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Dirichlet eigenvalues of cones in the small aperture limit
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Abstract. We are interested in �nite cones of �xed height 1 parametrized by their open-

ing angle. We study the eigenpairs of the Dirichlet Laplacian in such domains when their

apertures tend to 0. We provide multi-scale asymptotics for eigenpairs associated with the

lowest eigenvalues of each �ber of the Dirichlet Laplacian. In order to do this, we investi-

gate the family of their one-dimensional Born–Oppenheimer approximations. �e eigen-

value asymptotics involves powers of the cube root of the aperture, while the eigenfunctions

include simultaneously two scales.
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1. Introduction

1.1. Motivations and related questions. Finding an explicit expression of the
�rst Dirichlet eigenvalues in two or three dimensional domains is not an easy task,
in general. We know how to proceed when the domain is a product reducing the
problem to solving ordinary di�erential equations. Nevertheless, even for simple
two dimensional domains like triangles this question is still complicated. �is
speci�c question is detailed in [17] where a �nite term asymptotics is provided in
the regime � goes to 0 (where � is the aperture of the triangle). More recently [11]
gives a complete asymptotics for right-angled triangles.

In the latter paper, the aim of the authors was the study of a broken waveguide
with corner in the small angle regime. �e knowledge on triangles with small aper-
ture leads to a comparison between the waveguide and a triangle. �e question of
waveguides with corners has already been investigated for the L-shape waveguide
in [15]. For an arbitrary angle [3] provides an asymptotics of the lowest eigen-
values when the angle goes to �=2. �e regime with small angle limit has been
studied in [5] and more recently in [10, 11]. �e question of waveguides with corner



486 T. Ourmières-Bonafos

arises naturally because it is studied for smooth waveguides in [13, 6, 7] where we
learn, among other things, that curvature induces bound states below the essential
spectrum. �e idea is that a corner can be seen as an in�nite curvature.

�e aim of the present paper is to obtain asymptotics for three dimensional
cones in the small aperture limit. As in two dimensions, this question naturally
appears when looking for the ground states in the small aperture regime of the
conical layer studied in [14].

We can apply our result to obtain asymptotics for geometrical domains close
enough to cones, as spherical sectors, for instance. It yields results in the spirit
of [17] in a higher dimension: it is the three dimensional equivalent of the circular
sector, the Bessel functions playing a similar role as trigonometric functions.

1.2. �e Dirichlet Laplacian on conical families. Let us denote by .x1; x2; x3/

the Cartesian coordinates of the space R3 and by 0 D .0; 0; 0/ the origin. �e
positive Laplace operator is given by �@2

1 � @2
2 � @2

3. We are interested in domains
delimited by a �nite cone. For � 2 .0; �

2
�, we introduce the �lled cone Co.�/

de�ned by

Co.�/ WD ¹.x1; x2; x3/ 2 R
3 W �1 < x3 < 0 and .x2

1 C x2
2/ cot2 � < .x3 C 1/2º:

�e angle � represents the half opening angle of the �lled cone. �e aim of this
paper is the investigation of the lowest eigenvalues of each �bers of the positive
Dirichlet Laplacian ��Dir

Co.�/
in the small aperture limit.

Remark 1. Co.�/ being a convex domain, we know that

Dom.��Dir
Co.�// D H 2.Co.�// \H 1

0 .Co.�//:

1.3. Structure of the paper. One can show that after the use of adapted coordi-
nates and a Fourier transform the Dirichlet Laplacian on the cone Co.�/ reduces to
a countable family of two dimensional semi-classical operators. �is is discussed
in Section 2.

In Section 3 we state the main theorem and we apply it to a spherical sector.
We also go about the so called Born-Oppenheimer approximation. Numerical
experiments motivate and illustrate the study.

Afterwards, in Section 4, we perform a change of variables that transforms the
meridian triangle into a rectangle. �e operator is more complicated but we deal
with a simpler geometrical domain. �anks to this substitution we can construct
quasimodes for each operator of the countable family using some lemmas which
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�

Figure 1. �e cone Co.�/.

are adapted from the Fredholm alternative. �e proof of �eorem 3 about the
asymptotics of the �rst eigenvalues of the cone is over, when, using a Feshbach–
Grushin projection, we justify that the Born-Oppenheimer approximation is actu-
ally an approximation of our problem and we obtain the separation of the eigen-
values.

We conclude by Section A illustrating by numerical experiments the shape of
the eigenfunctions which illustrates some theoretical results obtained all along the
paper.

Acknowledgements. I would like to thank Monique Dauge and Nicolas Ray-
mond for all their remarks and advice on this subject. My thanks also go to Yvon
Lafranche who taught me how to use Melina++ ([21]).

2. Fiber decomposition

In this section, we describe the �ber decomposition of the Dirichlet Laplacian on
the cone Co.�/. We use the terminology detailed in [23, Section XIII.16].

2.1. Partial wave decomposition. We are interested in the positive Laplace op-
erator on the cone Co.�/ which writes

��Dir
Co.�/ D �@2

1 � @2
2 � @2

3:
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We can describe the domain Co.�/ using cylindrical coordinates. Let us perform
the change of variables and introduce .r; �; z/ such that

r D

q
x2

1 C x2
2 ; � D arctan

x2

x1

; z D x3: (1)

�e cartesian domain Co.�/ is transformed into Tri.�/ � S1 where the meridian
domain Tri.�/ is

Tri.�/ WD ¹.r; z/ 2 R
2 W �1 < z < 0 and 0 < r < .z C 1/ tan �º:

�

Tri.�/

.tan �; 0/

.0;�1/ z

r

�
O

Figure 2. Meridian domain Tri.�/.

