments. He is also grateful to Thierry Ramond, Christian Gérard and
André Martinez for their valuable discussions. The author was supported by the ANR
NOSEVOL.
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2. Instability of even anharmonic oscillators

We would like to understand the behavior as n ! C1 of the instability indices
�n.2k; �/, k � 1, using (1.4). In this purpose, we will reformulate the problem in
terms of the elements  h of the kernel of the selfadjoint operator

Ph.2k/ D �h2 d
2

dx2
C x2k � 1: (2.1)

2.1. Asymptotics of the eigenfunctions. Let n � 1, �n the n-th eigenvalue of
A.2k; �/, and un an associated eigenfunction. Let us denote

hn D j�nj� kC1
2k : (2.2)

Since un extends to an entire function of the complex plane, we can perform the
analytic dilation y D ei�=.2kC2/j�nj�1=2kx, which maps the equation

.A.2k; �/� �n/un.x/ D 0

into

j�njei�=.kC1/
�

� h2
n

d2

dy2
C y2k � ei.arg �n��=.kC1//

�
 hn

.y/ D 0;

where
 hn

.y/ D un.h
�1=.kC1/
n e�i�=.2kC2/y/: (2.3)

Since un 2 L2.R/, according to Sibuya’s theory [17] (see (2.7) below), the function
 hn

is exponentially decreasing in the sectors

fj arg zj < �=.2k C 2/g and fj arg z � �j < �=.2k C 2/g
and it belongs to the domainH 2.R/\L2.RI x4kdx/. Hence hn

is an eigenfunction
of the non-negative selfadjoint operator

�h2
n

d2

dy2
C y2k ;

associated with the eigenvalue ei.arg �n��=.kC1//. Therefore, we have necessarily

ei.arg �n��=.kC1// D 1;

which means that  h satisfies the equation

Ph.2k/ h D 0; (2.4)

where Ph.2k/ is the operator defined in (2.1). Furthermore, all the eigenvalues of
A.2k; �/ lie on the half-line arg�1f �

kC1
g.
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The spectral projection associated with �n being of rank 1 according to Lemma 5
in [4], formula (1.4) holds for �n.2k; �/. Using (2.3) and the scale change

x 7�! h
1

kC1
n x;

and noticing that the solutions  hn
are even or odd since the potential in A.2k; �/ is

even, we get

�n.2k; �/ D

Z
RC

j hn
.e

i �
2.kC1/x/j2dxZ

RC

 2
hn
.x/dx

: (2.5)

Here we have deformed the integration path in the denominator, using the analyticity
of  hn

and its exponential decay as jxj ! C1 in the sector2

f0 � arg z � �=.2k C 2/g:
The previous arguments ensure that rn D j�nj are the eigenvalues of the selfad-

joint anharmonic oscillator � d2

dx2 C x2k . Let us recall from [10], Theorem 2:1, the
asymptotics of these eigenvalues. There exists a real sequence .sj /j �1 such that

j�nj �
n!C1

 
.k C 1/

p
�	

�k C 1

2k

�

	
� 1
2k

� .nC 1=2/

! 2k
kC1 �

1C
C1X
j D1

sj .nC 1=2/�2j
�
:

(2.6)
Now we recall some asymptotic properties of the function  h. There exists a canon-
ical domain � for the operator Ph.2k/, in the sense of [17], Definition 59:3, which
contains the ray �0;C1Œei�=.2kC2/. Hence, according to the results of [17], Theo-
rem 59:1, since  h is an L2 solution of (2.4), then for any ı > 0, we can choose to
normalize  h such that

 h.x/ �
h!0

1

.x2k � 1/1=4

�
1C

C1X
j D1

uj .x/h
j
�

exp
�

� 1

h
S.x/

�
(2.7)

uniformly with respect to x 2 Œı;C1Œei�=.2kC2/, where the functions uj satisfy, as
jxj ! C1,

juj .x/j D O.jxj�j.kC1//:

Here we chose the determination of the square root defined on C n Œ0;C1Œ, withp�1 D i , and we have denoted by S the function

S W z 7�!
Z z

1

p
x2k � 1 dx;

2See [17].
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where the integral is taken along a path joining 1 and z, defined on the simply con-
nected set

