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1. Introduction

Consider a family of (lower bounded) self-adjoint operators T" (" > 0) with do-
main dom T" in a complex separable Hilbert space H, and the corresponding
closed sesquilinear forms b". We want to study the limit T (resp. b) of T" (resp. b")
as " ! 0. We can relate this study to the concept of �-convergence; but when ad-
dressing sesquilinear forms these variational problems are usually formulated in
real Hilbert spaces and the theory has been developed under this condition; see, for
instance, some important monographs in the �eld as [3, 2]. However, in quantum
mechanics the Hilbert spaces are usually complex, and here we have the �rst aim
of this work, that is, to shortly explain the ideas involved in the �-convergence of
quadratic forms and then describe the modi�cations needed to generalize the per-
tinent results to complex Hilbert spaces. It must be underlined that this adaptation
to complex Hilbert spaces do not make things easier, but it is handy to accom-



622 R. Bedoya, C. R. de Oliveira, and A. A. Verri

modate quantum mechanics, in particular if magnetic potentials are present. As
an application we study the e�ective operator obtained from the Dirichlet Lapla-
cian with magnetic �eld restricted to closed bounded tubes in R

3 that shrinks to
a smooth curve.

�ere are several papers on the Dirichlet Laplacian without magnetic �elds
restricted to tubes in R

3; see, for instance, [1, 8, 9, 5, 7, 6]. In particular, the
variational technique of�-convergence in real Hilbert spaces was invoked in [1, 5].
One of the �rst works in which a magnetic �eld was added to this kind of problem
is the paper [10], where the author has obtained an asymptotic expansion of the
eigenvalues; but special particularities about the �eld were imposed. In that work
the problem was restricted to a sequence of bounded tubes ƒ" of the space that
shrinks to a closed curve of R2 as " ! 0. Recently, considering now that the tubes
ƒ" are unbounded, it was proven in [12] the norm resolvent convergence under the
condition that the vector �eld A depends on a parameter, more precisely, it is of
form bA, where b is a positive parameter that depends on ". Other variation of
this problem was studied in [13], where the authors have considered the Dirichlet
Laplacian between two parallel hypersurfaces in Euclidean space in the presence
of a magnetic �eld. When the distance between them tends to zero, it was shown
a norm resolvent convergence of the associated operators. Since we will make use
of the �-convergence, we will be able to require weak regularity of the magnetic
potential.

Let S be a circle of length l > 0 and r W S ! R
3 a closed and simple curve of

class C3 in R
3 parameterized by its arc length s. Denote by k.s/ and �.s/ its curva-

ture and torsion at the point r.s/, respectively. LetQ be a smooth open, bounded,
simply connected, and nonempty subset of R2. We build a tube � in R

3 by mov-
ing the region Q along r.s/. At each point the region may present an additional
rotation angle which is denoted by ˛.s/ and we suppose that its of class C2, and
the Dirichlet condition at the boundary @�. We take a vector magnetic potential
�eld A D .A1; A2; A3/, where Aj W � ! R, j D 1; 2; 3, are real functions so that,
for di�erentiable A, B D r � A is the corresponding magnetic �eld. Consider the
family of operators

.H" /.x/ WD
�

.�i@ � A/2 
�

.x/ .0 < " < 1/;

dom H" D H
2.�"/ \ H

1
0.�"/ (�" is the region obtained by moving the "Q

along r.s/ and, for each 0 < " < 1, we consider A restricted to�"); see around (4)

for the regularity conditions imposed on A.
We study the sequenceH" in the limit " ! 0. For this it is necessary to make

some renormalization, for example, we need to control the transverse oscillations
as " ! 0. An interesting point is that even in the presence of a vector potential
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we are going to control these oscillations by subtracting �0="
2 fromH", where �0

is the �rst (i.e., the lowest) eigenvalue of the Dirichlet Laplacian (no magnetic
potential!) restricted to Q. Namely,

��u0 D �0u0; u0 2 H
1
0.Q/; u0 � 0;

Z

Q

ju0j2dy D 1: (1)

u0 denotes the normalized eigenfunction associated with �0. Recall that �0 > 0

and it is a simple eigenvalue.
Now, consider the one-dimensional operator

.G0w/.s/ WD .�i@s � hA.r.s//; T .s/i/2w.s/C
h

C.Q/.� C ˛0/2.s/�
k2.s/

4

i

w.s/;

dom G0 D H
2.S/, where C.Q/ is a number that depends only on the region Q

(see (8)) and T .s/ is the tangent vector to the curve r at the position r.s/; h�; �i

denotes the usual scalar product in R
3. Our main application here says that

H" �
�0

"2
1 �!

"!0
G0 (2)

in a norm-resolvent sense; see �eorem 4 for a precise formulation. To prove this
convergence we use the variational technique of�-convergence of quadratic forms
in complex Hilbert spaces. �us, in Section 2 we make the necessary generaliza-
tions to complex spaces in order to combine the corresponding strong and weak
�-convergences with the operator convergence (2). In Section 3 we show some
steps of the construction of the region where the problem is considered, the quad-
ratic forms, and appropriate change of variables and renormalization. We also
comment about a suitable gauge transform related to the magnetic potential A.
In Section 4 we present the main results related to our application.

Acknowledgments. We thank an anonymous referee for valuable suggestions.
RB was supported by CAPES (Brazil). CRdeO thanks the partial support by CNPq
(Brazil).

2. �-convergence in complex Hilbert spaces

As already mentioned in the Introduction, we consider a family of (uniformly)
lower bounded self-adjoint operators T" (" > 0) with domain dom T" in a com-
plex separable Hilbert space .H; h�; �i/. We denote by b" the corresponding closed
sesquilinear forms, and want to study the limit T (resp. b) of T" (resp. b") as
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" ! 0. �e domain of T will not be supposed to be dense in H and its closure
will be denoted by H0 D dom T (with rng T � H0); usually this is indicated by
simply saying that “T is self-adjoint in H0.” As usual, the real-valued function
� 7! b.�; �/ will be simply denoted by b.�/ and called the associated quadratic
form with b.�; �/. It will be assumed that b is positive (or lower bounded in gen-
eral) and b.�/ D 1 if � does not belong to its domain dom b; this is important in
order to guarantee that in some cases b is lower semicontinuous, which is equiva-
lent to b be the sesquilinear form generated by a positive self-adjoint operator T ,
that is,

b.�; �/ D hT 1=2�; T 1=2�i; �; � 2 dom b D dom T 1=2I

see �eorem 9.3.11 in [4]. By allowing b.�/ D 1 one has a handy way to work in
the larger space H instead of only in H0 D dom T .

