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Uniqueness and stability of Lamé parameters in elastography
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Abstract. �is paper concerns an hybrid inverse problem involving elastic measurements

called Transient Elastography (TE) which enables detection and characterization of tis-

sue abnormalities. In this paper we assume that the displacements are modeled by linear

isotropic elasticity system and the tissue displacement has been obtained by the �rst step

in hybrid methods. We reconstruct Lamé parameters of this system from knowledge of

the tissue displacement. More precisely, we show that for a su�ciently large number of

solutions of the elasticity system and for an open set of the well-chosen boundary condi-

tions, Lamé parameters can be uniquely and stably reconstructed. �e set of well-chosen

boundary conditions is characterized in terms of appropriate complex geometrical optics

solutions.
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1. Introduction

Medical imaging is the technique and process used to create images of the human

body for clinical purposes or medical science. Each available imagine method has

its advantages and disadvantages. Medical imaging modalities such as Comput-

erized Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound

Imaging (UI) are examples of modalities providing high resolution. In some situ-

ations, these modalities fail to exhibit a su�cient contrast between di�erent types

of tissues. For instance, in breast imaging ultrasound provides high resolution,

while su�ers from a low contrast. Other modalities, based on optical, elastic, or

electrical properties of these tissues, display high contrast, such as Optical To-

mography (OT) and Electrical Impedance Tomography (EIT). For example, some

breast tumors on early stages might have no contrast with the healthy tissues with

respect to ultrasound propagation, but a huge contrast in their optical and electric

properties.

In order to obtain better image, the natural idea is to try to combine di�erent

imaging modalities. �ese are coupled-physics imaging methods, also called hy-

brid methods. It is to combine the high resolution modality with another high con-

trast modality. Examples of possible physical couplings include: Photo-Acoustic

Tomography (PAT) and �ermo-Acoustic Tomography (TAT), Ultrasound mod-

ulated Optical Tomography (UMOT) and elasticity with ultrasound in Transient

Elastography (TE).

Reconstructions in hybrid inverse problems involve two steps. �e �rst step is

to solve the inverse problem concerning the high-resolution-low-contrast modal-

ity. For instance, in PAT and TAT, this corresponds to the reconstructing the ini-

tial condition of a wave equation from boundary measurements. In TE, this is to

solving an inverse scattering problem in a time-dependent wave equation. In this

paper, we assume that this �rst step has been performed. We will focus on the

second step which is to reconstruct the coe�cients that display high contrast from

the mappings obtained during the �rst step. For more details about hybrid inverse

problems, please refer to [1].

In this paper, the modality we consider is Transient Elastography. TE is a

non-invasive tool for measuring liver sti�ness. �e device creases high-resolution

shear sti�ness images of human tissue for diagnostic purposes. Shear sti�ness

is targeted because shear wave speed is larger in abnormal tissue than in normal

tissue. In the experiment tissue initially is excited with pulse at the boundary.

�is pulse creates the shear wave passing through the liver tissue. �en the tissue

displacement is measured by using the ultrasound. �e displacement is related to

the tissue sti�ness because the soft tissue has larger deformation than sti� tissue.



Uniqueness and stability of Lamé parameters in elastography 843

When we have tissue displacement, we want to reconstruct shear modulus � and

the �rst parameter �. See [8], [9] and references there for more details. In TE,

the high resolution modality is also ultrasound. �e tissue displacement data can

be obtained by the ultrasound in the �rst step. �e second step is to recover the

Lamé parameters from the knowledge of the tissue displacement. In the following

paper, we will assume the �rst step has been performed.

