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A remark on the Mourre theory
for two body Schrodinger operators

Shu Nakamura!

Abstract. On this short note, we apply the Mourre theory of the limiting absorption with
difference type conditions on the potential, instead of conditions on the derivatives. In order
that we modify the definition of the conjugate operator, and we apply the standard abstract
Mourre theory. We also discuss examples to which the method applies.
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1. Introduction

We consider the Schrodinger operator on RY,i.e,

d

1 02
H=Hy+V Hy=-2Y — H = L*(RY
0 (x), 0 2,-=1 8x/2 on (R%)

with d > 1. V(x) is the potential, and we always suppose V'(x) is a real-valued
locally L2-function.

Let I C R be an open interval. We say the Mourre theory applies to H on I,
if for any interval J € I, there is a self-adjoint operator 4 on J{ such that

() forz € p(H),t — " (H —z)"le7"*4 is a L(F)-valued C>-function on R;

(ii) there is ¢ > 0 such that
Ej(H)[H,iAlE;(H) = cE;j(H) + K, ey

with some compact operator K, where Ej(H) is the spectral projection.
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It is well-known (see e.g., [1, 3]) that under these conditions, the following prop-
erties hold.

(a) o,(H) NI is discrete, and each eigenvalues are of finite rank.
(b) H is absolutely continuous on I \ 0, (H).
(c) Lety > 1/2. Then, foreach A € I \ 0,(H),

li¢r101(A)_”(H —A+ie) AT e L(H)

exist and the limits are Holder continuousin A € I \ 0,(H).

Here we have used the standard notation: (x) = (1 + |x|*)'/2.

When we apply the Mourre theory to 2 body Schrédinger operators, we usually
use 4 = %(x - dx + dx - x), and some derivative conditions are imposed on the
potential, at least on the long-range part. Instead, we suppose difference type
conditions as follows. Let 8 > 0, and let ¢; = (5ik)Z=1 eRY(j =1,...,d)be
the standard basis of R?. We set

TP f(x) = f(x+ Bep). TP f(x) = f(x —Bey).

and also
A ) = %(Tf’ ~Df) = %(f(x + Bes) — (X)),
for a function f on R4, x e R%and j = 1,....d.

Assumption A. Let 8 > 0. V(x) and x; Af Vx)(j =1,...,d)are Hy-compact.
Moreover, x; xi Af’ Af Vx) (j,k=1,...,d) are Hy-bounded.

Theorem 1. Suppose Assumption A with B > 0, and let I = (0, 3(r/B)?). Then
the Mourre theory applies to H on I. Hence, in particular, properties (a)—(c)
holds on 1.

Corollary 2. Suppose Assumption A holds for all B > 0. Then the Mourre theory
applies to H on (0, 00).

Remark 1. In Corollary 2, we do not assume Assumption A with uniform bounds
in B > 0. Hence, V is not necessarily differentiable.
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Example 1. Suppose V = V; + V5 + V3, where
(i) |x|?V(x) is Ho-bounded;
(i) V» € C1Y(RY). V, and X120y, V2 (j = 1,....d) are Ho-compact;

(i) V53 € Cz(Rd). V3 and xjaxj Vs (j = 1,...,d) are Hy-compact, and, for
jk=1,...,d, xjxkaxj dx, V3 are Hy-bounded.

Then V satisfies Assumption A with any g > 0. This is a variation of the standard
assumption of the Mourre theory for 2 body Schrodinger operators.

Example 2. Suppose W(x) is a -periodic locally L?-function, i.e.,
W(x + Bej) = W(x), xeRY, j=1,....4d,
where p =2ifd <3and p > d/2ifd > 4. Let y > 0 and we set
V(x) = (x)7VW(x).

Then V(x) satisfies Assumption A with the above 8, and hence H is absolutely
continuous except for discrete eigenvalues on (0, %(JT / ,8)2). This example shows
that even the long-range part may be rather singular for the Mourre theory to be
applied.

