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Abstract. We supply the new proof of Krein’s Trace Theorem which does not use complex
analysis. Our proof holds for �-finite von Neumann algebras M of type II and unbounded
perturbations from the predual of M.
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1. Introduction

The first attempt to deliver a proof of the existence of the Krein Spectral Shift Function
(KrSSF) without using complex analytical facts was made by M. Sh. Birman and
M. Z. Solomyak in 1972, [3] (see also [2]). Their method was based on the theory
of double operator integrals developed by those authors in [4], [5], and [6]. That
attempt led to introducing of an important notion of the spectral averaging measure
(see also [18]), but was not successful since the authors of [3] failed to prove the
absolute continuity of that measure with respect to Lebesgue measure. The second
attempt to deliver such proof is due to D. Voiculescu [22], whose method is based on
the usage of the classical Weyl–von Neumann theorem. However, his attempt also
failed to recover the full generality of Krein’s original result. In our present paper,
we combine methods drawn from the double operator integration theory [12], [13],
and [17] with Voiculescu’s ideas and deliver a rather short and straightforward new
proof of Krein’s result in full generality. The advantage of our present approach is
seen from the following extension.

We deliver the complete proof of the existence of the spectral shift function �A;B
in the setting whenA andB are self-adjoint operators affiliated with a � -finite semifi-
nite von Neumann algebra M, whose difference V WD A�B belongs to the predual
of M. If M is a type I factor, then this is precisely Krein’s result. For general semifi-
nite von Neumann algebra, however, the earlier attempt based on emulating Krein’s
complex-analytical proof only yielded the result under the additional restrictive as-
sumption that V is necessarily a trace class perturbation from M [1]. This extension
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is also inaccessible from the approach chosen in [19], which is also broadly based
on [22].

2. Preliminaries

Let H be an infinite dimensional Hilbert space and let L.H/ be the algebra of all
bounded operators in H . In what follows, M is a von Neumann algebra on H , that
is a �-subalgebra of L.H/ closed in the weak operator topology. The identity in M

is denoted by 1. We are only interested in semifinite von Neumann algebras, that
is those which admit a faithful normal semifinite trace � . We fix a couple .M; �/.
A von Neumann algebra is said to be � -finite if it admits at most countably many
orthogonal projections.

An (unbounded) operator is said to be affiliated with M if it commutes with
every operator in the commutant M0 of M. Closed densely defined operator A
affiliated with M is said to be � -measurable if, for every " > 0, there exists a
projection p 2 M such that �.p/ < " and such that .1 � p/H � dom.A/. The
collection of all � -measurable operators is denoted by S.�/. The real vector space
Sh.�/ D fA 2 S.�/ W A D A�g is a partially ordered vector space with the ordering
defined by setting A � 0 if and only if hA�; �i � 0 for all � 2 D.A/. The positive
cone in Sh.�/ will be denoted by S.�/C. The positive part AC and negative part A�
of an operator A 2 Sh.�/ are defined by

AC WD
Z

R
�CdEA.�1; �� and A� WD

Z
R
��dEA.�1; ��

respectively, where �C D max.�; 0/ and �� D max.��; 0/ and EA.�1; �� is
the spectral projection of the self-adjoint operator A corresponding to the inter-
val .�1; ��. It follows immediately from the spectral theorem that A D AC � A�.

The notions of the distribution function nA, A 2 Sh.�/ and that of the singular
value function �.A/, A 2 S.�/ are defined as follows

nA.t / WD �.EA.t;1//; t 2 R and �.t IA/ WD inffs W njAj.s/ � tg; t � 0:

It follows directly that the singular value function �.A/ is a decreasing, right-
continuous function on the positive half-line Œ0;1/. The trace � extends to S.�/C
as a non-negative extended real-valued functional which is positively homogeneous,
additive, unitarily invariant and normal. This extension is given by

�.A/ D
Z 1

0

�.t IA/dt; A 2 S.�/C;

and satisfies �.A�A/ D �.AA�/ for all A 2 S.�/. If M D L.H / and � is the
standard trace, then S.�/ D M. In this case, an operator A 2 S.�/ is compact if and
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only if lim t!1 �.t IA/D 0 and if we set

�n.A/ WD �.t IA/; t 2 Œn; nC 1/; n D 0; 1; 2; : : : ;

then the sequence f�n.A/g1
nD0

is just the sequence of eigenvalues of jAj in non-
increasing order and counted according to multiplicity.

