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Ground state energy of trimmed discrete Schrödinger operators
and localization for trimmed Anderson models

Alexander Elgart1 and Abel Klein2

Abstract. We consider discrete Schrödinger operators of the formH D ��C V on `2.Zd /,
where� is the discrete Laplacian andV is a bounded potential. Given� � Zd , the�-trimming
of H is the restriction of H to `2.Zd n �/, denoted by H� . We investigate the dependence
of the ground state energy E� .H/ D inf �.H�/ on � . We show that for relatively dense
proper subsets � of Zd we always have E�.H/ > E;.H/. We use this lifting of the ground
state energy to establish Wegner estimates and localization at the bottom of the spectrum for
�-trimmed Anderson models, i.e., Anderson models with the random potential supported by
the set � .

Mathematics Subject Classification (2010). Primary 82B44; Secondary 47B80, 60H25.

Keywords. Anderson models, trimmed Anderson models, discrete Schrödinger operators,
random Schrödinger operators, ground state energy, Cheeger’s inequality, localization, Wegner
estimates.

1. Introduction

We consider discrete Schrödinger operators of the form H D ��C V on `2.Zd /,
where � is the discrete Laplacian, defined by

.��'/.x/ D
X

y2Zd ;
kx�ykD1

.'.x/ � '.y// D 2d'.x/ �
X

y2Zd ;
kx�ykD1

'.y/;

and V is a bounded potential. Given � ¨ Zd , the �-trimming ofH is the restriction
H� of ��cH��c to `2.�c/, where �A denotes the characteristic function of the set A
and Ac D Zd nA for A � Zd . We focus our attention on E�.H/ D inf �.H�/, the
ground state energy (or bottom of the spectrum) of the trimmed discrete Schrödinger
operatorH� . (Note that with this notationH D H; andE;.H/ D inf �.H/.) Since
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E�.H/ is a nondecreasing function of the set � , trimming lifts the bottom of the
spectrum, that is, E�.H/ � E;.H/.

We show that for relatively dense proper subsets � of Zd we always have strict
lifting of the bottom of the spectrum, i.e., E�.H/ > E;.H/. We use this lifting of
the ground state energy to establish Wegner estimates and localization at the bottom
of the spectrum for �-trimmed Anderson models, i.e., Anderson models with the
random potential supported by the set � .

1.1. The ground state energy of trimmed discrete Schrödinger operators. Our
motivation comes from continuous Schrödinger operatorsH D ��CV on L2.Rd /,
where� is the Laplacian operator and V is a bounded potential. Let us consider first
the caseH D �� and�c an open subset of Rd , and let�� be the Laplacian on�c with
Dirichlet boundary condition. When �c is compact, the ground state energyE�.��/
of ��� is the first eigenvalue �� of ��� . The problem of obtaining a lower bound
for the first eigenvalue of the Dirichlet Laplacian on a compact Riemannian manifold
has been intensively studied in Geometric Analysis, and it is given by Cheeger’s

inequality [7]: �� � ˇ.�/2

4
; where ˇ.�/ is Cheeger’s isoperimetric constant for the

set �c. It is known that ˇ.�/ > 0 if �c is compact, but for noncompact sets �c the
Cheeger isoperimetric constant may be zero.

Cheeger’s inequality has been extended to the discrete case; see [12] and [28].
In this context, ˇ.�/ D infS��c W 1�jS j<1 j@S j

jS j , where @S denotes the boundary of
the set S and jS j its cardinality. (See Section 2.3 for notation and details. An
equivalent definition for ˇ.�/ is given in (2.18)). Clearly ˇ.�/ > 0 if �c is a finite
set. But it is not difficult to see that ˇ.�/ D 0 if we can find a sequence of boxes
in Zd , ƒKn

.xn/ (ƒK.x/ is the box of side K 2 N centered at x 2 Zd ), such that

limn!1 j�\ƒKn.xn/j
j�c\ƒKn .xn/j D 0. This lead us to consider relatively dense subsets � of

Zd , for which we show ˇ.�/ > 0.
The addition of a potential V breaks down Cheeger’s argument. Indeed, in general

flat functions are no longer good approximants for the low-lying eigenvectors of
H D ��C V . For example, let H� D ��C �V , where V is a periodic potential
whose average over a fundamental cell is equal to zero. Then E;.H�/ < 0 for all
� > 0, see Theorem 1 in [22] (the result there is proven for the continuum, but it is easy
to see that holds in the discrete case as well), but it can be shown that ˇ�.;/ D 0 for �
small, where ˇ�.;/ is the Cheeger constant forH�. Another striking counterexample
can be constructed by taking H� D ��C �V with V D ��f0g, a negative rank one
perturbation to ��, and � > 0. It is well known that in this case E;.H�/ < 0 for all
� > 0, while it is easy to see that ˇ�.;/ D 0 for � � 2d .

For continuous Schrödinger operators the boundE�.H/ > E;.H/ can be estab-
lished in the presence of an arbitrary bounded potential using the unique continuation
principle; see [24] and [32]. Unfortunately, discrete Schrödinger operators do not
satisfy a unique continuation principle. It turns out, however, that the ground state
of a discrete Schrödinger operator H enjoys a similar property, which suffices to
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establish the desired result.
It is intuitively clear that the Schrödinger operator H� is, in a suitable sense, the

limit of the Schrödinger operatorsH� .t / D HCt�� on`2.Zd / as t ! 1. This is the
motivation behind Theorem 1.1, where we obtain a lower bound forE�.H/�E;.H/
as the limit of lower bounds for E�.H; t/� E;.H/, where E�.H; t/ D E;.H.t//.
Note that E�.H; t/ is nondecreasing in t , so E�.H;1/ WD lim t!1E�.H; t/ D
supt�0E�.H; t/, and it follows from the min-max principle thatE�.H; t/ � E�.H/

for all t � 0, so

E;.H/ � E�.H; t/ � E�.H;1/ � E�.H/: (1.1)