D D C n
2k�1[
j D0

eij�=kŒ1;C1Œ;

the integral being independent of the path.
Another expression of  h is available in a complex neighborhood of the real

half-line. Namely, there exist ı0 > 0 and two sequences of holomorphic functions
.Aj .�//j �1 and .Bj .�//j �0 such that

 h.x/ �
h!0

2
p
�h�1=6

� �.x/

x2k � 1

�1=4h
Ai
��.x/
h2=3

��
1C

C1X
j D1

Aj .�.x//h
2j
�

C h4=3Ai 0
��.x/
h2=3

�C1X
j D0

Bj .�.x//h
2j
i

(2.8)

uniformly with respect to x 2 Œ�1C ı0;C1ŒCi Œ�ı0; ı0�. Here Ai denotes the Airy
function and

�.x/ D
�
3

2
S.x/

�2=3

:

Note that �.x/ > 0 if x > 1, �.x/ ! C1 as x ! C1, and �.x/ < 0 if x 2��1; 1Œ.
In order to prove (2.8), let us recall that, according to the results of [13], Theo-

rems 9:1 and 9:2, p. 418 � 419, there exists a solution Q h satisfying the asymptotic
expansion (2.8) in �ı0 D Œ�1C ı0;C1ŒCi Œ�ı0; ı0�. The strip �ı0 is indeed mapped
by � into a domain which satisfies conditions .i/ � .v/ of [13], p. 419. This implies
the existence of a solution Q h of (2.1) satisfying, for any n � 1,

Q h.x/ D
� �.x/

x2k � 1
�1=4

W2nC1;0.h
�1; �.x//;

where W2nC1;0 is the function given in [13], expression .9:02/ p. 418. Thus Q h

satisfies (2.8).
On the other hand, we have

Ai.�/ D 1

2
p
��1=4

.1C o.1// exp
�

� 2

3
�3=2

�

as � ! C1, see [1].
Thus,

Q h.x/ D 1

.x2k � 1/1=4
.1C o.1// exp

�
� 1

h
S.x/

�

as x ! C1. Since Q h is exponentially decaying as x ! C1, with the same
principal term as  h, we have necessarily Q h D  h.
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2.2. Estimates on the norm of the eigenfunctions. We assume without loss of
generality that � > 0 (if � < 0, replace � by j� j).

For a fixed ı > 0 (which will be determined later in this paragraph), we writeZ C1

0

j h.e
i �

2.kC1/x/j2dx D Iı.h/CRı.h/ (2.9)

where

Iı.h/ D
Z C1

ı

j h.e
i �

2.kC1/ x/j2dx; Rı.h/ D
Z ı

0

j h.e
i �

2.kC1/x/j2dx;

and we first estimate Iı.h/. The expansion being uniform with respect to x, we
can take the integral over Œı;C1Œ in (2.7). Thus there exists a sequence .vj /j �1 of
functions such that

Iı.h/ D
Z C1

ı

a� .x; h/e
2
h

'�;k.x/dx (2.10)

where

a� .x; h/ �
h!0

1

jx2kei k�
kC1 � 1j1=2

�
1C

C1X
j D1

vj .x/h
j
�

and

'�;k.x/ D �Re
Z xe

i �
2.kC1/

0

.t2k � 1/1=2dt:

We have

'0
�;k.x/ D �jx2kei k�

kC1 � 1j1=2 cos
�1
2

arg.x2kei k�
kC1 � 1/C �

2.k C 1/

�
:

Hence we can easily check that '� has a unique critical point x�;k in RC,

x�;k D
� tan.�=.k C 1//

sin.k�=.k C 1//C cos.k�=.k C 1// tan.�=.k C 1//

� 1
2k
: (2.11)

It is a non-degenerate maximum, and of course '�;k.ı/ < '�;k.x�;k/ if ı < x�;k .
Thus, the Laplace method [7] applies to the integral (2.10), and there exists a

sequence .rj .2k; �//j �1 such that

Iı.h/ �
h!0

p
2�

j.x2k
�;k
eik�=.kC1/ � 1/'00

�;k
.x�;k/j1=2

e
2
h

'�;k.x�;k/h1=2
�
1C

C1X
j D1

rj .2k; �/h
j
�
:

(2.12)
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Now the asymptotic expansion (2.8) gives a rough estimate on the remainder term
Rı.h/ in (2.9), provided that ı is chosen small enough. Using the asymptotic behavior
of the Airy function and its derivative given in [1] in the sector fj arg z��j < 2�=3g,
expression (2.8) yields, for all x 2 Œ0; ıei�=.2kC2/�,

j h.x/j D O.eM=h/; M D sup
x2Œ0;ıei�=.2kC2/�

.�ReS.x//:

Choosing ı < jx�;kj then yields

Rı.h/ D O.ec=h/; c < 2'�;k.x�;k/: (2.13)

Finally (2.9) and (2.12) lead to the following lemma.

