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Square-summable variation

and absolutely continuous spectrum

Milivoje Lukic1

Abstract. Recent results of Denisov [5] and Kaluzhny–Shamis [9] describe the absolutely

continuous spectrum of Jacobi matrices with coe�cients that obey an `2 bounded variation

condition with step p and are asymptotically periodic. We extend these results to orthog-

onal polynomials on the unit circle. We also replace the asymptotic periodicity condition

by the weaker condition of convergence to an isospectral torus and, for p D 1 and p D 2,

we remove even that condition.
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1. Introduction

Let � be a Borel probability measure on the unit circle @D, whose support is not

a �nite set. Orthonormalizing the sequence 1; z; z2; : : : with respect to � leads to

the sequence of orthonormal polynomials 'n.z/, n D 0; 1; 2; : : : . �ey, and the

reversed polynomials

'�
n .z/ D zn'n.1= Nz/; (1.1)

obey the Szegő recursion relation, which can be written in matrix form as

�

'nC1.z/

'�
nC1.z/

�

D A.˛n; z/

�

'n.z/

'�
n .z/

�

;

where ˛n 2 D is called a Verblunsky coe�cient and

A.˛; z/ D 1
p

1 � j˛j2

�

z � N̨
�˛z 1

�

:

1 Supported in part by NSF grant DMS-1301582.
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By Verblunsky’s theorem, this determines a 1-1 correspondence between the mea-

sure � and its sequence of Verblunsky coe�cients ˛ D ¹˛nº1
nD0 2 D

1. Con-

versely, one may start from the sequence ˛ and construct a unitary �ve-diagonal

matrix, called a CMV matrix, whose canonical spectral measure is precisely �;

see [2, 18] for details.

If � has the Lebesgue decomposition

d� D w.�/
d�

2�
C d�s;

the main goal will be to describe the essential support of w.�/, de�ned as

†ac.�/ D ¹ei� 2 @D j w.�/ > 0º

(or, more precisely, the equivalence class up to sets of Lebesgue measure zero of

this set). �e topological support of the absolutely continuous part of � is then

well known to be

supp.wdx/ D †ac.�/
ess
;

where NBess denotes the essential closure of B , i.e. the set of ei� 2 @D such that

j¹ei� 2 B j � 2 .� � �; �C �/ºj > 0 for all � > 0. �is set is exactly the absolutely

continuous spectrum of the corresponding CMV matrix; see [6] for an expository

discussion.

�is paper focuses on Verblunsky coe�cients such that for some p 2 N,

1
X

nD0

j˛nCp � ˛nj2 < 1: (1.2)

A conjecture, made by Simon [19, Conjecture 12.1.12] for p D 1 and by Last [12]

for discrete Schrödinger operators, postulates that (1.2) together with

lim
n!1

˛n D 0

implies that ess suppw D @D. All the previously known results are in the setting

of Jacobi matrices: a signi�cant partial result was shown by Kupin [10], and the

full result for discrete Schrödinger operators was proved by Denisov [5] (who also

proved the result for continuum Schrödinger operators [4]). �e method of [5] was

generalized by Kaluzhny–Shamis [9] to asymptotically periodic Jacobi matrices,

with the result that the a.c. spectrum is equal to the essential spectrum for the

limiting periodic sequence. A later version of the conjecture, by Breuer–Last–

Simon [1, Conjecture 9.5], concerns the situation when the asymptotic periodicity
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condition is removed. Here a sequence ˛ is asymptotically periodic if for every

n 2 N0, the limit

lim
k!1

˛kpCn D ˇn (1.3)

exists.

In this paper, we extend the method and results of [5, 9] to orthogonal polyno-

mials on the unit circle. We also generalize those results, relaxing condition (1.3),

which we consider the main contribution of this paper. �e corresponding results

for Jacobi matrices will be discussed in a forthcoming joint paper with Yoram

Last [13].

To motivate our goal of relaxing condition (1.3), note that existence of the limit

in (1.3) does not follow from (1.2); rather, it is an additional technical assumption.

In contrast, the corresponding statement for the `1 variation condition

1
X

nD0

j˛nCp � ˛nj < 1 (1.4)

instead of (1.2) was proved by Golinskii–Nevai [7], who used condition (1.3);

however, unlike (1.2), (1.4) implies existence of the limit (1.3), so in that setting,

equation (1.3) was not an additional assumption.

In the results that follow, it will be convenient to assume

sup
n!1

j˛nj < 1: (1.5)

�ere is no loss in this assumption, since by Rakhmanov’s lemma [17], [19, �eo-

rem 4.3.4], supn!1j˛nj D 1 implies ess suppw D ;.

We will use the standard notation

�n D
p

1 � j˛nj2:

For small p, we can describe ess suppw without any convergence condition:

�eorem 1.1. Let (1.2) hold for p D 1 and assume (1.5). �en

†ac.�/ D ¹ei� j � 2 Œ2 arcsinA; 2� � 2 arcsinA�º; (1.6)

where A D lim supn!1j˛nj. Moreover, for any closed arc I � Int.†ac.�/ n ¹1º/,
Z

I

logw.�/
d�

2�
> �1: (1.7)
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�eorem 1.2. Let (1.2) hold for p D 2 and assume (1.5). �en

†ac.�/ D
°

ei� 2 @D
ˇ

ˇ

ˇ �AC < cos � < A�

±

; (1.8)

where

A˙ D lim inf
m!1

.�2m�2mC1 ˙ Re.˛2m N̨2mC1// :

Moreover, (1.7) holds for any closed arc I � Int.†ac.�/ n ¹�1; 1º/.

Remark 1.1. It is possible to have �AC � A�, and in that case, (1.8) is the empty

set. Otherwise, it is a union of two arcs symmetric about R.

Remark 1.2. �e preceding theorems sometimes yield arcs with purely singular

spectrum. In the setting of �eorem 1.1, a result of Last–Simon [15, �eorem 3.1]

for essential spectra of right limits implies that the essential spectrum is

¹ei� j � 2 Œ2 arcsinA; 2� � 2 arcsinA�º

where A D lim infn!1j˛nj. If A < A, this is strictly greater than the set (1.6), so

the complement supports a purely singular part of the measure.