Before stating our results, we introduce some additional notation. A bounded
potential V is given by multiplication by a a function V W Zd ! R with V1 D
kV k1 < 1. We set VC D maxfV; 0g and V� D � minfV; 0g; note that V D
VC � V�, V˙ � 0, and VCV� D 0. We define the spread of the bounded potential V
by

spr.V / D sup
x2Zd

V.x/ � inf
x2Zd

V.x/ 2 Œ0;1/:

We also introduce the notation

Yd;V D 2d C 1C spr.V /;

ı�.H/ D E�.H/ �E;.H/;

ı�.H; t/ D E�.H; t/�E;.H/:

Theorem 1.1. LetH D ��C V be a Schrödinger operator on `2.Zd /, where V is
a bounded potential, and let � ¨ Zd . Then

E�.H;1/ D E�.H/:

Moreover, we have

2d C spr.V / � ı�.H; t/ � t

t C 6d C 2 spr.V /
ı�.H/; t � 0: (1.2)

It follows, using (1.1), that E�.H/ > E;.H/ if and only if E�.H; t/ > E;.H/ for
all t > 0.

Theorem 1.1 is proven in Section 2.1. Note that once we have a lower bound
for ı�.H/, as in Theorem 1.3, (1.2) (we may use the sharper (2.4)) provides lower
bounds for ı�.H; t/ for all t > 0.
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Given x 2 Zd and L > 0, we set

ƒL.x/ D fy 2 Zd W ky � xk1 � L
2

g
and

ƒ
.0/
L .x/ D fy 2 Zd W ky � xk1 < L

2
gI

note that ƒL.x/ D ƒ
.0/
L .x/ () L … 2N.

Given K 2 N we have
jƒK.x/j D Kd� ;

where

K� D
8<:K if K is odd,

K C 1 if K is even.

Moreover ƒK.x/ D ƒ
.0/
K .x/ if and only if K is odd.

Definition 1.2. A set � � Zd is .K;Q/-relatively dense, where K;Q 2 N, if

j� \ƒ.0/
K .�/j � Q; � 2 KZd :

By a relatively dense subset � � Zd we will always mean a .K;Q/-relatively
dense set � for some appropriate K;Q 2 N. Note that we must have Q � jƒ.0/

K j �
Kd , and that K � 2 unless � D Zd .

Theorem 1.3. Let � ¨ Zd be .K;Q/-relatively dense, and let H D �� C V on
`2.Zd /, where V is a bounded potential. Then

ı�.H; t/ � Q

.2dK � 1/Y 2dK�1
d;V

�
1�

� Yd;V

Yd;V C t

�2dK�1�
; t � 0: (1.3)

As a consequence, we get

ı�.H/ � Q

.2dK � 1/Y 2dK�1
d;V

> 0: (1.4)

In the special case H D �� we can improve the previous bound to

ı�.��/ D E�.��/ � 1

4dK2d�
: (1.5)

We prove (1.3) from a ‘quantitative unique continuation principle for ground
states’ given in Lemma 2.2. The lower bound given in (1.4) holds for arbitrary
bounded potential V ; note that it depends on V only through spr.V /.



Trimmed discrete Schrödinger operators 395

The special case (1.5) follows from a Cheeger’s inequality. We remark that
E�.��/ can also be estimated by an argument of Bourgain and Kenig Section 4 in [5]
(see also [21], Remark 4.4). They treated continuum models, but Rojas-Molina, see
Section 1.2.5 in [30] and Lemma 2.1 in [31], noted that the argument applies also to
the discrete case. This argument yields the bound E�.��/ � C

K2dC2 .
Theorem 1.3 has a continuum counterpart; in particular we can use Cheeger’s

inequality to obtain the continuum version of (1.5). We did not include it in this
paper because the continuous version of the general estimate (1.3) is only marginally
better than the estimate in [24], Lemma 4.2, and the continuous version of (1.5) is
similarly only marginally better that what we get with the Bourgain–Kenig argument.

Theorem 1.3 follows from Theorems 2.1 and 2.3 in Section 2.2.

1.2. Wegner estimates and localization for trimmed Anderson models. If � 2
Zd , we will use the notation �� for �f�g as a multiplication operator in `2.Zd /, but
we will write ı� instead when considering �f�g as a function in `2.Zd /.

1.2.1. Trimmed Anderson models.

Definition 1.4. Let � � Zd be .K;Q/-relatively dense. A �-trimmed Anderson
model is a discrete random Schrödinger operator on on `2.Zd / of the form

H!;� WD H0 C �V!; (1.6)

where

(i) H0 D ��C V .0/, with V .0/ a bounded (background) potential;

(ii) V! is the random potential given by

V! WD
X
�2�

!��� ; (1.7)

where ! D f!�g�2� is a family of independent random variables whose proba-
bility distributions f��g�2� are non-degenerate with

supp�� � Œ0;M	; � 2 Zd I (1.8)

(iii) � > 0 is the disorder parameter.

If � D Zd , V .0/ D 0, and �� D � for all � 2 Zd , then H!;� is the standard
Anderson model. This model was introduced by Anderson [4] to study the effect of
disorder on electronic states within the suitable energy range. The main phenomenon
is localization, which manifests itself as spectral localization (the spectral measure
ofH!;� is almost surely pure point with exponential decay of eigenfunctions) and as
dynamical localization (non-spreading of wave packets).
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Trimmed Anderson models are the discrete analogues of the crooked Anderson
Hamiltonians introduced in [24], Definition 1.2. (By a trimmed Anderson model
we will always mean a �-trimmed Anderson model for some relatively dense subset
� � Zd .)