De�nition 1. �e sequence f" W H ! R strongly�-converges to f (that is, f"
S�

�!

f ) if and only if the following two conditions are satis�ed:

i) For every � 2 H and every �" ! � in H one has

f .�/ � lim inf
"!0

f".�"/:

ii) For every � 2 H there exists a sequence �" ! � in H such that

f .�/ D lim
"!0

f".�"/:

Remark 1. If instead of strong convergence �" ! � one considers weak conver-

gence �" * � in De�nition 1, then one has a characterization of f"
W�
�! f , that is,

f" weakly �-converges to f .

Now we state, in an appropriate form, the main result relating strong resolvent
convergence of self-adjoint operators and �-convergence of the associated sesqui-
linear forms.

�eorem 1. Let b"; b be positive (or uniformly lower bounded) closed sesquiline-

ar forms in the complex Hilbert space H, and T"; T the corresponding associated

positive self-adjoint operators. �en the following statements are equivalent:

i) b"
S�

�! b and, for each � 2 H, b.�/ � lim inf"!0 b".�"/, for all �" * � in H;

ii) b"
S�

�! b and b"
W�
�! b;

iii) b" C �
S�

�! b C � and b" C �
W�
�! b C �, for some � > 0 (and so for all

� � 0);
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iv) T" converges to T in the strong resolvent sense in H0 D dom T � H, that

is,

lim
"!0

R��.T"/� D R��.T /P0�; for all � 2 H and � > 0;

where P0 is the orthogonal projection onto H0.

Now we provide the necessary modi�cations so that the proofs of �eorem 13.6
and Corollary 13.7 in [3] can be replicated in order to include the case of complex
Hilbert spaces, and so to conclude �eorem 1 above. �ere are two main points to
regard. �e �rst one is the replacement, in many instances, of terms of the form
2h�; �i in real-space functionals by h�; �i C h�; �i; although this substitution is quite
natural, there are few nuances in the proofs (see Proposition 1 ahead). Further, the
proofs also help to elucidate the connection between forms, operator actions and
domains on the one hand, and minimalization of suitable functionals on the other
hand; this sheds some light on the role played by �-convergence in the conver-
gence of self-adjoint operators.

Proposition 1. Let b � 0 be a closed sesquilinear form in the complex Hilbert

space H, T � 0 the self-adjoint operator associated with b and P0 be the orthog-

onal projection onto H0 D dom T � H. �en � 2 dom T and T � D P0� if and

only if � is a minimum point (also called minimizer) of the functional

g W H ! R; g.�/ D b.�/ � h�; �i � h�; �i:

Proof. Assume that � 2 dom T and T � D P0�. Note that g.0/ D 0, so that the
minimum of g is < 1. If % 2 H n dom b, then g.%/ D 1 so that we can assume
that % 2 dom b; thus � D %� � 2 dom b � H0 and

b.%/ D b.� C .%� �// D b.�/C b.�/C b.�; �/C b.�; �/

� b.�/C hT �; �i C h�; T �i

D b.�/C hP0�; �i C h�; P0�i

D b.�/C h�; �i C h�; �i

D b.�/C h�; % � �i C h% � �; �i:

Hence b.�/� h�; �i � h�; �i � b.%/� h�; %i � h%; �i; which is equivalent to g.�/ �

g.%/. Since % was arbitrary, � is a minimum point of g. Suppose now that g.�/ �

g.%/, for all % 2 H, that is, � is a minimum point of g. Since g.�/ � g.0/ D 0,
it follows that 0 � b.�/ � h�; �i C h�; �i < 1 and so � 2 dom b. �e hypothesis
g.�/ � g.%/ amounts to

b.%/ � b.�/C h�; %� �i C h% � �; �i; for all %:
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Now for ' 2 dom b and z 2 C �xed, this inequality implies

b.�/C jzj2b.'/C zb.�; '/C zb.'; �/ D b.� C z'/

� b.�/C zh�; 'i C zh'; �i:

Choosing z D t > 0 yields

tb.'/C b.�; '/C b.'; �/ � h�; 'i C h'; �i;

and taking t ! 0 one �nds

b.�; '/C b.'; �/ � h�; 'i C h'; �i:

By considering z D t < 0 and then t ! 0 one gets the opposite inequality,
and so the �rst relation

b.�; '/C b.'; �/ D h�; 'i C h'; �i:

By taking successively z D i t with t > 0 and t < 0, then t ! 0 in both cases, one
gets the second relation

b.�; '/ � b.'; �/ D h�; 'i � h'; �i:

Add these two relations to obtain

b.�; '/ D h�; 'i D hP0�; 'i; for all ' 2 dom b;

and so conclude that � 2 dom T and T � D P0� (see page 101 in [4]). �is �nishes
the proof of the proposition.

�e second main technical point we need to prove �eorem 1 in the case of
complex Hilbert spaces is the following complex version of Proposition 11.9 in [3].

Proposition 2. Let H be a complex Hilbert space and F W H ! Œ0;1�. If this

functional F satis�es

a) F.0/ D 0,

b) F.t�/ � t2F.�/, for all � 2 H and all t � 0,

c) F.� C �/C F.� � �/ � 2F.�/C 2F.�/; for all �; � 2 H,

d) F.i�/ D F.�/, for all � 2 H,

then F is a quadratic form on H. Conversely, if F W H ! Œ0;1� is a quadratic

form, then it satis�es a), b), c), d) and, in addition,
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e) F.z�/ D jzj2F.�/, for all � 2 H and all z 2 C,

f) F.� C �/C F.� � �/ D 2F.�/C 2F.�/; for all �; � 2 H.