Remark 1.3. �e condition 1 … I in �eorem 1.1 and �1; 1 … I in �eorem 1.2 is

not an artifact of the method, but a real phenomenon. �is may be seen from the

Szegő theorem for the unit circle,

˛ 2 `2 ()
Z

@D

logw.�/
d�

2�
> �1:

In the context of �eorem 1.1, this implies that if
P1

nD0j˛nC1 � ˛nj2 < 1 and

limn!1 ˛n D 0 but ˛ … `2, (1.7) holds for closed arcs with 1 … I , so it must fail

for all arcs with 1 2 Int I , even though ess suppw D @D.

Another point of view is provided by a higher order Szegő theorem due to

Simon [20, Section 2.8],

˛ 2 `4;

1
X

nD0

j˛nC1 � ˛nj2 < 1 ()
Z

@D

.1� cos �/ logw.�/
d�

2�
> �1:

�us, for ˛ 2 `4 n `2 and 1 2 Int I , (1.7) fails but a weighted condition holds.

Similarly, the necessity of singling out �1; 1 in �eorem 1.2 can be seen from

Szegő’s theorem and a higher order Szegő theorem of Simon–Zlatoš [21],

˛ 2 `4;

1
X

nD0

j˛nC2 � ˛nj2 < 1 ()
Z

@D

.1� cos2 �/ logw.�/
d�

2�
> �1:

For more on higher order Szegő theorems, see [20, Section 2.8], [11], [21], [8],

and [16].



Square-summable variation and absolutely continuous spectrum 819

As we will see later, the cases p D 1 and p D 2 are special because for those

values of p, closed gaps of p-periodic sequences can only occur at p-th roots of

unity. For larger values of p, to exactly describe ess suppw, we will assume con-

vergence to an isospectral torus. Last–Simon [15] and Damanik–Killip–Simon [3]

analyzed perturbations of periodic Jacobi and CMV matrices and their work shows

that convergence to an isospectral torus, rather than asymptotic periodicity, is the

natural generalization of decaying perturbations of the free case. We now review

the necessary de�nitions.

For m 2 N0, de�ne Sm˛ D ¹˛nCmº1
nD0. A sequence ˛.r/ D ¹˛.r/

n º1
nD�1 2

D
1 is called a right limit of ˛ if there is a sequence nj 2 Z, nj ! C1, such that

Snj˛ converges pointwise to ˛.r/, i.e. for all n 2 Z,

lim
j !1

˛nCnj
D ˛.r/

n :

When (1.5) holds, a compactness argument shows that ˛ has at least one right

limit; the same argument shows that for every sequence nj ! C1 there exists a

pointwise convergent subsequence.

Condition (1.2) implies

lim
n!1

j˛nCp � ˛nj D 0; (1.9)

which implies that all right limits of ˛ are p-periodic since

˛
.r/
nCp � ˛.r/

n D lim
j !1

.˛nCpCnj
� ˛nCnj

/ D 0:

If ¹
nº1
nD0 � D

1 is p-periodic, its discriminant is de�ned as

�.z/ D z�p=2 tr
�

A.
p�1; z/A.
p�2; z/ : : :A.
0; z/
�

: (1.10)

For odd values of p, this has an ambiguity in the choice of branch of z�p=2; this

does not a�ect the statements below. It is well known [19, Chapter 11] that the

CMV matrix corresponding to Verblunsky coe�cients 
 has essential spectrum

e D ¹z 2 @D j �.z/ 2 Œ�2; 2�º

and that this set is a union of p arcs on @D.

�e isospectral torus of e, denoted Te, is the set of all p-periodic sequences

whose essential spectrum is equal to e. It is known that this set is generically a

p-dimensional torus and that all elements of the isospectral torus have the same

discriminant, which we will denote by �e.z/.
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To de�ne convergence to an isospectral torus, we need a metric on D
1,

d.˛; 
/ D
1

X

nD0

e�nj˛n � 
nj;

which has the property that convergence in d is equivalent to pointwise conver-

gence. �en ˛ is said to converge to Te if and only if

lim
m!1

d.Sm˛;Te/ D 0:

�is is equivalent to saying that every accumulation point of ¹Sm˛º1
mD0 lies on

Te. Since accumulation points of Sm˛ are precisely right limits, ˛ converges to

the isospectral torus Te if and only if all of its right limits lie on Te.

By [15], convergence to the isospectral torus Te implies ess supp� D e. With

our square-summable variation condition (1.2), we can say the same of ess suppw:

�eorem 1.3. Let (1.2) hold for some p 2 N and assume (1.5). If ¹˛nº1
nD0 con-

verges to the isospectral torus Te, then

†ac.�/ D e: (1.11)

Moreover, (1.7) holds for any closed arc I � e such that j�e.z/j < 2 for all z 2 I .

All the above theorems will easily follow from our main result, an existence

result for a.c. spectrum. �is result does not require any convergence condition,

so right limits will in general have di�erent discriminants. We therefore de�ne, as

the supremum over all right limits of ˛,

L.z/ D sup
.r/

j�.r/.z/j: (1.12)

In Lemma 3.2 below, we will see that (1.5) implies that L.z/ is �nite, that the sup

is really a max and that L.z/ is continuous.

�eorem 1.4. Let (1.2) hold for some p 2 N and assume (1.5). If I � @D is a

closed arc such that

max
z2I

L.z/ < 2; (1.13)

then (1.7) holds. �us,

¹z 2 @D j L.z/ < 2º � †ac.�/ � ¹z 2 @D j L.z/ � 2º (1.14)

and

¹z 2 @D j L.z/ < 2º � supp.wdx/ � ¹z 2 @D j L.z/ � 2ºess
: (1.15)
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�e proof of the lower estimate for †ac.�/ will take up most of the paper,

whereas the upper estimate will be an immediate corollary of a Last–Simon result

for a.c. spectra of right limits.