The standard Anderson model with sufficiently regular single site probability
distribution � was intensively studied during the last two decades; see [1], [2], [3],
[11], [13], [14], [15], [16], [27], [34], and [35] and the reviews [20], [23], and [33]
for a more exhaustive list of references. (In this paper we consider only results valid
in arbitrary dimension d ; the d D 1 case is special and we will not mention d D 1

only results.) It exhibits localization in an interval at the bottom of the spectrum for
fixed disorder and on the whole real line for large disorder. On the other hand, until
very recently there had been no localization results for ergodic �- trimmed Anderson
models with � ¤ Zd , say � D KZd with K � 2. The reason is the lack of a
covering condition, i.e., that the support of the random potential is all of Zd with
probability one. Indeed,

P
�2KZd �� D �� , and hence

P
�2KZd �� � c > 0 if

and only if � D Zd . The covering condition has played a crucial role in the proofs
of Wegner estimates (which are bounds on the regularity of the integrated density of
states, first proved by Wegner [36] for the standard Anderson model) and localization
for the Anderson model.

This difficulty has been overcome for the continuous analogue of the Anderson
model by the use of the unique continuation principle for continuous Schrödinger
operators, and localization at the bottom of the spectrum has been proved for contin-
uous Anderson Hamiltonians; see [5], [9], [10], and [21]. These results were further
extended to a larger class of continuous random Schrödinger operators with alloy-
type random potentials, including non-ergodic random Schrödinger operators such
as Delone–Anderson Hamiltonians; see [24], [30], and [32].

Recently, Rojas-Molina [30], Theorem 1.2.6, proved Wegner estimates and local-
ization at the bottom of the spectrum for the special case of 2Zd -trimmed Anderson
models with no background potential, i.e., V .0/ D 0. She circumvented the lack
of covering condition using an argument of Bourgain and Kenig [5], Section 4, as
described in [21], Remark 4.4. Her approach can be extended for �-trimmed An-
derson models with � an arbitrary relatively dense subset of Zd , as long as there is
no background potential [31], Section 2.1; the Bourgain–Kenig argument does not
appear to be able to incorporate a background potential. Cao and Elgart [6] showed
localization at small disorder below the bottom of the free spectrum for a class of
three-dimensional Anderson-like models without background potential. The ‘non
overlapping setup’ in [6] includes kZd -trimmed Anderson models where the random
variables are supported by the interval Œ�1; 1	, but it is more general in that it admits
finite rank random perturbations with non overlapping supports and no definite sign.
Theorem 1 in [6] establishes not only localization at small disorder for this class
of Anderson models, but also, using the Feynman diagrammatic technique, gives an
explicit expression (as a function of the disorder) for the interval of localization.
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Although there is no unique continuation principle for discrete Schrödinger op-
erators, we prove Wegner estimates and localization at the bottom of the spectrum
for �-trimmed Anderson models with nontrivial background potentials. We are not
aware of any previous results on either Wegner estimates or localization for this class
of models.

1.2.2. The ground state energy. A trimmed Anderson model H!;� is a KZd -
ergodic random Schrödinger operator if and only if � D � C � for all � 2 KZd ,
V .0/ is a periodic potential with period K, and �� D � for all � 2 � . In this case
its spectrum �.H!;�/ is not random, i.e., it is the same with probability one. In
particular, requiring 0 D inf supp�, we get

E;.H!;�/ D E;.H0/ with probability one: (1.9)

Since a trimmed Anderson model H!;� is not, in general, an ergodic random
operator, its spectrum �.H!;�/ is a random set. We have E;.H!;�/ � E;.H0/ for
all ! 2 Œ0;M	� and � > 0. But even after imposing �� D � for all � 2 � with
0 D inf supp� we cannot guarantee (1.9). For example, take V .0/ D �6d��0

for
some �0 2 � , � uniformly distributed on Œ0; 1	, and � > 6d . Then E;.H0/ �
hı�0

; H0ı�0
i D �4d , but we clearly have PfE;.H!;�/ � 0g > 0, so (1.9) is not

true. But if in addition we require V .0/ to be a periodic potential with period K, it
follows that (1.9) holds by comparison with the ergodic random operator we obtain
by removing the �-trimming, that is, replacing � by Zd . Actually, (1.9) holds in a
broader context as the following proposition will show. (See also [31].)

Given a Schrödinger operator H on `2.Zd /, we define finite volume operators
H .ƒ/ D Hƒc , i.e., the restriction �ƒH�ƒ of H to `2.ƒ/, where ƒ D ƒL.x/

is a finite box. In particular, given a trimmed Anderson model H!;�, we define

finite volume random operators H .ƒ/

!;�
. We also set Sƒ.t / WD max�2�\ƒ S��

.t / for
t � 0, where S�.t / WD supa2R �.Œa; a C t 	/ denotes the concentration function of
the probability measure �, and let S.t/ WD sup�2� S��

.t / for t � 0

Proposition 1.5. Let H!;� be a �-trimmed Anderson model with �� D � for all
� 2 � with 0 D inf supp�. Suppose for any " > 0 there is L D L."/ > 0 such that

jfx 2 Zd W E;.H .ƒL.x//
0 / � E;.H0/C "gj D 1: (1.10)

Then E;.H0/ is in the essential spectrum of H0 and E;.H!;�/ D E;.H0/ with
probability one.

The proof is given in Section 3.1.

1.2.3. Wegner estimates and localization. We prove Wegner estimates and local-
ization for �-trimmed Anderson models in intervals of the kind ŒE;.H0/; E1	 �
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ŒE;.H0/; E�.H0//. Note that we have (1.9), and hence almost sure existence of the
spectrum in these intervals, that is,

Pf�.H!;�/ \ ŒE;.H0/; E1	 ¤ ;g D 1; E1 > E;.H0/;

for the class of (generally) non-ergodic trimmed Anderson models given in Proposi-
tion 1.5.