Lemma 2.1. There exists a sequence .rj .2k; �//j �1 such that

Z
R

j h.e
i �

2.kC1/x/j2dx �
h!0

Ck.�/h
1=2e

dk .�/

h

�
1C

C1X
j D1

rj .2k; �/h
j
�
; (2.14)

where

Ck.�/ D 2

p
2�

j.x2k
�;k
eik�=.kC1/ � 1/'00

�;k
.x�;k/j1=2

and

dk.�/ D 2'�;k.x�;k/:

In the following paragraph, we get an asymptotic expansion for the denominator
of (2.5).

2.3. Estimate on the real axis. Now we want to get an asymptotic expansion for
the norm of  hn

on the real axis, using (2.8) which holds in a strip

Œ�1C ı0;C1ŒCi Œ�ı0; ı0�

for some ı0 > 0.
Let
 2 C1.RI Œ0; 1�/, such that Supp 
 ���1Cı0;C1Œ, and
.�x/ D 1�
.x/,

x 2 R. Then we haveZ
RC

j h.x/j2dx D
Z

R
j h.x/j2
.x/dx:

Noticing that

Ai
� �

h2=3

�
D h�1=3Aih.�/ where Aih.�/ D

Z
R
e

i
h

.� 	C	3=3/d�;



Spectral instability for even non-selfadjoint anharmonic oscillators 359

the asymptotic expansion (2.8) yieldsZ
RC

j h.x/j2dx �
h!0

4�

h

�Z
R
a1.x; h/jAih.�.x//j2
.x/dx

C h4

Z
R
a2.x; h/jAi 0h.�.x//j2
.x/dx

C h2

Z
R
a3.x; h/Aih.�.x//Ai

0
h.�.x//
.x/dx

�

DW 4�
h
.I1.h/C I2.h/C I3.h//;

(2.15)

where for ` D 1; 2; 3,

a`.x; h/ �
h!0

ˇ̌̌
ˇ �.x/

x2k � 1
ˇ̌̌
ˇ
1=2 C1X

j D0

a
j

`
.�.x//h2j ; a0

1 � 1:

In order to estimate I1.h/, we notice (see [13], p. 398), that x 7! �.x/ is one-to-
one, mapping Œ�1 C ı0;C1Œ into Œ�˛;C1Œ, for some ˛ > 0. Let us denote by
x W � 7! x.�/ its inverse, and Q
 D 
 B x, whose support belongs to Œ�˛;C1Œ. Then,

I1.h/ D
Z

R
b1.�; h/jAih.�/j2 Q
.�/d�

D
•

R3

e
i
h

ˆ� .�;
/b1.�; h/ Q
.�/d�d�d�;
(2.16)

where

b1.�; h/ �
h!0

�

x.�/2k � 1

�
1C

C1X
j D1

a
j
1 .�/h

2j
�

and ˆ	.�; �/ D �.� � �/C .�3 � �3/=3.
It is then straightforward to check that the stationary phase method [8] applies to

the .�; �/-integral in (2.16), with fixed �. The unique non-degenerate critical point of
ˆ	 is .�	 ; �	/ D .��2; �/, and we have ˆ	.�	 ; �	/ D 0, j det Hess ˆ	.�	 ; �	/j D 1.
Thus, there exists a real sequence .dj /j �0 such that

I1.h/ �
h!0

h

C1X
j D0

djh
j ; d0 > 0:

The same treatment for the terms I2.h/ and I3.h/ in (2.15), using that

Ai 0h.�/ D i

h

Z
R
�e

i
h

.� 	C	3=3/d�;
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yields Z C1

�1
j h.x/j2dx �

h!0

C1X
j D0

cjh
j ; c0 ¤ 0: (2.17)

2.4. Proof of Theorem 1.1. Finally, we get the desired statement by quantification
of the parameterhn as an asymptotic expansion in powers ofn�1. Namely, using (2.2)
and (2.6), we have

1

hn

�
n!C1

 
.k C 1/

p
�	

�k C 1

2k

�

	
� 1
2k

� .nC 1=2/

!�
1C

C1X
j D1

s
j

k
.nC 1=2/�2j

�
:

for some real sequence .sj

k
/j �1.