Most of the paper will be dedicated to proving �eorem 1.4. Section 2 reviews

well known properties of p-step transfer matrices and modi�es them in a way

which will be needed later. Section 3 establishes various uniform estimates, which

are needed in place of convergence. �ese estimates are used in Section 4 to uni-

formly diagonalize the transfer matrices. Section 5 introduces weak approximants

for � and relates their absolutely continuous parts to certain Weyl solutions. Sec-

tion 6 completes the proof of �eorem 1.4, using the method of [5, 9] with neces-

sary modi�cations. Section 7 uses �eorem 1.4 to prove �eorems 1.1, 1.2, 1.3.

2. p-step transfer matrices

Let 
0; : : : ; 
p�1 2 D, and let us de�ne ap-step transfer matrix and its discriminant

by

ˆ.z/ D A.
p�1; z/A.
p�2; z/ : : :A.
0; z/;

�.z/ D z�p=2 trˆ.z/:

�e sign ambiguity that arises for oddp can be dealt with in any of several standard

ways, such as sieving [18, Example 1.6.14] or treating � as a function of z1=2 or as

a two-valued function. Our analysis will work on a �xed arc I , on which we can

�x a branch of zp=2 throughout the proof.

�eorem 2.1 ([19, Sections 11.1–11.2]). (i) detˆ.z/ D zp;

(ii) � is analytic in C n ¹0º;
(iii) z 2 @D implies �.z/ 2 R and iz�0.z/ 2 R;

(iv) �.z/ 2 Œ�2; 2� implies z 2 @D;

(v) �.z/ 2 .�2; 2/ implies �0.z/ ¤ 0.

�ese statements are usually made in the context of p-periodic Verblunsky co-

e�cients, where �.z/ is precisely the discriminant of the corresponding measure

(compare with (1.10)). However, they can be viewed as merely facts about the

p-step transfer matrix ˆ.z/.

Rather than working directly with ˆ.z/, we will alter it slightly. Let

M D 1p
2

�

1 1

1 �1

�

:
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�en M D M�1 D M�. We introduce ẑ .z/ and its entries a.z/; b.z/; c.z/; d.z/

by

ẑ .z/ D z�p=2Mˆ.z/M D
�

a.z/ b.z/

c.z/ d.z/

�

: (2.1)

�is has several useful properties, listed in the following theorem.

�eorem 2.2. (i) det ẑ .z/ D 1;

(ii) tr ẑ .z/ D �.z/;

(iii) if jzj D 1, then a.z/; ib.z/; ic.z/; d.z/ 2 R;

(iv) if �.z/ 2 .�2; 2/, then c.z/ ¤ 0.

Proof. (i) and (ii) follow from �eorem 2.1(i) and cyclicity of trace.

To prove (iii), denote by 'p.z/ and  p.z/ the orthogonal and second kind or-

thogonal polynomials. It is known that

ˆ D 1
2

�

'p C  p 'p �  p

'�
p �  �

p '�
p C  �

p

�

so (2.1) implies

ẑ D 1
2
z�p=2

�

'p C '�
p  p �  �

p

'p � '�
p  p C  �

p

�

:

If jzj D 1, (1.1) implies '�
p .z/ D zp'p.z/. �us,

c.z/ D 1
2
z�p=2.'p.z/ � zp'p.z// D i Im.z�p=2'p.z//:

Claims for a.z/; b.z/; d.z/ are proved analogously.

(iv) is just [19, �eorem 11.3.1] in disguise.

�is simple trick of conjugating byM does not seem to be present in the liter-

ature; however, it has the useful properties (iii) and (iv) above. While (iii) will be

convenient in several places, (iv) will be crucial to our diagonalization procedure

in Section 4.

3. Estimates on transfer matrices

We de�ne the p-step transfer matrix between mp and .mC 1/p and its rescaled

trace,

ˆm.z/ D A.˛.mC1/p�1; z/A.˛.mC1/p�2; z/ : : :A.˛mp ; z/

�m.z/ D z�p=2 trˆm.z/
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Following (2.1), we also introduce ẑ
m.z/ and am.z/; bm.z/; cm.z/; dm.z/ by

ẑ
m.z/ D z�p=2Mˆm.z/M D

�

am.z/ bm.z/

cm.z/ dm.z/

�

:

In this section, we make some preliminary observations about the ẑ
m.z/ and

relate them to L.z/. �ey are mostly uniformness statements, necessary because

we don’t assume that ẑ
m.z/ converge and cannot apply local arguments around

the limit.

We begin with a preliminary observation: although the notation ˆm.z/ is

convenient, we will also �nd it useful to think about ˆm.z/ as a function of

˛mp ; ˛mpC1; : : : ; ˛.mC1/p�1 and z, with no m-dependence except through the ˛’s.

�e same holds for ẑ
m.z/, its entries, and some functions to be introduced later.

Lemma 3.1. ˆm.z/ is an analytic function of real and imaginary parts of ˛mp ,

˛mpC1; : : : ; ˛.mC1/p�1 2 D and an analytic function of z 2 C n ¹0º. �e same is

true of ẑ
m.z/, am.z/, bm.z/, cm.z/, dm.z/ and �m.z/.

For any such function fm.z/, if (1.5) holds, then for any R < 1, there is a

constant C < 1 such that for all m � 0 and z 2 xDR n D1=R,

jfm.z/j � C; (3.1)

jfmC1.z/ � fm.z/j � C

p�1
X

kD0

j˛.mC1/pCk � ˛mpCk j: (3.2)

In particular, if (1.2) also holds, then

1
X

mD0

jfmC1.z/ � fm.z/j2 < 1: (3.3)

Proof. �e entries of A.˛mpCk ; z/ have the listed analyticity properties. �us,

so do entries of their products ˆm.z/, and by their de�nitions, so do the other

functions listed.

By (1.5), we are working with parameters z 2 xDR n D1=R and ˛mpCk 2 xDr ,

with r D supnj˛nj < 1. Compactness of this set of parameters, together with

analyticity of fm.z/, implies (3.1) and implies that the partial derivatives of f in

Re ˛mpCk and Im ˛mpCk are bounded. Boundedness of these partial derivatives

implies (3.2) by the mean value theorem. Equation (3.3) follows immediately from

(3.2) and (1.2).
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�e following lemma relates L.z/ to the �m.z/ and establishes its properties.