Theorem 1.6. Let H!;� be a �-trimmed Anderson model. Given an energy E1 2
.E;.H0/; E�.H0//, set


 D 
.H0; �; E1/ D sup
s>0

E� .H0;s/>E1

E�.H0; s/ �E1

s
> 0: (1.11)

Then for every box ƒ D ƒL.x0/ with x0 2 Zd and L > 0 we have

�.�1;E1�.H
.ƒ/

!;�
/��\ƒ�.�1;E1�.H

.ƒ/

!;�
/ � 
�.�1;E1�.H

.ƒ/

!;�
/; (1.12)

for ! 2 Œ0;M	� , and for any closed interval I � .�1; E1	 we have

Eftr �I .H
.ƒ/

!;�
/g � 8
�1Sƒ.�

�1jI j/j� \ƒj: (1.13)

Remark 1.7. It follows from (1.3) (and its proof) that


 � Q

2dK C 1
..1CZ/Yd;V .0//

�2dK (1.14)

where

Z D 2Kd C 1

2Kd
..1� ..E1 � E;.H0//Q

�1.2dK � 1/Y 2dK�1
d;V .0/ //

� 1
2dK�1 � 1/:

(See (3.2)–(3.6) for the derivation of (1.14).)

Theorem 1.6 is proved in Section 3.2.
The Wegner type estimate (1.13) allows us to establish localization for �-trimmed

Anderson models at the bottom of the spectrum. By complete localization on an
interval I we mean that for allE 2 I there exists ı.E/ > 0 such that we can perform
the bootstrap multiscale analysis on the interval .E � ı.E/; E C ı.E//, obtaining
Anderson and dynamical localization; see [17], [18], and [19]. (Note that by this
definition we always have complete localization in .�1; E;.H0//.)

The following theorem show that we always have localization below E;.H0/ at
high disorder.

Theorem 1.8. Let H!;� be a �-trimmed Anderson model, and suppose S.t/ �
C t� for all t � 0, where � 2 .0; 1	 and C is a constant. Then, given E1 2
.E;.H0/; E�.H0//, there exists �.E1/ < 1 such that H!;� exhibits complete lo-
calization on the interval .�1; E1/ for all � � �.E1/.
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Theorem 1.8 is proved exactly as [24], Theorem 1.7, using the Wegner esti-
mate (1.13), so we omit the proof.

We also establish localization in an interval at the bottom of the spectrum for fixed
disorder.

Theorem 1.9. Let H!;� be a �-trimmed Anderson model, and suppose S.t/ � C t�

for all t � 0, where � 2 .0; 1	 and C is a constant. Assume in addition that one of
the following hypotheses hold.

(i) H!;� is an ergodic �- trimmed Anderson model.

(ii) There is no background potential, that is, V .0/ D 0.

(iii) The exponent � satisfies � > d
2

.

Then for all � > 0 there exists E� > E;.H0/ such that H!;� exhibits complete
localization on the interval .�1; E�/.

The proof of this theorem is standard once we have the Wegner estimate (1.13).
(Thus we will have E� < E�.H0/.) The necessary input for starting the multiscale
analysis can be verified as follows.

(i) If H!;� is ergodic, it has Lifshitz tails [29, 26] (the proofs apply also to the
discrete case), and we proceed as in [21], Proposition 4.3.

(ii) If V .0/ D 0, we proceed as in [21], Remark 4.4; the argument can be adapted to
the discrete case as noted in [30], Theorem 1.2.6, and [31].

(iii) If � > d
2

, we employ the same strategy as in (i), replacing the Lipschitz tails with

the “classical tails” given by the condition � > d
2

as in [14], Proof of Theorem 30,
and [25], Proof of Theorem 3.11.

Acknowledgements. We are grateful to S. Sodin for useful discussions on isoperi-
metric estimates.

2. The ground state energy of trimmed Schrödinger operators

In this section we prove Theorems 1.1 and 1.3. Given H D �� C V on `2.Zd /,
where V is a bounded potential, we will use the shorthand notation E� D E�.H/,
E�.t / D E�.H; t/, E; D E;.H/.

2.1. Equality of the ground state energies. We start by proving Theorem 1.1.

Proof of Theorem 1.1. We first obtain a simple upper bound on ı�.H/ (hence on
ı�.H; t/ as well), to be used later on. To this end, note thatE; � infx2Zd V.x/, and
hence

H� �E; � ��� C spr V � 4d C spr V: (2.1)
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It follows that

E� �E; � E�.��/C spr V � 2d C spr V; (2.2)

where we used E�.��/ � infx2�chıx ;��ıxi D 2d , that is,

ı�.H/ � ı�.��/C spr.V / � 2d C spr.V /:

Suppose E� > E;, since otherwise there is nothing to prove. By replacing H by
H �E;, we may assume E; D 0, so ı�.H/ D E� and ı�.H; t/ D E�.t /.

Let � > 0. Then H C � � � (recall E; D 0), so .H C �/�1 � 1
�

. It follows that
on `2.�/ we have

S� D H�c C � � u.H� C �/�1u� � �; u D �����c ;

since S� is the the Schur complement of H� C �, and we have

S�1
� D ��.H C �/�1�� � 1

�
:

In particular, we conclude that

H�c � u.H� C �/�1u� for all � > 0: (2.3)

By hypothesis E� > 0, so we take 
 2 .0; E�/. Note that for all � > 0 we have

.H� � 
/�1 �
�
1C 
C �

E� � 

�
.H� C �/�1:

We now consider the Schur complement S�	.t / of .H�.t //� � 
, and use (2.3)
and (2.1), getting

S�	.t / D H�c C t � 
 � u.H� � 
/�1u�

� H�c C t � 
 �
�
1C 
C �

E� � 

�
u.H� C �/�1u�

� H�c C t � 
 �
�
1C 
C �

E� � 

�
H�c

� t � 
 � 
C �

E� � 
.4d C spr.V //:

Since � > 0 is arbitrary, we obtain

S�	.t / � t � 
 � 	
E� �	

.4d C spr.V //:
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We conclude that

S�	.t / > 0

if


 <
t C 4d C E� C spr.V / � p

.t C 4d C E� C spr.V //2 � 4E� t

2
;

so it follows from the Schur complement condition for positive definiteness that

E�.t / � t C 4d C E� C spr.V / � p
.t C 4d C E� C spr.V //2 � 4E� t

2

D 2E� t

t C 4d CE� C spr.V /C p
.t C 4d C E� C spr.V //2 � 4E� t

� E� t

t C 4d C E� C spr.V /
; t > 0;

(2.4)

Combining with (2.2) we get

E�.t / � E� t

t C 6d C 2spr.V /
; t > 0; (2.5)

which is (1.2), Letting t ! 1 in (1.2) we get E�.1/ � E� . Since E�.1/ � E� ,
we get E�.1/ D E� .

