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and a first-order trace formula
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Abstract. We obtain a simple formula for the first-order trace of a regular differential operator
on a segment perturbated by a multiplication operator. The main analytic ingredient of the
proof is an improvement of the Tamarkin equiconvergence theorem.
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1. Introduction

1.1. Historical remarks. Consider a formal differential expression of the order
n > 2,

` WD .�i/nDn C
n�2X
kD0

pk.x/D
k; (1)

acting on functions on some segment Œa; b� (D denotes differentiation with respect
to x). We assume pk to be summable functions. Let Pj and Qj , j 2 f0; : : : ; n� 1g,
be polynomials whose degrees do not exceed n� 1. Then one can form the boundary
conditions:

Pj .D/y.a/CQj .D/y.b/ D 0; j 2 f0; : : : ; n� 1g; (2)

where y is an arbitrary function.
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Let dj , j 2 f0; : : : ; n � 1g, be the maximum of degrees of Pj and Qj . Suppose
aj and bj are the dj -th coefficients of Pj and Qj respectively. We assume that the
system of boundary conditions (2) is normalized, i.e.

P
j

dj is minimal among all the

systems of boundary conditions that can be obtained from (2) by linear bijective trans-
formations. See [13], Chapter II, §4, for a detailed explanation and [21] for a more
advanced treatment. We call system (2) almost separated if after some permutation
of the boundary conditions we have

for n D 2m W bj D 0 if j < mI aj D 0 if j > mI
for n D 2mC 1 W bj D 0 if j < mI aj D 0 if j > mI ambm ¤ 0:

Differential expression (1) and boundary conditions (2) generate an operator L
(see [13], Chapter I, for this standard procedure). We assume these boundary condi-
tions to be regular in the sense of Birkhoff (see [13], Chapter II, §4). We underline
that we do not require our operator to be self-adjoint; in particular, all the coefficients
may be non-real.

We observe that the operator L has purely discrete spectrum (see [13], Chapter I)
and denote it by f�N g1

ND1
. We always enumerate points of a spectrum in ascending

order of their absolute values according to the multiplicity of eigenvalues, e.g., we
assume that j�N j 6 j�N C1j.

Let Q be an operator of multiplication by a function q 2 L1.Œa; b�/. Then, LCQ
also has purely discrete spectrum f�N g1

ND1
.

In the previous paper [15], the authors obtained a formula for the first order trace

1X
N D1

.�N � �N / (3)

in terms of degrees of Pj for the case of a self-adjoint semibounded operator with
discrete spectrum on the halfline RC. We note that series (3) converges if and only
if

R
q D 0, see Theorem 1 in [17], otherwise one has to regularize the trace to get

something worth counting. Particular cases of this problem were considered earlier
in papers [6], [17], [7], and in our preprint [14].

We conjectured that a similar formula should be valid for the case of an operator
on an interval, at least if the boundary conditions are almost separated. This is really
the case, though the details are dramatically different. In [15] we used the theorem on
asymptotic behavior of the spectral functions of L and of the operator generated by
the truncated expression and the same boundary conditions (2) obtained in [8] and [9].
Surprisingly, for the case of an interval the corresponding result was not known yet!
So we had to prove this theorem, which refines the classical equiconvergence result of
Tamarkin (see [24] or Theorem 1:5 in [12]; for the second-order operators see earlier
papers [22], [23], [5], and [3]).

Theory of regularized traces originated in the fifties. We refer the reader to the
survey [18] for the general historical scenery of the subject. We mention only several
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results that are closely related to our one. The first paper where such problems were
considered was [2]. In this article the formula of regularized trace was calculated for
the perturbation of a self-adjoint second order operator by a multiplication operator.
Some particular cases of the fourth order operators were treated in [4], [10], and [1].
Operators of an arbitrary order without lower-order coefficients were considered
in [20], where a formula for regularized trace was obtained for general Birkhoff
regular boundary conditions. However, we should mention that the paper [20] deals
with the case of a more regular function q and does not provide short answers for
the cases of almost separated and quasi-periodic boundary conditions. In [16], self-
adjoint operators of an even order with lower order coefficients and special boundary
conditions were considered. Namely, all derivatives of an even order were assumed
to vanish on both ends of the interval. Formulas for �.q/ and for traces of higher
order were given in terms of zeta function. It is worth to note also the paper [19]
where the authors considered the second order operators with distribution potentials.

1.2. Setting of the problem and formulation of results. Let L0 be the operator gen-
erated by the differential expression .�i/nDn and boundary conditions (2). Denote
by f�0

N g1

ND1
the eigenvalues of L0. Consider also the Green functions of operators

L0 � � and L � �, which we denote by G0.x; y; �/ and G.x; y; �/, respectively.
Then our main estimate reads as follows.

Theorem 1. For every sequence R D Rl ! 1 separated from j�0
N j 1

n the integral

Z
j�jDRn

j.G0 �G/.x; y; �/j jd�j

tends to zero uniformly with respect to x; y 2 Œa; b�.

This theorem is a generalization of the celebrated Tamarkin equiconvergence
theorem mentioned above. Denote by �R.x; y/ the integral

Z
j�jDRn

.G0 � G/.x; y; �/ d�:

Then the Tamarkin theorem states that the integral operator with the kernel �R acting
from L1 to L1 tends to zero in the strong operator topology. Theorem 1 implies the
same convergence in the norm operator topology. Though we had found this theorem
during our study of regularized traces, it is interesting in itself.

