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Eigenvalue estimates for the resolvent of a non-normal matrix

Oleg Szehr1

Abstract. We investigate the relation between the spectrum of a non-normal matrix and

the norm of its resolvent. We provide spectral estimates for the resolvent of matrices whose

largest singular value is bounded by 1 (so-called Hilbert space contractions) and for power-

bounded matrices. In the �rst case our estimate is optimal and we present explicit matrices

that achieve equality in the bound. �is result recovers and generalizes previous estimates

obtained by E.B. Davies and B. Simon in the study of orthogonal polynomials on the unit

circle. In case of power-bounded matrices we achieve the strongest estimate so far. Our

result uni�es previous approaches, where the resolvent was estimated in certain restricted

regions of the complex plane. To achieve our estimates we relate the problem of bounding

the norm of a function of a matrix to a Nevanlinna–Pick interpolation problem in a corre-

sponding function space. In case of Hilbert space contractions this problem is connected to

the theory of compressed shift operators to which we contribute by providing explicit ma-

trix representations for such operators. Finally, we apply our results to study the sensitivity

of the stationary states of a classical or quantum Markov chain with respect to perturbations

of the transition matrix.
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1. Introduction

�e contribution of this article is to provide new estimates on the norm of the
resolvent of a matrix A and to prove their optimality under certain conditions. We
derive bounds of the form

k.� � A/�1k � ˆ.�; n; �.A//; (1)

where ˆ is a function of � 2 C, the dimension n and the spectrum �.A/ of A. In
the �rst part of the article, (cf. Section 3) we assume that the largest singular value
(the spectral norm) of A is bounded by 1 i.e. kAk1 � 1. Note that this can always
be achieved by a suitable normalization. Under this assumption we obtain optimal
bounds for � 2 C��.A/ and present explicit matrices that establish equality in (1).
�us we identify the relation between the localization of the spectrum of A and
the norm of its resolvent. In the second part (cf. Section 4) we study (1) under the
assumption that each power of A can be bounded with respect to any given norm
by the same constant, supk�0 kAkk � C . In this case we derive the strongest
estimates so far.

�e problem of �nding good functions ˆ was studied extensively in the litera-
ture before [6, 29, 17, 5]. Our approach is based on the theory of certain (Hilbert/
Banach) function spaces. We associate to a given class of matrices � a certain
Banach algebra A of functions and instead of working with matrices directly we
estimate the norm of a representative function in the function algebra. A key role
is played by inequalities of the type

kf .A/k � C kf k
A
; (2)

which relate for a given A 2 � the norm kf .A/k to the norm of f in A. At �rst
glance this appears to be of little use since the right hand side no longer depends
on A. However, it is possible to exploit spectral properties of A to signi�cantly
strengthen the inequality in (2). Let mA be the minimal polynomial of A. For any
f; g 2 A we have then that k.f CmAg/.A/kA D kf .A/k

A
and an application

of (2) reveals that for all g 2 A we have kf .A/k � C kf CmAgk
A

. �is relates
the problem of bounding kf .A/k to the problem of �nding the least norm function
f CmAg in A, which is equivalent to a Nevanlinna–Pick interpolation problem in
A; see [17]. If kAk1 � 1 the resulting interpolation problem can be solved using
an operator theoretic approach pioneered by D. Sarason [22, 1]. �is approach
is intrinsically connected to the theory of compressed shift operators on Hardy
space. We contribute to this theory by providing a framework that allows us to
compute explicit matrix representations for functions of model operators. In case
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that A is power-bounded we choose a rational approximation function in A and
bound its norm to achieve our result.

Bounds on the norm of a resolvent occur in various situations in pure and
applied mathematics. For example in operator theory, when constructing a func-
tional calculus [17],

f 7�! f .X/ D 1

2�i

Z




f .�/.� � X/�1d�

in the theory of orthogonal polynomials, when studying the location of zeros of
random orthogonal polynomials on the unit circle [6]. In computational linear
algebra the following are classical problems that can be approached through ap-
propriate estimates for k.� � A/�1k.

(1) To analyze the stability of solutions x of the matrix equation Ax � �x D b

under perturbations in b and A, see [5].

(2) To study whether an approximate eigenvalue � of A (in the sense that, for
some vector x ¤ 0, kAx � �xk � "kxk) is close to an actual eigenvalue of
A, see [28, 19, 5].

(3) To estimate the distance of the spectrum of a matrix B to the spectrum of a
matrix A in terms of B � A, see [21, 19, 2].

Our resolvent bounds are stronger than the ones used for example in [21] to obtain
estimates on the spectral variation of non-normal matrices. In Section 5 we ap-
ply our estimate for power-bounded matrices to study the sensitivity of stationary
states of a classical or quantum Markov chain under perturbations of the transi-
tion matrix. We recover known stability results for classical Markov chains and
prove new estimates in the quantum case. A similar approach, based on the power-
boundedness of the transition matrix, was previously applied in [26] to investigate
spectral convergence properties of classical and quantum Markov chains.

Acknowledgements. �e author is thankful to Michael M. Wolf for creating con-
ditions that made this work possible and to Alexander Müller-Hermes for proof-
reading the manuscript and for pointing out the simpler proof for Lemma 3.7.
�e author is equally thankful to E. B. Davies for valuable comments on a previ-
ous version of the manuscript.

2. Preliminaries

We will take a function space based approach to the problem of bounding the norm
of the resolvent of a certain matrix. �is section lays down the required de�nitions
and basic results.
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2.1. Notation. We denote by Mn the set of n�n matrices with complex entries.
For A 2 Mn we denote by �.A/ its spectrum and by m its minimal polynomial.
We write jmj for the degree of m. To the minimal polynomial m we associate the
Blaschke product

B.z/ WD
Y

i

z � �i

1 � N�iz
:

�e product is taken over all i such that (respecting multiplicities) the correspond-
ing linear factor z � �i occurs in the minimal polynomial m. �us, the numerator
of B as de�ned here is exactly the associated minimal polynomial.

We denote by kAk any particular norm of A while the 1-norm is de�ned by

kAk1 D sup
kvk2D1

kAvk2 ;

where kvk2
2 D

P

i jvi j2 is the usual Euclidean norm. �at means kAk1 simply
denotes the largest singular value of A. We will slightly abuse nomenclature and
call matrices with

kAk1 � 1

Hilbert space contractions, although of course the underlying space always has
�nite dimension. Similarly, the class of A 2 Mn with

sup
k�0

kAkk � C < 1

will be called Banach space power-bounded operators with respect to k�k and con-
stant C . (Note that here the norm is general.)