2.2. Lower bounds on the ground state energy for arbitrary potential. The-
orem 1.3 for arbitrary bounded potential V , namely the lower bounds (1.3)-(1.4),
follows from the following theorem.

We recall Yd;V D 2d C 1C spr.V / for a bounded potential V .

Theorem 2.1. Let � ¨ Zd be .K;Q/-relatively dense, and let H D �� C V on
`2.Zd /, where V is a bounded potential. Then

ı�.H; t/ � Q

2dK � 1
� 1

Y 2dK�1
d;V

� 1

.Yd;V C t /2dK�1

�
; t � 0: (2.6)

As a consequence, we get

ı�.H/ � Q

.2dK � 1/Y 2dK�1
d;V

> 0: (2.7)

The proof of the theorem is based on what may be called a quantitative unique
continuation principle for ground states, given in the following lemma.
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Given a nonempty connected subset B of Zd and x; y 2 B , we let dB.x; y/

denote the graph distance between x and y in B , i.,e., the minimal length of a path
in B connecting x and y. We set diamB D maxx;y2B dB.x; y/, the diameter of
B in the graph theory sense. Note that we always have dB.x; y/ � kx � yk1, and
dB.x; y/ D kx � yk1 for all x; y 2 B if B D Zd or B D ƒL.x0/. In particular, we
have diamƒL.x0/ � dL.

Lemma 2.2. Let H D �� C V on `2.Zd /, where V is a bounded potential. Let
ƒ D ƒL.x0/ be a box in Zd . Then E.ƒ/ D inf �.Hƒ/ is a simple eigenvalue, and
there exists a unique strictly positive ground state  .ƒ/

g , i.e., there exists a unique

 
.ƒ/
g 2 `2.ƒ/ such that Hƒ 

.ƒ/
g D E.ƒ/ 

.ƒ/
g , k .ƒ/

g k D 1, and  .ƒ/
g .x/ > 0 for

all x 2 ƒ. Moreover, for all x 2 ƒ and m 2 N we have

 .ƒ/
g .x/ � Y �m

d;V

X
y2ƒ

kx�yk1�m

 .ƒ/
g .y/: (2.8)

We also get a uniform lower bound:

 .ƒ/
g .x/ � Y �dL

d;V ; x 2 ƒ: (2.9)

Proof. Without loss of generality we assume 0 D infx2Zd V.x/, so 0 � V � V1 D
spr.V / and E.ƒ/ � 0.

Note that `2.ƒ/ is a finite-dimensional Hilbert space. The existence of the unique
strictly positive ground state follows from the Perron-Frobenius Theorem. This can
be seen as follows. The self-adjoint operator T D 2d C 1C V1 �Hƒ on `2.ƒ/ is
positivity preserving, i.e., hıx ; T ıyi � 0 for all x; y 2 ƒ. Moreover,

hıx ; T
mıyi � 1 for m � kx � yk1; x; y 2 ƒ:

In particular, recalling diamƒ � dL, we have

hıx ; T
dLıyi � 1; x; y 2 ƒ:

It follows from the Perron–Frobenius Theorem that �max D max �.T / is a simple

eigenvalue, and there exists a unique  .ƒ/
g 2 `2.ƒ/ such that T .ƒ/

g D �max 
.ƒ/
g ,

k .ƒ/
g k D 1, and  .ƒ/

g .x/ > 0 for all x 2 ƒ. Clearly, Hƒ 
.ƒ/
g D E.ƒ/ 

.ƒ/
g and

�max D 2d C 1C V1 � E.ƒ/ � 2d C 1C V1 D Yd;V :

Moreover, since T .ƒ/
g D �max 

.ƒ/
g and  .ƒ/

g .x/ > 0 for all x 2 ƒ, we have for all

x 2 ƒ and m 2 N ( g D  
.ƒ/
g )

 g.x/ � ��m
max

X
y2ƒI kx�yk1�m

 g.y/;

which yields (2.8).
To get (2.9), just notice that 1 D k gk2 � k gk1 D P

y2ƒ g.y/.
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Proof of Theorem 2.1. Given � 2 KZd , fix �� � � \ƒ.0/
K .�/ such that k��k D Q.

Let R D KJ where J D 1; 3; 5; : : : and consider ƒ D ƒR D ƒR.0/. Then, by
Lemma 2.2, for all t � 0 we have that E.ƒ/.t / D inf �.H�.t // is a simple isolated
eigenvalue with eigenvector  .ƒ/

g;t as in Lemma 2.2, so it follows that the orthogonal

projection Pg.t / D h .ƒ/
g;t ; �  .ƒ/

g;t i .ƒ/
g;t is differentiable in t , and

d

dt
E.ƒ/.t / D d

dt
trPg.t /H.t/

D tr Pg.t / PH.t/C tr PPg.t /H.t/

D tr Pg.t / PH.t/
D tr Pg.t /��

�
X

�2KZd \ƒ

h .ƒ/
g;t ; ���

 
.ƒ/
g;t i

D
X

�2KZd \ƒ

X
x2��

. 
.ƒ/
g;t .x//

2;

(2.10)

where on the second line we have used PPg D Pg
PPg.1 � Pg/ C .1 � Pg/ PPgPg ,

cyclicity of the trace, and PgH.1� Pg/ D 0.
If x 2 �� , it follows from (2.8) that

 
.ƒ/
g;t .x/ � .Yd;V C t /�dK

X
y2�ƒK .�/

 
.ƒ/
g;t .y/;

and hence
. 