The noncommutative space Lp D Lp.M; �/, 1 � p � 1 is defined as follows

Lp D fA 2 S.�/ W �.jAj/ 2 Lp WD Lp.0;1/g;
where Lp.0;1/ is the usual Lebesgue space. The space Lp is a linear subspace of
S.�/ and the functional A 7�! kAkp WD .�.jAjp//1=p , A 2 Lp , 1 � p < 1 is a
norm. For convenience, we set .L1; k�k1/ D M equipped with the uniform operator
norm. We have, in particular, kAkp D k�.A/kp and kABkp; kBAkp � kAkpkBk1
for all A 2 Lp; B 2 M, 1 � p � 1 (we denote the norm on Lp and the standard
norms on Lebesgue spaces Lp.0;1/ and Lp.R/ by the same symbol k � kp and this
should not cause any confusion). We recall the following useful formula

Z 1

0

nA.s/ds D snA.s/
ˇ̌
ˇ1
0

�
Z 1

0

sdnA.s/ D �.A/ D kAk1; (1)

which holds for every A 2 S.�/C. Equipped with the norm k � k1, the space L1 is a
Banach space. It is well known (see e.g. [16]) that L1 is isometric to a predual M�
of the von Neumann algebra M. In what follows, we will need the following result
whose proof follows verbatim from that of [21], Lemmata 15 and 16, where this
result is established for s; t > 0.

Lemma 1. Suppose that M is a finite von Neumann algebra and that �.1/ < 1.
The inequality

nACB.s C t / � nA.s/C nB.t / (2)

holds for all s; t 2 R and all operatorsA;B 2 Sh.�/. If, in addition, we haveA � B ,
then nA � nB .

The following Weyl–von Neumann type theorem is at the core of the pure an-
alytical approach of this paper. It is (implicitly) proved in [13]. For the classical
Weyl–von Neumann theorem we refer the reader to [9].

Theorem 2. Let M be a von Neumann algebra equipped with a faithful normal semifi-
nite trace �: For every A 2 M, there exists a sequence of � -finite projections pn " 1
such that kŒA; pn�k2 ! 0 as n ! 1:

Proof. It follows from Lemma 6.4 in [13] that there exists a net pi , i 2 I, of orthog-
onal projections such that the algebra piMpi admits a � -finite generating projection.
Since M is � -finite, it follows that the set I is, at most, countable. The assertion
follows now from Lemma 6.3 in [13].
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The following two lemmas constitute a small complement to Theorem 2. These
lemmas are at the core of Voiculescu’s approach [22]. If A 2 Sh.�/, then the projec-
tion onto the closure of the range of jAj is called the support of A and is denoted by
supp.A/.

Lemma 3. Let M be a von Neumann algebra equipped with a faithful normal semifi-
nite trace � . If pn " 1 and if C 2 M, C � D C is such that �.supp.C // < 1,
then kŒC; pn�k2 ! 0, as n ! 1.

Proof. Define An D supp.C /pnsupp.C /. We have An " supp.C / and hence the
sequence An strongly converges to supp.C /. Therefore, AnC 2 ! C 2 and AnC !
C strongly. By [7], Proposition 2.4.1, we have .AnC/2 ! C 2 strongly. Since
the trace � is strongly continuous (see e.g. [20], Lemma 1.2 and Theorem 1.10)
and the algebra supp.C /Msupp.C / is finite, it follows that �.AnC 2/ ! �.C 2/

and �..AnC/2/ ! �.C 2/. Due to the equality

kŒC; pn�k22 D ��.ŒC; pn�2/ D 2�.AnC
2/ � 2�..AnC/2/

we conclude the proof.

Lemma 4. Let M be a von Neumann algebra equipped with a faithful normal semifi-
nite trace � . Let A 2 M and let fpngn�0 � M be a sequence of � -finite projections.
If kŒA; pn�k2 ! 0 as n ! 1, then for every m � 1, we have

�..pnApn/
m � Ampn/ ! 0; n ! 1:

Proof. For m D 1 the assertion is obvious. For every m � 2, we have

j�..pnApn/m � Ampn/j D
ˇ̌
ˇ̌m�1X
kD1

�.pnA
k.1� pn/.Apn/m�k/

ˇ̌
ˇ̌ �

m�1X
kD1

kpnAk.1� pn/k2k.1� pn/Apnk2kAkm�k�11 :