Lemma 3.2. Assume that (1.5) and (1.9) hold. �en for all z 2 C n ¹0º, L.z/ is a

�nite number,

L.z/ D lim sup
m!1

j�m.z/j; (3.4)

and the sup in (1.12) is actually a max (i.e. for every z ¤ 0 there is a right limit for

which j�.r/.z/j D L.z/). Moreover, for any R < 1, L.z/ is Lipschitz continuous

on ¹z 2 C j R�1 � jzj � Rº.

Proof. Let us de�ne

L.z/ D lim sup
m!1

j�m.z/j:

�is quantity is �nite for z 2 C n ¹0º by (3.1) applied to �m.z/.

Let �.r/ be the discriminant for the right limit ˛.r/ corresponding to indices

¹nj º1
j D1. By passing to a subsequence, make the sequence constant modulo p, i.e.

nj D mjpC q; this is possible for some choice of q 2 ¹0; 1; : : : ; p� 1º. Cyclicity

of trace, together with (1.10) and p-periodicity of ˛.r/, gives

j�.r/.z/j D jz�p=2 tr.A.˛
.r/
2p�q�1; z/A.˛

.r/
2p�q�2; z/ : : :A.˛

.r/
p�q ; z//j:

�us, by ˛
.r/
n D limj !1 ˛nj Cn and continuity of A.˛; z/ in ˛ 2 D,

j�.r/.z/j D lim
j !1

j�mj C1.z/j � L.z/:

Since this holds for every right limit, we conclude L.z/ � L.z/.

For the opposite inequality, �x z and let mk be a sequence of integers with

limk!1j�mk
.z/j D L.z/. By (1.5) and compactness, a subsequenceof ¹mkpº1

kD1

gives rise to a right limit ˛.r/; for this right limit, j�.r/.z/j D L.z/. �is shows

that L.z/ D L.z/ < 1 and that the sup in (1.12) is a max.

Denote r D supnj˛nj < 1. By Lemma 3.1,�m.z/ is an analytic function of real

and imaginary parts of ˛mp ; : : : ; ˛.mC1/p�1 2 xDr and of z 2 xDR nD1=R. Since this

set of parameters is compact, we conclude that the�m.z/ are uniformly Lipschitz

continuous in z 2 xDR n D1=R. As the lim sup of uniformly Lipschitz continuous

functions, L.z/ is also Lipschitz continuous.

Remark 3.1. If lim supn!1j˛nj D 1, one may be inclined to de�neL.z/ by (3.4).

However, some of the above properties would no longer be true. For instance, for

p D 1, j�m.z/j D jzC1jp
1�j˛mj2

, so lim supn!1j˛nj D 1 would imply

L.z/ D
´

0 z D �1;
C1 z ¤ �1;

which is no longer �nite or continuous.
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Lemma 3.3. Assume (1.5) and (1.9) and let I � @D be a closed arc such that

equation (1.13) holds. �en there exist m0 2 N0, s; t 2 ¹�1;C1º, � 2 .0; 1/ and

C > 0 such that for all m � m0 and z 2 �,

j�m.z/j � 2� C; (3.5)

s Im
�

z�0
m.z/

�

� C; (3.6)

C � t Im .cm.z// � jcm.z/j � C�1; (3.7)

where

� D ¹rei� j ei� 2 I; r 2 Œ1 � �; 1�º: (3.8)

Proof. �e upper bound for jcm.z/j follows from Lemma 3.1. For the other esti-

mates, it su�ces to �nd m0; s; t; C such that they are true for � D I ; by uniform

Lipschitz continuity of �m, �0
m, cm, the estimates will then, with a change of C ,

also hold on the set � given by (3.8) for a small enough � > 0. �erefore, in the

remainder of this proof, we work with � D I .

To prove (3.5), assume, on the contrary, that there are sequences mk ! 1,

zk 2 I with j�mk
.zk/j � 2. By compactness of I we may pass to a subsequence

such that zk ! z1 2 I ; since the �m are uniformly Lipschitz continuous, this

implies L.z1/ � 2, which is a contradiction with (1.13).

To prove (3.6), let us �rst prove that

inf
m�m0

min
z2I

j�0
m.z/j > 0 (3.9)

for large enough m0. If this was false, there would exist sequences mk ! 1,

zk 2 I with�0
mk
.zk/ ! 0. Passing to a subsequence with zk ! z1, since�0

m are

uniformly Lipschitz continuous, gives limk!1�0
mk
.z1/ D 0. By compactness,

we may pass to a further subsequence so thatSmkp˛ converges pointwise to a right

limit ˛.r/. For that right limit, �.r/0.z1/ D 0 but �.r/.z1/ < 2. �is contradicts

�eorem 2.1(v), proving (3.9).

By (3.5) and �eorem 2.1, we know that

iz�0
m.z/ D @

@�
�m.z/

is real and nonzero for z D ei� 2 I . Denote by ı the inf in (3.9). A change of sign

of iz�0
m.z/ between m and mC 1 then requires

ˇ

ˇiz�0
mC1.z/ � iz�0

m.z/
ˇ

ˇ � 2ı: (3.10)
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Inequality (3.2) applied to �0
m.z/, together with (1.9), implies that (3.10) is im-

possible for large enoughm, so we conclude that sgn.iz�0
m.z// is eventually con-

stant. �erefore, after possibly adjusting m0, we may assume that sgn.iz�0
m.z//

is constant for all m � m0 and z 2 I ; combining this with (3.9) gives (3.6).

�e lower bound in (3.7) is proved analogously to (3.6), using �eorem 2.2(iv)

and reality of icm.z/ on I (by �eorem 2.2(iii)).

4. Diagonalization of transfer matrices

We start with a closed arc I � @D such that (1.13) holds. Following Lemma 3.3,

we pick m0 2 N0, � > 0, s; t 2 ¹�1;C1º such that (3.5), (3.6), and (3.7) hold on

� given by (3.8).

�e goal of this section is to diagonalize the ẑ
m.z/ for m � m0 and z 2 � in

a way which obeys the necessary uniform estimates in z and m. Our �rst lemma

provides uniform estimates on solutions of �2 ���C 1 D 0. �e second lemma

uses this to produce uniform estimates for eigenvalues of ẑ
m.z/.