We will formulate now the mathematical problem. Let � � R
n; n D 2; 3;

be an open bounded domain with smooth boundary. Let u 2 H 4.Rn/ be the

displacement satisfying the linear isotropic elasticity system
8

<

:

r � .�.r � u/I C 2S.ru/�/C k2u D 0 in �;

u D g on @�;
(1)

where S.A/ D .A C AT /=2 is the symmetric part of the matrix A. Here .�; �/

are Lamé parameters and k 2 R is the frequency. For the forward problem of

elasticity system, we refer the readers to [4]. Assume that k is not the eigenvalue

of the elasticity system. �e set of internal functions obtained by ultrasound in TE

is given by

H.x/ D .u.j /.x//1�j�J in �

for some positive integer J .

Hybrid inverse problems for the modality TE has less results than PAT and

TAT due to its complicated equations. �e �rst result, to the author’s best knowl-

edge, is considered by Bal and Uhlmann [2] in a scalar model for the elastic dis-

placement u, in which the parameters are uniquely and stably determined by the

internal data. �ey also gave an explicit reconstruction procedure for those param-

eters. However, the scalar model is not accurate in many applications. Our main

contribution in this paper is to consider a more general setting, that is, the linear

isotropic elasticity system and provide uniqueness and stability results. To study

the elasticity system we applied the CGO solutions due to [5] and [10]. We used

the strategies in [2] to obtain a transport equation for � or �, then we can recover

the parameters by following the methods of [3].

Set

P D ¹.�; �/ 2 C 7.x�/ � C 9.x�/ W 0 < m � k�kC7.x�/;

k�kC9.x�/ � M; and

�; � > 0º:

LetH and zH be two sets of internal data of the elasticity system with parameters

.�; �/ and . Q�; Q�/, respectively. Below is our main result:
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�eorem 1.1. Let � be an open bounded domain of Rn with smooth boundary.

Suppose that the Lamé parameters .�; �/ and . Q�; Q�/ 2 P and �j@� D Q�j@�. Let

u.j / and Qu.j / be the solutions of the elasticity system with boundary data g.j /

for parameters .�; �/ and . Q�; Q�/, respectively. Let H D .u.j //1�j�J and zH D
. Qu.j //1�j�J be the corresponding internal data for .�; �/ and . Q�; Q�/, respectively

for some integer J � 3nC 1 .

�en there is an open set of the boundary data .g.j //1�j�J such that ifH D zH
implies .�; �/ D . Q�; Q�/ in �.

Moreover, we have the stability estimate

k� � Q�kC.�/ C k� � Q�kC.�/ � CkH � zHkC2.�/:

�e remainder of this paper is organized as follows. In Section 2, we introduce

the CGO solutions of the elasticity system. Section 3 is devoted to constructing

the Lamé parameters in the two-dimensional case. �e reconstruction of .�; �/ in

3D is presented in Section 4.

Acknowlegments. �e author are grateful to professor Gunther Uhlmann for his

encouragements and helpful discussions. �e author also would like to thank Pro-

fessor Jenn-Nan Wang for taking the time to discuss some properties of the elas-

ticity system with her. �e author is partially supported by the NSF.

2. Complex geometric optics solutions of the elasticity system

In this section, we will brie�y introduce the complex geometric optics (CGO)

solutions of the elasticity system. Based on [6](or see [5]), we can derive the

following reduced system. Let w; f 2 H 5.Rn/ and .w; f /T satisfy

�

�

w

f

�

C V1.x/

� rf
r �w

�

C V0.x/

�

w

f

�

D 0: (2)

Here V0 contains the third derivative of � and

V1.x/ D

0

@

�2�1=2r2��1 C ��3=2k2 �r log�

0
�C �

�C 2�
�1=2

1

A :

�en the solution of the elasticity system (1) is

u WD ��1=2w C ��1rf � f r��1:
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Here r2g denotes the Hessian matrix @2g=@xi@xj . Note that we will not need the

explicit form of V0 in the construction of CGO solution.

�e construction of CGO solutions of (2) with linear phase was �rst deduced

by Nakamura and Uhlmann in [10] and [11], where they introduced the intertwining

property in handling the �rst order terms. Eskin and Ralston [5] also gave a similar

result in 2002. Later Uhlmann and Wang [12] used Carleman estimate to deduce

the CGO solutions in the two-dimensional case.