Now we turn to the traces. Unfortunately, a beautiful formula similar to that of [15]
does not hold for the general problem. So, we need to introduce some notation.
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Let �1 D ŒnC1
2
� and �2 D Œn

2
�. For � D 1; 2 denote by yW Œ�� the matrix

yW Œ�� D

0
B@
a0 : : : �.���1/d0a0 ���d0b0 : : : �.n�1/d0b0

:::
:::

:::
:::

an�1 : : : �.���1/dn�1an�1 ���dn�1bn�1 : : : �.n�1/dn�1bn�1

1
CA (4)

(here and further � D e
2�i

n ). Note that these matrices are non-degenerate by the
Birkhoff regularity condition.

Next, define matrices A and B with entries

Ajk D aj �1.�
k�1/dj �1

and

Bjk D bj �1.�
k�1/dj �1

for j; k 2 f1; : : : ; ng. Finally, we introduce matrices P Œ�� and QŒ�� D . xP Œ��/T ,
� D 1; 2, by formulas

P
Œ��

˛ˇ
D

8̂<
:̂

1

�ˇ�˛ � 1
; ˛ > �� > ˇI

0; otherwise;

Q
Œ��

˛ˇ
D

8̂<
:̂

1

�ˇ�˛ � 1; ˇ > �� > ˛I

0; otherwise.

(5)

Note that if n is even, then �1 D �2 D n
2

, yW Œ1� D yW Œ2�, P Œ1� D P Œ2�, and QŒ1� D
QŒ2�.

Now we can formulate the main result of our paper.

Theorem 2. Let q 2 L1.Œa; b�/ be such that the functions

 a.x/ D 1

x � a

xZ
a

q.t/dt � 1

b � a

bZ
a

q.t/dt

and

 b.x/ D 1

b � x

bZ
x

q.t/dt � 1

b � a

bZ
a

q.t/dt

have bounded variation at the points a and b, respectively. Then for the eigenvalues
�N and �N of the operators L and L C Q defined above the following formula is
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true:

�.q/ �
1X

N D1

h
�N � �N � 1

b � a

bZ
a

q.t/ dt
i

D  a.aC/
2n

�
2X

�D1

tr.P Œ��. yW Œ��/�1A/C  b.b�/
2n

�
2X

�D1

tr.QŒ��. yW Œ��/�1B/:

(6)

Moreover, for � D 1 and � D 2 the following relation is true:

tr.P Œ��. yW Œ��/�1A/C tr.QŒ��. yW Œ��/�1B/ D
n�1X
j D0

dj � n.n � 1/
2

: (7)

Remark 1. Formula .6/ for L D L0 and for a smooth function q was obtained
in [20]. However, formula .7/, as well as Theorem 3 below, is new even in this case.

For some classes of boundary conditions formula (6) can be considerably simpli-
fied.

Theorem 3. Let the assumptions of Theorem 2 be satisfied.

1. Suppose that boundary conditions (2) are almost separated. Then

1a) for n D 2m,

�.q/ D  a.aC/
2m

� m�1X
j D0

dj � m.2m � 1/
2

�
C  b.b�/

2m

� 2m�1X
j Dm

dj �m.2m � 1/
2

�
I (8)

1b) for n D 2mC 1,

�.q/ D  a.aC/
2mC 1

� m�1X
j D0

dj C dm

2
� m.2mC 1/

2

�

C  b.b�/
2mC 1

� 2mX
j DmC1

dj C dm

2
� m.2mC 1/

2

�
:

(9)

2. Suppose that the boundary conditions (2) are quasi-periodic, i.e. dj D j and
bj D aj# .# ¤ 0/ for j 2 f0; : : : ; n� 1g. Then

�.q/ D 0: (10)
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The plan of our paper is as follows. In Section 2 we prove Theorem 1, almost by
direct computation. Here we also establish auxiliary estimates which are used in the
next section. In Subsection 3.1 we deduce formula (6) from Theorem 1. To do this,
we improve the idea of [20]. Finally, in Subsection 3.2 we derive formulas (7)–(10)
using technique and tricks similar to those we used in [15].

Acknowledgements. The authors are grateful to A. Minkin for his helpful advice
and attracting our attention to the monograph [12]. We also thank A. Shkalikov for
useful comments and D. Apushkinskaya for English language help.

2. Proof of Theorem 1

Throughout the paper we use the following notation. For � 2 C we define z D �
1
n ,

(Arg.z/ 2 Œ0; 2	=n/). For a function ˆ defined on C, we write ẑ .z/ D ˆ.�/.

2.1. Formula for the Green function. We begin with finding the explicit formula
for the Green function of L0 ��. We introduce a fundamental solution for the operator
generated by .�i/nDn � �:

zK0.x; y; z/ D

8̂̂
<
ˆ̂:

0; a 6 x < y 6 bI
i

nzn�1

n�1X
kD0

�keiz�k.x�y/; a 6 y 6 x 6 b:

We search zG0 as

zG0.x; y; z/ D zK0.x; y; z/� i

nzn�1

n�1X
kD0

ck.y; z/e
iz�k.x�y/:

We want to find functions ck such that the boundary relations (2) are fulfilled
for zG0:

W.z/ �

0
BBBBBB@

c0.y; z/
:::

e�iz�j �1ycj �1.y; z/
:::

e�iz�n�1ycn�1.y; z/

1
CCCCCCA

D
n�1X
kD0

�ke�izy�k �

0
BBBBBBB@

eizb�k
Q0.iz�

k/
:::

eizb�k
Qj .iz�

k/
:::

eizb�k
Qn�1.iz�

k/

1
CCCCCCCA
; (11)

where W.z/ is a matrix containing the boundary values of the exponents:

Wjk.z/ D eiz�k�1aPj �1.iz�
k�1/C eiz�k�1bQj �1.iz�

k�1/; j; k 2 f1; : : : ; ng:
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We solve this linear equation using Cramer’s rule:

cˇ�1.y; z/ D
nX

˛D1

�˛�1eizy.�ˇ�1��˛�1/ � 
˛;ˇ .z/


.z/
:

Here 
 is the determinant of W , 
˛;ˇ is the determinant of a matrix that coincides
with W except the column ˇ that is replaced by the ˛-th column from the sum on
the right-hand side of (11). Note that this changed column contains only the second
summand of the ˛-th column of W .