Lemma 4.1. For j�j < 2, let

�˙.�/ D �˙ i
p
4 ��2

2

be the solutions of �2 ���C 1 D 0, taking the branch of
p

on C n .�1; 0� such

that
p
1 D 1. For any � > 0, there is a value of C > 0 such that

(i) j�j � 2� � and Im� � 0 implies

j�C.�/j � 1C C Im�; j��.�/j � 1� C Im�I

(ii) j�j � 2� � and Im� � 0 implies

j�C.�/j � 1C C Im�; j��.�/j � 1� C Im�I

(iii) j�j � 2� � implies

Im�C.�/ � C; Im ��.�/ � �C:
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Proof. Denote� D xC iy with x; y 2 R. �en @�
@y

D i , @ N�
@y

D �i , so we compute

@

@y
j�Cj2 D @

@y
. N�C�C/ D 1

2
Re

�

. N� � i
p

4� N�2/
�

i C �p
4��2

��

;

which becomes

@

@y
j�Cj2 D y.j4 ��2j C 4C j�j2/C .j�j2 C j4 ��2j/Re

p
4 ��2

2j4 ��2j > 0

when j�j < 2 and y � 0. Using �C�� D 1, this implies

@

@y
j�Cj D 1

2j�Cj
@

@y
j�Cj2 > 0;

@

@y
j��j D � 1

2j�Cj3
@

@y
j�Cj2 < 0;

when y � 0. Continuity and compactness imply that for some C > 0,

@

@y
j�Cj � C;

@

@y
j��j � �C;

uniformly in�with j�j � 2�� and y � 0. Integrating in y and using j�˙.�/j D 1

for � 2 .�2; 2/ implies (i).

(ii) follows from (i) and �˙. N�/ D ��.�/.

Note that �C 2 R would imply �� D 1
�C

2 R and j�j D j�C C 1
�C

j � 2,

which is a contradiction. Continuity and �C.0/ D i D ���.0/ then imply

Im �C.�/ > 0 > Im��.�/

for j�j � 2� �. By continuity and compactness, (iii) holds for some C > 0.

Remark 4.1. A part of the above calculations could have been skipped by only

computing @
@y

j�Cj2 for y D 0 and restricting the lemma to jIm�j � � for some

�. However, to apply that to �m, we would then need a uniform upper bound

for Im�m.z/ in what follows. We chose instead to prove Lemma 4.1 in more

generality.

We use the above lemma to choose an eigenvalue of ẑ
m.z/ in a consistent way:

Lemma 4.2. With s as in (3.6), de�ne

�m.z/ D
´

�C.�m.z// s D C1
��.�m.z// s D �1
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�en �m.z/ and ��1
m .z/ are the eigenvalues of ẑ

m.z/, and they obey the following

estimates for some C > 0, uniformly in m � m0, z 2 �:

C � s Im �m.z/ � j�m.z/j � 1� C.1� jzj/; (4.1)

s Im��1
m .z/ � �C: (4.2)

Proof. �m.z/ and ��1
m .z/ are eigenvalues of ẑ

m.z/ since det ẑ
m.z/ D 1 and

tr ẑ
m.z/ D �m.z/. Note that

@

@r
�m.re

i�/ D ei��0
m.re

i�/

so, taking imaginary parts and multiplying by s,

s
@

@r
Im�m.re

i�/ D s

r
Im.rei��0

m.re
i�// � C

for some C > 0 independent of m and z, by (3.6). Integrating in r , together with

Im�m.e
i�/ D 0, gives

�s Im�m.re
i�/ D

Z 1

r

s
@

@r
Im�m.te

i�/dt � C.1� r/:

Combining this with Lemma 4.1(i),(ii) implies the upper bound in (4.1) (with a

di�erent value of C > 0). �e bounds on s Im�˙1
m .z/ follow from Lemma 4.1(iii).

We wish to diagonalize ẑ
m as

ẑ
m.z/ D Um.z/ƒm.z/Um.z/

�1; ƒm.z/ D
�

�m.z/ 0

0 ��1
m .z/

�

so columns of Um should be eigenvectors of ẑ
m. We choose Um.z/ as

Um.z/ D
�

�m.z/ � dm.z/ ��1
m .z/ � dm.z/

cm.z/ cm.z/

�

: (4.3)

�e determinant of Um.z/ is

detUm D .�m � ��1
m /cm;

which is non-zero since in the region of interest, cm.z/ ¤ 0 and �m.z/ ¤ ��1
m .z/

(this follows from (3.7) and Lemma 4.2). We also compute

U�1
m D 1

.�m � ��1
m /cm

�

cm dm � ��1
m

�cm �m � dm

�

(4.4)

and we de�ne

Wm D U�1
m UmC1 � I:
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Lemma 4.3. For some value of C < 1, uniformly inm � m0 and z 2 � we have

kWmk � C

p�1
X

kD0

j˛.mC1/pCk � ˛mpCk j: (4.5)

Proof. From the de�nitions of �m.z/ and Um.z/ and Lemma 3.1, it is clear that

�m.z/ and Um.z/ have the same properties listed in that lemma. �erefore, for

some C < 1, we have kU�1
m k � C and

kUmC1 � Umk � C

p�1
X

kD0

j˛.mC1/pCk � ˛mpCk j:

Now (4.5), with a di�erent C , follows from Wm D U�1
m .UmC1 � Um/.

5. Approximants and Weyl solutions

In this section, we carry over an idea of Kaluzhny–Shamis [9] to introduce ap-

proximants to�with eventually periodic sequences of coe�cients, and relate their

absolutely continuous parts to certain Weyl solutions.