Observing the equalities

.1� pn/Apn D ŒA; pn�pn; pnA
k.1 � pn/ D pnŒpn; A

k�;

and

Œpn; A
k� D

k�1X
lD0

Al Œpn; A�A
k�1�l ;
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we complete the proof as follows

j�..pnApn/m � Ampn/j

�
m�1X
kD1

kkŒpn; A�k2kAkk�11 � kŒA; pn�k2 � kAkm�k�11

D m.m � 1/
2

kŒA; pn�k22kAkm�21 :

The following result can be found in [17], Corollary 2 and Theorem 4, however
it was known much earlier (see e.g. [12], Corollary 7.8, and references therein).
Throughout the paper we use the notation Cb.R/ for the space of all bounded contin-
uous functions on R: The spaces C 1

b
.R/ and C 2

b
.R/ are defined in a similar manner.

Theorem 5. Let M be a von Neumann algebra equipped with a faithful normal
finite trace � . If A;B are unbounded self-adjoint operators affiliated with M such
that A � B 2 L1, then f .A/ � f .B/ 2 L1 for every f 2 C 2

b
.R/. Moreover, we

have

kf .A/� f .B/k1 � const.kf k1 C kf 0k1 C kf 00k1/kA � Bk1:
Observe that, if A;B are unbounded self-adjoint operators affiliated with M such

that A � B 2 L1, then

�.f .A/ � f .B// D
Z 1

0

�.f 0..1� z/AC zB/.A � B//dz (3)

for every f 2 C 2
b
.R/. The proof of (3) in the general case is the same as that of [3],

equation (2.1).

The class W1. Originally Krein’s Trace Theorem (see Theorem 7 below) was proved
for the function of class W1. That is,

W1 D ff 2 S 0.R/ W F .f 0/ 2 L1.R/g;
where S 0.R/ is the class of all tempered distributions on R, F is the Fourier transform
and L1.R/ is the Lebesgue space of all integrable functions on R. The class W1 is
equipped with the semi-norm

kf kW1
WD kF .f 0/k1:

We need the following simple observation which directly follows from the fact that
the class S.R/ of all Schwartz functions is dense in L1.R/.

Lemma 6. The class of primitives of functions in S.R/ is dense in W1, that is for
every f 2 W1, there exists a sequence fn 2 S 0.R/ such that f 0

n 2 S.R/ and

lim
n!1 kf � fnkW1

D 0:
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3. Krein’s theorem in semifinite setting

The present section proves the following theorem in complete generality. In the
setting M D L.H / the result is originally due to M.G. Krein [10], Theorem 4.

Theorem 7. Let M be a � -finite von Neumann algebra with a faithful normal semifi-
nite trace � . If self-adjoint operatorsA;B affiliated with M are such thatA�B 2 L1,
then there is a function � D �A;B 2 L1.R/ such that

�.f .A/� f .B// D
Z

R
f 0.s/ �.s/ ds: (4)

for every f 2 W1.

Proof of Theorem 7. We shall approach the proof of Theorem 7 via step by step
relaxing of conditions on the trace � , function f and the operators A and B . This is
presented as a series of lemmas from Lemma 8 to Lemma 12. The final extension to
the class W1 is given in Lemma 13. For reader’s convenience, we shall denote the
function �A;B at different stages with different indices.

We start with rather restrictive case as in the following lemma. The lemma was
noted yet by Krein [10] and [11] (see also p. 360 in [1]).

Lemma 8. Suppose that the assumptions of Theorem 7 hold and that �.1/ < 1: Let
A;B 2 M be self-adjoint operators.

(i) Equality (4) holds with � D �
.1/
A;B D nA � nB . The function � is supported

on Œ� maxfkAk1; kBk1g;maxfkAk1; kBk1g�.
(ii) Furthermore,

knA � nBk1 � �.supp.A � B// and knA � nBk1 � kA � Bk1:

(iii) If, in addition, A � B , then knA � nBk1 D kA � Bk1.