Proof. If we �rst restrict F to real scalars and keep the notation F (so d) becomes
meaningless), then by Proposition 11.9 of [3] (since a), b), c) hold true) this restric-
tion is the quadratic form associated with a real sesquilinear formB W Y �Y ! R,
Y D ¹� 2 H W F.�/ < 1º, given by

B.�; �/ D
1

4
.F.� C �/ � F.� � �// :

Note that B.�/ WD B.�; �/ D F.�/ and, in particular, for all �; � 2 Y and t; s 2 R

and B.�; �/ D B.�; �/, B.t�; s�/ D t sB.�; �/: Further, except d), B.�/ satis�es all
items a), . . . , f) but with the restriction z 2 R in e).

Our task now is to introduce an appropriate complex version ofB , also de�ned
on Y . To this end �rst extend B by considering the original F (i.e., without the
restriction to real scalars) in the above expression, then de�ne

b.�; �/ WD B.�; �/� iB.�; i�/;

and we will check that it works, that is, that b is a (complex) sesquilinear form
and b.�/ D F.�/, for all �. �e motivation for this expression for b comes
from the following remark: if u W Y ! C is a linear functional, then u.i�/ D

Re u.i�/CiIm u.i�/ D iu.�/ D iRe u.�/�Im u.�/, that is, the relation Im u.�/ D

�Re u.i�/ is valid (recall that b must be linear in the second variable). By d) and
the de�nitions of B and b we have the following results.

� B.i�; i�/ D B.�; �/ and b.i�; i�/ D b.�; �/, for all �; � 2 Y . In particular
item d) holds for b.

� For all �; �,

b.�; i�/ D B.�; i�/� iB.�;��/ D B.�; i�/C iB.�; �/

D i ŒB.�; �/� iB.�; i�/� D ib.�; �/I

� For all �; �,

b.�; �/ D B.�; �/� iB.�; i�/ D B.�; �/� iB.i�; �/

D B.�; �/� iB.��; i�/ D B.�; �/C iB.�; i�/ D b.�; �/:
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� For all t; s 2 R and �; � 2 Y ,

b.�; .t C is/�/ D b.�; t�/C b.�; is�/

D tb.�; �/C isb.�; �/ D .t C is/b.�; �/:

Together with the above relations this also implies b.z�/ D jzj2b.�/, for all
z 2 C, that is, item e) holds for b.

Finally, for � 2 Y and z 2 C, b.z�/ D b.z�; z�/ D B.z�; z�/ � iB.z�; iz�/,
and by selecting z D i together with item d), it follows that

b.i�/ D b.�/;

B.i�; i�/� iB.i�;��/ D B.�; �/� iB.�; i�/;

B.i�; i�/C iB.�; i�/ D B.�; �/� iB.�; i�/;

so that 2iB.�; i�/ D B.�; �/�B.i�; i�/. SinceB.�/ is real, it is found thatB.�; i�/ D

0 and so

b.�/ D B.�; �/� iB.�; i�/ D B.�; �/ D F.�/:

�is implies that b satis�es a), b), c), f) since F does, and the proof of the propo-
sition is complete.

�e above results allow us to prove the following complex versions of impor-
tant results previously proven for real Hilbert spaces and presented in Dal Maso’s
book. By taking into account the above propositions, the proofs are simple varia-
tions of their counterparts in the real case, and so they will be omitted.

Proposition 3. Let T W dom T ! H be a positive self-adjoint operator, dom T D

H0, and bT W H ! R the quadratic form generated by T . �en

bT .�/ D sup
�2dom T

ŒhT �; �i C h�; T �i � hT �; �i�

D sup
�2dom T

�

bT .�/C hT �; �i C h�; T �i � 2hT �; �i
�

;

for all � 2 H0 and bT .�/ D 1 if � 2 H n H0.
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Remark 2. �e main di�erence in the proof of Proposition 3 with respect to the
real case (see �eorem 12.21 in [3]) is the following. For � 2 H0 denote

F.�/ D sup
�2dom T

ŒhT �; �i C h�; T �i � hT �; �i�

and one needs to check that F is a quadratic form, and a way of doing this is to
employ our Proposition 2, in particular to check

F.i�/ D sup
�2dom T

ŒhT �; i�i C hi�; T �i � hT �; �i�

D sup
.�i�/2dom T

ŒhT .�i�/; �i C h�; T .�i�/i � hT .�i�/; .�i�/i�

D F.�/:

By using the above proposition one gets the following complex version of �e-
orem 13.5 in [3]:

�eorem 2. Let b"; b � ˇ > 0 be sesquilinear forms on the complex H and

T"; T � ˇ1 the corresponding associated self-adjoint operators, and let dom T D

H0 � H. Let P0 denote the orthogonal projection onto H0. �en the following

statements are equivalent:

i) b"
W�
�! b.

ii) R0.T"/ converges weakly to R0.T /P0.

With such “complex” tools at hand, the proof of �eorem 1 follows the same
steps of the proof of its real counterpart, i.e., �eorem 13.6 and Corollary 13.7
in [3].

Now we state su�cient conditions to obtain norm resolvent convergence of
operators from �-convergence. �e following theorem was proven in [5], the proof
for complex Hilbert spaces is similar and doesn’t require further comments.

Proposition 4. Let H be a real or complex Hilbert space, b"; b � ˇ > �1

be closed sesquilinear forms and T"; T � ˇ1 the corresponding associated self-

adjoint operators, and let dom T D H0 � H. Assume that the following three

conditions hold:

a) b"
S�

�! b and b"
W�
�! b.

b) �e resolvent operatorR��.T / is compact in H0 for some positive real num-

ber � > jˇj.
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c) �ere exists a Hilbert space K, compactly embedded in H, so that if . "/

is bounded in H and the sequence .b". "// is also bounded, then . "/ is a

bounded subset of K.

�en, T" converges in norm resolvent sense to T in H0 as " ! 0.

2.1. Norm convergence of quadratic forms. In some situations the conver-
gence of quadratic forms may also imply the norm resolvent convergence of the
corresponding operators. �is subject was discussed in [7] for real Hilbert spaces.
In the following, we (re)state and prove a complex version of a result in [7] which
will be useful in this work; we also correct an imprecision in the previous proof.