The Mourre theory is one of the most useful methods in the scattering the-
ory [7]. For comprehensive reviews and applications, see, for example, [1], [2],
[31, [4], [8], [9], [5], etc. Usually a differential operator (the dilation generator, in
particular) is used as the conjugate operator A, and hence some discussion about
the differentiability of the potential is necessary, though it is possible to avoid dif-
ferentiability assumptions using approximation arguments. We employ a differ-
ence operator as conjugate operator, and this is partially motivated by the Mourre
theory for discrete Schrodinger operators ([2], [6]). Difference operators belong
to the Fourier multipliers, and conjugate operators in terms of Fourier multipliers
are not new. In fact they appear in the original paper by Mourre [7], and studied
extensively, for example, in Amrein, Boutet de Monvel, Georgescu [1]. In fact, our
theorem may be considered as an application of Proposition 7.5.6 of [1]. However,
by using difference operators, the formulation and the argument become consider-
ably simpler, and we can give an elementary and self-contained proof in this short
article. The choice of the conjugate operator and its applications, Example 2 in
particular, seem new, as far as the author is aware of.
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2. Proof

We fix 8 > 0 and suppose Assumption A in the following. We denote the Fourier
transform by F:

Fo(£) = (2n)—d/2/e—ixf<p(x)dx, £ eR?, ¢ € S(RY).
We write

Qjux) = 5= (Tf = T/ yux) =

— (u(x + Bej) —u(x — Bej)).

B 2/-‘5

We note
FO; T u(§) = 3 sin(BE u(€). & e R ue L2 (RY).

We now define

d
1
Au = > (Qjxj +x0))u foru e SRY).

Jj=1

We then note that

—iFAF* = 2,3 Z (sm(ﬁéj 85 S s1n(,3$,))

is a first order differential operator which generates a unitary group through a
change of coordinates. This implies, in particular, FAF™* is essentially self-adjoint
on $(R?), and hence 4 is also essentially self-adjoint on $(R¢). Moreover, e /4
leaves the domain of Hy and H invariant.

Now by easy computations, we have

d
. L .
F[Ho.iA)F* = sin(BE))E;.
=P
and it is easy to see
d
1 . . T
> —sin(BgE >0 if 0<|E < =
Z B B
We let n > 0 sufficiently small and choose f € C5°(RR) such that
Ui T o0

supp f C [5 %<E — 5)2]; f@)=1ifte [r;, %(% —n)z].
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Then we learn
f(Ho)[Ho.iA] f(Ho) = 8f(Ho)>,

with some § > 0.
It is well-known that f(H) — f(Hp) is compact if V' is Hy-compact, and by
using the standard argument, we have

f(H)[Ho,iA]f(H) = §f(H)* + K1, 2

with a compact operator K.
Next we consider [V, i A]. By straightforward computation, we have

d d
1 1
= g LT, = n T+ 2 3 4T, 3)
j=1 j=1

The second sum in the right hand side is bounded and commutes with Hy, and
hence its commutator with V' is Hy-compact by the assumption. We also have

[Tj.ﬁ, Viu(x) = Tjﬁ Vu(x) — VT].ﬂu(x)
= V(x + Bej)u(x + Be;) — V(x)u(x + Be;)
= (V(x + Bej) = V(x))u(x + Be;)
= (BAP VTP u(x).
This implies
b T V1= 51 V) = Bl A7 VTS

is Ho-compact again by the assumption. Similarly, we can show [x; T;*, V] is Ho-
compact:

by TP V= i TP (BAT V) = BT/ (5 AT V) + BT/ (A7 V).

Thus we learn [V,iA] is Hp-compact. Combining this with (2), we obtain the
Mourre inequality (1).

It remains to show e’4(H —z)~le™!4 is a C2-class function in ¢. Since e
leaves H2(RY) = D(H) = D(Ho) invariant, it suffices to show [H,iA] and
[[H,iA],iA] are Hy-bounded. By the above expressions of [Hy, iA] and [V, iA4],
[H,iA] is obviously Hy-bounded. [[Hy,iA],iA] is computed as

—itA

d
F([Ho,i4],i P2 (sin(pe) )¢ sin(BE)5)
=1 j

_ 1
B>
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and hence it is Hyp-bounded. [[V, i A], i A] can be computed and estimated using (3)
as above. For example, we have

V. x; TP TP = LT (a8 V) TP
= Bxi[TL. (AP VITE + B (AP V) i TAIT
= B (A A VTS T
+ B8k TE (AT — sjex; (AP VTP Tf
= B2l xi (AL ARV T
+ B8 T Ly (A VITP — Bou Tl (AP v)T!

— B8l (A WIT T
and each term is Hy-bounded by the assumption. Other terms in the expansion of
[[V,iA],iA] can be computed similarly. O
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