Let D D ¹z 2 C j jzj < 1º denote the open unit disk in the complex plane
and xD its closure. �e space of analytic functions on D is denoted by Hol.D/. �e
Hardy spaces considered here are

H2 WD
²

f 2 Hol.D/j kf k2
H2

WD sup
0�r<1

1

2�

Z 2�

0

jf .rei�/j2d� < 1
³

;

and

H1 WD
®

f 2 Hol.D/j kf kH1
WD sup

z2D

jf .z/j < 1
¯

:
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�e H2-norm can be written in terms of the Taylor coe�cients of the analytic
function f . We write f .z/ D

P

k�0
Of .k/zk and use Plancherel’s identity to

conclude that

sup
0�r<1

1

2�

Z 2�

0

jf .rei�/j2d� D
X

k�0

j Of .k/j2:

�us, f 2 Hol.D/ is inH2 if and only if
P

k�0 j Of .k/j2 < 1. �e Wiener algebra
is de�ned as the subset of Hol.D/ of absolutely convergent Taylor series,

W WD
²

f D
X

k�0

Of .k/zk j kf kW WD
X

k�0

j Of .k/j < 1
³

:

2.2. Model spaces and operators. Let A 2 Mn with �.A/ � D and let B be
the Blaschke product associated to the minimal polynomial of A. We de�ne the
jmj-dimensional model space

KB WD H2 	 BH2 WD H2 \ .BH2/
?;

where we employ the usual scalar product from the Hilbert space L2.@D/,

hf j gi WD
Z

@D

f .z/g.z/
jdzj
2�

:

If the zeros ¹�iºiD1;:::;jmj of B are distinct (that is A can be diagonalized) it is
not di�cult to verify that KB is spanned by the Cauchy kernels

KB D span

²

1

1� N�iz

³

iD1;:::;jmj

:

�us KB is a space of rational functions f of the form

f .z/ D p.z/
Q

i .1 � N�iz/
;

where p.z/ is a polynomial of degree at most jmj � 1. If the zeros of B are not
distinct the above remains valid but the Cauchy kernels have to be replaced by

zk�1

.1� N�iz/k
; 1 � k � ki ;

where ki denotes the multiplicity of �i . In our consecutive proofs, however, we
omit this case and assume that A is diagonalizable. �is does not result in any dif-
�culties since upper bounds obtained in the special case extend by continuity to
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bounds for non-diagonalizable matrices. �e assumption that A can be diagonal-
ized is not principal; virtually all computations in the manuscript can be carried
out in the more general case. We rely on continuity only for notational conve-
nience.

One natural orthonormal basis ¹ekºkD1;:::;jmj for KB is the Malmquist–Walsh
basis with ([16], page 117)

ek.z/ WD .1 � j�kj2/1=2

1 � N�kz

k�1
Y

iD1

z � �i

1� N�iz
;

where, as it will remain throughout the manuscript, the empty product is de�ned
to be 1 i.e.

e1.z/ D .1� j�1j2/1=2

1� N�1z
:

�e model operator MB acts on KB as

MB W KB �! KB ;

f 7�! MB.f / WD PB.zf /;

where PB denotes the orthogonal projection on KB . In other words, MB is the
compression of the multiplication operation by z to the model spaceKB (see [16]
for a detailed discussion of model operators and spaces). As multiplication by z
has operator norm 1 it is clear that MB is a Hilbert space contraction. Moreover,
it is not hard to show that the eigenvalues of MB are exactly the zeros of the
corresponding Blaschke product (see [18], page 228 and Proposition 3.5 in the
article at hand).

2.3. Spectral bounds on the norm of a function of a matrix. �is subsection
contains a brief outline of methods to obtain spectral bounds on a function of a
matrix. For a more detailed account see [17, 16, 18] and the references therein.
Suppose that f is holomorphic on a domain containing all eigenvalues of A and
let 
 be a smooth curve in this domain that encloses the eigenvalues. �e matrix
f .A/ is de�ned by the Dunford–Taylor integral [9]

f .A/ D 1

2�i

Z




f .�/.� � A/�1d�:

It is easily seen that if f .z/ D
Pl

kD0 akz
k is a polynomial then f .A/ D

Pl
kD0 akA

k and that the correspondence f 7! f .T / is an algebra homomor-
phism from the algebra of holomorphic functions (on the given domain) to Mn
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i.e .f C g/.T / D f .T /C g.T / and .fg/.T / D f .T /g.T / (see [9], Chapter I.6).
A unital Banach algebra A with elements in Hol.D/ will be called a function al-
gebra if

(i) A contains all polynomials and lim n!1 kznk1=n
A

D 1 and

(ii) .f 2 A; � 2 D; f .�/ D 0/ implies that f
z��

2 A.

Following the conventions of [17] we say that a set of matrices � obeys an A

functional calculus with constant C if

kf .A/k � C kf k
A
;

holds for any A 2 � and f 2 A. Here kf kA denotes the norm of f in A.
Clearly, this is only possible if all eigenvalues ofA are contained in xD. For us, two
instances of such inequalities will be important. In the �rst example we consider
Hilbert space contractions, while the second one treats power-bounded Banach
space operators.

i) �e family of Hilbert space contractions � D ¹A 2 Mn j kAk1 � 1º is
related to an H1 functional calculus, since by von Neumann’s inequality [14, 5]
we have for any f in the disk algebraH1 \C.xD/ (the set of bounded holomorphic
functions onD that admit a continuous extension to the boundary) andA 2 � with
�.A/ � D

kf .A/k1 � kf kH1
:

ii) Consider a family � D ¹A 2 Mnj




Ak




 � C 8k 2 Nº of Banach space
operators that are power bounded by some constant C < 1. �is family admits a
Wiener algebra functional calculus since, for any f 2 W and A 2 �,

kf .A/k D









X

k�0

Of .k/Ak







 �
X

k�0

j Of .k/jkAkk

� C
X

k�0

j Of .k/j D C kf kW

holds.
At �rst glance, the inequalities of i/ and i i/ seem to be of little use when it

comes to �nding spectral bounds on kf .A/k since the obtained upper bounds do
not depend onA anymore. To obtain better estimates one can rely on the following
insight. Instead of considering the function f directly, we add multiples of m (or
any other annihilating polynomial) to this function and consider h D f Cmg; g 2
A instead of f . It is immediate that kf .X/k D kh.X/k. �e following simple but
crucial lemma summarizes this point.
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Lemma 2.1 ([17] Lemma 3.1). Let m ¤ 0 be a polynomial and let � be a set

of matrices that obey an A functional calculus with constant C and that satisfy

m.A/ D 0 8A 2 �. �en

kf .A/k � C kf k
A=mA

; for all A 2 �;

where kf k
A=mA

D inf ¹khkAj h D f Cmg; g 2 Aº.

Proof. For any g 2 A we have that kf .A/k D k.f Cmg/.A/k � C kf Cmgk
A

.

If �.A/ � D (andA can be diagonalized) it follows directly from the de�nition
of the function algebra (see also [17], Section 3.1 (iii) or [30], Section 1.2 P4) that

kf k
A=mA

D inf¹kgk
A

j g 2 A; g.�i / D f .�i / 8�i 2 �.A/º;

which is a Nevanlinna–Pick type interpolation problem in A. If the eigenvalue �i

carries a multiplicity ki > 1 in m the above remains valid but at �i the �rst ki � 1
derivatives of f and g must coincide. Since for �.A/ � D the Blaschke product
is holomorphic on a set containing xD we can de�ne kf k

A=BA
as in Lemma 2.1

and note ([30], Lemma 3.1) that as before

kf k
A=BA

D inf¹kgk
A

j g 2 A; g.�i / D f .�i/ 8�i 2 �.A/º:

In the special case A D H1 it is possible to evaluate kf kH1=BH1
using Sara-

son’s approach to the Nevanlinna–Pick problem [22, 1] or the Commutant lifting
theorem of B. Sz.-Nagy and C. Foiaş [8, 13, 1].