�eorem 3. Let .b"/", .m"/" be two sequences of positive and closed sesquilinear

quadratic forms in a complex Hilbert space H with dom b" D dom m" D D, for

all " > 0, and B", M" the self-adjoint operators associated with .b"/" and .m"/",

respectively. Suppose that there is � > 0 so that b"; m" � �, for all " > 0, and

jb". / �m". /j � q."/m". /; for all  2 D; (3)

with q."/ ! 0 as " ! 0. �en, there exists C > 0 so that, for " > 0 small enough,

kB�1
" �M�1

" k � C q."/:

Proof. Let b".u; Qu/ and r".u; Qu/ the sesquilinear forms associated with b".u/ and
m".u/, respectively. Recall the polarization identity

b".u; Qu/ D
1

4
Œb".uC Qu/ � b".u � Qu/ � i b".uC i Qu/C i b".u� i Qu/� ;

which will be used ahead.
Note that condition (3) implies

.1� q."//m". / � b". / � .1C q."//m". /; for all  2 D:

As q."/ ! 0, there exist "0 > 0 and a number C1 > 0 so that m". / � C1 b". /,
for all " < "0 and  2 D.

For u; Qu 2 D, one has

jhB1=2
" u; B1=2

" Qui � hM 1=2
" u;M 1=2

" Quij

D jb".u; Qu/ �m".u; Qu/j

D .1=4/jb".uC Qu/ �m".uC Qu/ � b".u � Qu/Cm".u � Qu/

� ib".uC i Qu/C im".uC i Qu/C ib".u � i Qu/ � im".u� i Qu/j
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� .1=4/q."/Œm".uC Qu/Cm".u� Qu/Cm".uC i Qu/Cm".u � i Qu/�

D q."/Œm".u/Cm". Qu/�

� q."/ŒC1b".u/Cm". Qu/�:

Taking u D B�1
" g and Qu D M�1

" Qg, with g; Qg 2 L2.H/, one has

jh.B�1
" �M�1

" /g; Qgij � q."/ŒC1hB�1
" g; gi C hM�1

" Qg; Qgi�

� q."/ŒC1kB�1
" kkgk2 C kM�1

" kk Qgk2�:

�us,

kB�1
" �M�1

" k D sup
kgkD1

jh.B�1
" �M�1

" /g; gij

� q."/ŒC1kB�1
" k C kM�1

" k� � Cq."/;

for some C > 0.

3. �e model

�e geometry of the domain. Let S be a circle of length l > 0 and the map
r W S ! R

3 a closed and simple curve of class C3 in R
3 parameterized by its arc

length parameter s. Just as in [1, 6], we assume that r.s/ is endowed with the Frenet
trihedron consisting of orthogonal unit vectors ¹T .s/; N.s/; B.s/º satisfying the
system of Frenet equations (as usual, we take the tangent, normal and binormal
vectors). We denote by k.s/ and �.s/ the curvature and torsion, respectively, of
the curve r at the position r.s/; due to continuity, such functions are bounded.

LetQ be a nonempty open, bounded, connected and simply connected subset
of R2, and with a smooth boundary. �e set

� D ¹x 2 R
3 W x D r.s/C y2N.s/C y3B.s/; s 2 S; y D .y2; y3/ 2 Qº

is obtained by putting the region Q along the curve r.s/. In each point r.s/ one
also allows a rotation angle ˛.s/ of the cross-sectionQ, and such rotation function
is supposed to be of class C2. �us, the new region is given by

�˛ D ¹x 2 R
3 W x D r.s/C y2N˛.s/C y3B˛.s/; s 2 S; y D .y2; y3/ 2 Qº;

where

N˛.s/ WD cos˛.s/N.s/C sin˛.s/B.s/;

B˛.s/ WD � sin˛.s/N.s/C cos˛.s/B.s/:
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Now, we add a small parameter " > 0 to obtain the sequence of regions

�˛
" D ¹x 2 R

3 W x D r.s/C "y2N˛.s/C "y3B˛.s/; s 2 S; y D .y2; y3/ 2 Qº;

which is “squeezed” to the curve r.s/ as " ! 0.

Quadratic forms. As mentioned in the introduction of this work, we consider
the vector magnetic potential A D .A1; A2; A3/, where Aj W � ! R, j D 1; 2; 3,
are real functions, and the family of self-adjoint magnetic Schrödinger operators

H˛
"  D .�i@x � A/2 

D .�i@x1
� A1/

2 C .�i@x2
� A2/

2 C .�i@x3
� A3/

2 ;

dom H˛
" D H2.�˛

" /\ H
1
0.�

˛
" /. @xj

denotes the partial derivative with respect to
the coordinate xj , and so on.

We suppose that the vector �eld A is continuous on the reference curve S ,

Aj 2 W 1;1.�/; j D 1; 2; 3; (4)

and both restrictions s 7! A2.r.s//, s 7! A3.r.s// belong to W 2;1.S/ (the latter
condition is due to the gauge transform (7)). �ese relatively weak regularity of the
magnetic potential is possible thanks to the technique of �-convergence employed
here.

�e family of quadratic forms associated with the operators H˛
" is given by

b˛
" . / WD

Z

�˛
"

j.�i@x � A/ j2dx

D

Z

�˛
"

.j.�i@x1
� A1/ j2 C j.�i@x2

� A2/ j2 C j.�i@x3
� A3/ j2/dx;

with dom b˛
" D H

1
0.�

˛
" /.

Change of variables. Now we are going to perform a change of variables so
that the integration region in b˛

" , and consequently their domains, don’t depend
on the parameter " > 0. �e change ahead is usual and details will be omitted;
see [1, 5, 6].