In the following sections, we will use the CGO solutions constructed in Eskin

and Ralston’s paper [5].

To construct CGO solutions of (2), it is convenient to work on Rn instead of

�. Since � is bounded, we pick a ball BR for R > 0, such that x� � BR and

extend � and � to R
n by preserving its smoothness and also supp�, supp� � BR.

Let ˛ and ˇ be two orthogonal unit vectors in R
n. Denote that � D �.˛Ciˇ/ 2

C
n and � D ˛ C iˇ with � > 0. Eskin and Ralston [5] showed the following

important result in the three-dimensional case. For n D 2, it still holds (see refer-

ence [10]).

Lemma 2.1. (Eskin-Ralston) Consider the Schr Rodinger equation with external

Yang-Mills potentials

Lu D ��u� 2iA.x/ � ruC B.x/u D 0; x 2 BR � R
n (3)

where A.x/ D .A1.x/; : : : ; An.x// 2 C n0.BR/; n0 � 6 with Aj .x/ and B.x/ are

.nC 1/ � .nC 1/ matrices. �en there are solutions of (3) of the form

u D ei��x.C0.x; �/g.� � x/CO.��1//

where C0 2 C n0.BR/ is the solution of

i� � @
@x
C0.x; �/ D � � A.x/C0.x; �/

with detC0 is never zero, g.z/ is an arbitrary polynomial in complex variables z,

and O.��1/ is bounded by C.1=�/ in H l .BR/; 0 � l � n0 � 2.

By the lemma above, the CGO solutions of (2) can be written as follows:

�

w

f

�

D ei��x
��

r

s

�

CO.��1/

�

;

where .r; s/T is C0.x; �/g.� � x/. We can write w D ei��x.r C O.��1// and

f D ei��x.s C O.��1//. Plug .w; f /T into u D ��1=2w C ��1rf � f r��1.
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�en we have the CGO solutions of the elasticity system. Note that .r; s/T satis�es

the equation

�2� � r
�

r

s

�

D V1.x/

�

0n�n �

�T 0

��

r

s

�

: (4)

Remark 1. Since C0 is invertible at every point in�, we can conclude that .r; s/T

is not zero everywhere in �. �is does not imply that both r and s never vanish

in �. However, for any point y 2 �, there is a small neighborhood By of y in �

and a CGO solution of .w; f /T such that both r and s do not vanish in By .

3. Reconstruction of Lamé parameters in two dimensional case

In the previous section, we already have the CGO solutions of the elasticity system.

Now we want to use them to give a reconstruction of � �rst. Let u D .u1; u2/
T

be the displacement which satis�es the elasticity system

r � .�.r � u/I C 2S.ru/�/C k2u D 0: (5)

We will recover � and � separately in the following two subsections.

3.1. Reconstruction of � in 2D. From (5), we can deduce the following equation

u] � F C u[ � G D �k2u�: (6)

Here we denote

u] D

0

B

B

B

B

@

@1.r � u/
@2.r � u/

r � u
r � u

1

C

C

C

C

A

; F D

0

B

B

B

B

@

�C �

�C �

@1.�C �/

@2.�C �/

1

C

C

C

C

A

; (7a)

u[ D

0

B

B

B

B

@

a C b

a � b
@1.a C b/

@2.a � b/

1

C

C

C

C

A

; G D

0

B

B

B

B

@

@1�

@2�

�

�

1

C

C

C

C

A

; (7b)

with a D @2u1C @1u2; b D @1u1� @2u2, and u� D .u1Cu2/. �e component u]

and u[ are known since they are vectors which only depend on the internal data u.

In order to recover �, we want to eliminate the �rst term of (6) so that � satis�es

the transport equation.
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Obverse that the vector u] has three di�erent entries, we only need to construct

three linearly independent vectors on some subdomain in �. With these three

vectors, we can remove the �rst term of the left hand side of the equation (6).