Lemma 2.2 ([17] �eorem 3.12, [18] �eorem 3.1.11). For any f 2 H1 it holds

that

kf kH1=BH1
D kf .MB/k1 :

3. Hilbert space contractions

Spectral bounds on the resolvent of a Hilbert space contraction were derived in [6].
�e authors provide an upper bound in terms of a certain Toeplitz matrix, compute
the norm of this matrix and present a sequence of matrices that approaches their
upper bound. �e following theorem summarizes the basic three assertions from
the discussion of Hilbert spaces contractions in [6].
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�eorem 3.1 ([6, 5]). (1) Let A be an n� n matrix with kAk1 � 1 and 1 … �.A/.
�en





.1 � A/�1






1
� kMnk1

min�i 2�.A/ j1 � �i j
;

with the n � n matrix

Mn WD

0

B

B

B

B

B

@

1 0 : : : 0

2 1
: : :

:::
:::
: : :

: : : 0

2 : : : 2 1

1

C

C

C

C

C

A

:

(2) It holds that kMnk1 D cot . �
4n
/.

(3) For any a 2 .0; 1/ there are n � n matrices An.a/ with kAn.a/k1 � 1 and

�.A/ D ¹aº such that

lim
a!1

.1� a/.1 � An.a//
�1 D Mn:

In this paper we recover the statements (1) and (3) using a uni�ed approach
based on the techniques developed in [17]. Our strategy is to directly compute and
bound the entries of the model operator in Malmquist–Walsh basis. Our approach
has the advantage that it yields spectral bounds for any � 2 C � �.A/ and that the
optimality statement (3) is automatic. Concerning the second point of the theorem
we present a technique going back to [7] in order to compute the norm of Toeplitz
matrices of the form

Mn.ˇ/ WD

0

B

B

B

B

B

@

1 0 : : : 0

ˇ 1
: : :

:::
:::

: : :
: : : 0

ˇ : : : ˇ 1

1

C

C

C

C

C

A

; ˇ 2 Œ0; 2�: (3)

�eorem 3.2. Let A be an n� n matrix with kAk1 � 1 and minimal polynomial

m D
Qjmj

iD1.z � �i / with �.A/ � D. �en for any � 2 C � �.A/ it holds that

k.� � A/�1k1 � k.� �MB/
�1k1
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and

�

.� �MB/
�1
�

ij
D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if i < j;

1

� � �i

if i D j;

.1 � j�i j2/1=2

� � �i

.1 � j�j j2/1=2

� � �j

i�1
Y

�Dj C1

�1 � N���

� � ��

�

if i > j;

with respect to the Malmquist–Walsh basis. (�e empty product is de�ned to be 1.)

To compare our new result �eorem 3.2 to �eorem 3.1 we note that for any
n � n matrices A D .aij / and B D .bij /, the condition jaij j � bij 8i; j implies
that kAk1 � kBk1. Suppose for instance that j�j � 1. �en we can estimate the
o�-diagonal components of .� �MB/

�1 by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.1 � j�i j2/1=2

1 � N�i�

.1 � j�j j2/1=2

1 � N�j �

i
Y

�Dj

�1 � N���

� � ��

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� max
i

1� j�i j2

j1 � N�i�j2
jmj
Y

�D1

ˇ

ˇ

ˇ

ˇ

ˇ

1� N���

� � ��

ˇ

ˇ

ˇ

ˇ

ˇ

� max
i

1

j1 � N�i�j
max

i

1 � j�i j2

j1 � N�i�j

jmj
Y

�D1

ˇ

ˇ

ˇ

ˇ

ˇ

1� N���

� � ��

ˇ

ˇ

ˇ

ˇ

ˇ

� max
i

2

j1 � N�i�j

jmj
Y

�D1

ˇ

ˇ

ˇ

ˇ

ˇ

1� N���

� � ��

ˇ

ˇ

ˇ

ˇ

ˇ

;

which yields the component-wise estimate

j..� �MB/
�1/ij j � 1

min�k2�.A/ j1 � N�k�j

jmj
Y

�D1

ˇ

ˇ

ˇ

ˇ

ˇ

1� N���

� � ��

ˇ

ˇ

ˇ

ˇ

ˇ

�

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if i < j;

1 if i D j;

2 if i > j:
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Corollary 3.3. Under the assumptions of �eorem 3.2 suppose that j�j � 1. It

follows

k.� � A/�1k1 � kMjmjk1

min�k2�.A/ j1 � N�k�j
1

jB.�/j ;

where

B.�/ D
jmj
Y

iD1

� � �i

1� N�i�

is the Blaschke product associated with m.

We can pass to the general case �.A/ � xD by continuous extension. Setting
� D 1 Corollary 3.3 is the �rst assertion of �eorem 3.1 with the bonus that on the
right hand side the norm of an jmj � jmj matrix occurs (compare [6] Section 6 B).

However, if maxi
1�j�i j2

j1��i j
D ˇ is given we have (with the same computation as

above) for � D 1

j..1 �MB/
�1/ij j � 1

min�k2�.A/ j1� �kj �

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if i < j;

1 if i D j;

ˇ if i > j;

and we can improve the bound in �eorem 3.1 if we can compute kMn.ˇ/k1

(see (3)). �e following theorem generalizes the discussion of Toeplitz matrices
in [6]. It establishes an indirect possibility to compute kMn.ˇ/k1.

Proposition 3.4. LetMn.ˇ/with ˇ 2 .0; 2� be the n�n Toeplitz matrix introduced

in (3). �en the equation

ˇ cot .n�/C .2� ˇ/ cot .�=2/ D 0; � 2 R (4)

has a unique solution �� 2 Œ2n�1
2n

�; �/ and

kMn.ˇ/k1 D 1

2

s

.ˇ � 2/2 C ˇ2

cot2 .��=2/
:

In particular it holds that

kMn.0/k1 D 1;

kMn.1/k1 D 1

2 sin
� �

4nC 2

�

and

kMn.2/k1 D cot
� �

4n

�

:
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It is possible to expand cot.n�/ in Equation (4) in terms of cot.�=2/, which
yields a polynomial equation in cot.�=2/. Since kMn.ˇ/k1 only depends on
cot.�=2/ (and ˇ) computing kMn.ˇ/k1 is equivalent to �nding the unique zero
of the resulting polynomial in the interval

�

0; cot
�

2n�1
4n

�
��

as a function of ˇ.
Finally, statement (3) of �eorem 3.1 can be recovered from �eorem 3.2 with

the choice of a minimal polynomialm D .z � a/n, a 2 .0; 1/ and setting An.a/ D
MB . In this case we have for 1 � i; j � n that

j..1 �MB/
�1/ij j D 1

1� a
�

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 if i < j;

1 if i D j;

1C a if i > j:

Letting a ! 1 proves item (3) of �eorem 3.1. In the following Subsection 3.1
we compute the entries of MB with respect to the Malmquist–Walsh basis. �is
yields a simple form for matrices that achieve equality in �eorem 3.2 i.e. for A
with largest





.� � A/�1






1
for a given spectrum.