Finally, the formula for the Green function is

zG0.x; y; z/ D zK0.x; y; z/� i

nzn�1

nX
˛;ˇD1

�˛�1eiz.�ˇ�1x��˛�1y/ � 
˛;ˇ .z/


.z/
: (12)

2.2. Asymptotics of the Green function

Lemma 1. Set

�1 D
n
w D ei' W ' 2

�
0;
	

n

�o

and

�2 D
n
w D ei' W ' 2

�	
n
;
2	

n

�o
:

Then for every sequence Rl ! C1 such that Rl is separated from j�0
N j 1

n and for
all j 2 f0; : : : ; n� 1g the function

R
n�1�j

l
� j. zG0/

.j /
x .x; y; Rlw/j

is uniformly bounded on Œa; b�2 � .�1 [ �2/. Further, for every x 2 Œa; b� one has

Rn�1
l � QG0.x; y; Rlw/ �! 0; Rl ! C1

for a.e. y 2 Œa; b� and a.e. w 2 �1 [ �2. Moreover, the convergence is uniform
on C � J for arbitrary compact set J � �1 [ �2 and for arbitrary compact set
C � Œa; b�2 separated from the corners and the diagonal fx D yg.

In what follows, when we write some limit over R tending to C1 we mean the
limit over this sequence Rl .

We turn to the proof of Lemma 1. The first part of this lemma (uniform estimates
for zG0 and its derivatives) can be easily extracted from [13], §4. However, to prove
convergence to zero, one has to do more work. We deal with formula (12) and evaluate
each summand on its own way. Since different summands are estimated in a different
way, we have to consider several cases.
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Note that for x < y

Rn�1 � zG0.x; y; Rw/D � i

nwn�1

nX
˛;ˇD1

�˛�1eiRw.�ˇ�1x��˛�1y/ �
˛;ˇ .Rw/


.Rw/
; (13)

while for x > y

Rn�1 � zG0.x; y; Rw/ D i

nwn�1

nX
˛D1

�˛�1eiRw�˛�1.x�y/
�
1� 
˛;˛.Rw/


.Rw/

�

� i

nwn�1

X
˛¤ˇ

�˛�1eiRw.�ˇ�1x��˛�1y/ � 
˛;ˇ .Rw/


.Rw/
:

(14)

We begin with asymptotics of the elements of the matrix W . If Re.iw�k�1/ > 0,
then

Wjk.Rw/ D eiRw�k�1b.iRw�k�1/dj �1

�
�
bj �1 CO

� 1
R

�
C eiRw�k�1.a�b/

�
aj �1 CO

� 1
R

���

D eiRw�k�1b.iRw�k�1/dj �1 � .bj �1 C o.1//; R ! C1:

If Re.iw�k�1/ < 0, then

Wjk.Rw/ D eiRw�k�1a.iRw�k�1/dj �1

�
�
aj �1 CO

� 1
R

�
C eiRw�k�1.b�a/

�
bj �1 CO

� 1
R

���

D eiRw�k�1a.iRw�k�1/dj �1 � .aj �1 C o.1//; R ! C1:

We note that the “O” estimates are uniform on �1 [ �2 and the “o” estimates are
uniform on J .

Now we should differ the cases of odd and even n. Consider the function

�.w/ D

8̂̂
<
ˆ̂:
�1 D

hnC 1

2

i
; w 2 �1I

�2 D
hn
2

i
; w 2 �2:

Note that if n is even, then �.w/ D n
2

forw 2 �1 [�2. If n is odd, then �.w/ D nC1
2

for w 2 �1 and �.w/ D n�1
2

for w 2 �2. This number �.w/ is characterized by the
following property: if k 6 �.w/, then Re.iw�k�1/ < 0, while if �.w/ < k 6 n,
thenRe.iw�k�1/ > 0. Thus, forw 2 �1 [�2 the inequality Re.iw�k�1/ < 0 holds
for k 2 f1; : : : ; �.w/g.
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Next, we write the asymptotics of the determinant 
. We introduce the function

f .Rw/ D
�.w/X
kD1

jeiRw�k�1.b�a/jC
nX

kD�.w/C1

je�iRw�k�1.b�a/j; w 2 �1[�2: (15)

Clearly, f .Rw/ ! 0 uniformly on compact subsets of �1 [ �2 as R ! C1.
We factorize common factors from each column and row of
 and get (see [13], §4)


.Rw/ D e
iaRw

�P
kD1

�k�1CibRw
nP

kD�C1

�k�1

� .iRw/
n�1P
j D0

dj �„.Rw/;
where

„.Rw/ D y
CO
� 1
R

�
CO.f .Rw// D y
C o.1/; R ! C1;

while � D �� and y
 D y
Œ�� � det yW Œ�� for w 2 �� . Here the “O” estimates
are uniform for w 2 �1 [ �2 and the “o” is uniform for w 2 J . Recall that the
determinants y
 are non-zero by the Birkhoff regularity condition. Moreover, since
.�0

N /
1
n are zeros of 
.z/, the function „.Rw/ is separated from zero for R D Rl

and w 2 �1 [ �2 by our choice of the sequence Rl .