De�ne the measure �N , N D 0; 1; : : : , so that its �rst .N C 1/p Verblunsky

coe�cients agree with those of �, and extending the sequence by p-periodicity

after that; i.e., the Verblunsky coe�cients of �N are

˛N
mpCr D

8

<

:

˛mpCr m < N; r D 0; 1; : : : ; p � 1

˛NpCr m � N; r D 0; 1; : : : ; p � 1
(5.1)

We will also denote other quantities corresponding to �N with the superscript

N ; for instance, the p-step transfer matrices corresponding to �N are, by (5.1),

ˆN
m D ˆmin.N;m/, and the modi�ed transfer matrices are

ẑ N
m .z/ D ẑ

min.N;m/.z/:

For N � m0, we now single out a solution uN .z/ of the recursion relation

uN
nC1.z/ D ẑ N

n .z/u
N
n .z/:

Since all ẑ
n are invertible, we can specify the solution by setting its value at

n D N ,

uN
N .z/ D

�

�N .z/ � dN .z/

cN .z/

�

: (5.2)
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Let �N have the Lebesgue decomposition

d�N D wN d�

2�
C d�N

s :

We will now describe wN in terms of uN .

Lemma 5.1. Let N � m0. For every z 2 I , .uN
0 /2.z/ ¤ 0. For Lebesgue-a.e.

z 2 I ,

wN .z/ D � icN .z/ Im�N .z/

j.uN
0 /2.z/j2

: (5.3)

Remark 5.1. By �eorem 2.2(iii), we already know that the right hand side of

equation (5.3) is real-valued. In fact, comparing wN .z/ � 0 with (3.7) and (4.1)

gives s D t . �is observation will not be needed in what follows.

Proof. For jzj D 1, the relation A.˛; z/�JA.˛; z/ D J holds for all ˛ 2 D, where

J D
�

1 0

0 �1

�

:

�is implies ˆn.z/
�Jˆn.z/ D J , and then ẑ

n.z/
� zJ ẑ

n.z/ D zJ , where

zJ D MJM D
�

0 1

1 0

�

:

�is implies constancy of the Wronskian in the form

huN
0 .z/;

zJuN
0 .z/i D huN

N .z/;
zJuN

N .z/i;

which simpli�es to

2Re..uN
0 /1.z/.u

N
0 /2.z// D 2Re..uN

N /1.z/.u
N
N /2.z//:

Using (5.2) and �eorem 2.2(iii), this simpli�es to

2Re..uN
0 /1.z/.u

N
0 /2.z// D �2icN .z/ Im�N .z/: (5.4)

In particular, by (3.7) and (4.1), this implies that .uN
0 /1.z/.u

N
0 /2.z/ ¤ 0 for z 2 I .

From ẑ N
n u

N
N D �Nu

N
N for n � N and j�N j < 1 it follows that znq=2MuN

n is

a Weyl solution for jzj < 1 (see [20, Section 2.3] for de�nition and properties).

However, recall that

vn D ˆN
n�1 � � �ˆN

0

�

1

zf N .z/

�



Square-summable variation and absolutely continuous spectrum 831

is also a Weyl solution for jzj < 1, where f N is the Schur function for �N . �e

Caratheodory function for �N is

FN .z/ D 1C zf N .z/

1 � zf N .z/
;

which we rewrite as

M

�

1

zf N .z/

�

D 1p
2

�

1C zf N .z/

1 � zf N .z/

�

D 1� zf N .z/p
2

�

FN .z/

1

�

:

Since Weyl solutions are unique up to a multiplicative constant, we conclude that
�

F N .z/
1

�

is a multiple of uN
0 , so

FN .z/ D .uN
0 /1.z/

.uN
0 /2.z/

:

For almost every z 2 @D, the nontangential limit of ReFN .z/ is equal to wN .z/,

so

wN .ei�/ D lim
r"1

Re
.uN

0 /1.re
i�/

.uN
0 /2.re

i�/
:

�e limit exists for all ei� 2 I because uN
N , and so uN

n for every n, is continuous

in z 2 �. Using (5.4), this simpli�es to (5.3).

6. Conclusion of the proof of �eorem 1.4

We carry over the method of Denisov [5] and Kaluzhny and Shamis [9] to OPUC,

with the modi�cations necessary to handle the lack of asymptotic convergence.

Coe�cient stripping is the process of removing the leading Verblunsky coef-

�cient, i.e. replacing a measure � with Verblunsky coe�cients ˛ by the measure

�1 with Verblunsky coe�cients S˛. It is well known that this operation does not

a�ect the validity of conclusions of �eorem 1.4; for instance, this follows from

properties of the relative Szegő function [20, �eorem 2.6.2].

We can use this to perform coe�cient stripping �nitely many times and prove

the result for the measure obtained in this way, from which the result for the orig-

inal measure will follow. �us, in the following we may assume that all the above
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estimates, derived for m � m0, now hold for all m � 0. By additional coe�cient

stripping, we may also assume that

1
X

nD0

kWnk2 < ı (6.1)

for a suitably chosen ı > 0 (to be chosen later).

�e recursion relation for uN
n , solved backwards, gives

uN
0 D ẑ �1

0 � � � ẑ �1
N �1u

N
N :

Using the diagonalization of ẑ
n, this becomes

uN
0 D U0ƒ

�1
0 U�1

0 � � �UN �1ƒ
�1
N �1U

�1
N �1u

N
N :

A direct calculation shows U�1
N uN

N D
�

1
0

�

, so

U�1
0 uN

0 D ƒ�1
0 .I CW0/ � � �ƒ�1

N �1.I CWN �1/

�

1

0

�

: (6.2)

We will now need a lemma of Denisov [5], made precisely to estimate such

products.

�eorem 6.1 ([5, �eorem 2.1]). Let

‰nC1 D
�

�n 0

0 ��1
n

�

.I CWn/‰n; Wn D
�

en fn

gn hn

�

; ‰0 D
�

1

0

�

(6.3)

where �n 2 C,

C > j�nj > � > 1; (6.4)

and the sum
P1

nD0kWnk2 is �nite and su�ciently small. Assume also there is a

constant v 2 Œ0; 1/ such that

ˇ

ˇ

ˇ

ˇ

ˇ

log

l
Y

nDk

j1C enj
ˇ

ˇ

ˇ

ˇ

ˇ

� C C Cv
p
l � k;

ˇ

ˇ

ˇ

ˇ

ˇ

log

l
Y

nDk

j1C hnj
ˇ

ˇ

ˇ

ˇ

ˇ

� C C Cv
p
l � k:

�en there is a value of C1 2 .0;1/, which depends only on C , such that

‰n D
n�1
Y

j D0

�

�j .1C ej /
�

�

�n

�n

�

where

j�nj; j�nj � C1 exp
� C1

� � 1 exp
�C1v

2

� � 1

��

:
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Moreover, for any �xed � > 0 and � > 1C �, we have

j�nj > C�1
1 > 0; j�nj < C1

1
X

j D0

kWj k2

uniformly in n provided that
P1

j D0kWj k2 is small enough.