Proposition 3.5. �e components of the model operatorMB with respect to Malm-

quist–Walsh basis are given by

.MB/ij D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if i < j;

�i if i D j;

.1� j�i j2/1=2.1� j�j j2/1=2

i�1
Y

�Dj C1

.�N��/ if i > j:

Hence, one explicit form of the matrices An.a/ in �eorem 3.1 is

An.a/ WD

0

B

B

B

B

B

B

B

B

@

a 0 : : : : : : 0

1� a2 a
: : :

:::

�a.1� a2/ 1� a2 a
: : :

:::
:::

: : :
: : :

: : : 0

.�1/na.n�2/.1 � a2/ : : : �a.1� a2/ 1 � a2 a

1

C

C

C

C

C

C

C

C

A

:

Finally, we note that �eorem 3.2 is stronger than �eorem 3.1 in that it holds
for general � and yields an optimal bound for general spectra.

�e rest of this section is organized in two subsections. �e �rst, Subsection 3.1,
contains a proof of �eorem 3.2 and Proposition 3.5 while in Subsection 3.2 we
prove Proposition 3.4.
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3.1. A model operator approach to resolvent bounds. As mentioned before
our approach is to bound a function of a matrix in terms of the norm of a repre-
sentative function. A key role is played by Lemma 2.1, which however requires
that f 2 A. In order to derive upper bounds for rational functions such as the
resolvent we need to extend Lemma 2.1. �e following is based on the techniques
of [17], Lemma 3.2 for the discussion of inverses. Here, we present an extension,
which is adapted to our purposes.

Lemma 3.6. Let A be an n � n matrix with �.A/ � D and let  be a rational

function with poles .�i /iD1;:::;k such that
S

i¹�iº \ �.A/ D ;.

(1) If A obeys an A-functional calculus with constant C then

k .A/k � C inf¹kgk
A

j g 2 A; g.�i / D  .�i/ i D 1; : : : ; nº:

(2) If kAk1 � 1 holds then k .A/k1 � k .MB/k1.

Proof. We extend Lemma 2.1 to the situation, when  is rational. De�ne

' WD  �
k
Y

j D1

�m.�j / �m
m.�j /

�kj

;

where kj denotes the multiplicity of the pole at �j and note that ' is polynomial
and that  .A/ D '.A/. It follows using Lemma 2.1 that

k .A/k D k'.A/k

� Ck'kA=mA D C inf¹kgk
A

j g 2 A; g.�i /

D '.�i / i D 1; : : : ; nº

D C inf¹kgkA j g 2 A; g.�i / D  .�i / i D 1; : : : ; nº;

which proves the �rst assertion. For the second one we consider the same ' as
above and note that

k .A/k1 D k'.A/k1 � k'kH1=BH1
D k'.MB/k1 ;

where we applied Lemma 2.2 in the last step. But as m.MB/ D 0 it follows that
'.MB/ D  .MB/.

Let us remark that Lemma 3.6 remains valid if the eigenvalue �i carries de-
generacy ki in m. �e point here is to replace the inf on the right hand side of (1)
with inf¹kgkA

j g 2 A; g.k/.�i/ D  .k/.�i / ; 0 � k < kiº, where the superscript
k denotes the k-th derivative.
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Lemma 3.7. Let ¹�iºiD1;:::;n � D and let � 2 C � ¹�iºiD1;:::;n and j < i then

i
X

�Dj

1

� � ��

Q

� W �¤i;�¤j .1 � N����/
Q

� W �¤�.�� � ��/
D 1

.1� N�i�/.1 � N�j �/

i
Y

�Dj

�1 � N���

� � ��

�

:

Proof of Lemma 3.7. We present two proofs for this lemma. �e �rst one arises
naturally in the context of H2 spaces (see the proof of �eorem 3.2), while the
second one is more direct and simple. We de�ne

t .z/ WD z

� � z
1

.1 � N�iz/.1� N�j z/

and the (truncated) Blaschke product

Bj i .z/ WD
i
Y

�Dj

z � ��

1 � N��z

and compute the L2.@D/ scalar product. Suppose for now that j�j > 1 then

ht j Bj i i D
Z 2�

0

t .z/Bj i.z/
ˇ

ˇ

ˇ

zDei�

d�

2�

D
Z 2�

0

t .z/
Y

�

1 � N��z

z � ��

ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

Z

@D

1

.� � z/.1� N�iz/.1� N�j z/

Y

�

1 � N��z

z � ��

dz

D
i
X

�Dj

1

� � ��

Q

� W �¤i;�¤j .1 � N����/
Q

� W �¤�.�� � ��/
;

where in the last step we applied the Residue theorem and made use of the as-
sumption j�j > 1. On the other hand

hBj i j ti D
Z 2�

0

Bj i .z/t.z/
ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

Z

@D

Y

�

z � ��

1 � N��z

1

N�z � 1
z

.z � �i/.z � �j /
dz

D 1

.1 � �i
N�/.1� �j

N�/
Y

�

1 � ��
N�

N� � N��

:
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Clearly, ht j Bj i i D hBj i j ti from which the lemma follows for j�j > 1. In case
that j�j < 1 we compute similarly

ht j Bj i i D 1

2�i

Z

@D

1

.� � z/.1� N�iz/.1� N�j z/

Y

�

1� N��z

z � ��

dz

D
i
X

�Dj

1

� � ��

Y

� W �¤i;�¤j

.1� N����/

Y

� W �¤�

.�� � ��/
� 1

.1 � N�i�/.1� N�j �/

Y

�

1 � N���

� � ��

and

hBj i j ti D 0:

�e case j�j D 1 follows by continuity. For the second proof we multiply both
sides of the lemma with

Qi
�Dj .� � ��/ to obtain a polynomial equation in �

i
X

�Dj

Y

� W �¤�

.� � ��/

Q

� W �¤i;�¤j .1 � N����/
Q

�W�¤�.�� � ��/
D

Y

�W�¤i;�¤j

.1� N���/:

�e polynomial on the left hand side has degree at most i � j and the degree of
the polynomial on the right hand side is i � j � 1. Two polynomials of a certain
degree n are the same if and only if they coincide at nC 1 nodes. We choose the
i � j C 1 values ¹�˛ºj �˛�i and verify that for this choice equality indeed holds:

i
X

�Dj

Y

� W �¤�

.� � ��/

Q

� W �¤i;�¤j .1 � N����/
Q

� W �¤�.�� � ��/

ˇ

ˇ

ˇ

ˇ

ˇ

�D�˛

D
Y

� W �¤˛

.�˛ � ��/

Q

� W �¤i;�¤j .1� N���˛/
Q

� W �¤˛.�˛ � ��/

D
Y

� W �¤i;�¤j

.1 � N���˛/:

We are now ready to present a proof of �eorem 3.2.