More precisely, suppose that u.j /, for j D 0; 1; 2, are three di�erent solutions

of (6) which satisfy

u.j /] � F C u.j /[ �G D �k2u.j /�: (8)

�e notations <f and =f are de�ned to be the real and imaginary part of f ,

respectively. Now for j D 1; 2; 3 and \ D ]; [; �, we let

u
.0/\
1 D <�.x/u.0/\; u

.0/\
2 D =�.x/u.0/\

and

u
.1/\ D <�3.x/u.1/\;

u
.2/\ D =�3.x/u.1/\;

u
.3/\ D <.�1.x/u.1/\ C �2.x/u

.2/\/;

where �j .x/ is a nonzero function. �en we get

u
.0/]

l
� F C u

.0/[

l
�G D �k2u.0/�

l
; l D 1; 2 (9)

and

u
.j /] � F C u

.j /[ �G D �k2u.j /�; j D 1; 2; 3: (10)

Assume that ¹u.1/]; u.2/]; u.3/]º are three linearly independent vectors in some sub-

domain of �, say �0. �en there exist three functions ‚l1; ‚
l
2, and ‚l3 such that

u
.0/]

l
C

P3
jD1‚

l
ju
.j /] D 0. For l D 1; 2, multiplying (10) by ‚lj and summing

over j with equation (9), we have

vl �G D �k2
�

u
.0/�
l

C
3

X

jD1
‚lj u

.j /�
�

;

where vl D u
.0/[

l
C

P3
jD1‚

l
ju
.j /[. Let ˇl D .vl � e1/ Qe1 C .vl � e2/ Qe2 and 
l D

.e3 C e4/ � vl . Here ej 2 R
4; Qej 2 R

2 with the j th entry is 1 and others are zero.

�en the above equation can be rewritten as

ˇl � r�C 
l� D �k2
�

u
.0/�
l

C
3

X

jD1
‚lj u

.j /�
�

:

Suppose that ˇ1.x/ and ˇ2.x/ are linearly independent for every x 2 �0. �en

we can recover � in �0 � � for each frequency k independently.
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Lemma 3.1. Let u.j / for 0 � j � 2 be C 2 solutions of the elasticity system with

boundary conditions u.j / D g.j / on @�. Let us de�ne

u] D .@1.r � u/; @2.r � u/; r � u; r � u/T

and assume that

(1) ¹u.1/]; u.2/]; u.3/]º are three linearly independent vectors in �0, the neigh-

borhood of x0 in �.

(2) ¹ˇ1.x/; ˇ2.x/º are linearly independent in �0.

�en the reconstruction is stable in the sense that

k� � Q�kC.�0/ � C.j�.xC
0 / � Q�.xC

0 /j C kHx0
� zHx0

kC2.�0/
/ (11)

where xC
0 2 @�0 and Hx0

D .u.j //0�j�2.

Proof. Since ¹ˇ1.x/; ˇ2.x/º are linearly independent in�0, we can construct two

vector-valued functions �.x/, ˆ.x/ 2 C.�0/ such that

r�C �.x/� D ˆ.x/ in �0. (12)

Since � and Q� are solutions of (12) with coe�cients .�;ˆ/ and .z�; ẑ /, respec-

tively, we have

r.� � Q�/C �.x/.� � Q�/ D Q�.z�.x/ � �.x//C .ˆ.x/ � ẑ .x//:

Let x 2 �0, there exists a integral curve  .t/ with  .0/ D xC
0 and  .1/ D x.