Now we can write the asymptotics of terms in (13) and (14).

Case 1: ˛ D ˇ 6 �. We have, as R ! 1,


˛;˛.Rw/

D eiRw.b�˛�1�a�˛�1/e
iaRw

�P
kD1

�k�1CibRw
nP

kD�C1

�k�1

� .iRw/
n�1P
j D0

dj� .y
˛;˛ C o.1//:

Here y
˛;˛ is the determinant of a matrix that differs from yW only in the ˛-th column.
Namely, there are numbers �.˛�1/dj bj instead of �.˛�1/dj aj . Thus, we obtain


˛;˛.Rw/


.Rw/
D eiRw.b�˛�1�a�˛�1/

� y
˛;˛

y
 C o.1/
�
; R ! 1:

For x < y this implies

eiRw.�˛�1x��˛�1y/ 
˛;˛.Rw/


.Rw/
D O.eiRw�˛�1.b�aCx�y// D o.1/; R ! 1;

if .x; y/ ¤ .a; b/. For x > y we obtain, as R ! C1,

eiRw�˛�1.x�y/
�
1 � 
˛;˛.Rw/


.Rw/

�
D eiRw�˛�1.x�y/ CO.eiRw�˛�1.b�aCx�y//

D o.1/;

if x ¤ y. Here the “o” estimates are uniform for .x; y; w/ 2 C � J .
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Case 2: ˛ D ˇ > �. We consider
�
˛;˛ and use the linearity of the determinant
with respect to the ˛-th column to get eiRw�˛�1aPj �1.iRw�

˛�1/ in the ˛-th column.
Using the same asymptotic formulas, we obtain

eiRw�˛�1.x�y/ 
.Rw/�
˛;˛.Rw/


.Rw/
D O.eiRw�˛�1.a�bCx�y//; R ! 1:

For x > y this implies

eiRw�˛�1.x�y/
�
1 � 
˛;˛.Rw/


.Rw/

�
D O.eiRw�˛�1.a�bCx�y// D o.1/; R ! C1;

if .x; y/ ¤ .b; a/. For x < y we obtain, as R ! C1,

eiRw.�˛�1x��˛�1y/ 
˛;˛.Rw/


.Rw/
D �eiRw�˛�1.x�y/ CO.eiRw�˛�1.b�aCx�y//

D o.1/:

Here the “o” estimates are uniform for .x; y; w/ 2 C � J .

Case 3: ˛ ¤ ˇ. In this case we either directly use the same asymptotic formulas
(but with the “O” estimates) or subtract the ˛-th column from the ˇ-th one in
˛;ˇ to
make the exponent in the ˇ-th column smaller (our choice of the procedure depends
on the sign of Re.iaw�˛�1/).

Subcase 3:1: ˛; ˇ 6 �. In this case Re.iaw�˛�1/ < 0, so we directly use the
asymptotic formulas and get


˛;ˇ .Rw/


.Rw/

D eiRw.b�˛�1�a�ˇ�1/

� y
˛;ˇ CO
� 1
R

�
CO.f .Rw//

„.Rw/

�

D eiRw.b�˛�1�a�ˇ�1/
� y
˛;ˇ

y
 CO
� 1
R

�
CO.f .Rw//

�
; R ! C1:

(16)

Here y
˛;ˇ is the determinant of a matrix that resembles yW . The only difference is
that numbers �.˛�1/dj bj replace �.ˇ�1/dj aj in the ˇ-th column. The last equation
in (16) holds because the denominator „ is separated from zero. The “O” estimates
are uniform for w 2 �1 [ �2.
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Subcase 3:2: ˛ 6 � < ˇ. In this case Re.iaw�˛�1/ < 0 again, so we directly
use the asymptotic formulas and get


˛;ˇ .Rw/


.Rw/
D eiRw.b�˛�1�b�ˇ�1/

� y
˛;ˇ

y
 CO
� 1
R

�
CO.f .Rw//

�
; R ! C1:

(17)
Here y
˛;ˇ is the determinant of a matrix that resembles yW , the only difference is that
numbers �.˛�1/dj bj replace �.ˇ�1/dj bj in the ˇ-th column. The “O” estimates are
uniform for w 2 �1 [ �2.

Subcase 3:3: ˛,ˇ > �. In this case Re.iaw�˛�1/ > 0, so we subtract the ˛-th
column from the ˇ-th one in 
˛;ˇ . Arguing in the same way as before, one gets


˛;ˇ .Rw/


.Rw/
D eiRw.a�˛�1�b�ˇ�1/

�
�

y
˛;ˇ

y
 CO
� 1
R

�
CO.f .Rw//

�
; R ! C1:

(18)
Here y
˛;ˇ is the determinant of a matrix that resembles yW , the only difference is that
numbers �.˛�1/dj aj replace �.ˇ�1/dj bj in the ˇ-th column. The “O” estimates are
uniform for w 2 �1 [ �2.

Subcase 3:4: ˛ > � > ˇ. In this case Re.iaw�˛�1/ > 0 again, so we subtract
the ˛-th column from the ˇ-th one in 
˛;ˇ . Arguing in the same way as before, one
gets


˛;ˇ .Rw/


.Rw/
D eiRw.a�˛�1�a�ˇ�1/

�
�

y
˛;ˇ

y
 CO
� 1
R

�
CO.f .Rw//

�
; R ! C1:

(19)
Here y
˛;ˇ is the determinant of a matrix that resembles yW , the only difference is that
numbers �.˛�1/dj aj replace �.ˇ�1/dj aj in the ˇ-th column. The “O” estimates are
uniform for w 2 �1 [ �2.