Proof of �eorem 3.2. �e �rst assertion follows directly from Lemma 3.6. To
compute the matrix entries of .��MB/

�1 with respect to Malmquist–Walsh basis
we recall that

.� �MB/
�1 D '.MB/;
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where '.z/ WD 1
��z

m.�/�m.z/
m.�/

is a polynomial. We have that

..� �MB/
�1/ij

D h'.MB/ej j ei i

D hPB.' ej / j ei i

D h' ej j ei i

D
Z 2�

0

'.z/ej .z/ei .z/
ˇ

ˇ

ˇ

zDei�

d�

2�

D ..1� j�i j2/.1� j�j j2//1=2

2�i

Z

@D

'.z/
1

.1� N�iz/.1� N�j z/

j �1
Y

�D1

z � ��

1 � N��z

i
Y

�D1

1 � N��z

z � ��

dz:

(5)

In case that j > i the integrand is holomorphic on D. Hence, the integral in (5)

is zero. If j D i we have that

.1� j�i j2/
2�i

Z

@D

1

� � z
m.�/ �m.z/

m.�/

1

.1 � N�iz/.z � �i /
dz D 1

� � �i

:

Finally if j < i , then the integral in (5) equals

..1� j�i j2/.1� j�j j2//1=2

2�i

Z

@D

X

i
Y

�Dj

1 � N��z

z � ��

dz

D ..1 � j�i j2/.1� j�j j2//1=2

i
X

�Dj

1

� � ��

Q

� W �¤i;�¤j .1� N����/
Q

� W �¤�.�� � ��/
;

where

X D 1

� � z
m.�/ �m.z/

m.�/

1

.1� N�iz/.1� N�j z/
:

An application of Lemma 3.7 concludes the proof of �eorem 3.2.

Proposition 3.5 is veri�ed via a direct calculation.

Proof of Proposition 3.5. We proceed as in the derivation of �eorem 3.2 and
conclude

.MB/ij D ..1� j�i j2/.1� j�j j2//1=2

Z 2�

0

z2

.1� N�iz/.1� N�j z/

j �1
Y

�D1

z � ��

1 � N��z

i
Y

�D1

1� N��z

z � ��

ˇ

ˇ

ˇ

ˇ

ˇ

zDei�

d�

2�
:
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If j > i the Residue theorem reveals that the integral is zero. Similarly, if i D j

the integral is given by �i . Finally if i > j we compute

Z 2�

0

z2

.1� N�iz/.1 � N�j z/

i
Y

�Dj

1 � N��z

z � ��

ˇ

ˇ

ˇ

ˇ

ˇ

zDei�

d�

2�

D
Z 2�

0

1

.z � �i /.z � �j /

i
Y

�Dj

z � ��

1� N��z

ˇ

ˇ

ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

Z

@D

1

z.z � �i /.z � �j /

i
Y

�Dj

z � ��

1� N��z
dz

D
i�1
Y

�Dj C1

.���/;

where the last step again uses the Residue theorem.

3.2. Computing the norm of certain Toeplitz matrices. In this subsection we
prove Proposition 3.4 with a direct computation of kMn.ˇ/k1. Our approach is
guided by the techniques developed in [7]. kMn.1/k1 and kMn.2/k1 are com-
puted in [6] and [5] (Lemma 9.6.5) following a di�erent approach.

Proof of Proposition 3.4. Instead of working with

Mn.ˇ/ D

0

B

B

B

B

B

@

1 0 : : : 0

ˇ 1
: : :

:::
:::

: : :
: : : 0

ˇ : : : ˇ 1

1

C

C

C

C

C

A

directly, we consider the matrix

zMn.ˇ/ WD

0

B

B

B

B

B

@

ˇ : : : ˇ 1
:::

::: 1 0

ˇ
:::

:::
:::

1 0 : : : 0

1

C

C

C

C

C

A
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and note that

kMn.ˇ/k1 D k zMn.ˇ/k1:

As zMn.ˇ/ is Hermitian all its eigenvalues are real and its 1-norm is simply the
largest in magnitude eigenvalue. �e eigenvalues of zMn.ˇ/

2 are the eigenvalues
of zMn.ˇ/ squared. Hence, we are looking for the largest �2 such that

0 D det . zMn.ˇ/
2 � �2

1/ D det . zMn.ˇ/ � �1/. zMn.ˇ/C �1/:

Direct computation reveals that

. zMn.ˇ/ � �1/. zMn.ˇ/C �1/

D

0

B

B

B

B

@

ˇ�� ˇ ˇ ::: ˇ 1

ˇ ˇ�� 1 0

ˇ 0

:::
:::

ˇ 1 �� 0

1 0 0 ::: 0 ��

1

C

C

C

C

A

�

0

B

B

B

B

@

ˇC� ˇ ˇ ::: ˇ 1

ˇ ˇC� 1 0

ˇ 0

:::
:::

ˇ 1 � 0

1 0 0 ::: 0 �

1

C

C

C

C

A

D

0

B

B

B

B

B

B

@

.n�1/ˇ2��2C1 .n�2/ˇ2Cˇ .n�3/ˇ2Cˇ ::: ˇ2Cˇ ˇ

.n�2/ˇ2Cˇ .n�2/ˇ2��2C1 .n�3/ˇ2Cˇ ::: ˇ2Cˇ ˇ

.n�3/ˇ2Cˇ .n�3/ˇ2Cˇ ˇ

:::
:::

:::

ˇ2Cˇ ˇ2Cˇ ˇ2��2C1 ˇ

ˇ ˇ ˇ ::: ˇ ��2C1

1

C

C

C

C

C

C

A

:

We rearrange the resulting determinant by subtracting successively the second
column from the �rst, the third from the second, the n-th from the n � 1-th and
leave the n-th unchanged. �is yields

det . zMn.ˇ/
2 � �2

1/

D det

0

B

B

B

B

B

B

@

ˇ2�ˇ��2C1 ˇ2 ˇ2 ::: ˇ2 ˇ

ˇC�2�1 ˇ2�ˇ��2C1 ˇ2 ::: ˇ2 ˇ

0 ˇC�2�1 ˇ

:::
:::

:::

0 0 ˇ2�ˇ��2C1 ˇ

0 0 0 ::: ˇC�2�1 ��2C1

1

C

C

C

C

C

C

A

:
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Similarly, we subtract the second row from the �rst, the third from the second, the
n-th from the n � 1-th and leave the n-th unchanged. We conclude

det . zMn.ˇ/
2 � �2

1/

D det

0

B

B

B

B

B

B

B

@

ˇ2�2ˇ�2�2C2 ˇC�2�1 0 ::: 0 0

ˇC�2�1 ˇ2�2ˇ�2�2C2 ˇC�2�1 0 ::: 0

0 ˇC�2�1 0

::: 0
:::

0
::: ˇ2�2ˇ�2�2C2 ˇC�2�1

0 0 0 ::: ˇC�2�1 ��2C1

1

C

C

C

C

C

C

C

A

D det

0

B

B

B

B

B

B

B

@

ˇ2�2ˇ�2�2C2 ˇC�2�1 0 ::: 0 0

ˇC�2�1 ˇ2�2ˇ�2�2C2 ::: 0

0 ˇC�2�1 0

::: 0
:::

0
::: ˇ2�2ˇ�2�2C2 ˇC�2�1

0 0 0 ::: ˇC�2�1 ˇ2�2ˇ�2�2C2

1

C

C

C

C

C

C

C

A

C det

0

B

B

B

B

B

B

B

@

ˇ2�2ˇ�2�2C2 ˇC�2�1 0 ::: 0 0

ˇC�2�1 ˇ2�2ˇ�2�2C2 ::: 0

0 ˇC�2�1 0

::: 0
:::