Performing the change of variables the Dirichlet Laplacian is written, on the
geometrical domain Tri.�/ � S1, as the operator

HTri.�/�S1 WD �
1

r
@r.r@r/ �

1

r2
@2

� � @2
z;

its domain being deduced by the change of variables (1).
�e domain Tri.�/ � S1 being axisymmetric we perform a Fourier transform

and we have the constant �ber direct sum

L2.Tri.�/ � S
1; rdrd�dz/ D L2.Tri.�/; rdrdz/˝ L2.S1/

D
M

m2Z

L2.Tri.�/; rdrdz/;

where L2.S1/ refers to functions on the unit circle with the orthonormal basis
¹e2i�m� W m 2 Zº. �e operator HTri.�/�S1 decomposes as

HTri.�/�S1 D
M

m2Z

H
Œm�

Tri.�/
; with H

Œm�

Tri.�/
D �

1

r
@r .r@r/ � @2

z C
m2

r2
; (2)
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where the H
Œm�

Tri.�/
are the �bers of HTri.�/�S1 and their domains Dom.HŒm�

Tri.�/
/ are

implicitly de�ned by the decomposition. �e �bers H
Œm�

Tri.�/
have compact resol-

vent, consequently their spectra S.H
Œm�

Tri.�/
/ consist in non-decreasing sequences

of eigenvalues. We have

S.HTri.�/�S1/ D [
m2Z

S.H
Œm�

Tri.�/
/: (3)

�us, if we denote by �Œm�
n .�/ the nth eigenvalue of HŒm�

Tri.�/
we have the following

description of the spectrum:

S.HTri.�/�S1/ D [
.n;m/2N��Z

¹�Œm�
n .�/º:

Remark 2. For  2 Dom.H
Œm�

Tri.�/
/, we have the Dirichlet boundary condition

 .r; 0/ D 0 and  ..z C 1/ tan �; z/ D 0.
If m ¤ 0, we have for integrability reasons  .0; z/ D 0. We refer to [4,

Chapter II] for more information.

2.2. Rescaling of the meridian domain Tri.�/. We rescale the integration do-
main in order to avoid its dependence on � . �erefore, this dependence is trans-
ferred in the coe�cients of the operator. For this reason, let us perform the linear
change of coordinates

x D z; y D
1

tan �
r; (4)

which maps Tri.�/ onto Tri.�
4
/. �at is why we set, for simplicity,

Tri WD Tri
��
4

�
: (5)

�en, for each m 2 Z, HŒm�

Tri.�/
is unitary equivalent to the operator with the new

integration domain Tri

D
Œm�.�/ WD �@2

x �
1

y tan2 �
@y.y@y/C

m2

y2 tan2 �
;

with implicit boundary conditions as in Remark 2. We let h D tan � ; after a
multiplication by tan2 � , we get the new operator

L
Œm�.h/ WD �h2@2

x �
1

y
@y.y@y/C

m2

y2
: (6)

�is operator is partially semi-classical in x. It is the shape of LŒm�.h/ that leads
us in each steps of our study. �at is why, in Subsection 3.3, we �rst consider
its Born-Oppenheimer approximation (see [8, 20, 22]). �en our reasoning is
inspired by the philosophy presented in [16, 19, 18].
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3. Numerical motivations and main results

3.1. Asymptotic expansion of eigenvalues. According to the structure of the
spectrum established in (3), we recall that we denote by �Œm�

n .�/ the nth eigen-
value of the mth �ber of HCo.�/. In order to get more detailed information about

the behavior of �Œm�
n .�/ we can, at �rst, study it numerically. We carried out the

computation with the operator LŒm�.tan �/ de�ned in (6) and we pictured its eigen-
values denoted �Œm�

n .tan �/.

Figures 3 suggests that, for m D 0; 1; 2, the eigenvalues converge to a certain
limit as the aperture � goes to 0. Moreover, this value is near j 2

m;1, where we
denote by jm;1 the �rst zero of the mth Bessel function of �rst kind, represented
by black dots. �is result has to be connected to the one established in [14] where,

studying a conical layer, the value
j 2

0;1

�2 plays a similar role. In that paper, they only
consider the operator from the �ber of order 0 because in this case the other �bers
have only essential spectrum (the factor 1

�2 being a normalization constant). One

can see that for � large enough the eigenvalues cross and although �Œm�
n represents

the nth eigenvalue of the mth �ber of LŒm�.tan �/ it is clear that �Œ0�
n .tan �/ is not

necessarily its nth eigenvalue.

Figure 3. �e �gure represents the dependence of the �rst ten eigenvalues �Œm�
n .tan �/ (for

m D 0; 1; 2) on the aperture � (in degrees). We computed each eigenvalue for 80 values
of � .
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�e main result of this paper is not only the convergence of the eigenvalues as
� ! 0 illustrated in Figure 3 but an asymptotic expansion of these eigenvalues.
Indeed, the lowest eigenvalues of each �ber of HCo.�/ admit expansions at any
order in powers of �1=3. We �rst state the result for the scaled operators LŒm�.h/

introduced in (6):

�eorem 3. If we denote by zA.n/ the nth zero of the reversed Airy function, the

eigenvalues of LŒm�.h/, denoted by �
Œm�
n .h/, admit the expansions

�Œm�
n .h/ �

h!0

X

k�0

ˇ
Œm�

k;n
hk=3

with

ˇ
Œm�
0;n D j 2

m;1; ˇ
Œm�
1;n D 0; ˇ

Œm�
2;n D .2 j 2

m;1/
2=3zA.n/;

the terms of odd rank being zero for j � 8. �e corresponding eigenfunctions

have expansions in powers of h1=3 with both scales x=h2=3 and x=h.

In terms of the physical domain Tri.�/, we immediately deduce from the previ-
ous theorem that the eigenvalues of them�th �ber of ��Dir

Co.�/
admit the expansions

�Œm�
n .�/ �

�!0

1

�2

X

k�0

ˇ
Œm�;�

k;n
�k=3;

with

ˇ
Œm�;�
0;n D j 2

m;1; ˇ
Œm�;�
1;n D 0; ˇ

Œm�;�
2;n D .2 jm;1/

2=3zA.n/:

Figure 4 depicts that for small aperture � , the numerical eigenvalues�Œ0�
n .tan �/

match with the theoretical expected behavior deduced from �eorem 3. �e stall-
ing for very small values of the aperture is due to numerical di�culties when
� ! 0.

3.2. Application to the spherical cone. �eorem 3 on the cone Co.�/ is closely
related to the Dirichlet problem on a spherical cone. We denote by Sph.�/ the
spherical cone of radius 1 and aperture � with center in .0; 0;�1/ described in
Figure 5. We have

��Dir
Sph.�/ WD �@2

1 � @2
2 � @2

3:

We perform the change of variables

� D

q
x2

1 C x2
2 C .x3 C 1/2; (7a)
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Figure 4. �is �gure represents the convergence rate of the �rst six eigenvalues �Œ0�
n .tan �/

to the two �rst terms of the theoretical asymptotics on the aperture � (in degrees). �e
black line represents the value 4=3.