�us

.� � Q�/. .t// D.� � Q�/. .0//e�
R t

0 �. .s//� 0.s/ds

C
Z t

0

Q�.�. .s// � z�. .s///C .ˆ� ẑ /. .s// �  0.s/ds;

(13)

for t 2 Œ0; 1�. Since � and ˆ only depend on � and u.j /; j D 0; 1; 2; and u.j / are

in the class of C 2.x�/, the value of j� � z�j and jˆ � ẑ j are bounded by the sum

of j@˛u.j / � @˛ Qu.j /j for j˛j � 2. �ere is a constant C such that

j.� � Q�/. .t//j � C j.� � Q�/. .0//j C CkHx0
� zHx0

kC2.�0/
; t 2 Œ0; 1�

for �; Q� 2 P. �us, for any x 2 �0, the value j.� � Q�/.x/j is controlled by the

internal data and � at the boundary point x0 2 @�0.
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3.1.1. Global reconstruction of � in 2D. Let .�; �/ 2 P, by Lemma 2.1, it

implies that r and s are in C 7 and O.��1/ 2 H 5. Now we will show that how we

can get three linear independent vectors of the form u
]. We plug the CGO solutions

u� D ��1=2w� C ��1rf� � f�r��1 into u]. �en we have the expression

u]� D ei��x
p
�

�C 2�

0

B

B

B

B

@

0

B

B

B

B

@

��1.� � r/CO.j�j/
��2.� � r/CO.j�j/

i� � r
i� � r

1

C

C

C

C

A

CO.1/

1

C

C

C

C

A

(14)

by using the following equality which is part of the equation (4)

�2� � rs D �C �

�C 2�
�1=2� � r: (15)

Now we �x any point x0 2 x� and let � D �.1; i/ D �i Q� 2 C
2 with � > 0.

Since, in Lemma 2.1, the matrix solution C0.x; �/ is invertible, we can choose a

constant vector g.0/ such that C0.x; �/g
.0/ D .r .0/; s.0//T with the conditions

s.0/.x0/ D 1; s.0/ ¤ 0 and � � r .0/ ¤ 0

in a neighborhood of x0 in BR, say U . �en we have the CGO solution of the

elasticity system, that is,

u.0/� D ��1=2w.0/� C ��1rf .0/� � f .0/� r��1;

where

�

w
.0/
�

f
.0/
�

�

D ei��x
��

cr .0/

s.0/

�

CO.��1/

�

:

Let � D �=�; Q� D Q�=� . Let C1.x; �/ and C2.x; Q�/ satisfy the following two

equations

i� � @
@x
C1.x; �/ D � � V1.x/C1.x; �/; i Q� � @

@x
C2.x; Q�/ D Q� � V1.x/C2.x; Q�/;

respectively. Since Q� D i�, we can choose C2.x; Q�/ D C1.x; �/. By Lemma 2.1,

the matrix solution C1.x; �/ is invertible, we can choose a suitable constant vector

g such that C1.x; �/g D .r .1/; s.1//T ; C2.x; Q�/g D .r .2/; s.2//T and

s.l/.x0/ D 0 ; r .1/.x0/ D .1;�i/ D r .2/.x0/:
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Note that r .2/ D r .1/ and s.2/ D s.1/. By continuity of r .l/, we have � � r .l/ ¤ 0 in

a neighborhood U of x0. �en the CGO solutions are

u.l/� D ��1=2w.l/� C ��1rf .l/� � f .l/� r��1;

where
�

w
.1/
�

f
.1/
�

�

D ei��x
��

r .1/

s.1/

�

CO.��1/

�

;

and
�

w
.2/
�

f
.2/
�

�

D ei Q��x
��

r .2/

s.2/

�

CO.��1/

�

:

So far we have three CGO solutions, that is, u
.0/
� ; u

.1/
� , and u

.2/
� .