0
::: ˇ2�2ˇ�2�2C2 0

0 0 0 ::: ˇC�2�1 �2�.ˇ�1/2

1

C

C

C

C

C

C

C

A

;

(6)

where the last equality is a consequence of the linearity of det in the last column.
�e following is a classical formula for the determinant of an n � n tri-diagonal
Toeplitz matrix [7, 20]

det

0

B

B

B

B

B

B

B

B

@

x 1 0 : : : 0

1 x 1
: : :

:::

0 1
: : :

: : : 0
:::

: : :
: : : x 1

0 : : : 0 1 x

1

C

C

C

C

C

C

C

C

A

D sin.nC 1/�

sin �
; x D 2 cos �: (7)

To apply this result we exclude the trivial case ˇ D 0 and note that we can always

assume that �2 � 1 such that ˇC�2 � 1 > 0 and ˇ2

ˇC�2�1
2 .0; ˇ�. Hence, we can

divide all columns of both determinants of (6) by ˇ C �2 � 1. We then expand
the second determinant along its last column and apply (7) to both terms resulting
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from (6). We �nd

det . zMn.ˇ/
2 � �2

1/ D .ˇ C �2 � 1/n
�sin.nC 1/�

sin �
C �2 � .ˇ � 1/2
�2 C .ˇ � 1/

sinn�

sin �

�

(8)

with

2 cos � D ˇ2 � 2ˇ � 2�2 C 2

�2 C ˇ � 1 D ˇ2

�2 C ˇ � 1
� 2:

Solving the latter for �2 gives

�2 D 1

4
..ˇ � 2/2 C ˇ2 tan2.�=2//;

where ˇ ¤ 0 implies that � is such that the tangent is well de�ned. �is enables
us to eliminate �2 from (8) as

�2 � .ˇ � 1/2
�2 C .ˇ � 1/

D 1

ˇ
.�ˇ C 2 � 2ˇ cos � C 2 cos �/:

It follows that (8) is zero if and only if

0 D ˇ
sin.nC 1/�

sin �
C .�ˇ C 2� 2ˇ cos � C 2 cos �/

sinn�

sin �

D ˇ cosn� C .2� ˇ/ .1C cos �/
sin n�

sin �
;

which in turn is equivalent to

cotn� D ˇ � 2

ˇ
cot.�=2/: (9)

In total, we are looking for the solution �� of (9) such that �2 is maximal i.e.
cot2.��=2/ is minimal. Since for any � 2 Œ2n�1

2n
�; �/ we have ˇ�2

ˇ
cot.�=2/ � 0

with cot.�=2/ D 0 and lim�"� cotn� ! �1 and cot 2n�1
2
� D 0, it follows that

there is a unique solution �� 2 Œ2n�1
2n

�; �/ of Equation (9). Moreover, by the same
fact, cot.�=2/ D 0, this solution maximizes �2 as desired.

Sometimes it is possible to obtain a solution for Equation (9) in closed form.
Suppose ˇ D 2, then cotn�� D 0 and �� D 2n�1

2n
� . It follows

kMn.2/k2
1 D tan2

�2n� 1
4n

�
�

D cot2.�=4n/

as in [6]. If ˇ D 1 we have

�2 D 1

4 cos2.�=2/
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and

sin.2nC 1/�=2 D 0

such that �� D 2n�
2nC1

. It follows

kMn.1/k2
1 D 1

4 cos2
�

n�
2nC1

� D 1

4 sin2
�

�
4nC2

�

as in [7]. �e trivial fact kMn.0/k1 D 1 can be recovered by continuous extension
as ˇ ! 0.

4. Power-bounded operators

It is natural to ask if power-boundedness of A is su�cient to obtain estimates on




.� � A/�1




 qualitatively similar to the results of �eorem 3.1, 3.2 and Corol-
lary 3.3. In this section we prove that this is indeed the case and present a new
bound on the norm of the resolvent of a power-bounded operator.

�eorem 4.1. Let A be an n� n matrix with minimal polynomial m of degree jmj
and let k � k be an arbitrary matrix norm with supk�0 kAkk D C < 1. For any

� 2 xD � �.A/ it holds that

k.� � A/�1k � 2jmjC
D

� 4e

jB.�/j2 � 1
�1=2

;

where

D D min
�i 2�.A/

j1 � N��i j1=2.2jmj � 2jmjj�j2 C j�j2 min
�i 2�.A/

j1� N��i j/1=2

and where

B.�/ D
jmj
Y

iD1

� � �i

1� N�i�

is the Blaschke product associated with m. For j�j > 1, we have the obvious

estimate k.� � A/�1k � C
j� j�1

.

�eorem 4.1 is the analogue of Corollary 3.3 for power-bounded operators.
Spectral bounds on the norm of the resolvent of a power-bounded operator are
well studied in the literature. �eorem 6.4 of [6] treats the same problem in the
special case that A is power-bounded with respect to operator norm k�k1. In [17,
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�eorem 3.24] the behavior of




.� � A/�1




 is studied for j�j < 1 and in [29] an
upper bound is derived for j�j � 1. �eorem 4.1 uni�es the mentioned results and
yields a quantitatively better bound in each case. To compare suppose that j�j < 1
and note that in this case

1� j�j2 C 1

2jmj j�j
2 min

�i 2�.A/
j1 � N��i j � .1� j�j/2

and of course min�i 2�.A/ j1 � N��i j � 1� j�j. Hence, it follows

k.� � A/�1k �
p

8ejmjC
.1� j�j/3=2

1

jB.�/j ;

which is qualitatively the same as �eorem 3.24 in [17] but has a better numerical
prefactor. If we choose j�j D 1 it follows jB.�/j D 1 and therefore

k.� � A/�1k �
p
16e � 4 jmjC

min�i 2�.A/ j� � �i j
: (10)

�is bound improves on the result in [29] (which in turn is stronger than [6, �e-
orem 6.4]) as the new bound only grows linearly with jmj as opposed to jmj3=2

in [29]. �at for power-bounded A 2 Mn the correct asymptotic growth order
for an upper bound is O.n/ was already suspected in [6] and [31]. �e bound ob-
tained almost reaches the optimal estimate of �eorem 3.1 for Hilbert-space con-
tractions. In the latter case we have that cot. �

4n
/=n � 4

�
, while the prefactor of

(10) is
p
16e � 4 � 6:28. However, as is clear from the derivation, Inequality (10)

is not optimal. We will use Inequality (10) to study the sensitivity of a classical
or quantum Markov chain to perturbations in Section 5.