In all subcases we obtain

eiRw.�ˇ�1x��˛�1y/ 
˛;ˇ .Rw/


.Rw/
D o.1/; R ! 1;

if .x; y/ … f.a; a/; .a; b/; .b; a/; .b; b/g. Here the “o” estimates are uniform in
.x; y; w/ 2 C � J .

Summing up the estimates of cases 1-3, we complete the proof of Lemma 1. �

Remark 2. We note that for odd n the numbers y
 and y
˛;ˇ defined in the proof of
Lemma 1 depend on w since the number � depends on w. But these numbers are
constants on �1 and �2. For even n these numbers are constants on �1 [ �2.
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2.3. Truncation of the operator. In this subsection we prove Theorem 1. We write
down an identity

.G �G0/.x; y; �/ D �
bZ

a

G0.x; t; �/

n�2X
kD0

pk.t /G
.k/
t .t; y; �/ dt; (20)

where pk are the lower order coefficients of L. It is a reformulation of the Hilbert
identity for resolvents,

1

L � � � 1

L0 � � D 1

L � � .L0 � L/
1

L0 � �
;

in terms of the Green functions.
We differentiate equation (20) j times with respect to x:

G.j /
x .x; y; �/ D .G0/

.j /
x .x; y; �/�

bZ
a

.G0/
.j /
x .x; t; �/

n�2X
kD0

pk.t /G
.k/
t .t; y; �/ dt:

(21)

Next, we multiply the expressions forG.j /
x by pj .x/, sum up the results, and achieve

n�2X
j D0

pj .x/G
.j /
x .x; y; �/

D
n�2X
j D0

pj .x/.G
.j /
0 /x.x; y; �/

�
n�2X
j D0

pj .x/

bZ
a

.G0/
.j /
x .x; t; �/

n�2X
kD0

pk.t /G
.k/
t .t; y; �/ dt:

Now let j�j 1
n D R D Rl be taken from Lemma 1. Then the derivatives of G0 can be

estimated with the help of the first part of Lemma 1, and we obtain

����
n�2X
j D0

pj .�/G.j /.�; y; �/
����

1

6 C

j�j 1
n

C C

j�j 1
n

�
����

n�2X
j D0

pj .�/G.j /.�; y; �/
����

1

:

This implies ����
n�2X
j D0

pj .�/G.j /.�; y; �/
����

1

6 C

j�j 1
n

:

We substitute this inequality into (21) and get a pointwise estimate

jG.j /
x .x; y; �/j 6 C

j�j n�1�j
n

C C

j�j n�j
n

6 C

j�j n�1�j
n

: (22)
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Now we are ready to estimate the difference of the spectral functions of L and L0.
Note that by formula (20)Z

j�jDRn

j.G �G0/.x; y; �/j jd�j

6
Z

�1[�2

bZ
a

Rnj zG0.x; t; Rw/j �
ˇ̌̌ n�2X

j D0

pj .t / zG.j /
t .t; y; Rw/

ˇ̌̌
dt jdwj:

By formula (22), the integrand has a majorant

M.t; w/ D const
n�2X
j D0

jpj .t /j:

We fix an " > 0 and choose ı > 0 such that the integral ofM over the set of measure
not more than ı is less than ".

Next, we choose a compact set C � Œa; b�2 separated from the diagonal and the
corners, such that the measure of the set Cx D ft 2 Œa; b� W .x; t / … C g is not more
than ın

2�
uniformly with respect to x. Also we choose a compact set J � �1 [ �2

such that the measure of �1 [ �2 n J is not more than ı
b�a

.
The integral over the set .Œa; b� n Cx/ � J tends to zero as R ! 1 uniformly

in .x; y/ 2 Œa; b�2, since by Lemma 1 and formula (22) the integrand tends to zero
uniformly on this set. The integral over the remaining set does not exceed 2". Thus,
for R large enough, the whole integral is not bigger than 3" for all .x; y/ 2 Œa; b�2,
and the theorem follows. �

3. Proof of Theorems 2 and 3

3.1. Reduction to linear algebra. First of all, we can assume

bZ
a

q.x/dx D 0

because adding a constant to q only shifts the spectrum�N , but does not change �.q/

and the right hand side of equations (6), (8), and (9). We begin with formula
X

j�N j<Rn

�N D � 1

2	i

Z
j�jDRn

� Sp
1

L � � d�; (23)

where the trace on the right-hand side is an integral operator trace

Sp
1

L � �
D

bZ
a

G.x; x; �/ dx:
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Indeed, by the Lidskii theorem [11],

X
N

1

�N � � D Sp
1

L � �

for all � which are not in the spectrum of L (we use the fact that the resolvent 1
L��

belongs to the trace class, because j�N j grow asN n). We multiply this equation by �,
integrate over the circle j�j D Rn, use the residue theorem and arrive at (23).

Now we can express �.q/ using the Hilbert identity for resolvents:

�.q/ D 1

2	i
lim

R!1

Z
j�jDRn

� Sp
� 1

L � � � 1

L C Q � �
�
d�

D 1

2	i
lim

R!1

Z
j�jDRn

� Sp
� 1

L � � Q
1

L C Q � �
�
d�

D � 1

2	i
lim

R!1
1

2

Z
j�jDRn

� Sp
�� 1

L � � � 1

L C Q � �
�

� Q
� 1

L � � � 1

L C Q � �

��
d�

C 1

2	i
lim

R!1
1

2

Z
j�jDRn

� Sp
� 1

L � �
Q

1

L � �

C 1

L C Q � �
Q

1

L C Q � �
�
d�:

(24)

Obviously, we can take the limit over a sequence of R separated from j�0
N j 1

n .
We claim that the first integral in the right-hand side of (24) disappears at infinity.