Proof. (i) Denote, for brevity, a D maxfkAk1; kBk1g and fix " > 0: Since
EA.s;1/ D 0 for s � a C " and EA.s;1/ D 1 for s � �a � "; it follows
from the functional calculus that

f .A/ D �
Z 1

�1
f .s/dEA.s;1/ D �

Z aC"

�a�"
f .s/dEA.s;1/:

Taking the trace and integrating by parts, we obtain

�.f .A// D �
Z aC"

�a�"
f .s/dnA.s/ D f .�a � "/C

Z aC"

�a�"
f 0.s/nA.s/ds:



Krein’s trace theorem revisited 421

Therefore,

�.f .A/ � f .B// D
Z aC"

�a�"
f 0.s/.nA.s/ � nB.s//ds:

Since " > 0 is arbitrarily small, the equation (4) follows immediately. Since the
function nA � nB is bounded, it follows that it is integrable on the interval .�a; a/:

(ii) It is clear that A � B C jA � Bj and, therefore, by Lemma 1

nA.t / � nBCjB�Aj.t /
.2/� nB.t /C njA�Bj.0/:

Similarly, we have B � AC jA � Bj and, therefore, by Lemma 1

nB.t / � nACjB�Aj.t /
.2/� nA.t /C njA�Bj.0/:

Combining these inequalities, we obtain jnA � nB j � njA�Bj.0/, which proves the
first inequality. In order to prove the second inequality, observe that

B � A D .B � A/C � .B � A/�:
Set C WD AC .B � A/C D B C .B � A/�. We then have C � A and C � B . By
Lemma 1, we have that nC � nA and nC � nB . Obviously,

.nC � nA/.s/ D .nCCa � nACa/.s C a/; s 2 .�1;1/

and, therefore,

knC � nAk1 D knCCa � nACak1 D
Z 1

0

nCCa.s/ds �
Z 1

0

nACa.s/ds:

Since the operators AC a and C C a are positive, it follows now from (1) that

knC � nAk1 D �.C C a/ � �.AC a/ D �..B � A/C/:

Similarly, we have
knC � nBk1 D �..B � A/�/:

Hence,

knA � nBk1 � knC � nAk1 C knC � nBk1
D �..B � A/C/C �..B � A/�/ D kA � Bk1:

(iii) If A � B; then a similar argument shows that

knA � nBk1 D knACa � nBCak1

D
Z 1

0

nACa.s/ds �
Z 1

0

nBCa.s/ds

D �.AC a/ � �.B C a/

D �.A� B/:
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The key step in our approach is the extension of Lemma 8 to the following lemma
via approximation process set out in Theorem 2 and Lemmas 3 and 4.

Lemma 9. Suppose that the assumptions of Theorem 7 hold. If self-adjoint operators
A;B 2 M are such that A � B and �.supp.A � B// < 1, then (4) holds for
every f .s/ D sm, m 2 N, and for the positive function � D �

.2/
A;B :We also have

supp.�.2/A;B/ � Œ� maxfkAk1; kBk1g;maxfkAk1; kBk1g�

and k�.2/A;Bk1 D kA � Bk1: If the conditions of Lemma 8 are also met, then �.1/A;B D
�
.2/
A;B .

Proof. By Theorem 2, there exists a family of � -finite projections pn, n � 0, such
that pn " 1 and such that kŒA; pn�k2 ! 0 as n ! 1. Applying Lemma 3 for
C D B � A, we infer that kŒB � A;Pn�k2 ! 0 as n ! 1. Thus, we also have
kB; pnk2 ! 0 as n ! 1. It follows from Lemma 4 that

�..pnApn/
m � Ampn/ �! 0 and �..pnBpn/

m � Bmpn/ �! 0;

and so

�..pnApn/
m � .pnBpn/m/ � �.Am � Bm/

D �..pnApn/
m � Ampn/

� �..pnBpn/m � Bmpn/

C �..Am � Bm/.1� pn// �! 0

as n ! 1; since pn " 1.
Set a WD maxfkAk1; kBk1g. Since A � B in M it follows that pnApn �

pnBpn in the algebra pnMpn. In particular, we have npnApn
� npnBpn

for all n � 0

in the algebra pnMpn. By Lemma 8 (i), for every n � 0, there exists a positive
function �n D �

.1/
pnApn;pnBpn

supported on Œ�a; a� such that

�..pnApn/
m � .pnBpn/m/ D

Z a

�a
msm�1�n.s/ds:

By Lemma 8 (ii), we have

k�nk1 � �.supp.A � B// and k�nk1 � kA � Bk1:
SinceL1Œ�a; a� is a Banach dual forL1Œ�a; a�, it follows from the Banach–Alaoglu
theorem that there exists a directed set I and the mapping  W I ! ZC such that for
every n 2 ZC, there exists i.n/ 2 I such that  .i/ > n for i > i.n/ and such that
the net � .i/, i 2 I converges in weak� topology.
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Taking the limit in that topology, we set