For each " > 0 consider the function

f ˛
" W S �Q �! �˛

" ;

.s; y2; y3/ 7�! r.s/C "y2N˛.s/C "y3B˛.s/;
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and the unitary operator

U ˛
" W L2.�˛

" / �! L2.S �Q;ˇ"/;

 7�! " ı f ˛
" ;

where ˇ".s; y/ WD 1 � "k.s/hz˛; yi and z˛ WD .cos˛; sin˛/ (ˇ" comes from the
Riemannian metric de�ned by f ˛

" , which is a global di�eomorphism for " > 0

small enough).
We denote

0

B

@

OA"
1.s; y/

OA"
2.s; y/

OA"
3.s; y/

1

C

A
WD

0

B

@

T .s/

N.s/

B.s/

1

C

A

0

B

@

�

A1 ı f ˛
"

�

.s; y/
�

A2 ı f ˛
"

�

.s; y/
�

A3 ı f ˛
"

�

.s; y/

1

C

A
;

zA"
2.s; y/ WD " cos˛.s/ OA"

2.s; y/C " sin˛.s/ OA"
3.s; y/;

zA"
3.s; y/ WD �" sin ˛.s/ OA"

2.s; y/C " cos˛.s/ OA"
3.s; y/;

and, for ' 2 H
1
0.S �Q/,

Q@y2
' WD .�i@y2

� zA"
2.s; y// ';

Q@y3
' WD .�i@y3

� zA"
3.s; y// ':

From now on we consider the sequence b˛
" C c, with c > kk2=4k1 (the reason

for this choice will be clear ahead). Some calculations show that the quadratic
form b˛

" C c, after of the change given by U ˛
" , can be written as

Qb˛;c
" .'/ WD

Z

S�Q

1

ˇ"

ˇ

ˇ

ˇ � i
@'

@s
� ˇ"

OA"
1.s; y/ ' � hry';Ryi.� C ˛0/

ˇ

ˇ

ˇ

2

dsdy

C

Z

S�Q

�ˇ"

"2
jQ@y'j2 C c ˇ"j'j2

�

dsdy;

dom Qb
˛;c
" D H

1
0.S �Q/, where ry WD .�i@y2

;�i@y3
/, Q@y WD .Q@y2

; Q@y3
/ and R is

the rotation matrix
�

0 1
�1 0

�

:

�e domain of each Qb
˛;c
" is the subspace H

1
0.S � Q/ of the Hilbert space

L2.S �Q; ˇ".s; y//. However, it is convenient to work in L2.S � Q/, that is,
with the usual Lebesgue measure. �us, we consider the isometry

V ˛
" W L2.S �Q/ �! L2.S �Q;ˇ�/;

v 7�! ˇ�1=2
" v:

(5)
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Now, for v 2 H
1
0.S �Q/, we denote

Q@s v WD .�i@s � zA"
1.s; y// v;

where

zA"
1.s; y/ WD ˇ".s; y/ OA"

1.s; y/ �
i

2ˇ"

@ˇ"

@s
�

1

2ˇ"

hryˇ"; Ryi.� C ˛0/.s/:

Applying the change of variables (5) to the quadratic form Qb
˛;c
" , it is found that

Qg˛;c
" .v/ D

Z

S�Q

.1=ˇ2
" /j

Q@sv � hry ;Ryi.� C ˛0/.s/j2

C
1

"2

Z

S�Q

jQ@yvj2dsdy �

Z

S�Q

.1=ˇ2
" /
k2.s/

4
jvj2dsdy

C c

Z

S�Q

jvj2dsdy;

where dom Qg
˛;c
" D H

1
0.S �Q/ is now a subspace of L2.S �Q/.

Besides allowing us to working in the Hilbert space L2.S �Q/ with the usual
measure, the unitary transformation (5) makes the curvature appears in the expres-
sion of the quadratic form (note the penultimate integral in the de�nition of Qg

˛;c
" ).

Now it is clear the role played by the constant c > 0: for " > 0 small enough, the
quadratic forms Qg

˛;c
" .v/ become positive.

Renormalization of Qg
˛;c

" . When the sequence of tubes is “squeezed” to the
curve r.s/, there are divergent eigenvalues due to the factor

1

"2

Z

S�Q

jQ@y j2 dsdy;

which is directly related to the magnetic Laplacian restricted to the cross sec-
tion Q. We renormalize this divergence by subtracting

�0

"2

Z

S�Q

j j2 dsdy (6)

from Qg
˛;c
" . /. Recall that �0 is the �rst eigenvalue of the Dirichlet Laplacian inQ

(see (1) in the introduction of this work). �us, we pass to consider the sequence
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of renormalized quadratic forms

g˛;c
" .v/ WD Qg˛;c

" .v/ �

Z

S�Q

�0

"2
jvj2dsdy

D

Z

S�Q

.1=ˇ2
" /j

Q@sv � hryv; Ryi.� C ˛0/.s/j2dsdy

C
1

"2

Z

S�Q

.jQ@yvj2 � �0jvj2/dsdy �

Z

S�Q

.1=ˇ2
" /
k2.s/

4
jvj2dsdy

C c

Z

S�Q

jvj2dsdy;

with dom g
˛;c
" D H

1
0.S �Q/.

Gauge transform. For the magnetic �eld A we are going to suppose, without
loss of generality, that

hN.s/;A.r.s//i D hB.s/;A.r.s//i D 0; for all s 2 S: (7)

In fact, let zA" WD . zA"
1;

zA"
2;

zA"
3/, by using the gauge transform

zA" 7�! zA" � rˆ";

withˆ".s; y/ D y2
zA"

2.s; 0/Cy3
zA"

3.s; 0/, we can suppose zA"
2.s; 0/ D zA"

3.s; 0/ D 0,
for all s 2 S , which implies the condition (7). Due to the periodicity (recall
that r.s/ is a closed curve), usually the vector potential in one-dimensional ef-
fective operators can not be gauged away, as it happens in case of unbounded
tubes [12].

Our study ahead will be conducted with the quadratic forms g˛;c
" .v/; thus, for

simplicity, we shall omit the indices ˛ and c from the notations. For example, g˛;c
"

will be simply denoted by g".