Indeed, it can be estimated as follows:Z
j�jDRn

� Sp
�� 1

L � � � 1

L C Q � �
�

Q
� 1

L � �
� 1

L C Q � �
��
d�

D
Z

j�jDRn

� Sp
�� 1

L � � Q
1

L C Q � �
�

Q
� 1

L � � Q
1

L C Q � �
��
d�

D O.R2� 4.n�1/
n /

(25)

by inequality (22). If n > 2, then this value tends to zero. In the remaining case we
replace the first 1

L��
in (25) by 1

L0��
. The difference tends to zero by Theorem 1

while the changed integral can be estimated with the help of the first part of Lemma 1
and the Lebesgue Dominated Convergence theorem in the same way as we did at the
end of the proof of Theorem 1. Thus, the claim follows.
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The second integral can be transformed as follows:Z
j�jDRn

� Sp
� 1

L � � Q
1

L � � C 1

L C Q � � Q
1

L C Q � �
�
d�

D
Z

j�jDRn

Sp
�� �

.L � �/2
C �

.L C Q � �/2
�

Q
�
d�

D �
Z

j�jDRn

Sp
�� 1

L � � C 1

L C Q � �

�
Q

�
d�

D �2
Z

j�jDRn

Sp
� 1

L0 � � Q
�
d�C o.1/; R ! 1:

(26)

The first equality in (26) is the identity Sp .ABC/ D Sp .BCA/, the second one is
integration by parts, and the third one follows from Theorem 1. Thus, we arrive at

�.q/ D � 1

2	i
lim

R!1

Z
j�jDRn

bZ
a

q.x/G0.x; x; �/ dxd�

D � 1

2	i
lim

R!1

Z
R.�1[�2/

bZ
a

q.x/ zG0.x; x; z/nz
n�1dxdz

D 1

2	

nX
˛;ˇD1

I˛;ˇ ;

(27)

where

I˛;ˇ D lim
R!1

Z
R.�1[�2/

bZ
a

q.x/�˛�1eizx.�ˇ�1��˛�1/ � 
˛;ˇ .z/


.z/
dxdz: (28)

The last equality in (27) holds because of relation zK0.x; x; z/ D 0.

If ˛ D ˇ, the integral (28) equals zero by the assumption

bZ
a

q.x/dx D 0:

So we turn to the case ˛ ¤ ˇ. We use the asymptotic formulas for the quotients 	˛;ˇ

	

obtained in the proof of Lemma 1.
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Denote by I Œ��

˛;ˇ
, � D 1; 2, the same limit as I˛;ˇ but with the outer integral taken

overR�� instead ofR.�1 [�2/. Then I˛;ˇ D I
Œ1�

˛;ˇ
C I

Œ2�

˛;ˇ
. There are four subcases.

Subcase 1: ˛; ˇ 6 ��. We use (16) to write

I
Œ��

˛;ˇ
D

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

bZ
a

Rq.x/eiRw.�ˇ�1.x�a/C.b�x/�˛�1/ dxdw

C �˛�1 lim
R!1

Z
��

.O.1/CO.Rf .Rw///

�
bZ

a

q.x/eiRw.�ˇ�1.x�a/C.b�x/�˛�1/ dxdw:

(29)

The last term in (29) can be estimated as follows:

ˇ̌
ˇ̌ Z
��

�
O.1/CO.f .Rw//

� bZ
a

q.x/eiRw.�ˇ�1.x�a/C.b�x/�˛�1/ dxdw

ˇ̌
ˇ̌

6 sup
w2��

ˇ̌̌
ˇ

bZ
a

q.x/eiRw.�ˇ�1.x�a/C.b�x/�˛�1/dx

ˇ̌̌
ˇ �

Z
��

�
O.1/CO.f .Rw//

� jdwj:

The first factor tends to zero by Proposition 1 as R ! 1, while the second one is
bounded by Proposition 2 (see Appendix). Therefore, we obtain

I
Œ��

˛;ˇ
D

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

bZ
a

Rq.x/eiRw.�ˇ�1.x�a/C�˛�1.b�x//dxdw: (30)

The same calculations for three other subcases give the following formulas.

Subcase 2: ˛ 6 �� < ˇ. We have

I
Œ��

˛;ˇ
D

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

bZ
a

Rq.x/eiRw.�˛�1��ˇ�1/.b�x/ dxdw: (31)

Subcase 3: ˛, ˇ > ��. We have

I
Œ��

˛;ˇ
D �

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

bZ
a

Rq.x/eiRw.�ˇ�1.x�b/C�˛�1.a�x// dxdw: (32)



The Tamarkin equiconvergence theorem 381

Subcase 4: ˛ > �� > ˇ. We have

I
Œ��

˛;ˇ
D �

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

bZ
a

Rq.x/eiRw.�ˇ�1��˛�1/.x�a/dwdx: (33)

In Subcase 1 we integrate with respect to w and obtain

I
Œ��

˛;ˇ
D

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

bZ
a

q.x/
� eiR.�ˇ�1.x�a/C�˛�1.b�x//.

p
�/�

i.�ˇ�1.x � a/C �˛�1.b � x//

� eiR.�ˇ�1.x�a/C�˛�1.b�x//.
p

�/��1

i.�ˇ�1.x � a/C �˛�1.b � x//
�
dx;

where
p
� D e

i�
n . Here the denominator is uniformly separated from zero, and

the numerator is uniformly bounded. Thus, the integrand has a summable majorant
C jq.x/j. Moreover, since ˛ ¤ ˇ and ˛; ˇ 6 �� , the numerator tends to zero for a.e.
x 2 Œa; b�. By the Lebesgue Dominated Convergence theorem, I Œ��

˛;ˇ
D 0. The same

arguments show that I Œ��

˛;ˇ
D 0 in Subcase 3.