We consider

e�i��xj�j�2u.1/]� D1

2

0

B

B

B

B

B

B

B

@

�
p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

�
p
�

�C 2�
.ir

.1/
1 � r .1/2 /

0

0

1

C

C

C

C

C

C

C

A

CO.��1/;

e�i��xj�j�1u.1/]� D 1p
2

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
�.r

.1/
1 C ir

.1/
2 /CO.1/

�
p
�

�C 2�
�.ir

.1/
1 � r .1/2 /CO.1/

i

p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

i

p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

1

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/

and

e�i Q��xj Q�j�1u.2/]� D 1p
2

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
�.�r .2/1 � ir

.2/
2 /CO.1/

�
p
�

�C 2�
�.�ir .2/1 C r

.2/
2 /CO.1/

i

p
�

�C 2�
.ir

.2/
1 � r

.2/
2 /

i

p
�

�C 2�
.ir

.2/
1 � r

.2/
2 /

1

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/:
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Since r .2/ D r .1/ and s.2/ D s.1/, we have

e�i��xj�j�1u.1/]� C e�i Q��xj Q�j�1u.2/]�

D 1p
2

0

B

B

B

B

B

B

B

@

O.1/

O.1/

i

p
�

�C 2�
..1C i/r

.1/
1 C .�1C i/r

.1/
2 /

i

p
�

�C 2�
..1C i/r

.1/
1 C .�1C i/r

.1/
2 /

1

C

C

C

C

C

C

C

A

CO.��1/:

We de�ne

u
.0/\
1� D <e�i��xj�j�2u.0/\� ; u

.0/\
2� D =e�i��xj�j�2u.0/\� ; \ D ]; [; �

u
.1/\
� D <e�i��xj�j�2u.1/\� ; u

.2/\
� D =e�i��xj�j�2u.1/\� ;

and

u
.3/\
� D <.e�i��xj�j�1u.1/\� C e�i Q��x j Q�j�1u.2/\� /:

�en ¹u.1/]� ; u
.2/]
� ; u

.3/]
� º are linearly independent in a small neighborhood U of x0

when � is su�ciently large.

�erefore, for l D 1; 2, there exist functions ‚lj ; j D 1; 2; 3 such that

u
.0/]

l�
C

3
X

jD1
‚lj u

.j /]
� D 0; l D 1; 2: (16)

Since u
.0/
� ; u

.1/
� , and u

.2/
� are solutions of the equation (6), we have the equations

u
.0/]

l�
� F C u

.0/[

l�
�G D �k2u.0/�

l�
; l D 1; 2;

u
.j /]
� � F C u

.j /[
� �G D �k2u.j /�� ; j D 1; 2; 3:

Summing over the equations above and using (16), we have two equations

ˇ�;l � r�C 
�;l� D �k2
�

u
.0/�
l�

C
3

X

jD1
‚lju

.j /�
�

�

; l D 1; 2, (17)

where

ˇ�;l D .vl � e1/ Qe1 C .vl � e2/ Qe2
and


�;l D vl � e3 C vl � e4;

Here we de�ne vl D u
.0/[

l�
C

P3
jD1‚

l
ju
.j /[
� :
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Remark 2. By choosing suitable g.0/, j‚l3.x0/j can be as small as we want.

To show that, we choose a new constant vector Og.0/, instead of the original g.0/,

such that . Or .0/; Os.0//T D C0.x; �/ Og.0/.� �x/where Or .0/.x0/ D r .0/.x0/=M ,M > 0,

Os.0/.x0/ D s.0/.x0/ and . Or .0/; Os.0//T satis�es the original assumption, that is,

Os.0/.x0/ D 1 and Os.0/ ¤ 0 and � � Or .0/ ¤ 0 in a neighborhood of x0. �en

‚l3.x0/ D �P 3j<

0

B

B

B

B

B

B

B

B

@

1

2

0

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
.1; i/ � r .0/.x0/

�
p
�

�C 2�
i.1; i/ � r .0/.x0/

0

0

1

C

C

C

C

C

C

C

C

A

CO.��1/

1

C

C

C

C

C

C

C

C

A

� pj

and

y‚l3.x0/ D �P 3j<

0

B

B

B

B

B

B

B

B

B

B

@

1

2M

0

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
.1; i/ � r .0/.x0/

�
p
�

�C 2�
i.1; i/ � r .0/.x0/

0

0

1

C

C

C

C

C

C

C

C

C

C

A

CO.��1/

1

C

C

C

C

C

C

C

C

C

C

A

� pj ;

where P D .pij / and P�1 D .P ij /with pij D pi �pj . Note that P is a boundedly

invertible symmetric matrix. Here p1 D u
.1/]
� ; p2 D u

.2/]
� ; p3 D u

.3/]
� . From

above, we obtain that y‚l3 is close to ‚l3=M as � is large. �erefore, the new

j y‚l3.x0/j is small when M and � is su�ciently large.