To prove �eorem 4.1 we take a similar approach as to �eorem 3.2. We note
that power-bounded operators admit a Wiener algebra functional calculus. �us
an application of Lemma 3.6 reveals that

k.� � A/�1k � C inf
°

kgkW j g 2 W; g.�i / D 1

� � �i

±

: (11)

�e strategy of our proof will be to consider one speci�c representative func-
tion g in (11) and to bound its norm. To achieve this we employ the following
method. Instead of considering g directly we choose a “smoothing parameter” r
and pass to a “stretched” interpolation function. Given any function f 2 H2 and
r 2 .0; 1/, we write

fr .z/ WD f .rz/ D
X

k�0

Of .k/rkzk
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and observe that by the Cauchy-Schwarz inequality and the Plancherel identity

kfrkW �
s

X

k�0

j Of .k/j2
r

1

1� r2
D kf kH2

r

1

1� r2
: (12)

�is idea was used to obtain bounds on the inverse and resolvent of a power-
bounded operator in [17] and to study spectral convergence bounds for bounded
semigroups in [27]. We use the Blaschke products

B.z/ D
Y

i

z � �i

1 � N�iz
and zB.z/ D

Y

i

z � r�i

1� r N�iz
;

where in the latter product the spectrum is stretched by a factor of r . (�e products
are taken over all prime factors ofm, but to avoid cumbersome notation we do not
write this explicitly.) Consider now the function g with

g.z/ D
X

k

� 1

� � �k

Q

j .1 � N�j�k/
Q

j ¤k.�k � �j /

� B.z/

z � �k

:

Note that g is analytic in the unit disc and g.�i / D 1
���i

for all �i 2 �.A/. In order
to use the estimate (12) we perform the aforementioned smoothing. We de�ne the
modi�ed function Qg by

Qg.z/ D
X

k

� 1

� � �k

Q

j .1� r2 N�j�k/
Q

j ¤k.r�k � r�j /

� zB.z/
z � r�k

and observe that Qgr enjoys the same basic properties as g i.e. Qgr is analytic in D

and Qgr .�i/ D 1
���i

for any �i 2 �.A/. �us, by Inequality (11), we have that




.� � A/�1




 � Ck QgrkW and it follows from Inequality (12) that

k QgrkW �
r

1

1 � r2
k QgkH2

:

It turns out that one can directly compute k QgkH2
. �e computation relies on two

combinatorial observations similar to Lemma 3.7, which we shall prove before we
proceed with our discussion of k QgkH2

.

Lemma 4.2. Let jmj 2 N � ¹0º and ¹�iºiD1;:::;jmj � D. Furthermore, let � 2
C � ¹�iºiD1;:::;jmj and r 2 .0; 1/. It follows that

jmj
X

iD1

1

� � �i

Q

j W j ¤l .1 � r2 N�j�i /
Q

j W j ¤i .r�i � r�j /
D r

1 � r2 N�l�

jmj
Y

iD1

1� r2 N�i�

r� � r�i

; (�)
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jmj
X

iD1

1

� � �i

1

1 � r2 N��i

Q

j .1� r2 N�j�i/
Q

j W j ¤i .r�i � r�j /

D r

1 � r2j�j2
� jmj
Y

iD1

1 � r2 N�i�

r� � r�i

�
jmj
Y

iD1

r N� � r N�i

1 � r2�i
N�

�

;

(��)

and

k Qgk2
H2

D r2

1� r2j�j2
� jmj
Y

iD1

ˇ

ˇ

ˇ

ˇ

ˇ

1 � r2 N�i�

r� � r�i

ˇ

ˇ

ˇ

ˇ

ˇ

2

� 1

�

: (� � �)

Our proof is based on the Residue theorem. (It is also possible to prove the
lemma with the second technique outlined in the proof of Lemma 3.7. However,
the approach via the Residue theorem is more convenient for the second assertion.)

Proof. For the �rst assertion set t1.z/ WD rz
r��z

1

1�r N�lz
and suppose for now that

r j�j < 1. We have that

ht1 j zBi D
Z 2�

0

rz

r� � z

1

1� r N�lz

Y

i

1 � r N�iz

z � r�i

ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

Z

@D

r

r� � z
1

1� r N�lz

Y

i

1� r N�iz

z � r�i

dz

D
X

i

1

� � �i

Q

j W j ¤l .1� r2 N�j�i /
Q

j W j ¤i .r�i � r�j /
� r

1 � r2 N�l�

Y

i

1 � r2 N�i�

r� � r�i

and that

h zB j t1i D
Z 2�

0

Y

i

z � r�i

1� r N�iz

r

r N�z � 1

z

z � r�l

ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

Z

@D

Y

i

z � r�i

1� r N�iz

r

r N�z � 1
1

z � r�l

dz

D 0:

Hence, for r j�j < 1

X

i

1

� � �i

Q

j W j ¤l .1 � r2 N�j�i /
Q

j W j ¤i .r�i � r�j /
D r

1 � r2 N�l�

Y

i

1� r2 N�i�

r� � r�i
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as claimed. An identical computation reveals that the above remains correct if
r j�j > 1 and the case r j�j D 1 follows by continuity. For the second assertion
suppose again that r j�j < 1 and set t2.z/ WD rz

r��z
1

1�r N�z
and compute

ht2 j zBi D
Z 2�

0

rz

r� � z
1

1 � r N�z
Y

i

1 � r N�iz

z � r�i

ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

Z

@D

r

r� � z
1

1 � r N�z
Y

i

1 � r N�iz

z � r�i

dz

D
X

i

1

� � �i

1

1 � r2 N��i

Q

j .1� r2 N�j�i /
Q

j W j ¤i .r�i � r�j /
� r

1 � r2j�j2
Y

i

1 � r2 N�i�

r� � r�i

:

Similarly,

h zB j t2i D 1

2�i

Z

@D

Y

i

z � r�i

1 � r N�iz

r

r N�z � 1
1

z � r� dz D r

r2j�j2 � 1
Y

i

r� � r�i

1 � r2 N�i�
:

It follows that

X

i

1

� � �i

1

1 � r2 N��i

Q

j .1 � r2 N�j�i /
Q

j Wj ¤i .r�i � r�j /

D r

1� r2j�j2

 

Y

i

1 � r2 N�i�

r� � r�i

�
Y

i

r N� � r N�i

1� r2�i
N�

!

:

�e same computations prove the validity of this statement for r j�j > 1. One can
make sense of the formula in case that r j�j D 1 by continuous extension. Using
these observations one can compute

k Qgk2
H2

D
Z 2�

0

Qg.z/ Qg.z/
ˇ

ˇ

ˇ

zDei�

d�

2�

D 1

2�i

X

k;l

1

� � �k

Q

�.1 � r2 N���k/
Q

�¤k.r�k � r��/

1

� � �l

Q

�.1 � r2 N���l/
Q

�¤l.r�l � r��/

Z

@D

1

z � r�k

1

1 � r N�lz
dz

D
X

l

 

1

� � �l

Q

�.1 � r2 N���l/
Q

�¤l.r�l � r��/

X

k

 

1

� � �k

1

1 � r2 N�l�k

Q

�.1� r2 N���k/
Q

�¤k.r�k � r��/

!!
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D
Y

i

1� r2 N�i�

r� � r�i

 

X

l

1

� � �l

r

1 � r2�l
N�

Q

�.1� r2 N���l /
Q

�¤l .r�l � r��/

!

(13)

D r2

1 � r2j�j2
Y

i

1� r2 N�i�

r� � r�i

�

Y

i

1� r2 N�i�

r� � r�i

�
Y

i

r N� � r N�i

1 � r2�i
N�

�

(14)

D r2

1 � r2j�j2

 

Y

i

ˇ

ˇ

ˇ

ˇ

ˇ

1 � r2 N�i�

r� � r�i

ˇ

ˇ

ˇ

ˇ

ˇ

2

� 1

!