�
.2/
A;B D lim

i2I
� .i/:

Therefore,
Z a

�a
msm�1�.2/A;B.s/ds D lim

i2I

Z a

�a
msm�1� .i/.s/ds

D lim
i2I �..p .i/Ap .i//

m � .p .i/Bp .i//m/

D �.Am � Bm/:

(5)

This shows (4) with f .s/ D sm. The function �.2/A;B is positive as a weak�-limit of

positive functions. In particular, with m D 1 we have k�.2/A;Bk1 D kA � Bk1. It is
clear that this function is supported on Œ�a; a�. This proves all assertions except the
last one.

We now suppose that the conditions of Lemma 8 hold and prove that �.1/A;B D �
.2/
A;B :

We have Z
R
msm�1�.1/A;B.s/ds

L. 8D �.Am � Bm/

.5/D
Z

R
msm�1�.2/A;B.s/ds:

Identification now follows from the fact that the polynomials are a separating family
of functionals on L1.Œ�a; a�/.

The following lemma removes the positivity assumption on the operatorsA andB
(although they are still assumed bounded) and the assumption that �.supp.A � B//

is finite.

Lemma 10. Suppose that the assumptions of Theorem 7 hold. If A;B 2 M are self-
adjoint operators, then (4) holds for every f 2 C 2

b
.R/ and for the unique compactly

supported function � D �
.3/
A;B . Moreover,

k�k1 � kA � Bk1
and Z

R
�.s/ ds D �.A � B/:

If, in addition, the conditions of Lemma 9 are met, then �.2/A;B D �
.3/
A;B .
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Proof. Set C WD A C .B � A/C D B C .B � A/�: Observe that C � A, C � B

and that C � A;C � B 2 L1. Since

�.f .A/� f .B// D �.f .C / � f .B// � �.f .C /� f .A//;

it is sufficient to consider only the case A � B .
Set a WD maxfkAk1; kBk1g. Let 0 � Dn � A � B be such that Dn " A � B

and such that �.supp.Dn// < 1. The order continuity of k � k1 (see e.g. [8]) implies
that kB CDn � Ak1 ! 0 as n ! 1; therefore by Theorem 5 we have

j�.f .BCDn/�f .A//j � const.kf k1 Ckf 0k1 Ckf 00k1/kBCDn�Ak1 �! 0;

(6)
as n ! 1: Since polynomials are dense in C 2Œ�a; a�, it follows from (6) and
Lemma 9 that

�.f .B CDn/ � f .B// D
Z a

�a
f 0.s/�.2/BCDn;B

.s/ds (7)

for every f 2 C 2
b
.R/. Hence, we have

Z a

�a
f 0.s/�BCDn;BCDm

.s/ds

L. 9D �.f .B CDn/ � f .B CDm//

D �.f .B CDn/ � f .B//� �.f .B CDm/ � f .B//

.7/D
Z a

�a
f 0.s/.�BCDn;B.s/ � �BCDm;B.s//ds; n � m:

Since f 0 is an arbitrary C 1 function on Œ�a; a�, it follows that

�
.2/
BCDn;B

� �.2/BCDm;B
D �

.2/
BCDn;BCDm

� 0; n � m:

Setting f .s/ D s in Lemma 9, we obtain that k�.2/BCDn;B
k1 � kDnk1. Since

kDnk1 � kA � Bk1, it follows from the Monotone Convergence Principle, that
the sequence �.2/BCDn;B

converges in L1.R/. Denoting its limit by �.3/A;B ; we obtain

�.f .A/ � f .B// .6/D lim
n!1 �.f .B CDn/ � f .B//

.7/D lim
n!1

Z a

�a
f 0.s/�.2/BCDn;B

.s/ds

D
Z a

�a
f 0.s/�.3/A;B.s/ds:

This proves all the assertions except the last one.
If the conditions of Lemma 9 hold then the identification �.2/A;B D �

.3/
A;B can be

established similarly to that in Lemma 9.
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The next step in our approach is removing the assumption that the operators A
and B are bounded. We remove this assumption in two steps: (i) first we show our
construction of a locally integrable � for unbounded pair ofA andB (see Lemma 11);
and (ii) we show that this new � is integrable (and positive when A � B); see
Lemma 12.