Remark 6.1. Compared to [5], we have switched the order of
�

�n 0

0 ��1
n

�

and I CWn

in (6.3); this is better suited to our use. �is can be proved with minimal modi�-

cations to the proof in [5]. Alternatively, by inserting an additional I CWN D I

and ��1 D CC�
2

, equation (6.3) can be rewritten as

‰n D ��1
�1 .I CWn/

�

�n�1 0

0 ��1
n�1

�

: : : .I CW0/

�

��1 0

0 ��1
�1

��

1

0

�

;

in which we can group ICWj with
�

�j �1 0

0 ��1
j �1

�

and apply the version stated in [5].

In order to apply �eorem 6.1 to (6.2), we now verify that conditions of �eo-

rem 6.1 are met. Our �n D ��1
n , so (6.4) follows from (4.1). From (4.3) and (4.4)

we compute

1C en D cn.�nC1 � dnC1/C cnC1.dn � ��1
n /

.�n � ��1
n /cn

;

1C hn D
�cn.�

�1
nC1 � dnC1/C cnC1.�n � dn/

.�n � ��1
n /cn

:

�en
ˇ

ˇ

ˇ

ˇ

log

l
Y

nDk

j1C enj
ˇ

ˇ

ˇ

ˇ

� C C C.1� jzj/
p
l � k (6.5)

(and the same inequality with hn instead of en) is proved almost as in the proof

of �eorem 2.2 of [5]; a modi�cation is needed where [5] uses convergence of

coe�cients, so Lemma 2.5 of [5] must be replaced by

Lemma 6.2. If ¹�nº1
nD0 is a sequence of complex numbers and C < 1 a constant

such that for all n,

C�1 � Im �n � j�nj � C; (6.6)

and
X

n

j�nC1 � �nj2 � C; (6.7)



834 M. Lukic

then there is a constant C1 < 1 which depends only on C , such that for all k � l ,

ˇ

ˇ

ˇ

ˇ

ˇ

l
X

nDk

�nC1 � �n

�n

ˇ

ˇ

ˇ

ˇ

ˇ

< C1:

Proof. Let us �x branches of log and arg on C n .�1; 0� with

Im log D arg 2 .��; �/:

�e assumptions of the lemma imply that
�nC1

�n
2 S for all n, where

S D ¹z 2 C j C�2 � jzj � C 2; jarg zj � � � 2 arcsin.C�2/º:

Compactness of S � Cn.�1; 0� and analyticity of
z�1�log z

.z�1/2 in Cn.�1; 0� imply

that for some C2 < 1 and all z 2 S ,

jz � 1 � log zj � C2jz � 1j2:

Applying this to z D �nC1

�n
and summing in n, we conclude

ˇ

ˇ

ˇ

ˇ

ˇ

l
X

nDk

��nC1 � �n

�n

� log
�nC1

�n

�

ˇ

ˇ

ˇ

ˇ

ˇ

� C2

l
X

nDk

ˇ

ˇ

ˇ

ˇ

�nC1 � �n

�n

ˇ

ˇ

ˇ

ˇ

2

: (6.8)

Since Im �n > 0 for all n, with our choice of branches we have

arg
�m

�n

D arg �m � arg �n

for any m; n, and so
l

X

nDk

log
�nC1

�n

D log
�lC1

�k

:

�us, (6.8) and j�nj � C�1 implies

ˇ

ˇ

ˇ

ˇ

ˇ

l
X

nDk

�nC1 � �n

�n

� log
�lC1

�k

ˇ

ˇ

ˇ

ˇ

ˇ

� C2

C 2

1
X

nD0

j�nC1 � �nj2 :

�e proof is completed by noting that
ˇ

ˇ

ˇlog
�lC1

�k

ˇ

ˇ

ˇ is uniformly bounded in k; l by

(6.6) and using (6.7).

Following [5], Lemma 6.2 is applied to �n D tcn and �n D s.�n � ��1
n /. �ey

obey all the conditions by (3.7), (4.1), (4.2), and (3.2).
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�us, �eorem 6.1 is applicable to (6.2) with � D 1CC.1�jzj/ and v D 1�jzj,
and we conclude that

U�1
0 .z/uN

0 .z/ D
N
Y

nD1

.��1
n .z/.1C en.z///

�

�N .z/

�N .z/

�

(6.9)

with �N , �N which obey, since v2=.� � 1/ is uniformly bounded for z 2 �,

j�N j; j�N j � exp
� C

1� jzj
�

(6.10)

for some C < 1 and all N and z 2 �. Moreover, if ı in (6.1) has been chosen

small enough, then

j�N j > C; j�N j < C

2
; for z 2 � with 1 � jzj > �

2
: (6.11)

Multiplying (6.9) by U0.z/ and using (4.3), we see

.uN
0 /2.z/ D

N
Y

nD1

.��1
n .z/.1C en.z///c0.z/.�N .z/C �N .z//; (6.12)

which we rewrite as

� logj.uN
0 /2.z/j D � log

N
Y

nD1

ˇ

ˇ��1
n .z/.1C en.z//

ˇ

ˇ � logjc0.z/j C fN .z/; (6.13)

where

fN .z/ D � log j�N .z/C �N .z/j :

Lemma 6.3. �e function fN .z/ is continuous on� and harmonic on Int�. �ere

is a value of C 2 .0;1/, independent of N 2 N0, such that

(i) for all z 2 I and N 2 N0,

ˇ

ˇlogwN .z/ � 2fN .z/
ˇ

ˇ � C (6.14)

(ii) for all N 2 N0,
Z

I

f C
N .z/

d�

2�
� C (6.15)

(iii) for all z 2 � n I and N 2 N0,

fN .z/ � � C

1 � jzj (6.16)
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(iv) for all z 2 � with 1� jzj > 1
2
� (this is � from (3.8)) and N 2 N0,

fN .z/ � C: (6.17)

Proof. For z 2 �, �N .z/ C �N .z/ ¤ 0 by (6.12) and Lemma 5.1. Moreover,

�N .z/ C �N .z/ are analytic in z by (6.9), so the same is true of � log.�N .z/ C
�N .z//. Since fN .z/ D � Re log.�N .z/C �N .z//, the conclusions hold.