.ƒ/
g;t .x//

2 � .Yd;V C t /�2dK
X

y2�ƒK .�/

. 
.ƒ/
g;t .y//

2: (2.11)

Combining (2.10) and (2.11) we get

d

dt
E.ƒ/.t / � Q.Yd;V C t /�2dK

X
�2KZd \ƒ

X
y2�ƒK .�/

. 
.ƒ/
g;t .y//

2

D Q.Yd;V C t /�2dK :

(2.12)

Thus

E.ƒ/.t / �E.ƒ/.0/ � Q

Z t

0

ds.Yd;V C s/�2dK

D Q

2dK � 1
� 1

Y 2dK�1
d;V

� 1

.Yd;V C t /2dK�1

�
:

To conclude the proof of the theorem, just note thatE�.t / D limR!1E.ƒR/.t /

for all t � 0.
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2.3. Cheeger’s inequality for the ground state energy. Theorem 1.3 forH D ��,
namely the lower bound (1.5), follows from the following theorem.

Theorem 2.3. Let � ¨ Zd be .K;Q/-relatively dense. Then

E�.��/ � 1

4dK2d�
: (2.13)

In addition,

E�.��; t/ � 1

.6d � 1/K2d�
; t � 2d � 1: (2.14)

Remark 2.4. For H D �� the estimate (2.13) in Theorem 2.3 is better than the
corresponding estimate from Theorem 2.1. Note that (2.14) only holds for t � 2d�1,
giving a lower bound independent of t . We can get an estimate for all t � 0 by
combining (2.13) and (2.4), getting

E�.t / � t

4dK2d� .t C 4d/ C 1
: (2.15)

This estimate is better than (2.14) for sufficiently large t .

Given A � Zd , let
� @A D f.x; y/ 2 A � AcI kx � yk D 1g,
� @�A D fx 2 AI .x; y/ 2 @A for some y 2 Acg,
� @CA D fy 2 AcI .x; y/ 2 @A for some x 2 Ag;
� given x 2 Zd , set


A.x/ D jfy 2 Zd I .x; y/ 2 @Agj 2 f0; 1; 2; : : : ; 2dg;
so @�A D fx 2 Zd I 
A.x/ � 1g.

Note that

h�A; .��/�Ai D j@Aj D
X

x2Zd


A.x/ D
X

x2@�A


A.x/:

Lemma 2.5. Let � ¨ Zd be .K;Q/-relatively dense. Then for all A � Zd n � we
have

h�A; .��/�Ai D j@Aj � K�d� jAj: (2.16)

Proof. Let A � Zd n �K , set A� D A \ƒK.�/ for � 2 KZd , and let NA D jf� 2
KZd IA� ¤ ;gj. Then

jAj � Kd�NA: (2.17)

On the other hand,A� ¤ ; implies@A\.ƒK.�/�ƒ.0/
K .�// ¤ ; since�K\ƒ.0/

K .�/ ¤
;. We conclude that NA � j@Aj, so (2.16) follows from (2.17).
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Let H D �� and fix � ¨ Zd be .K;Q/-relatively dense. Following [28], we
define the Cheeger constants (note h�A; �Ai D jAj)

ˇ.�/ D inf
A�Zd n�I 1�jAj<1

ˇA.�/; where ˇA.�/ D h�A; .���/�Ai
jAj ; (2.18)

and

ˇ.t/ D inf
A�Zd I 1�jAj<1

ˇA.t /; where ˇA.t / D h�A; H.t/�Ai
jAj ; t � 0:

Clearly ˇ.�/ � E� and ˇ.t/ � E.t/ for all t � 0.

Lemma 2.6. We have
K�d� � ˇ.�/ � 2d:

Moreover, ˇ.t/ is a nondecreasing function of t � 0, and

ˇ.t/ � ˇ.1/.�/ � K�d� ; t � 2d � 1;
where ˇ.1/.�/ D minfˇ.�/; 1g.

Proof. Given A � Zd n � , jAj � 1, it follows from Lemma 2.5, that

ˇA.t / D ˇA.�/ D h�A; .��/�Ai
jAj � K�d� ; t � 0:

It follows that ˇ.�/ � K�d� . On the other hand, there exists y0 2 Zd n � , since
� ¨ Zd , and we have

ˇ.�/ � ˇfy0g.�/ � 2d:

Let A � Zd I 1 � jAj < 1. Suppose x 2 A \ � , Ax D A n fxg, and assume
jAxj � 1. Then jAj D jAxj C 1 and

h�A; H.t/�Ai � h�Ax
; H.t/�Ax

i � 2d C t;

so, if t � 2d � 1,

ˇAx
.t / � h�A; H.t/�Ai � 1

jAj � 1 � h�A; H.t/�Ai
jAj D ˇA.t /;

assuming h�A; H.t/�Ai � jAj, i.e., ˇA.t / � 1. If jA n �j � 1, repeating this
procedure until we removed all points of � from the set A we obtain

ˇA.t / � ˇAn�.t / D ˇAn�.�/ � ˇ.�/:

If A � � , jAj � 1, we pick x0 2 A, so we get

ˇA.t / � ˇfx0g.t / D 2d C t � 2d � ˇ.�/:

We thus conclude that for all t � 2d �1we haveˇA.t / � ˇ.1/.�/ for allA � Zd

such that 1 � jAj < 1. The lemma follows.
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Theorem 2.3 follows from the following theorem.