Lemma 11. Suppose that the assumptions of Theorem 7 hold. Then (4) holds with
some locally integrable function �.4/A;B , for every f 2 C 2

b
.R/ such that the following

limits exist

lim
s!˙1f .s/; lim

s!˙1
f 0.s/
h0.s/

; lim
s!˙1

f 00.s/h0.s/ � f 0.s/h00.s/
.h0.s//3

; (8)

where h is a C 2-bijection .�1;1/ ! .a; b/, for some a < b 2 R.

Proof. As in Lemma 10, we may assume that A � B . Applying Theorem 5 to the
operators A, B and to the function h, we obtain

kh.A/� h.B/k1 � const � kA � Bk1:
We shall prove the assertion for the case a D �1; b D 1 only. We now define g 2
C 2.�1; 1/ by setting g WD f B h�1. Condition (8) ensures that g 2 C 2Œ�1; 1� and,
therefore, g extends to a function g 2 C 2

b
.R/. Since h is aC 2-bijection .�1;1/ !

.a; b/, the operators h.A/ and h.B/ are bounded, therefore, applying Lemma 10 to
the operators h.A/ and h.B/, we now obtain

�.f .A/ � f .B// D �.g.h.A//� g.h.B///

D
Z

R
g0.s/�.3/

h.A/;h.B/
.s/ds

D
Z

R
f 0.u/�.3/

h.A/;h.B/
.h.u//du;

(9)

where in the last step we substituted s D h.u/. This proves (4). Since the left hand
side does not depend on h and since f 0 is sufficiently arbitrary, it follows that the
expression �.3/

h.A/;h.B/
B h does not depend on h. So we define

�
.4/
A;B WD �

.3/

h.A/;h.B/
B h:

The local integrability of �.4/A;B follows from the integrability of �.3/
h.A/;h.B/

combined

with the assumption that h is a C 2-bijection.
If A and B are bounded, then by using the trace formula for the left hand side

of (9), we obtainZ
R
f 0.u/ �.3/A;B du D �.f .A/ � f .B// D

Z
R
f 0.u/ �.4/A;B.u/ du:

The latter implies that �.3/A;B D �
.4/
A;B in this case.
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Lemma 12. Suppose that the assumptions of Theorem 7 hold. Equality (4) holds
with �.4/A;B of Lemma 11, for every f 2 S 0.R/ such that f 0 2 S.R/. Moreover,

�
.4/
A;B 2 L1.R/. If A � B , then we also have �.4/A;B � 0.

Proof. As in the preceding lemmas, it is sufficient to consider only the case when
A � B . In this case, we shall show that the function �.4/A;B of Lemma 11 is positive
and integrable.

We shall show positivity first. Let ˛ > 0 and let a < b 2 R. Define the
function ha;b;˛ by setting

ha;b;˛.t / WD

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

t; t 2 Œa; b�;
˛.t � b/

.˛2 C .t � b/2/1=2 C b; t > b;

˛.t � a/
.˛2 C .t � a/2/1=2 C a; t < a:

Observe that the function ha;b;˛ is continuous and

lim
t!C1ha;b;˛.t / D ˛ C b and lim

t!�1 ha;b;˛.t / D a � ˛:

Computing the derivative

h0
a;b;˛.t / D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

1; t 2 Œa; b�;
˛3

.˛2 C .t � b/2/3=2 ; t > b;

˛3

.˛2 C .t � a/2/3=2 ; t < a;

we have that the function ha;b;˛ is a strictly increasing function on R and therefore it
is a C 2-bijection .�1;1/ ! .a � ˛; b C ˛/: Since f 0 is a Schwartz function, it is
not difficult to verify that ha;b;˛ satisfies the condition (8) in Lemma 11.