In Subcases 2 and 4 after integration with respect to w the denominators are not
separated from zero. So, we should use the regularity of q at the endpoints. Namely,
under assumptions of Theorem 2 the functions  a and  b belong to W 1

1 .Œa; b�/, and

q.x/ D  a.x/C .x � a/ 0
a.x/ D  b.x/C .x � b/ 0

b.x/: (34)

Let us consider Subcase 4. Using the first equality in (34) we obtain

I
Œ��

˛;ˇ
D �

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

bZ
a

R a.x/e
iRw.�ˇ�1��˛�1/.x�a/ dxdw

�
y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

bZ
a

 0
a.x/

�eiR.�ˇ�1��˛�1/.x�a/.
p

�/�

i.�ˇ�1 � �˛�1/

� eiR.�ˇ�1��˛�1/.x�a/.
p

�/��1

i.�ˇ�1 � �˛�1/

�
dx:

Since ˛ > �� > ˇ, the last limit equals zero by Proposition 1. So, integrating by
parts, we have

I
Œ��

˛;ˇ
D �

y
Œ��

˛;ˇ

y
Œ��
� �˛�1 lim

R!1

Z
��

	
 a.x/

eiRw.�ˇ�1��˛�1/.x�a/

iw.�ˇ�1 � �˛�1/

ˇ̌̌
ˇ
b

a

�
bZ

a

 0
a.x/

eiRw.�ˇ�1��˛�1/.x�a/

iw.�ˇ�1 � �˛�1/
dx



dw:
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The last term here also tends to zero by Proposition 1. Moreover, the term with
substitution x D b tends to zero by the Lebesgue Dominated Convergence theorem,
and we arrive at

I
Œ��

˛;ˇ
D

y
Œ��

˛;ˇ

y
Œ��
� �˛�1

i.�ˇ�1 � �˛�1/
 a.aC/ �

Z
��

dw

w
D 	

n

y
Œ��

˛;ˇ

y
Œ��

�˛�1

�ˇ�1 � �˛�1
 a.aC/:

By Cramer’s rule, for all ˛ > �� > ˇ we have

y
Œ��

˛;ˇ

y
Œ��
D .. yW Œ��/�1A/ˇ ˛;

and thus

I
Œ��

˛;ˇ
D 	

n
 a.aC/ � .. yW Œ��/�1A/ˇ ˛P

Œ��

˛ˇ
; ˇ 6 �� < ˛;

where the matrix P Œ�� was introduced in (5).
Since P

Œ��

˛ˇ
D 0 for other pairs .˛; ˇ/, we obtain

X
˛>��>ˇ

I
Œ��

˛;ˇ
D 	

n
 a.aC/ � tr.P Œ��. yW Œ��/�1A/: (35)

The same calculations for Subcase 2 give

X
˛6��<ˇ

I
Œ��

˛;ˇ
D 	

n
 b.b�/ � tr.QŒ��. yW Œ��/�1B/: (36)

Since (27) gives

�.q/ D 1

2	

X
˛¤ˇ

I˛;ˇ D 1

2	

2X
�D1

� X
˛>��>ˇ

I
Œ��

˛;ˇ
C

X
˛6��<ˇ

I
Œ��

˛;ˇ

�
;

formula (6) follows immediately from (35) and (36).
Equation (7) will be proved in the next subsection.

3.2. Linear algebra calculations. In this subsection we skip the index � for the
sake of brevity.

3.2.1. Proof of relation (7). We begin with expanding P and Q into series. Consider
two rows

vk D .1; �k; �2k; : : : ; �.��1/k; 0; : : : ; 0/
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and

uk D .0; : : : ; 0; ��k; �.�C1/k ; : : : ; �.n�1/k/:

Denote P.k/ D NuT
k
vk and Q.k/ D NvT

k
uk . Then it is easy to verify that

P D � lim
r!1�

1X
kD0

rkP.k/ and Q D � lim
r!1�

1X
kD0

rkQ.k/;

and therefore

tr.P yW�1A/ D � lim
r!1�

1X
kD0

rktr.P.k/
yW�1A/ (37a)

and

tr.Q yW�1B/ D � lim
r!1�

1X
kD0

rktr.Q.k/
yW�1B/: (37b)

For any k 2 Z and j 2 f0; 1; : : : ; n� 1g the direct calculation gives

.A NuT
k /j C1 D aj .�

�.dj �k/ C �.�C1/.dj �k/ C � � � C �.n�1/.dj �k//

and

. yW NvT
k /j C1 D aj .1C �dj �k C �2.dj �k/ C � � � C �.��1/.dj �k//:

This implies

A NuT
k C yW NvT

k D
n�1X
j D0

�.k; dj /naj ej C1; (38)

where ej is j -th vector of standard basis, while

�.x; y/ D
8<
:
1; x � y .mod n/I
0; otherwise.