˛ D arcos
�x3 C 1

�

�
; (7b)

ˇ D

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

arcos

0
B@

x1q
x2

1 C x2
2

1
CA if x2 � 0;

2� � arcos

0
B@

x1q
x2

1 C x2
2

1
CA if x2 < 0:

(7c)

Hence the domain Sph.�/ is transformed into

bSph.�/ D 2Circ.�/ � S
1;

where 2Circ.�/ is the circular meridian domain in the coordinates .�; ˛/.

Remark 4. If instead of the change of variables (7) we change into cylindrical
coordinates as in (1), the associated meridian circular sector Circ.�/ is the one of
Figure 6. One can pass from bCirc.�/ to Circ.�/ by the change of variables

r D � cos˛ � 1; z D � sin˛;

which links those two domains without the cartesian domain.
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�e Dirichlet Laplacian HcSph.�/
writes in spherical coordinates

HcSph.�/
WD �

1

�2
@�.�

2@�/ �
1

�2 sin ˛
@˛.sin˛@˛/ �

1

�2 sin2 ˛
@2

ˇ ;

on L2.bSph.�/; �2 sin ˛d�d˛dˇ/. As in Section 2 we have the constant �ber direct
sum

L2.bSph.�/; �2 sin ˛d�d˛dˇ/ D
M

m2Z

L2.2Circ.�/; �2 sin ˛d�d˛/;

and HcSph.�/
decomposes in �bers

HcSph.�/
D

M

m2Z

H
Œm�

cCirc.�/
;

where

H
Œm�

cCirc.�/
WD �

1

�2
@�.�

2@�/ �
1

�2 sin˛
@˛.sin ˛@˛/C

m2

�2 sin2 ˛
;

with implicit domains and boundary conditions. Let .�;‰/ be an eigenpair of
H

Œm�

cCirc.�/
, with ‰.�; ˛/ D R.�/M.˛/. It should satisfy the following system of dif-

ferential equations
8
<̂

:̂

Œ@�.�
2@�/C .c.�/ � ��2/�R.�/ D 0;

h
�

1

sin˛
@˛.sin˛@˛/C

m2

sin2 ˛

i
M.˛/ D c.�/M.˛/:

(8)

Remark 5. We are not interested here in solving those equations. Nevertheless
one can see that formally, when � ! 0 the angle ˛ is small and the last equation
of (8) looks like the Bessel equation. �is could be a lead to �nd an asymptotic
expansion at any order of � when � ! 0.

However, thanks to �eorem 3, we have easily a �nite term asymptotic for the
eigenvalues of ��Dir

Sph.�/
. Let Co.�; cos �/ be the set Co.�/ up to a dilatation of

ratio cos � . We have the set inclusion in R3

Co.�; cos �/ � Sph.�/ � Co.�/:

Let M�n.�/ be the nth eigenvalue of the Dirichlet Laplacian on Sph.�/ and �n.�/

the one on the cone Co.�/, the monotonicity of the Dirichlet Laplacian yields

.1C tan2 �/�n.�/ � M�n.�/ � �n.�/: (9)
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If M�
Œm�
n .�/ denotes the nth eigenvalue of the mth �ber of the Dirichlet Laplacian,

(9) yields for small �

.1C tan2 �/�Œ0�
n .�/ � M�Œ0�

n .�/ � �Œ0�
n .�/:

To deal with higher �bers we can apply the exact same argument on the meridian
circular sector Cir.�/ and the meridian triangle Tri.�/ because

Tri.�; cos �/ � Cir.�/ � Tri.�/:

As for m � 1 there is a Dirichlet boundary condition everywhere (see Remark 2),

.1C tan2 �/�Œm�
n .�/ � M�Œm�

n .�/ � �Œm�
n .�/:

�ose inequalities provide the �rst terms in the asymptotics of M�
Œm�
n .�/.

�

Sph.�/

.0; 0;�1/

.sin �; 0; cos � � 1/

x3

x1

x2

�
O

Figure 5. �e spherical cone Sph.�/.

�
Cir.�/

.0;�1/ z

r

.sin �; cos � � 1/

�
O

Figure 6. Meridian domain Cir.�/.
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3.3. Schrödinger operators in one dimension. In the analysis of LŒm�.h/ we
will see that its so called Born-Oppenheimer approximation will play an important
role. �at is why we de�ne

l
Œm�
BO .h/ WD �h2@2

x C vŒm�.x/; (10)

where the e�ective potential vŒm� is obtained by replacing � 1
y
@y.y@y/C

m2

y2 in the

expression of LŒm�.h/ by its lowest eigenvalue on each slice of Tri at �xed x. One
can see that

vŒm�.x/ D
j 2

m;1

.x C 1/2
; for x 2 .�1; 0/:

By construction, for any m, the operator (10) can be seen as a lower bound of the
operatorLŒm�.h/. As it is shown in subsection 4.4, the choice of this approximation
gives us data about the eigenvalues of HTri.�/�S1 .

Proposition 6. �e eigenvalues of l
Œm�
BO .h/, denoted by �

Œm�
BO;n.h/, admit the expan-

sion

�
Œm�
BO;n.h/ �

h!0

X

k�0

ǑŒm�

k;n
h2j=3;

with
ǑŒm�
0;n D j 2

m;1 and ǑŒm�
1;n D .2 j 2

m;1/
2=3zA.n/:

�e shape of the e�ective potential vŒm� is the same as in [11, Section 3]. �en,
we deduce Proposition 6 from [11, � 4.1.]. �e key is the construction of quasi-
modes at the scale h2=3 which naturally arises by expanding the e�ective potential
vŒm� and recognizing the Airy operator at �rst order. �is method is adapted from
the harmonic approximation for regular potentials with a well (see [24], [9, Chapt.
11] and [12, Chapt. 4]). It yields an upper bound of the eigenvalues of l Œm�

BO .h/. To
obtain a lower bound we then need the Agmon estimates of Propositions 7 and
8 and to apply the min-max principle and get the separation of eigenvalues. �e
Agmon estimates near x D 0 take the following form.

Proposition 7. Let �0 > 0. �ere exist h0 > 0, C0 > 0 and �0 > 0 such that for

any h 2 .0; h0/ and all eigenpair .�;  / of l
Œm�
BO .h/ satisfying j�� j 2

m;1j � �0h
2=3,

Z 0

�1

e�0h�1jxj3=2

.j j2 C jh2=3@x j2/dx � C0k k2:
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�e Agmon estimates near x D �1 take the following form.