;

where we used the �rst assertion of the lemma for (13) and the second assertion
for (14). Note that for all � 2 C� �.A/ and r 2 .0; 1/ the �nal quantity is real and
positive.

With this preparatory work done a proof of �eorem 4.1 is simple.

Proof of �eorem 4.1. We assume that �.A/ � D. From Equations (11), (12) and
Lemma 4.2 we have that for any � 2 C � �.A/





.� � A/�1




 � C

r

1

1 � r2
k QgkH2

D C

r

1

1� r2

v

u

u

t

r2

1� r2j�j2

 

jmj
Y

iD1

ˇ

ˇ

ˇ

ˇ

ˇ

1� r2 N�i�

r� � r�i

ˇ

ˇ

ˇ

ˇ

ˇ

2

� 1
!

:

(15)

Clearly,

jmj
Y

iD1

ˇ

ˇ

ˇ

ˇ

ˇ

1 � r2 N�i�

r� � r�i

ˇ

ˇ

ˇ

ˇ

ˇ

2

D 1

r2jmj

1

jB.�/j2
jmj
Y

iD1

ˇ

ˇ

ˇ

ˇ

1C N�i�
1� r2

1� N�i�

ˇ

ˇ

ˇ

ˇ

2

:

To obtain an upper bound we assume that � 2 xD � �.A/ and choose r 2 .0; 1/

such that

1� r2 D mini j1 � N��i j
2jmj :

It follows that

jmj
Y

iD1

ˇ

ˇ

ˇ

ˇ

1C N�i�
1 � r2

1 � N�i�

ˇ

ˇ

ˇ

ˇ

2

�
�

1C 1

2jmj
�2jmj

� e

and that (for jmj � 2)

r2jmj D
�

1 � mini j1 � N��i j
2jmj

�jmj

� .1 � 1=2/2 D 1=4:
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We conclude that

k.� � A/�1k

� C
� 2jmj

mini j1 � N��i j

�1=2

 

1

1� j�j2
�

1 � mini j1 � N��i j
2jmj

�

!1=2
� 4e

jB.�/j2 � 1
�1=2

;

which is claimed in the theorem. As always the general case �.A/ � xD follows by

continuous extension. Finally, we note that for j�j > 1 one can choose r D
q

1
j� j

in (15) and recover the obvious estimate





.� � A/�1




 � C
1

j�j � 1

 

1 �
jmj
Y

iD1

ˇ

ˇ

ˇ

ˇ

ˇ

j�j � N�i�
p

j�j� �
p

j�j�i

ˇ

ˇ

ˇ

ˇ

ˇ

2 !1=2

� C
1

j�j � 1:

5. Stability of Markov chains

If T is a classical stochastic matrix or a quantum channel (a trace-preserving and
completely positive map, see [15]) the sequence ¹T nºn�0 can be regarded as a �nite
and homogeneous classical or quantum Markov chain with transition map T . In
this section we apply �eorem 4.1 to study the stability of the stationary states of a
Markov chain to perturbations in the transition map. A core observation is that the
transition matrix of the Markov chain is power-bounded with respect to the 1–to–1
norm and constant 1, i.e. the Markov chain constitutes a bounded semigroup,
see [27]. A similar approach based on this observation was taken in [26] to prove
spectral convergence estimates for classical and quantum Markov chains. We be-
gin by recalling the basic framework of sensitivity analysis of Markov chains.
A detailed introduction, however, is beyond the scope of this article. We refer to [4]
and the references therein for an overview of the existing perturbation bounds for
classical Markov chains and to [27] for an introduction to the stability theory of
quantum Markov chains.

Let T; zT denote two classical stochastic matrices or two quantum channels.
�e inequality

k� � Q�k � �kT � zT k

relates the distance between two stationary states � and Q� arising from T and zT ,
� D T .�/; Q� D zT . Q�/, to the distance between T and zT . Commonly T is con-
sidered to be the transition matrix of the Markov chain of interest while zT is a
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small perturbation thereof. �e condition number � measures the relative sensi-
tivity of the stationary states to perturbations. If T has a unique stationary state
the above inequality quanti�es the stability of the asymptotic behavior of ¹T nºn�0

with respect to perturbations in the transition matrix. Elementary linear algebra
shows that if T has a unique stationary state one can choose (see [23, 24, 25]) the
condition number

�cl D sup
ı2Rn

.1;:::;1/�ıD0

kZ.ı/k1

kık1

; Z WD .1 � T C T1/�1

in the classical case and similarly (see [27])

�qu D sup
�D��2Mn

tr.�/D0

kZ.�/k1

k�k1

; Z WD .1 � T C T1/�1

in the quantum setup. Here, T1 denotes the projection onto the stationary state of
T and k�k1 denotes the absolute entry sum in the classical and the Schatten 1-norm
in the quantum case. In either case the spectral properties of T and T1 guarantee
that the map Z exists.

If the transition matrix has a unique stationary state and a subdominant eigen-
value of this matrix is close to 1 it is clear that the chain is ill conditioned in the
sense that the stationary state is sensitive to perturbations in the transition map.
It is a well-studied question (see [10, 25, 12, 11, 27]) whether the reverse conclu-
sion also holds, i.e. whether the closeness of the sub-dominant eigenvalues of T
to 1 provides complete information about the sensitivity of ¹T nºn�0. It was estab-
lished that this is indeed the case by deriving spectral lower and upper bounds for
certain choices of �. In particular, as shown in [25] it holds that

1

min�i 2�.T �T 1/ j1 � �i j
� �cl � n

min�i 2�.T �T 1/ j1 � �i j
:

A similar quantum bound occurs in [27].
�e techniques developed in this article yield a direct approach to spectral

stability estimates in both the classical and quantum case. �e core observation
is that if T is a stochastic matrix or a quantum channel the map T � T1 is power
bounded with (see [26] Lemma III.1)

k.T � T1/nk1!1 D kT n � .T1/nk1!1 � kT nk1!1 C k.T1/nk1!1 � 2;

where kAk1!1 D supv
kAvk1

kvk1
. With an application of Inequality (10) we conclude

that

�cl � kZk1!1 � 2
p
16e � 4n

min�i 2�.T �T 1/ j1� �i j
;
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which is qualitatively the same as the estimate in [25] but has a worse numerical
prefactor (2

p
16e � 4 instead of 1). However, the bound in [25] uses the additional

properties a classical stochastic matrix has as well as the fact that the supremum
in the de�nition of �cl is taken over vectors with 0 column sum. Our bound proves
that in this case power-boundedness alone is su�cient and the additional assump-
tions on T and �cl are basically super�uous. Other spectral stability estimates for
classical Markov chains such as [10] are weaker than (10). In the quantum context
we can use Inequality (10) to improve on the spectral stability estimates of [27].

�eorem 5.1. Let T be a trace-preserving, positive linear map on Mn and ƒ WD
�.T / � ¹1º the set of its non-unit eigenvalues. �en

1

min�i 2ƒ j1 � �i j
� �qu � 2

p
16e � 4n2

min�i 2ƒ j1 � �i j
:

�e proof of the theorem is identical as in [27] up to an application of (10)

instead of the theorem in [29].
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