4. �e main theorem

In this section we present our application of the complex�-convergence discussed
in Section 2. Recall that

g�.v/ D C1 for v 2 L2.S �Q/ n H
1
0.S �Q/;

put

C.Q/ WD

Z

Q

jhryu0; Ryij2 dy D

Z

Q

j.y2@y3
� y3@y2

/u0j2 dy; (8)
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and recall that u0 is a normalized eigenfunction corresponding to the �rst eigen-
value �0 of the Dirichlet Laplacian in Q. Note that C.Q/ depends only on the
cross section Q.

Consider the one-dimensional quadratic form

g0.w/ WD

Z

S

j.�i@s � hA.r.s//; T .s/i/w.s/j2ds

C

Z

S

h

C.Q/.� C ˛0/2.s/ �
k2.s/

4
C c

i

jw.s/j2ds;

with dom g0 D H
1.S/. From g0.w/ we de�ne a quadratic form on L2.S �Q/:

g.v/ D

8

<

:

g0.w/ if v D wu0 with w 2 dom g0;

C1 otherwise.
(9)

We denote by G" and G the respective self-adjoint operators associated with
the quadratic forms g" and g. Our application is the following theorem.

�eorem 4. Under condition (7), the sequence of operatorsG" converges to G in

the norm convergence sense as " ! 0. More exactly,

k.G" � i I/�1 � .G � i I/�1k �! 0

as " ! 0.

�rough the unitary transformation v.x; y/ D w.s/u0.y/ 7! w.s/, G can be
identi�ed with the one-dimensional operator

.G0w/.s/ WD .�i@s � hA.r.s//; T .s/i/2w.s/

C
h

C.Q/.� C ˛0/2.s/ �
k2.s/

4
C c

i

w.s/;

with dom G0 D H
2.S/: Due to this identi�cation, we say that there was a “re-

duction of dimension” in the limit " ! 0. We can also note the presence of a
potential in G0 that came from the original magnetic potential, as well as a term
that depends on geometric e�ects of the original region, as habitually is the case
in such kind of problems without magnetic �elds.

To prove �eorem 4 we are going to apply Proposition 4 in Section 2. �e �rst
step is to show that the sequence g" strongly �-converges to g. Observe that in
our case the strong and weak �-convergences are equivalent because the region
S �Q is bounded.
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Some important properties that we will use ahead are as follows.

(1) For all function v 2 H
1
0.S �Q/,

Z

Q

.jryv.s; y/j
2 � �0jv.s; y/j2/ dy � 0; a.e.[s]; (10)

and
Z

Q

.jQ@yv.s; y/j
2 � �0jv.s; y/j2/ dy � 0; a.e.[s]: (11)

�e �rst inequality follows from the de�nition of �0 and the second one is a
consequence of (10) combined with the Diamagnetic Inequality [11].

(2) �e Dirichlet condition on the boundary @Q implies
Z

Q

ryju0j2 dy D 0;

which, by its turn, implies that
Z

Q

hu0ryu0; Ryi dy D 0:

To show the strong �-convergence of the sequence g" we will make use of
some lemmas.

Lemma 1. If v" * v in L2.S � Q/ and .g".v"//" is a bounded sequence in

L2.S �Q/, then .@sv"/" and .ryv"/" are bounded sequences in L2.S �Q/. Fur-

thermore, @sv" * @sv;ryv" * ryv in L2.S �Q/ and v 2 H
1
0.S �Q/.

Proof. As .g".v"//" is a bounded sequence, there exists a numberD > 0 so that

lim sup
"!0

Z

S�Q

1

ˇ2
"

jQ@sv" � hryv"; Ryi.� C ˛0/.s/j2ds dy

� lim sup
"!0

g".v"/ � D:

Now, since .v"/" is also a bounded sequence, we have

lim sup
"!0

Z

S�Q

jQ@yv"j
2dsdy

D lim sup
"!0

�Z

S�Q

.jQ@yv"j
2 � �0jv"j

2/dsdy C

Z

S�Q

�0jv"j
2 dsdy

�

� lim sup
"!0

D"2 C lim sup
"!0

Z

S�Q

�0jv"j
2ds dy < 1:
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We have shown above that ..�i@y2
� zA"

2/v"/" and ..�i@y3
� zA"

3/v"/" are bounded
sequences in L2.S � Q/. Since . zA"

2v"/ and . zA"
3v"/ are also bounded sequences

in L2.S � Q/, we conclude that .ryv"/" is a bounded sequence in L2.S � Q/.
Similarly, .@sv"/" is a bounded sequence in L2.S � Q/. �erefore, .v"/" is a
bounded sequence in H

1
0.S �Q/. �us, there exist � 2 H

1
0.S �Q/ and a subse-

quence of .v"/", also denoted by .v"/", so that v" * � in H
1
0.S �Q/ (recall that

Hilbert spaces are re�exive). As v" * v in L2.S � Q/, it follows that v D �,
@sv" * @sv;ryv" * ryv in L2.S �Q/ and v 2 H

1
0.S �Q/.

Lemma 2. Let v" ! v be in L2.S�Q/ so that there exists lim
"!0

g".v"/ < 1. �en,

we can write v.s; y/ D w.s/u0.y/ with w 2 H
1.S/.

Proof. In fact, by previous lemma, ryv" * ryv weakly in L2.S � Q/. Ob-
serve that also zA"

2v" * 0 and zA"
3v" * 0 weakly. �us, Q@yv" * ryv weakly in

L2.S �Q/.

From the strong convergence of .v"/" we have

Z

S�Q

ˇ

ˇryv
ˇ

ˇ

2
dsdy � lim inf

"!0

Z

S�Q

jQ@yv"j
2dsdy

� lim sup
"!0

Z

S�Q

�0jv"j
2dsdy

D �0

Z

S�Q

jvj2dsdy:

�is fact, combined with (10) above, tell us that

Z

S�Q

.jryvj2 � �0jvj2/dsdy D 0:

Consider

f .s/ WD

Z

Q

.jryv.s; y/j
2 � �0jv.s; y/j2/dy:

Since f .s/ � 0, the inequality above implies that f D 0 a.e.[s]. �erefore, v.s; y/
is an eigenfunction associated with �0. As �0 is a simple eigenvalue, v.s; y/ is
proportional to u0. �us, we can write v.s; y/ D w.s/u0.y/ with w 2 H

1.S/

(since v 2 H
1
0.S �Q/).
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Proof of �eorem 4. Let v 2 L2.S �Q/ and v" ! v in L2.S �Q/. We are going
to show that lim"!0 g".v"/ � g.v/. If lim inf

"!0
g".v"/ D 1, then lim inf

"!0
g".v"/ �

g.v/. Suppose now that lim inf
"!0

g".v"/ < 1. Passing to a subsequence, if neces-

sary, we can suppose lim inf
"!0

g".v"/ D lim
"!0

g".v"/ < 1.