From (38) we conclude that

tr.P.k/
yW�1A/ D tr.vk

yW�1A NuT
k /

D vk
yW�1A NuT

k

D �vk NvT
k C n

n�1X
j D0

�.k; dj /aj vk
yW�1ej C1

D �� C n

n�1X
j D0

�.k; dj /ajvk
yW�1ej C1:

(39)
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The same calculations give

tr.Q.k/
yW�1B/ D �.n� �/C n

n�1X
j D0

�.k; dj /bjuk
yW�1ej C1: (40)

Since �.k; dj /.aj vk C bjuk/ D �.k; dj /e
T
j C1W , j 2 f0; 1; : : : ; n � 1g, formu-

las (37), (39), and (40) imply

tr.P yW�1A/C tr.Q yW�1B/

D � lim
r!1�

1X
kD0

rk.tr.P.k/
yW�1A/C tr.Q.k/

yW�1B//

D lim
r!1�

1X
kD0

rk.n � n
n�1X
j D0

�.k; dj //

D lim
r!1�

� n

1� r
� n

n�1X
j D0

rdj

1 � rn

�

D lim
r!1�

� n

1� r
� n2

1 � rn
C n

n�1X
j D0

1 � rdj

1� rn

�

D
n�1X
j D0

dj � n.n � 1/
2

;

and (7) follows.

3.2.2. Proof of relation (8). Now we consider the case of almost separated boundary
conditions. First, let n D 2m.

We introduce three sets:

I D fk > 0 W k � dj .mod n/ for some j < mg;
I1 D fd0; d1; : : : ; dm�1g;
I2 D f0; : : : ; 2m� 1g n I1:

For all k > 0 the rows vk lie in the subspace SpanfeT
j C1W W j 2 f0; 1; : : : ; m� 1gg.

Therefore, vk
yW�1ej C1 D 0 for j > m.
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If k 2 I , then k � dj .mod n/ for a unique j < m. Hence aj vk D eT
j C1

yW and

m�1X
j D0

�.k; dj /ajvk
yW�1eT

j C1 D 1:

Thus, by (39), tr.P.k/
yW�1A/ D m for k 2 I .

On the other hand, tr.P.k/
yW�1A/ D �m for k … I , as �.k; dj / D 0 for all

j < m.
By (37), we obtain

tr.P yW�1A/ D � lim
r!1�

� X
k2I

rkm �
X

06k…I

rkm
�

D �m lim
r!1�

� X
k2I

rk �
X
k…I

rk
�

D �m lim
r!1�

� X
k2I1

rk

1 � r2m
�

X
k2I2

rk

1� r2m

�

D m lim
r!1�

� X
k2I1

1 � rk

1� r2m
�

X
k2I2

1� rk

1 � r2m

�

D 1

2

� X
k2I1

k �
X
k2I2

k
�

D
m�1X
j D0

dj � m.2m � 1/

2
:

(41)

Applying the same calculations to the second term in (6), we prove (8).

3.2.3. Proof of relation (9). Now letn D 2mC1. For � D 2 the previous arguments
run almost without changing and give

tr.P Œ2�. yW Œ2�/�1A/ D
m�1X
j D0

dj �m2:

The same calculations give

tr.QŒ1�. yW Œ1�/�1B/ D
2m�1X

j DmC1

dj �m2:

Substituting these formulas into (6) and taking into account (7) we arrive at (9).
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3.2.4. Proof of relation (10). Without loss of generality, we can assume that

aj D 1; bj D #; dj D j; j 2 f0; : : : ; n � 1g:
One can easily check that

yW�1eT
j C1 D 1

n

�
1; ��j ; : : : ; ��.��1/j ;

1

#
���j ; : : : ;

1

#
��.n�1/j

�T

;

so �.k; j /nvk
yW�1eT

j C1 D �.k; j /�. By (39), for every k > 0 we have

tr.P.k/
yW�1A/ D 0:

Thus we obtain tr.P yW�1A/ D 0. Similarly, tr.Q yW�1B/ D 0, and (10) follows.

4. Appendix

We need two technical statements. The first one is a variant of the Riemann–Lebesgue
lemma.

Proposition 1. Suppose q 2 L1Œa; b�, � � fz 2 C W jzj D 1g. Let k1; k2 2 C satisfy
k1 ¤ 0 andRe.iw.k1xCk2// 6 0 for all x 2 Œa; b� andw 2 � . Then the following
relation holds uniformly for w 2 � .

bZ
a

q.x/eiRw.k1xCk2/dx ! 0; R ! C1:

Proof. Fix some " > 0. Let a function q1 2 C 1.Œa; b�/ satisfy q1.a/ D q1.b/ D 0

and
bZ

a

jq � q1j 6 "

2
:

Then for R large enough the following estimate holds:

ˇ̌
ˇ̌

bZ
a

q1.x/e
iRw.k1xCk2/dx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 1

iRwk1

bZ
a

q0
1.x/e

iRw.k1xCk2/dx

ˇ̌
ˇ̌

6 1

Rjk1j

bZ
a

jq0
1j

<
"

2
:
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Trivial estimate

ˇ̌
ˇ̌

bZ
a

.q.x/ � q1.x//e
iRw.k1xCk2/dx

ˇ̌
ˇ̌ 6

bZ
a

jq � q1j 6 "

2

completes the proof.

The second statement concerns the function f .Rw/ introduced by formula (15).

Proposition 2. There exists some constant M > 0 such that for all R > 0
Z

�1[�2

Rf .Rw/ jdwj < M:

Proof. We need to estimate several integrals of the same type. Most of them are
exponentially small because the real part of the index is strictly less than zero on the
whole arc �1 [ �2. There are few integrals where the real part of the index tends to
zero on the end of the arc. We write estimates for one of such integrals:

Z
�1[�2

RjeiRw.b�a/j jdwj D
�
nZ

0

Re�R.b�a/ sin ' d'

6

�
nZ

0

Re� 2
�

R.b�a/' d'

<
	

2.b � a/
:

The other ones are estimated in the same way.
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