Theorem 2.7. Let � ¨ Zd be .K;Q/-relatively dense. Then

E�.��/ � .ˇ.�//2

4d
� 1

4dK2d�
: (2.19)

In addition,

E�.��; t/ � .ˇ.1/.�//2

6d � 1 � 1

.6d � 1/K2d�
; t � 2d � 1: (2.20)

Proof. We write

H.t/ D H�.t / D ��C t��

E� D E�.��/;
E.t/ D E�.��; t/:

We prove (2.20) first. Following [28], we introduce cZd D Zd [ f1g, and for

t > 0 define the self-adjoint bounded operator bH.t/ on `2.cZd / by

bH.t/'.x/ D
X

y2cZd


.x; y/.'.x/ � '.y//;

where

(i) 
.x; y/ D 1 for x; y 2 Zd , jx � yj D 1,

(ii) 
.x; y/ D 0 for x; y 2 Zd , jx � yj ¤ 1,

(iii) 
.x;1/ D 
.1; x/ D t��.x/ for x 2 Zd ,

(iv) 
.1;1/ D 0.

Given ' 2 `2.Zd /, we extend it to O' 2 `2.cZd / by setting O'.1/ D 0. It follows
that 1H.t/' D bH.t/ O', and we have

h';H.t/'i`2.Zd / D hy'; bH.t/y'i
`2.cZd /

D 1

2

X
x;y2cZd


.x; y/j O'.x/ � O'.y/j2:

Note that
h';H.t/'i D h'; .��/'i C tk��'k2;

so

E.t/ D inffh';H.t/'i W ' 2 `2.Zd /; k'k D 1g
D inffh';H.t/'i W ' 2 `2.Zd I R/; k'k D 1; jsupp'j < 1g
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Now let ' be a real-valued function on Zd with finite support. We have, using
the Cauchy-Schwarz inequality,

2h';H.t/'i`2.Zd / D
X

x;y2cZd


.x; y/. O'.x/ � O'.y//2

�
.
P

x;y2cZd

.x; y/j O'.x/2 � O'.y/2j/2P

x;y2cZd

.x; y/. O'.x/C O'.y//2 :

For the denominator, we haveX
x;y2cZd


.x; y/. O'.x/C O'.y//2

D
X

x;y2Zd I jx�yjD1

.'.x/C '.y//2 C 2th'; ��'i

�
X

x;y2Zd I jx�yjD1

.2'.x/2 C 2'.y/2/C 2th'; ��'i � 8dk'k2 C 2tk��'k2:

For the numerator, since 
 is symmetric, we have, setting

As D f O'2 > sg D f'2 > sg
for s � 0, X

x;y2cZd


.x; y/j O'.x/2 � O'.y/2j

D 2
X

x;y2cZd


.x; y/�.f O'.x/2 > O'.y/2g/j O'.x/2 � O'.y/2j

D 2

Z 1

0

ds
X

x;y2cZd


.x; y/�.f O'.x/2 > s � O'.y/2g/

D 2

Z 1

0

ds
X

x;y2cZd


.x; y/�As
.x/.�As

.x/ � �As
.y//

D 2

Z 1

0

dsh�As
; H.t/�As

i

� 2ˇ.t/

Z 1

0

dsjAs j

D 2ˇ.t/k'k2:
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We conclude that for a real-valued function ' on Zd with finite support and
k'k D 1 we have, for all t � 2d � 1, using Lemma 2.6,

h';H.t/'i � 1
2

.2ˇ.t/k'k2/2

8dk'k2 C 2tk��'k2
� .ˇ.t//2

4d C t
� .ˇ.1/.�//2

4d C t
:

Thus

E.t/ � .ˇ.1/.�//2

4d C t
; t � 2d � 1:

Since E.t/ is nondecreasing in t , we get

E.t/ � .ˇ.1/.�//2

6d � 1 ; t � 2d � 1:

To prove (2.19), we repeat the above procedure with ��� , Zd n � , Zd and
1��� instead of H.t/, Zd , cZd and bH.t/, where 1��� D .���/˚ 0 on `2.Zd / D
`2.Zd n �/˚ `2.�/, and 
.x; y/ D 1 for x; y 2 Zd , jx � yj D 1, 
.x; y/ D 0 for
x; y 2 Zd , jx � yj ¤ 1, and, given ' 2 `2.Zd n �/, extending it to O' 2 `2.Zd / by
setting O'.x/ D 0 for x 2 � . The proof goes through in exactly the same way, and
we get (2.19).

3. Trimmed Anderson models

In this section we prove Proposition 1.5 and Theorem 1.6.

3.1. The ground state energy

Proof of Proposition 1.5. Let H!;� be a �-trimmed Anderson model with �� D �

for all � 2 � with 0 D inf supp�. To show thatE; D E;.H0/ 2 �ess.H0/, it suffices
to exhibit an orthonormal sequence f'ngn2N in `2.Zd / such that

k.H0 �E;/'nk � 1=n; n 2 N:

The existence of such a sequence follows from (1.10). Hence E; 2 �ess.H0/ by
Weyl’s criterion.

To show that (1.9) holds, for each " > 0we use (1.10) to construct an orthonormal
sequence f ."/

n gn2N in `2.Zd / such that supp ."/
n � ƒL.xn/ with L D L."/ for all

n 2 N , with kxn � xmk1 > L for n ¤ m, and

k.H0 �E;/ ."/
n k � "; n 2 N: (3.1)
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We then have

E;.H!;�/ � h ."/
n ; H!;� 

."/
n i

� "C
X

�2�\ƒL.xn/

!� j ."/
n .�/j2 for all n 2 N:

But
Pf inf

n2N
max

�2ƒL.xn/
!� < "L

�d g D 1;

from which it follows that

Pf�.H!;�/ \ ŒE;; E; C 2"	 ¤ ;/g D 1:

Since " is arbitrary, the result follows.