Lemma 1 ensures that @sv" * @sv and ryv" * ryv weakly in L2.S �Q/. As
zA"

1.s; y/ ! hA.r.s//; T .s/i uniformly, we have

Q@sv" * .�i@s � hA.r.s//; T .s/i/v

weakly in L2.S �Q/. By recalling that .� C ˛0/ 2 L1.S/, we have

Q@sv" �hryv"; Ryi.�C˛0/.s/ * .�i@s �hA.r.s//; T .s/i/v�hryv; Ryi.�C˛0/.s/

in L2.S�Q/. By Lemma 1, v 2 H 1
0 .S�Q/ and we can write v.s; y/ D w.s/u0.y/

with ! 2 H
1.S/.

�e above remarks, together with properties (1) and (2), show that

lim inf
"!0

g".v"/

� lim inf
"!0

Z

S�Q

1

ˇ2
"

jQ@sv" � hryv"; Ryi.� C ˛0/.s/j2dsdy

C lim inf
"!0

Z

S�Q

k2.s/

4ˇ2
"

jv"j
2dsdy C lim inf

"!0

Z

S�Q

cjv"j
2dsdy

�

Z

S�Q

ˇ

ˇ.�i@s � hA.r.s//; T .s/i/v � hryv; Ryi.� C ˛0/.s/
ˇ

ˇ

2
dsdy

C

Z

S�Q

�

c �
k2.s/

4

�

jvj2dsdy

D

Z

S

°

j.�i@s � hA.r.s//; T .s/i/wj2

C
h

C.Q/.� C ˛0/2.s/ �
k2.s/

4
C c

i

jwj2
±

ds

D g0.!/

D g.v/:

Now we are going to show that for each v 2 L2.S �Q/ there exists a sequence
.v"/" in L2.S �Q/ so that v" ! v in L2.S �Q/ and lim"!0 g".v"/ D g.v/. First
we consider the particular case of v D wu0 with w 2 H

1.S/. In this situation
we take the sequence .v"/" with, for each " > 0, v" WD wu0. We have v" ! v in
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L2.S �Q/ and we see that

lim
"!0

Z

S�Q

.1=ˇ2
" /j

Q@s.wu0/ � whryu0; Ryi .� C ˛0/.s/j2dsdy

D

Z

S

¹j.�i@s � hA.r.s//; T .s/i/wj
2 C C.Q/.� C ˛0/2.s/jwj2ºds

and

lim
"!0

� Z

S�Q

�k2.s/

4ˇ2
"

jwu0j2dsdy C

Z

S�Q

cjwu0j2ds dy

�

D �

Z

S

k2.s/

4
jwj2ds C c

Z

S

jwj2ds:

Recalling the de�nitions of zA"
2, zA"

3 and condition (7), we obtain

lim
"!0

1

"2

Z

S�Q

.j � iw@y2
u0 � zA"

2wu0j2

C j � iw@y3
u0 � zA"

3wu0j2 � �0jwu0j2/ds dy

D lim
"!0

1

"2

Z

S�Q

Œ. zA"
2/

2 C . zA"
3/

2�jwj2ju0j2dsdy

D

Z

S

Œ.hN.s/;A.r.s//i/2 C .hB.s/;A.r.s//i/2�jwj2 ds

D 0:

�us, lim"!0 g".v"/ D g.wu0/.

Now, consider the case v 2 L2.S � Q/n¹wu0 W w 2 H
1.S/º. By de�nition

g.v/ D 1. Let v" be a sequence so that v" ! v in L2.S � Q/. In this case,
lim
"!0

g".v"/ D 1. In fact, if we suppose that lim
"!0

g".v"/ < 1, by Lemmata 1 and 2

we should have v D wu0, with w 2 H
1.S/, which does not occur. �erefore,

lim
"!0

g".v"/ D 1 D g.v/.

We have shown above that the sequence of quadratic forms g" �-converges
to g in the strong sense. To conclude the weak �-convergence we need only to
show the following: if v" * v in L2.S � Q/, then lim inf"!0 g".v"/ � g.v/. If
lim inf"!0 g".v"/ D 1, there is nothing to prove. If lim inf"!0 g".v"/ < 1, we
can suppose that

lim inf
"!0

g".v"/ D lim
"!0

g".v"/ < 1:



Complex �-convergence and magnetic Dirichlet Laplacian 641

Lemma 1 ensures that .v"/" is bounded in H
1
0.S�Q/. By Rellich–Kondrachov

�eorem, the space H1
0.S �Q/ is compactly embedded in L2.S �Q/ and so there

is a subsequence of .v"/", also denoted by .v"/", so that v" ! v. Now, the proof
follows the same steps of strong �-convergence.

�e sequence g" �-converges to g in the strong and weak sense, and so con-
dition a) of Proposition 4 in Section 2 is satis�ed. Since S � Q is bounded, the
operatorG have compact resolvent in L2.S �Q/ and so item b/ holds true as well.
Again, by the Rellich–Kondrachov �eorem, but now combined with Lemma 1,
ensure the validity of item c). By applying Proposition 4, we conclude the proof
of �eorem 4.

Remark 3. As usual in the context of (Dirichlet) reduction of dimension, we
subtract the diverging coe�cient in (2), but we would like to point that another
renormalization, a “magnetic renormalization” by subtracting

Z

S�Q

�".s/

"2
jvj2dsdy

from Qg
˛;c
" .v/ would be more natural; here, for each s 2 S , �".s/ is the �rst eigen-

value of

T s
" u WD Œ.�i@y2

� zA"
2.s; y//

2 C .�i@y3
� zA"

3.s; y//
2�u;

with Dirichlet boundary condition. It is possible to show that as " ! 0, �".s/ ! �0

uniformly in S , and, under some additional technical hypotheses, the same e�ec-
tive operator G0 is reached in the limit " ! 0.