If �.4/A;B is from Lemma 11, then

�
.4/
A;B D �

.3/

ha;b;˛.A/;ha;b;˛.B/
B ha;b;˛

Combining Theorem 5 with the well known fact that �.CD/ � 0 when 0 � C 2
M and 0 � D 2 L1, we obtain the following estimate

�.ha;b;˛.A/� ha;b;˛.B// D
Z 1

0

�.h0
a;b;˛..1� z/AC zB/.A � B//dz � 0:
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Furthermore, by Lemma 10 (applied to ha;b;˛.A/, ha;b;˛.B/ and f .s/ D s) and
substituting s D ha;b;˛.u/, we obtain

�.ha;b;˛.A/ � ha;b;˛.B// D
Z bC˛

a�˛
�
.3/

ha;b;˛.A/;ha;b;˛.B/
.s/ds

D
Z

R
�
.3/

ha;b;˛.A/;ha;b;˛.B/
.ha;b;˛.u//h

0
a;b;˛.u/du

D
Z

R
�
.4/
A;B.u/h

0
a;b;˛.u/du:

In particular, the function �.4/A;Bh
0
a;b;˛

is integrable. Since h0
a;b;˛

! �.a;b/ almost

everywhere as ˛ ! 0 and since h0
a;b;˛

� h0
a;b;1

2 L1.R/ when ˛ < 1, it follows
from the Dominated Convergence Principle that

Z b

a

�
.4/
A;B.u/du D lim

˛!0

Z
R
�
.4/
A;B.u/h

0
a;b;˛.u/du � 0:

Since the latter inequality holds for arbitrary a; b, it follows that �.4/A;B � 0.

Now we show the integrability of �.4/A;B on R. Consider the function

h˛ W R �! .�˛; ˛/

given by

h˛.s/ D ˛s

.˛2 C s2/
1
2

; s 2 R:

Repeating the same arguments that used above for the function ha;b;˛, we obtain that
the function h˛ is the C 2-bijection R ! .�1; 1/ and satisfies the condition (8) in
Lemma 11. If �.4/A;B is from Lemma 11, then

�
.4/
A;B D �

.3/

h˛.A/;h˛.B/
B h˛:

By Lemma 10 (applied to the operators h˛.A/ and h˛.B/) we have

�.h˛.A/ � h˛.B// D
Z ˛

�˛
�
.3/

h˛.A/;h˛.B/
.s/ds

D
Z

R
�
.3/

h˛.A/;h˛.B/
.h˛.t //h

0̨ .t /dt

D
Z

R
�
.4/
A;B.t /h

0̨ .t /dt:
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We have ˇ̌
ˇ̌ Z 1

�1
�
.4/
A;B.t / � h0̨ .t /dt

ˇ̌
ˇ̌ D j�.h˛.A/ � h˛.B//j

� kh˛.A/ � h˛.B/k1
� const kA � Bk1;

where the last estimate follows from Theorem 5, applied to operators ˛�1A and˛�1B
and function h1. Observe that the constant in the latter estimate is independent of ˛.
Since h0̨ " 1 when ˛ ! 1, we infer from the Monotone Convergence Principle

(which is applicable since �.4/A;B � 0) that �.4/A;B is integrable.

Finally we give simple extension of Lemma 12 to the class W1. The extension is
based on our earlier observation in Lemma 6.

Lemma 13. Suppose that the assumptions of Theorem 7 hold. The trace formula (4)
holds for every f 2 W1.

Proof. Fix f 2 W1. By Lemma 6, there is a sequence fn 2 S 0.R/ such that f 0
n 2

S.R/ and such that
lim
n!1 kf � fnkW1

D 0:

Applying Lemma 12 with � D �
.4/
A;B to every fn, we have

�.fn.A/ � fn.B// D
Z

R
f 0
n.s/ �.s/ ds: (10)

Since
kf 0 � f 0

nk1 � kF .f 0 � f 0
n/k1 D kf � fnkW1

! 0;

we have the convergence of the right hand side of (10)

lim
n!1

Z
R
f 0
n.s/ �.s/ ds D

Z
R
f 0.s/ �.s/ ds:

On the other hand, the convergence kf 0 � f 0
nk1 ! 0 guarantees

lim
n!1 kf 0

n.Ct / � f 0.Ct /k1 D 0;

where Ct D tA C .1 � t /B; uniformly over t 2 .0; 1/. Thus, we arrive at the
convergence of the left hand side of (10) as follows

lim
n!1 �.fn.A/� fn.B// D lim

n!1

Z 1

0

�.f 0
n.Ct / .A � B//dt

D
Z 1

0

�.f 0.Ct / .A� B// dt

D �.f .A/� f .B//;
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where
Ct D tAC .1� t /B:

Remark 14. We observe that Theorem 7 and the trace formula (4) can be further
extended from the class of functions W1 to the homogeneous Besov class QB111 (see
e.g. [15]). In the case when M D L.H/, such an extension is performed in [15], in
the general case the argument is exactly the same as in [15]. We omit further details.
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