Proposition 8. Let �0 > 0 and �0 2 .0; jm;1/. �ere exist h0 > 0, C0 > 0 such

that for any h 2 .0; h0/ and all eigenpair .�;  / of l
Œm�
BO .h/ satisfying j� � j 2

m;1j �

�0h
2=3, Z 0

�1

.x C 1/��0=h.j j2 C jh@x j2/dx � C0k k2:

�ese semiclassical Agmon estimates (see [1, 2]) are obtained using the tech-
nical background of [12, Chapter 6] and [19].

4. Meridian triangle Tri with Dirichlet boundary condition

�e aim of this section is to prove �eorem 3. �e proof will be divided into two
main steps : a construction of quasimodes and the use of the true eigenfunctions
of LŒm�.h/ as quasimodes for the Born-Oppenheimer approximation in order to
obtain a lower bound for true eigenvalues. We �rst perform a change of variables
to transform the triangle into the square,

u D x 2 .�1; 0/; t D
y

x C 1
2 .0; 1/: (11)

�e meridian triangle Tri is transformed into a square Sq,

Sq WD .�1; 0/� .0; 1/: (12)

�e operator LŒm�.h/ becomes

L
Œm�
Sq .h/.u; t I @u; @t / WD

1

.uC 1/2

�
�
1

t
@t .t@t /C

m2

t2

�
� h2@2

u

�
h2t2

.uC 1/2
@2

t C
2h2t

uC 1
@t@u �

2h2t

.uC 1/2
@t ;

(13)

on L2.Sq; t .uC 1/2dudt / with Dirichlet boundary condition on the faces ¹.0; t / W

0 < t < 1º and ¹.u; 1/ W �1 < u < 0º. �e equation LŒm�.h/ 
Œm�

h
D �

Œm�

h
 

Œm�

h
is

transformed into the equation

L
Œm�
Sq .h/

y 
Œm�

h
D �

Œm�

h
y 

Œm�

h
;

with
y 

Œm�

h
.u; t / D  

Œm�

h
.x; y/:

In what follows we denote by h�; �it the scalar product on L2..0; 1/; tdt /.
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4.1. Quasimodes. �is section is devoted to the proof of the following proposi-
tion.

Proposition 9. IfS.LŒm�.h// denotes the spectrum ofLŒm�.h/, there are sequences

.ˇ
Œm�
j;n /j �0 for any integer n � 1 so that there holds: for all N0 2 N� and J 2 N,

there exist h0 > 0 and C > 0 such that, for h 2 .0; h0/,

dist
�
S.LŒm�.h//;

JX

j D0

ˇ
Œm�
j;n h

j=3
�

� Ch.J C1/=3; n D 1; : : : ; N0: (14)

Moreover,

ˇ
Œm�
0;n D j 2

m;1; ˇ
Œm�
1;n D 0; ˇ

Œm�
2;n D .2 j 2

m;1/
2=3zA.n/:

Proof. �e proof is divided into three parts. �e �rst one deals with the form of the
Ansatz chosen to construct quasimodes. �e second part deals with three lemmas
about operators which appear in the �rst part. �e third part is the determination
of the pro�les of the Ansatz.

Shape of the Ansatz. We want to construct quasimodes .ˇŒm�

h
;  

Œm�

h
/ for the op-

erator LŒm�.h/.x; yI @x; @y/. It will be more convenient to work on the square Sq
with the operator LŒm�

Sq .h/.u; t I @u; @t/. We introduce the new scales

s D h�2=3u and � D h�1u;

and we look for quasimodes .ˇŒm�

h
; y 

Œm�

h
/ in the form of series

ˇ
Œm�

h
�

X

j �0

ˇ
Œm�
j hj=3 and y 

Œm�

h
.u; t / �

X

j �0

.‰
Œm�
j .s; t /Cˆ

Œm�
j .�; t //hj=3 (15)

in order to solve L
Œm�
Sq .h/

y 
Œm�

h
D ˇ

Œm�

h
y 

Œm�

h
in the sense of formal series. An

Ansatz containing only the scale h�2=3 is not su�cient to construct quasimodes
for LŒm�

Sq .h/ because one can see that the system is overdetermined. Expanding the

operator in powers of h2=3 we obtain the formal series

L
Œm�
Sq .h/.h

2=3s; t I h�2=3@s ; @t/ �
X

j �0

L
Œm�
2j h

2j=3 (16)

with leading term

L
Œm�
0 D �

1

t
@t .t@t /C

m2

t2
;
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and, in power of h,

L
Œm�
Sq .h/.h�; t I h

�1@� ; @t/ �
X

j �0

N
Œm�
3j h

j ; (17)

with leading term

N
Œm�
0 D

�
�
1

t
@t .t@t /C

m2

t2

�
� @2

� :

In what follows, in order to ensure the Dirichlet condition on Tri n .�1; 0/ � ¹0º

we will require for our Ansatz the boundary condition, for any j 2 N,

‰
Œm�
j .0; t /Cˆ

Œm�
j .0; t / D 0; 0 � t � 1; (18)

‰
Œm�
j .s; 1/ D 0; s < 0 and ˆ

Œm�
j .�; 1/ D 0; � � 0: (19)

More speci�cally, we are interested in the ground energy � D j 2
m;1 of the Dirichlet

problem at 1 for LŒm�
0 on the interval .0; 1/. �us, we have to solve the Dirichlet

problem for the operators NŒm�
0 � j 2

m;1 and L
Œm�
0 � j 2

m;1 on the half-strip

Hst D R� � .0; 1/; (20)

and look for solutions exponentially decaying (see Remark 10). Our aim is to apply
the spectral theorem to the truncated series y 

Œm�

h
.u; t / restricted in the square Sq

thanks to a cut-o� function.

Remark 10. In the following part, we will need to use exponentially decaying
functions.�en, we de�ne the spaces

L2
exp.R�/ WD ¹f 2 L2.R�/ W

there exists ˛ > 0 such that e˛jsjf 2 L2.R�/º;

H 2
exp.R�/ WD ¹f 2 H 2.R�/ W

there exists ˛ > 0 such that e˛jsjf 2 H 2.R�/º;

L2
exp.Hst; tdudt / WD ¹f 2 L2.Hst; tdudt / W

there exists ˛ > 0 such that e˛jujf 2 L2.Hst; tdudt /º;

H 2
exp.Hst; tdudt / WD ¹f 2 H 2.Hst; tdudt / W

there exists ˛ > 0 such that e˛jujf 2 H 2.Hst; tdudt /º:
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�ree lemmas. To start the construction of our Ansatz we will need the three
next lemmas. Lemmas 12 and 13 are consequences of the Fredholm alternative.