3.2. The Wegner estimate

Proof of Theorem 1.6. LetH!;� be a�-trimmedAnderson model, fixE1 2 .E;.H0/;

E�.H0//, and let 
 D 
.H0; �; E1/ be as in (1.11). We clearly have 
 > 0. To derive
the explicit bound stated in Remark 1.7, namely (1.14), note that the estimate (1.3)
yields

E�.H0; s/ � E;.H0/ � Q

.2dK � 1/Y 2dK�1
d;V .0/

�
1 �

� Yd;V .0/

Yd;V .0/ C s

�2dK�1�
(3.2)

for all s > 0, which implies E�.H0; s/ > E1 for

s > s0 D Yd;V .0/..1�.E1 �E;.H0//Q
�1.2dK � 1/Y 2dK�1

d;V .0/ /
� 1

2dK�1 �1/: (3.3)

Using (2.12), we get


 � sup
s>s0

E�.H0; s/ �E�.H0; s0/

s
� sup

s>s0

s � s0
s

Q.Yd;V .0/ C s/�2dK : (3.4)

The supremum is attained at

s D 2Kd C 1

4Kd

�
1C

s
1C 8KdYd;V .0/

.2Kd C 1/2s0

�
s0I (3.5)

to get a simpler lower bound we take s D s D 2KdC1
2Kd

s0, getting


 � Q

2dK C 1

�
Yd;V .0/ C 2Kd C 1

2Kd
s0

��2dK

; (3.6)

which is (1.14).
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We now proceed as in [24], Proof of Theorem 1.7. Letƒ D ƒL.x0/with x0 2 Zd

and L > 0, and note that (H .ƒ/
0;� .t / D ..H0/�.t //

.ƒ/)

E�.H
ƒ
0 ; t / D E;.H .ƒ/

0;� .t // � E;.H0;�.t // D E�.H0; t /;

so


.Hƒ
0 ; �; E1/ D sup

s>0I E� .H ƒ
0

;s/>E1

E�.H
ƒ
0 ; s/ �E1

s
� 
.H0; �; E1/ D 
 > 0:

As a consequence, (1.12) follows immediately from [24], Lemma 4.1.
The Wegner estimate (1.13) follows using (1.12). For any closed interval I �

.�1; E1	 we have

tr �I .H
.ƒ/

!;�
/ � 
�1 tr �I .H

.ƒ/

!;�
/��\ƒ�I .H

.ƒ/

!;�
/

D 
�1 tr ��\ƒ�I .H
.ƒ/

!;�
/��\ƒ

D 
�1
X

�2�\ƒ

hı� ; �I .H
.ƒ/

!;�
/ı�i:

Since by spectral averaging, [10], eq. (3.16) (see also [8], Appendix A),Z
d��.!�/hı� ; �I .H

.ƒ/

!;�
/ı�i � 8S��

.��1jI j/;

we get (1.13).
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[32] C. Rojas-Molina and I. Veselić, Scale-free unique continuation estimates and applications
to random Schrödinger operators. Comm. Math. Phys. 320 (2013), 245–274.MR 3046996
Zbl 1276.47051

[33] C. Stolz, An introduction to the mathematics of Anderson localization. In R. Sims and
D. Ueltschi (eds.), Entropy and the quantum II. Lecture notes from the 2nd Arizona
School of Analysis with Applications held at the University of Arizona, Tucson, AZ,
March 15–19, 2010. Contemporary Mathematics 552. American Mathematical Society,
Providence, R.I., 2011, 71–108. MR 2868042 MR 2868059 (collection) Zbl 1244.82031
Zbl 1223.82001 (collection)

[34] B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations
and localization for random Hamiltonians. Comm. Pure Appl. Math. 39 (1986), 75–90.
MR 0820340 Zbl 0609.47001

[35] W.-M. Wang, Localization and universality of Poisson statistics for the multidimensional
Anderson model at weak disorder. Invent. Math. 146 (2001), 365–398. MR 1865399
Zbl 1035.82023

[36] F. Wegner, Bounds on the density of states in disordered systems. Z. Phys. B 44 (1981),
9–15. MR 0639135

http://www.ams.org/mathscinet-getitem?mr=1194022
http://zbmath.org/?q=an:0784.34061
http://www.ams.org/mathscinet-getitem?mr=2509110
http://www.ams.org/mathscinet-getitem?mr=2516524
http://zbmath.org/?q=an:1162.82004
http://zbmath.org/?q=an:1151.35002
http://www.ams.org/mathscinet-getitem?mr=3106507
http://zbmath.org/?q=an:1281.47026
http://www.ams.org/mathscinet-getitem?mr=2057123
http://zbmath.org/?q=an:1054.35102
http://www.ams.org/mathscinet-getitem?mr=1695202
http://zbmath.org/?q=an:1060.82509
http://www.ams.org/mathscinet-getitem?mr=1942859
http://zbmath.org/?q=an:1034.82024
http://www.ams.org/mathscinet-getitem?mr=0930082
http://zbmath.org/?q=an:0716.60073
http://www.ams.org/mathscinet-getitem?mr=0935490
http://zbmath.org/?q=an:0971.82508
http://www.theses.fr/2012CERG0565
http://zbmath.org/?q=an:06295133
http://www.ams.org/mathscinet-getitem?mr=3046996
http://zbmath.org/?q=an:1276.47051
http://www.ams.org/mathscinet-getitem?mr=2868042
http://www.ams.org/mathscinet-getitem?mr=2868059
http://zbmath.org/?q=an:1244.82031
http://zbmath.org/?q=an:1223.82001
http://www.ams.org/mathscinet-getitem?mr=0820340
http://zbmath.org/?q=an:0609.47001
http://www.ams.org/mathscinet-getitem?mr=1865399
http://zbmath.org/?q=an:1035.82023
http://www.ams.org/mathscinet-getitem?mr=0639135


Trimmed discrete Schrödinger operators 413

Received March 13, 2013

Alexander Elgart, Department of Mathematics, Virginia Tech, Blacksburg, VA, 24061,
U.S.A.

E-mail: aelgart@vt.edu

A. Klein, University of California, Irvine; Department of Mathematics;
Irvine, CA, 92697-3875, U.S.A.

E-mail: aklein@uci.edu

mailto:aelgart@vt.edu
mailto:aklein@uci.edu

	Introduction
	The ground state energy of trimmed Schrödinger operators
	Trimmed Anderson models
	References