References

[1] G. Bouchitté, M. L. Mascarenhas, and L. Trabucho, On the curvature and torsion ef-
fects in one dimensional waveguides. ESAIM: Control, Optimization and Calculus of

Variations 13 (2007), 793–808. MR 2351404 Zbl 1139.49043

[2] A. Braides, �-convergence for beginners. Oxford Lecture Series in Mathematics
and its Applications, 22. Oxford University Press, Oxford, 2002. MR 1968440
Zbl 1198.49001

[3] G. Dal Maso, An introduction to �-convergence. Progress in Nonlinear Di�eren-
tial Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993.
MR 1201152 Zbl 0816.49001

[4] C. R. de Oliveira, Intermediate spectral theory and quantum dynamics. Progress
in Mathematical Physics, 54. Birkhäuser Verlag, Basel, 2009. MR 2723496
Zbl 1165.47001

http://www.ams.org/mathscinet-getitem?mr=2351404
http://zbmath.org/?q=an:1139.49043
http://www.ams.org/mathscinet-getitem?mr=1968440
http://zbmath.org/?q=an:1198.49001
http://www.ams.org/mathscinet-getitem?mr=1201152
http://zbmath.org/?q=an:0816.49001
http://www.ams.org/mathscinet-getitem?mr=2723496
http://zbmath.org/?q=an:1165.47001


642 R. Bedoya, C. R. de Oliveira, and A. A. Verri

[5] C. R. de Oliveira, Quantum singular operator limits of thin Dirichlet tubes via
�-convergence. Rep. Math. Phys. 67 (2011), 1–32. MR 2830099 Zbl 1241.81073

[6] C. R. de Oliveira and A. A. Verri, On the spectrum and weakly e�ective operator for
Dirichlet Laplacian in thin deformed tubes. J. Math. Anal. Appl. 381 (2011), 454–468.
MR 2796223 Zbl 1220.35101

[7] C. R. de Oliveira and A. A. Verri, On norm resolvent and quadratic form conver-
gences in asymptotic thin spatial waveguides. In R. Benguria, E. Friedman, and
M. Mantoiu (eds.), Spectral analysis of quantum Hamiltonians Papers from the con-
ference “Spectral Days 2010” held in Santiago, September 2010. Birkhäuser, Basel,
2012, 253–76. MR 2962863 MR 2961369 (collection) Zbl 1270.81101 Zbl 1257.00013
(collection)

[8] L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a
narrow strip. Israel J. Math. 170 (2009), 337–354. MR 2506330 Zbl 1173.35090

[9] L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a nar-
row in�nite strip. In T. Suslina and D. Yafaev (eds.), Spectral theory of di�erential op-

erators. M. Sh. Birman 80th anniversary collection. American Mathematical Society
Translations, Series 2, 225. Advances in the Mathematical Sciences, 62. American
Mathematical Society, Providence, R.I., 2008. 103–116. MR 2509778 MR 2530978
(collection) Zbl 1170.35487 Zbl 1152.47002 (collection)

[10] V. V. Grushin, Asymptotic Behavior of the Eigenvalues of the Schrödinger operator
in thin closed tubes. Mat. Zametki 83 (2008), 503–519. In Russian. English transl.,
Math. Notes 83 (2008), 463–477. MR 2431616 Zbl 1152.35452

[11] D. Hundertmark and B. Simon, A diamagnetic inequality for semigroup di�erences.
J. Reine Angew. Math. 571 (2004) 107–130. MR 2070145

[12] D. Krejčiřík and N. Raymond, Magnetic e�ects in curved quantum waveguides. Ann.

Henri Poincaré 15 (2014), 1993–2024. MR 3257457 Zbl 06363165

[13] D. Krejčiřík, N. Raymond, and M. Ťusek, �e magnetic Laplacian in shrinking tubu-
lar neighbourhoods of hypersurfaces. Preprint 2014. arXiv:1303.4753 [math-ph]

Received 2013 May, 21; revised 2013 November, 06

Roxana Bedoya, Departamento de Matemática – UFSCar, São Carlos, SP,
13560–970 Brazil

e-mail: marsaroxi@hotmail.com

César R. de Oliveira, Departamento de Matemática – UFSCar, São Carlos, SP,
13560–970 Brazil

e-mail: oliveira@dm.ufscar.br

Alessandra A. Verri, Departamento de Matemática – UFSCar, São Carlos, SP,
13560–970 Brazil

e-mail: alessandraverri@dm.ufscar.br

http://www.ams.org/mathscinet-getitem?mr=2830099
http://zbmath.org/?q=an:1241.81073
http://www.ams.org/mathscinet-getitem?mr=2796223
http://zbmath.org/?q=an:1220.35101
http://www.ams.org/mathscinet-getitem?mr=2962863
http://www.ams.org/mathscinet-getitem?mr=2961369
http://zbmath.org/?q=an:1270.81101
http://zbmath.org/?q=an:1257.00013
http://www.ams.org/mathscinet-getitem?mr=2506330
http://zbmath.org/?q=an:1173.35090
http://www.ams.org/mathscinet-getitem?mr=2509778
http://www.ams.org/mathscinet-getitem?mr=2530978
http://zbmath.org/?q=an:1170.35487
http://zbmath.org/?q=an:1152.47002
http://www.ams.org/mathscinet-getitem?mr=2431616
http://zbmath.org/?q=an:1152.35452
http://www.ams.org/mathscinet-getitem?mr=2070145
http://www.ams.org/mathscinet-getitem?mr=3257457
http://zbmath.org/?q=an:06363165
http://arxiv.org/abs/1303.4753
mailto:marsaroxi@hotmail.com
mailto:oliveira@dm.ufscar.br
mailto:alessandraverri@dm.ufscar.br

	Introduction
	Gamma-convergence in complex Hilbert spaces
	The model
	The main theorem
	References