Lemma 3.2. Given any point x0 2 x�, there exists a small neighborhood V of x0

such that ˇ�;j is not zero in V for j D 1; 2.

Note that we denote by � equalities up to terms which are asymptotically neg-

ligible as � goes to in�nity.

Proof. It is su�ciently to prove that ˇ�;1 does not vanish in some neighborhood

of x0. Recall that

ˇ�;1 D .v1 � e1/ Qe1 C .v1 � e2/ Qe2; (18)

where

v1 D u
.0/[
1� C

3
X

jD1
‚1j u

.j /[
� :
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By (16), we have that ‚1j � �0 for j D 1; 2; 3. Since s.1/.x0/ D 0, we get that

..u.1/[� � e1/ Qe1 C .u.1/[� � e2/ Qe2/.x0/ � ��1 (19)

and

..u.2/[� � e1/ Qe1 C .u.2/[� � e2/ Qe2/.x0/ � ��1: (20)

Since s.k/.x0/ D 0, r .2/ D r .1/, s.2/ D s.1/, and .1;�i/ � r .1/.x0/ D 0, we obtain

that

..u.3/[� � e1/ Qe1 C .u.3/[� � e2/ Qe2/.x0/

D 4��1< 1p
2

��

i@1s
.1/ C @2s

.1/

�@1s.1/ C i@2s
.1/

�

CO.��1/

�

.x0/:
(21)

Combining from (18) to (21), since ‚13.x0/ can be taken as small as we want

(See Remark 2) in the construction of CGO solutions above, it follows that

ˇ�;1.x0/ � ��1

0

B

B

@

�

2

�2

�

C‚13<

0

B

B

@

4p
2
.i@1s

.1/ C @2s
.1//

4p
2
.�@1s.1/ C i@2s

.1//

1

C

C

A

1

C

C

A

.x0/ ¤ 0:

Similarly,

ˇ�;2.x0/ � ��1

0

B

B

@

�

2

2

�

C‚23<

0

B

B

@

4p
2
.i@1s

.1/ C @2s
.1//

4p
2
.�@1s.1/ C i@2s

.1//

1

C

C

A

1

C

C

A

.x0/ ¤ 0:

By continuity of ˇ�;j , we complete the proof.

Let g
.j /
� D u

.j /
� j@� be the given boundary data. By Lemma 2.1, since .�; �/ 2

P, we knew that u
.j /
� 2 H 4.BR/. Let g.j / 2 C 1;˛.@�/ be the boundary data close

to g
.j /
� , that is,

kg.j / � g.j /� kC1;˛.@�/ < " for some " > 0; (22)

then we can �nd solutions u.j / of the elasticity system with boundary data g.j /(the

existence of such solutions, see e.g. Ch.4 of [7]). By elliptic regularity theorem,

we have

ku.j / � u.j /� kC2.x�/ < C" (23)
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for some constant C which is independent of �; �. �en we obtain that

ku.j /] � u
.j /]
� kC0.x�/ < C":

Here the notation u
.j /] is constructed in the same way as u

.j /]
� with the CGO

solutions u
.j /
� replaced by the solutions u.j /:�erefore, ¹u.1/]; u.2/]; u.3/]º are also

linearly independent when " is su�ciently small.

We construct ǰ as in the equation (17) with u
.j /
� replaced by u.j /; j D 0; 1; 2.