This expansion along with expressions (2.5), (2.14) and (2.17) yield the statement
of Theorem 1.1.

In the last section, we prove Theorem 1.3 and Corollary 1.4.

3. Completeness and semigroups

3.1. Completeness of eigenfunctions. In this paragraph we prove Theorem 1.3.
First of all, let us recall that, if H is an Hilbert space and p � 1, the Schatten class
Cp.H / denotes the set of compact operators A such that

kAkp WD
� C1X

nD1

�n.A/
p
�1=p

< C1; (3.1)

where .�n.A//n�1 are the eigenvalues of .A�A/1=2, repeated according to their
multiplicity; see [6]. The space Cp.H /, p � 1, is a Banach space.

We already know that the resolvent A.2k; �/�1 is compact for any k � 1 and
j� j < .k C 1/�=2k. We now prove like in [14] that it actually belongs to a Schatten
class.

Lemma 3.1. For any " > 0, j� j < .kC1/�
2k

and k � 1, we have

.A.2k; �//�1 2 C kC1
2k

C".L2.R//:

Proof. Let us show that, for all " > 0, the series
P
�

kC1
2k

C"
n is convergent, where

.�n/n�1 are the eigenvalues of

.Œ.A.2k; �//�1��.A.2k; �//�1/1=2 D .ŒA.2k; �/.A.2k; �//���1/1=2:
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If .�n/n�1 denote the eigenvalues of A.2k; �/.A.2k; �//�, then we have to check
that

C1X
nD1

��p=2
n < C1

as soon as p > kC1
2k

.

A.2k; �/.A.2k; �//� is a selfadjoint operator, and if p.x; �/ denotes its symbol,
we define its quasi-homogeneous principal symbol P.x; �/ as

P.x; �/ D lim
r!C1 r�1p.r1=4kx; r1=4�/;

following [15]. Then we have

P.x; �/ D j�2 C ei�x2k j2 D �4 C 2 cos ��2x2k C x4k ; (3.2a)

and

P.r1=4kx; r1=4�/ D rP.x; �/; r > 0: (3.2b)

Moreover P is globally elliptic, in the sense that

jP.x; �/j > 0; .x; �/ ¤ .0; 0/: (3.3)

Hence the results of [15], Theorem 7:1, allow us to apply the following Weyl formula

N.t/ WD #fj � 1 W �j � tg �
t!C1

Z
P.x;	/�t

dxd�;

which, with t D �n and using (3.2b), yields

n �
n!C1 C�

kC1
4k

n

where C D Vol P�1.Œ0; 1�/.

Thus the series
P
�

�p=2
n converges if and only if

C1X
nD1

n� 2kp
kC1 < C1;

that is if and only if p > kC1
2k

.
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Since the operator A.2k; �/ is sectorial and its numerical range is included in the
sector �� D arg�1Œ0; ��, the resolvent estimate

k.A.2k; �/� �/�1k D O.j�j�1/ (3.4)

holds outside �� , and if we denote p D kC1
2k

C ", then

� <
.k C 1/�

2k
<

�
kC1
2k

C "
D �

p
(3.5)

for " small enough, as soon as k > 1.
Consequently, Theorem 1.3 follows from Lemma 3.1 and Corollary 31 of [6],

p. 1115.

In the next paragraph, we prove Corollary 1.4.

3.2. Semigroup decomposition. The case k D 1 was already proved in [5]. For
k � 2, using (1.8) and (2.6), we see that, as n ! C1,

k…n.2k; �/k D O.ecj�nj˛/;

where ˛ < 1. Thus, the series †2k.t / is normally convergent for all t > 0.
To check that the series †2k.t / (when convergent) converges towards the semi-

group associated with A.2k; �/, we use the density of the family .un/, where the
eigenfunctions un are assumed to be normalized by the condition hun; Nuni D 1, so
that .un; Nun/n�1 is a biorthogonal family (see [4]), namely

hun; Numi D ın;m; n; m 2 N: (3.6)

Then we have
e�tA.2k;�/un D e�t�nun

and on the other hand,

†2k.t /un D
C1X
j D1

e�t�j…jun D e�t�nun:

Here we used the formula
…jf D hf; Nuj iuj

(see [4] and [3]) which holds for rank 1 spectral projections, together with the
biorthogonal property (3.6).

Hence by linearity, e�tA.2k;�/ and †2k.t / coincide on Vectfun W n � 1g, and
hence on D.A.2k; �// by density (see Theorem 1.3).
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