Lemma 11. We denote the nth normalized eigenfunction of L
Œm�
0 by b

Œm�
n :

bŒm�
n .t / D C Œm�

n Jm.jm;nt / .C Œm�
n 2 R being a normalization constant/;

where Jm is the mth Bessel function of �rst kind. Let F D F.�; t/ be a function in

L2
exp.Hst; td�dt / and let G 2 H 3=2..0; 1/; tdt / be a function of t with G.1/ D 0.

�en there exists a unique 
 2 R such that the problem

.N
Œm�
0 � j 2

m;1/ˆ D F; ˆ.�; 1/ D 0;ˆ.0; t / D G.t/C 
b
Œm�
1 .t /

admits a unique solution in H 2
exp.Hst; td�dt /. Moreover 
 is given by


 D �

Z 0

�1

Z 1

0

F.�; t/�b
Œm�
1 .t /tdtd� �

Z 1

0

G.t/b
Œm�
1 .t /tdt: (21)

Lemma 12. Let F D F.s; t / be a function in L2
exp.Hst; tdsdt /. �en, there exists

solution(s) ‰ such that

.L
Œm�
0 � j 2

m;1/‰ D F in Hst; ‰.s; 1/ D 0

if and only if hF.s; �/; b
Œm�
1 it D 0 for all s < 0. In this case,

‰.s; t / D ‰?.s; t /C g.s/b
Œm�
1 .t /

where ‰? satis�es h‰.s; �/?; b
Œm�
1 it � 0 and ‰ belongs to H 2

exp.Hst; tdsdt /.

Lemma 13. Let n � 1. We recall that zA.n/ is the nth zero of the Airy reverse

function, and we denote by

aŒm�
n .s/ D zC Œm�

n A..2 j 2
m;1/

1=3s C zA.n//;

zC
Œm�
n 2 R being a normalization constant, a normalized eigenfunction of the oper-

ator �@2
s �.2 j 2

m;1/s with Dirichlet condition onR� associated with the eigenvalue

.j 2
m;1/

2=3zA.n/. Let f D f .s/ be a function in L2
exp.R�/ and let c 2 R. �en there

exists a unique ˇ 2 R such that the problem

.�@2
s � 2 j 2

m;1s � .j 2
m;1/

2=3zA.n//g D f C ˇaŒm�
n in R�; with g.0/ D c;

has a unique solution in H 2
exp.R�/.
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Remark 14. �e key in proving Lemmas 11 and 12 is the decomposition as a tensor
product of L2.Hst; td�dt / and L2.Hst; tdsdt /. One can see that L2.Hst; td�dt / D

L2.R�; d�/ y̋L2..0; 1/; tdt / and L2.Hst; tdsdt / D L2.R�; ds/ y̋L2..0; 1/; tdt /.
We know that .bŒm�

n /n2N� is an orthonormal basis of L2..0; 1/; tdt /. �en, we
construct solutions ˆ and ‰ decomposed in this orthonormal basis. Lemma 13 is
an application of the Fredholm alternative after changing the function g to obtain
an homogeneous Dirichlet condition at s D 0.

Determination of the pro�les. We start the construction of the Ansatz (15).

Terms in h0. �e constant terms yield

L
Œm�
0 ‰

Œm�
0 D ˇ

Œm�
0 ‰

Œm�
0 ; N

Œm�
0 ˆ

Œm�
0 D ˇ

Œm�
0 ˆ

Œm�
0 ;

with boundary conditions (18)-(19) for j D 0. We choose ˇŒm�
0 D j 2

m;1. Moreover

‰
Œm�
0 is a tensor product so, ‰Œm�

0 D g
Œm�
0 .s/b

Œm�
1 .t /. �e boundary condition (18)

yields : ‰Œm�
0 .0; t / D �g

Œm�
0 .0/b

Œm�
1 .t /. Lemma 11 gives gŒm�

0 .0/ D 0 andˆŒm�
0 � 0.

�e function gŒm�
0 will be determined later.

Terms in h1=3. Collecting the terms of order h1=3 we have

.L
Œm�
0 � ˇ

Œm�
0 /‰

Œm�
1 D ˇ

Œm�
1 ‰

Œm�
0 � L

Œm�
1 ‰

Œm�
0 D ˇ

Œm�
1 ‰

Œm�
0

and
.N

Œm�
0 � ˇ

Œm�
0 /ˆ

Œm�
1 D ˇ

Œm�
1 ˆ

Œm�
0 � N

Œm�
1 ˆ

Œm�
0 D 0;

with boundary conditions (18)-(19) for j D 1. Lemma 12 yields ˇŒm�
1 D 0 which

leads to the following form for the function ‰Œm�
1 .s; t / D g

Œm�
1 .s/b

Œm�
1 .t /. �e

boundary condition (18) yields : ‰Œm�
1 .0; t / D �g

Œm�
1 .0/b

Œm�
1 .t /. Lemma 11 gives

g
Œm�
1 .0/ D 0 and ˆŒm�

1 � 0.

Terms in h2=3. Collecting the terms of order h2=3 we have

.L
Œm�
0 � ˇ

Œm�
0 /‰

Œm�
2 D ˇ

Œm�
2 ‰

Œm�
0 � L

Œm�
2 ‰

Œm�
0

and
.N

Œm�
0 � ˇ

Œm�
0 /ˆ

Œm�
2 D 0

where L
Œm�
2 D �@2

s C 2s.
1

t
@t .t@t/ �

m2

t2
/ and boundary conditions (18)–(19) for

j D 2. Lemma 12 yields the equation in the s-variable

h.ˇ
Œm�
2 � L

Œm�
2 /‰

Œm�
0 .s; �/; b

Œm�
1 it D 0; s < 0:



Dirichlet eigenvalues of cones in the small aperture limit 501

Nevertheless ‰0.s; t / D g
Œm�
0 .s/b

Œm�
1 .t /, consequently this equation becomes

.�@2
s � 2 j 2

m;1s/g
Œm�
0 .s/ D ˇ

Œm�
2 g

Œm�
0 .s/; s < 0:

�is equation leads to ˇŒm�
2 D .2 j 2

m;1/
2=3zA.n/ and gŒm�

0 � a
Œm�
n . We deduce

that .LŒm�
0 � ˇ

Œm�
0 /‰

Œm�
2 D 0 and the ‰Œm�

2 has the form ‰
Œm�
2 D g

Œm�
2 .s/b

Œm�
1 .t /.