For z 2 I , using j�n.z/j D 1 and (6.13), we can rewrite (5.3) as

logjwN .z/j D logjcN .z/j C logjIm�N .z/j

� 2 log

N
Y

nD1

j1C en.z/j � 2 logjc0.z/j C 2fN .z/

For z 2 I ,
QN

nD1j1 C en.z/j is uniformly bounded by (6.5) and logjc0.z/j,
logjcN .z/j by (3.7), which proves (6.14).

Using logwN .z/ � wN .z/ � 1 and the fact that wN is the a.c. part of a prob-

ability measure,

Z

.logwN .z//C
d�

2�
�

Z

I

wN .z/
d�

2�
� �N .I / � 1:

With (6.14), this implies (6.15).

Equation (6.16) follows from (6.10), and (6.17) follows from (6.11) and

j�N .z/C �N .z/j � j�N .z/j � j�N .z/j:

Lemma 6.4 ([5, 9]). Assume that f .z/ is continuous on �, harmonic on Int�,

and for some C; ˛ > 0,
Z

I

f C.ei�/
d�

2�
< C;

f .z/ > �C.1� jzj/�ˇ for z 2 Int�, and f .z/ < C for z 2 � with 1� jzj > C
1Cˇ

.

�en there is a constant B , depending only on C; ˇ, so that

Z

I

f �.ei�/
d�

2�
< B:

In the given references, this is a lemma on a interval I on R, rather than an arc

on @D. Using a conformal map which maps the unit disk to the upper half plane,

the statement given here is an immediate corollary of [9, Lemma 2].
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By Lemma 6.3, Lemma 6.4 is applicable to fN .z/, and proves
Z

I

fN .e
i�/
d�

2�
< C

with a constant C independent of N . By (6.15) and (6.14), this implies
Z

I

logwN .ei�/
d�

2�
> C

with C 2 R independent of N .

�is integral is a relative entropy: in the notation of [20, Section 2.2], with �I

the characteristic function of I ,
Z

I

logwN .ei�/
d�

2�
D S

�

�I

d�

2�

ˇ

ˇ�Id�
N

�

:

Since ˛N converge pointwise to ˛, the measures �N converge weakly to �, so

upper semicontinuity of entropy [20, �eorem 2.2.3] gives
Z

I

logw.ei�/
d�

2�
� lim sup

N !1

Z

I

logwN .ei�/
d�

2�
� C > �1

which proves (1.7).

Equation (1.7) implies that for a.e. ei� 2 I , logw.ei�/ > �1, and thus

w.ei�/ > 0. �is implies that I � ess suppw. Since L is continuous, for every

z 2 @D we may �nd a suitable arc I which contains it, so z 2 I � †ac.�/. �is

proves the �rst inclusion in (1.14).

By the Last–Simon [14] theorem for a.c. spectrum of right limits (extended to

OPUC by Simon [19, �eorem 10.9.11]), for any right limit ˛.r/,

†ac.�/ � ¹z 2 @D j j�.r/.z/j � 2º:

By (1.12), taking the intersection over all right limits proves the second inclusion

in (1.14) and completes the proof of �eorem 1.4.

7. Comparing the lower and upper bounds on †ac.�/

�eorem 1.4 gives lower and upper bounds on †ac.�/. In this section, we explore

cases in which the lower and upper bounds coincide.

Equality of the sets in (1.15) follows from a mild condition:

Lemma 7.1. If (1.5) holds and ¹z 2 @D j L.z/ D 2º has zero Lebesgue measure,

then all sets in (1.15) are equal.
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Proof. By Lemma 3.2, L.z/ is continuous, so the set Y D ¹z 2 @D j L.z/ < 2º
is open and xY D xY ess. If the setX D ¹z 2 @D j L.z/ D 2º has Lebesgue measure

0, then xY ess D X [ Y ess
. �us, xY D X [ Y

ess
and equality of the sets in (1.15)

follows.

In all our applications, ¹z 2 @D j L.z/ D 2º will be a �nite set.

Proof of �eorem 1.1. A straightforward calculation together with (3.4) gives

j�m.e
i�/j D 2jcos.�=2/j

�m

; L.ei�/ D 2jcos.�=2/jp
1 � A2

;

so L.ei�/ D 2 is equivalent to jcos.�=2/j D
p
1 � A2. �is holds only on a �nite

set, so Lemma 7.1 implies equality of all sets in (1.15).

Moreover, L.ei�/ < 2 is equivalent to jcos.�=2/j <
p
1� A2 and to

2 arcsinA < � < 2� � 2 arcsinA;

so the claim follows from (1.15) and �eorem 1.4.

Proof of �eorem 1.2. A straightforward calculation together with (3.4) gives

�m.e
i�/ D 2

cos � C Re.˛2m N̨2mC1/

�2m�2mC1

:

Using uniform boundedness of �2m�2mC1 given by

0 < 1 � .sup
n

j˛nj/2 � �2m�2mC1 � 1;

it is then easy to see that L.ei�/ < 2 is equivalent to �AC < cos � < A� and

L.ei� / D 2 equivalent to cos � 2 ¹�AC; A�º. �us, the set of ei� such that

L.ei� / D 2 is �nite, so Lemma 7.1 implies equality of all sets in (1.15). If I �
Int.ess suppw n ¹�1; 1º/, it is clear from the above that L.z/ < 2 for z 2 I , so

(1.7) follows by �eorem 1.4.

Proof of �eorem 1.3. Since all right limits have the same discriminant �e.z/,

L.z/ D j�e.z/j:

Since �e.z/ is a nontrivial polynomial in z1=2, the set ¹ei� 2 @D j �e.e
i�/ 2

¹�2; 2ºº is �nite, so Lemma 7.1 implies (1.11). Equation (1.7) follows from �e-

orem 1.4.
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