�e boundary condition (18) yields : ‰Œm�
2 .0; t / D �g

Œm�
2 .0/.s/b

Œm�
1 .t /. Lemma 11

gives gŒm�
2 .0/ D 0 and ˆŒm�

2 � 0.

Terms in h3=3. Collecting the terms of order h3=3 we have

.L
Œm�
0 � ˇ

Œm�
0 /‰

Œm�
3 D ˇ

Œm�
3 ‰

Œm�
0 C ˇ

Œm�
2 ‰

Œm�
1 � L

Œm�
2 ‰

Œm�
1

and

.N
Œm�
0 � ˇ

Œm�
0 /ˆ

Œm�
3 D 0

with boundary conditions (18)-(19) for j D 3. �e scalar product with bŒm�
1 (Lem-

ma 12) and then the scalar product with gŒm�
0 (Lemma 13) yield that ˇŒm�

3 D 0 and
g

Œm�
1 is parallel to gŒm�

0 . We choose gŒm�
1 � 0. As a consequence‰Œm�

3 has the form

‰
Œm�
3 .s; t / D g

Œm�
3 .s/b

Œm�
1 .t /. Lemma 11 gives gŒm�

3 .0/ D 0 and ˆŒm�
3 � 0.

Terms in h4=3. Collecting the terms of order h4=3 we have

.L
Œm�
0 � ˇ

Œm�
0 /‰

Œm�
4 D ˇ

Œm�
4 ‰

Œm�
0 C ˇ

Œm�
2 ‰

Œm�
2 � L

Œm�
4 ‰

Œm�
0 � L

Œm�
2 ‰

Œm�
2

and

.N
Œm�
0 � ˇ

Œm�
0 /ˆ

Œm�
4 D 0;

where

L
Œm�
4 D 2@t@s �

3s2

2

�1
t
@t .t@t / �

m2

t2

�
;

with boundary conditions (18)-(19) for j D 4. �e scalar product with bŒm�
1 (Lem-

ma 12) yields an equation for gŒm�
2 and the scalar product with gŒm�

0 (Lemma 13)
determined ˇŒm�

4 . �anks to Lemma 12, ‰Œm�
4 has the form

‰
Œm�
4 D ‰

Œm�?
4 C g

Œm�
4 .s/b

Œm�
1 .t /

with ‰Œm�?
4 which can be nonzero. Lemma 11 yields gŒm�

4 .0/ D 0; moreover
h‰

Œm�?
4 .0; �/; b

Œm�
1 it D 0 and we have a solution ˆŒm�

4 with exponential decay.
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Continuation. We can construct the further terms by induction along the same
lines. �is leads to de�ne the quasimodes for LŒm�.h/

ˇ
Œm;J �

h
D

JX

j D0

ˇ
Œm�
j hj=3; (22)

 h.x; y/
Œm;J � D �lef.x/

JX

j D0

�
‰

Œm�
j

� x

h2=3
;

y

x C 1

�
Cˆ

Œm�
j

�x
h
;

y

x C 1

��
hj=3; (23)

where �lef is a smooth cut-o� function such that

�lef.x/ D 1 for x 2
�

�
1

2
; 0

�
and �lef.x/ D 0 for x � �

3

4
: (24)

�e spectral theorem yields the conclusion.

4.2. Agmon estimates. On our way to prove �eorem 3, we now state Agmon
estimates like for l Œm�

BO .h/. Let us �rst notice that, due to Proposition 9, the N0

lowest eigenvalues � of LŒm�.h/ satisfy:

j� � j 2
m;1j � �0h

2=3; (25)

for some positive constant �0 depending on N0.
If we denote by QŒm�

h
the quadratic form associated with LŒm�.h/ we have, for all

 2 Dom.Q
Œm�

h
/, the lower bound

Q
Œm�

h
. / �

Z

Tri

�
h2j@x j2 C

j 2
m;1

.x C 1/2
j j2

�
ydxdy: (26)

�us, the analysis giving Propositions 7 and 8 applies exactly in the same way and
we obtain:

Proposition 15. Let �0 > 0. �ere exist h0 > 0, C0 > 0 and �0 > 0 such that for

h 2 .0; h0/ and all eigenpair .�;  / of LŒm�.h/ satisfying j�� j 2
m;1j � �0h

2=3, we

have: Z

Tri
e�0h�1jxj3=2

.j j2 C jh2=3@x j2/ydxdy � C0k k2:

Proposition 16. Let �0 > 0. �ere exist h0 > 0, C0 > 0 and �0 2 .0; jm;1/ such

that, for h 2 .0; h0/ and all eigenpair .�;  / of LŒm�.h/ satisfying j� � j 2
m;1j �

�0h
2=3, Z

Tri
.x C 1/��0=h.j j2 C jh@x j2/ydxdy � C0k k2:
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Remark 17. Propositions 15 and 16 are also veri�ed when  is a �nite linear
combination of eigenfunctions associated with eigenvalues satisfying .25/.

4.3. Approximation of the �rst eigenfunctions by tensor products. In this
subsection we will work with the operator LŒm�

Sq .h/ rather thanLŒm�.h/. Let us con-

sider the �rstN0 eigenvalues of LŒm�
Sq .h/ (shortly denoted by �n.h/). In each corre-

sponding eigenspace we choose a normalized eigenfunction y n so that h y n; y pi D

0 if n ¤ p. We introduce

ySN0
.h/ D span. y 1; : : : ; y N0

/:

Let us de�neQ0;Œm�
Sq the following quadratic form:

Q
0;Œm�
Sq . y / D

Z

Sq

�
j@t

y j2 C
m2

t2
j y j2 � j 2

m;1j y j2
�
t .uC 1/2dudt;

associated with the operator

L
0;Œm�
Sq D Idu ˝

�
�
1

t
@t .t@t /C

m2

t2
� j 2

m;1

�

on L2.Sq; t .uC 1/2dudt /. We consider the Feshbach–Grushin projection on the
eigenspace associated with the eigenvalue 0 of �1

t
@t .t@t/C m2

t2 � j 2
m;1,

…
Œm�
1

y .u; t/ D h y .u; �/; b
Œm�
1 itb

Œm�
1 .t /: (27)

We can now state a �rst approximation result:

Proposition 18. �ere exist h0 > 0 and C > 0 such that for h 2 .0; h0/ and all
y 2 ySN0

.h/:

0 � Q
0;Œm�
Sq . y / � Ch2=3k y k2

and

k.Id �…
Œm�
1 / y k C




1
t
.Id �…

Œm�
1 / y 




 C k@t .Id �…
Œm�
1 / y k � Ch1=3k y k:

Moreover

…
Œm�
1 W ySN0

.h/ �! …
Œm�
1 .ySN0

.h//

is an isomorphism.
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Proof. If y D y n, then

Q
Œm�

Sq;h
. y n/ D �nk y nk2:

From this we infer

Q
Œm�

Sq;h
. y n/ � .j 2

m;1 C Ch2=3/k y nk2:

�e orthogonality of the y n (in L2 and for the quadratic form) allows to extend
this inequality to y 2 ySN0

.h/:

Q
0;Œm�
Sq . y / � Ch2=3k y k2:

Moreover, …Œm�
1

y being in the kernel of L0;Œm�
Sq ,

Q
0;Œm�
Sq . y / D hL

0;Œm�
Sq .…

Œm�
1

y C .Id �…
Œm�
1 / y /; y /i

D hL
0;Œm�
Sq .Id �…

Œm�
1 / y ; y i

D Q
0;Œm�
Sq ..Id �…

Œm�
1 / y /:

If �2 denotes the second eigenvalue of the one dimensional operator �1
t
@t .t@t /C

m2

t2 � j 2
m;1, than, thanks to the min-max principle, for all u 2 .�1; 0/,

Z 1

0

j@t ..Id �…
Œm�
1 / y /j2 C

m2

t2
j.Id �…

Œm�
1 / y j2 � j 2

m;1j.Id �…
Œm�
1 / y j2tdt

� �2

Z 1

0

j.Id �…
Œm�
1 / y j2tdt:

Multiplying by .uC 1/2 and taking the integral over u 2 .�1; 0/,

Q
0;Œm�
Sq ..Id �…

Œm�
1 / y / � �2k.Id �…

Œm�
1 / y k2:

We deduce that

0 � Q
0;Œm�
Rec . y / � Ch2=3k y k2

and

k
1

t
.Id �…

Œm�
1 / y k C k@t .Id �…

Œm�
1 / y k � Ch1=3k y k:

We also have

k.Id �…
Œm�
1 / y k � Ch1=3k y k;

which yields Proposition 18.
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4.4. Reduction to the Born-Oppenheimer approximation. �e aim of this
subsection is to prove �eorem 3 using the projections of the true eigenfunctions
.…

Œm�
1

y n/ as test functions for the quadratic form of the Airy operator. It justi�es
that l Œm�

BO .h/ is a good approximation of LŒm�.h/. Let us consider y 2 ySN0
.h/,

we will need a few lemmas to estimate the quadratic form of the Airy opera-
tor tested on …Œm�

1
y . �e �rst lemma is an estimate in the triangle Tri; we let

y .u; t/ D  .x; y/ and we consider the space SN0
.h/

SN0
.h/ WD span. 1; : : : ;  N0

/:

�en we have the following result.

Lemma 19. For all  2 SN0
.h/ and for all k 2 N, there exist h0 > 0 and C > 0

such that, for h 2 .0; h0/,

Z

Tri
.x C 1/�k j@y j2ydxdy � Ck k2:

Proof. First let  D  j for some j 2 ¹1; : : : ; N0º. It satis�es the equation

�
� h2@2

x �
1

y
@y.y@y/C

m2

y2

�
 j D �j .h/ j :

Multiplying by .x C 1/�k, taking the scalar product with  j and integrating by
parts we �nd

Z

Tri
.x C 1/�k j@y j j2ydxdy

� C

Z

Tri

.x C 1/�k.j j j2 C h2.x C 1/�1j j k@x j j/ydxdy:

Using the Agmon estimates of Proposition 16 with �0 � k C 1 we deduce the
lemma for  D  j . For  2 SN0

.h/, we proceed as explained in Remark 17.

We can now prove the following result.

Lemma 20. Let y be in ySN0
.h/. �ere exists h0 > 0 and C > 0 such that, for all

h 2 .0; h0/,

ˇ̌
ˇh2

Z

Sq

1

.uC 1/2
.@u

y /.@t
y /t.uC 1/2dtdu

ˇ̌
ˇ � Ch4=3k y k2:
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Proof. �anks to the Cauchy–Schwartz inequality we have
ˇ̌
ˇ̌h2

Z

Sq

1

.uC 1/2
.@u

y /.@t
y /t.uC 1/2dtdu

ˇ̌
ˇ̌
2

� h4

Z

Sq

j@u
y j2.uC 1/2tdtdu

Z

Sq

1

.uC 1/4
j@t

y j2t .uC 1/2dtdu:

In the original coordinates on the meridian domain Tri,
Z

Sq

1

.uC 1/4
j@t

y j2t .uC 1/2dtdu D

Z

Tri
.x C 1/�4j@y j2ydxdy:

Combining Lemma 19 with this equality we obtain
Z

Sq

1

.uC 1/4
j@t

y j2t .uC 1/2dtdu � C1k y k2; (28)

for some C1 > 0. Using Proposition 15 expressed in the Square Sq coordinates,
there exists C2 > 0 such that

Z

Sq

ˇ̌
ˇ@u

y �
1

.uC 1/2
@t

y 
ˇ̌
ˇ
2

t .uC 1/2dtdu � C2h
�4=3k y k2:

For some C3 > 0, equation (28) yields
Z

Sq

j@u
y j2t .uC 1/2dtdu � C3h

�4=3k y k2;

which achieves the proof of the lemma.

To have estimates in L2.Sq; tdtdu/ instead of L2.Sq; t .uC 1/2dtdu/ we will
need the following lemma.

Lemma 21. Let y be in ySN0
.h/. �ere exists h0 > 0 and C > 0 such that, for all

h 2 .0; h0/,
ˇ̌
ˇ̌h2

Z

Sq

j@u
y j2utdtdu

ˇ̌
ˇ̌ � Ch4=3k y k2

and ˇ̌
ˇ̌
Z

Sq

juk y j2utdtdu

ˇ̌
ˇ̌ � Ch4=3k y k2:

Proof. We express each integral in the meridian domain Tri and we use the Agmon
estimate of Proposition 15 for getting the lemma.
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We can now prove the following result.

Proposition 22. Let y 2 ySN0
.h/. �ere exists h0 > 0 and C > 0 such that for all

h 2 .0; h0/

Z

Sq
.h2j@u

y j2 C j 2
m;1jujj y j2/tdtdu � .�N0

.h/ � j 2
m;1/k y k2 C Ch4=3k y k2:

Proof. Let us consider  2 SN0
.h/. As the . i /i2¹1;:::;N0º are orthogonal,

Q
Œm�

h
. / � �N0

.h/k k2:

Equation (26) leads to

Z

Tri
h2j@x j2 C

j 2
m;1

.x C 1/2
j j2ydxdy � �N0

.h/k k2:

Using the convexity of the function

x 7�!
1

.x C 1/2

we get

Z

Tri

.h2j@x j2 C j 2
m;1jxk j2/ydxdy � .�N0

.h/ � j 2
m;1/k k2:

Performing the change of variable (11) and thanks to Lemmas 20 and 21, we obtain,
in the square Sq,

Z

Sq
.h2j@u

y j2 C j 2
m;1jujj y j2/tdtdu � .�N0

.h/ � j 2
m;1/k y k2 C Ch4=3k y k2;

which ends the proof of the proposition.

Proof of �eorem 3. �e inequality of Proposition 22 can be written as

Q
Œm�

A;h
. y / � .�N0

.h/ � j 2
m;1/k y k2 C Ch4=3k y k2;
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whereQŒm�

A;h
is the positive quadratic form associated with an Airy operator de�ned

by

Q
Œm�

A;h
. y / WD

Z

Sq

.h2j@u
y j2 C j 2

m;1jujj y j2/tdtdu:

Proposition 18 and (25) give

Q
Œm�

A;h
. y / � .�N0

.h/ � j 2
m;1/k…

Œm�
1

y k2
L2.Sq;tdtdu/

C Ch4=3k…
Œm�
1

y k2
L2.Sq;tdtdu/

:

Moreover we obtain

Q
Œm�

A;h
. y / D Q

Œm�

A;h
.…

Œm�
1

y /CQ
Œm�

A;h
..Id �…

Œm�
1 / y /C2b

Œm�

A;h
.…

Œm�
1

y ; .Id �…
Œm�
1 / y /;

where bŒm�

A;h
is the bilinear form associated with QŒm�

A;h
.

We remark that

b
Œm�

A;h
.…

Œm�
1

y ; .Id �…
Œm�
1 / y /

D

Z

u

h…
Œm�
1 ..�h2@2

u C j 2
m;1juj/ y /; .Id �…

Œm�
1 / y itdu

D 0:

Finally,

Q
Œm�

A;h
.…

Œm�
1

y /

� .�N0
.h/ � j 2

m;1/k…
Œm�
1

y k2
L2.Sq;tdtdu/

C Ch4=3k…
Œm�
1

y k2
L2.Sq;tdtdu/

:

Let us set

�
Œm�
1

y WD h…
Œm�
1

y ; b
Œm�
1 it ;

�
Œm�
1

y is a function in the only u-variable and, in one dimension,

q
Œm�

A;h
.�

Œm�
1

y / WD

Z 0

�1

h2j@u�
Œm�
1

y j2 C j 2
m;1juk�

Œm�
1

y j2du

� .�N0
.h/ � j 2

m;1/k�
Œm�
1

y k2 C Ch4=3k�
Œm�
1

y k2;

where the norms k�
Œm�
1

y k are taken on L2..�1; 0/; du/.
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Let us consider a smooth cut-o� function � such that

�.u/ D 1 for u 2
�

�
1

2
; 0

�
and �.u/ D 0 for u � �

3

4
:

Proposition 15 gives

q
Œm�

A;h
.��

Œm�
1

y /C O.h1/k�
Œm�
1

y k2 � q
Œm�

A;h
.�

Œm�
1

y /

and
k�

Œm�
1

y k2 D .1C O.h1//k��
Œm�
1

y k2:

So it holds

q
Œm�

A;h
.��

Œm�
1

y / � .�N0
.h/ � j 2

m;1/k��
Œm�
1

y k2 C Ch4=3k��
Œm�
1

y k2:

�en, we consider

OsN0
.h/ WD span.�

Œm�
1

y 1; : : : ; �
Œm�
1

y N0
/

and apply the min-max principle to the N0 dimensional space �OsN0
.h/ which

yields
j 2

m;1 C .2 j 2
m;1/

2=3zA.N0/h
2=3 � �N0

.h/C Ch4=3:

Jointly with Proposition 9 this �nishes the proof of �eorem 3. �

A. Shape of the eigenfunctions in the semi-classical limit

To illustrate some properties of the eigenfunctions we compute some of them.
�ese computations are performed in the scaled meridian domain Tri for the scaled
operator LŒm�.tan �/ de�ned in (6).

Figure 7 pictures the dominant term in the construction (23) : it is almost a
tensor product of the Airy function of �rst kind and the Bessel function of �rst
kind (respectively along the X-axis and Y-axis). In addition, the eigenfunctions
are localized near the right boundary and away from the left corner. �is matches
the Agmon estimates of Propositions 15 and 16.

Figure 8 shows the localization for increasing values of m. As explained in
Remark 2 for nonzerom, there is a Dirichlet boundary condition along the X-axis
which induces a repulsion from this axis. �e eigenfunction is localized in the top
right corner. We observe that this repulsion increases with the value of m. We
can interpret this phenomenon: the shape of the mth Bessel function of �rst kind
determines the behavior along the Y-axis.
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�
Œ0�
1 .�/ D 7:199103 �

Œ0�
2 .�/ D 8:425123 �

Œ0�
3 .�/ D 9:546450

�
Œ0�
4 .�/ D 10:631834 �

Œ0�
5 .�/ D 11:706005 �

Œ0�
6 .�/ D 12:781028

�
Œ0�
7 .�/ D 13:863783 �

Œ0�
8 .�/ D 14:958588 �

Œ0�
9 .�/ D 16:068338

Figure 7. Computation for � D 0:0226 � �=2 � 2ı. Numerical values of the nine �rst
eigenvalues for m D 0. Plots of the associated eigenfunctions in the domain Tri.
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�
Œ1�
1 .�/ D 17:255710 �

Œ1�
2 .�/ D 19:400598 �

Œ1�
3 .�/ D 21:309035

�
Œ2�
1 .�/ D 30:134666 �

Œ2�
2 .�/ D 33:208960 �

Œ2�
3 .�/ D 35:906503

�
Œ3�
1 .�/ D 45:692334 �

Œ3�
2 .�/ D 49:719970 �

Œ3�
3 .�/ D 53:222789

Figure 8. Computation for � D 0:0226 � �=2 � 2ı. Numerical values of the three �rst
eigenvalues for m D 1, m D 2 and m D 3. Plots of the associated eigenfunctions in the
meridian domain Tri.
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