�erefore, by the de�nitions of ǰ and ˇ�;j and (23), it follows that

k ǰ � ˇ�;j kC1.x�/

is small when " is small. Since ˇ�;j is not zero in V by Lemma 3.2, we can

deduce that ǰ is also not zero in V if " is small enough and � is su�ciently large.

Moreover, with the suitable chosen CGO solutions u�, ¹ˇ�;1; ˇ�;2º are linearly

independent in V as � is su�ciently large (See the proof of Lemma 3.2). When

" is su�ciently small, it implies that ¹ˇ1; ˇ2º are also linearly independent in V .

�en we have the equations

ˇl � r�C 
l� D �k2
�

u
.0/�
l

C
3

X

jD1
‚lju

.j /�
�

; l D 1; 2 (24)

with ¹ˇ1; ˇ2º a basis in R
2 for every point x 2 �0. Here we denote

�0 D U \ V \�: (25)

�us, there exists an invertible matrix A D .aij / such that ˇl D
P

alk Qek with

inverse of class C 0.�/. �us, we have constructed two vector-valued functions

�.x/; ˆ.x/ 2 C.�/ such that (24) can be rewritten as

r�C �.x/� D ˆ.x/ in �0: (26)

�en we obtain the following result:

�eorem 3.3. Suppose that .�; �/ and . Q�; Q�/ 2 P. For any �xed x0 2 @�, let u
.j /
�

be the corresponding CGO solutions for .�; �/ and u.j / constructed as above with

internal data Hx0
D .u.j //0�j�2 and with " as in (22) su�ciently small. Let zHx0

be constructed similarly with the parameters . Q�; Q�/. Assume that �j@� D Q�j@�.

�en Hx0
D zHx0

implies that � D Q� in �0 which is de�ned in (25), the

neighborhood of x0 in �.
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Proof. Based on the construction above, the domain �0 can be taken as a small

open ball with center x0 and �0 � BR. Since Hx0
D zHx0

, we have that � and Q�
solve the same equation r� C �.x/� D ˆ.x/ in �0 where the functions � and

ˆ depend on u.j /. Let x 2 �0 and denote  .t/ D .1 � t /x0 C tx; t 2 Œ0; 1�.

Restricted to this curve, we have
8

<

:

 0.t / � r�C �. .t// �  0.t /� D ˆ. .t// �  0.t / in �0,

�.x0/ D Q�.x0/;
(27)

�e solution of (27) is given by

�. .t// D �. .0//e�
R t

0 �. .s//� 0.s/ds C
Z t

0

ˆ. .s// �  0.s/ds; t 2 Œ0; 1�:

�e solution Q�.x/ is given by the same formula since �j@� D Q�j@� so that � D Q�
in �0.

We have constructed ¹u.1/]; u.2/]; u.3/]º are linearly independent and ¹ˇ1; ˇ2º
forms a basis in R

2 for every point x 2 �0 when " is su�ciently small and � is

large. Applying Lemma 3.1, we have

�eorem 3.4. Suppose that .�; �/ and . Q�; Q�/ 2 P. For any �xed x0 2 x�, let u
.j /
�

be the corresponding CGO solutions for .�; �/ and u.j / constructed as above

with internal data Hx0
D .u.j //0�j�2 and with " as in (22) su�ciently small.

Let zHx0
D . Qu.j //0�j�2 be constructed similarly for the parameters . Q�; Q�/ with

u.j /j@� D Qu.j /j@�. �en there exists an open neighborhood�0 (which is de�ned

in (25)) of x0 in � such that

k� � Q�kC.�0/ � C.j�.x0/ � Q�.x0/j C kHx0
� zHx0

kC2.�0/
/; (28)

for x0 2 @�, and

k� � Q�kC.�0/ � C.j�.xC
0 / � Q�.xC

0 /j C kHx0
� zHx0

kC2.�0/
/; (29)

for xC
0 2 @�0, and x0 2 �.

�e global uniqueness and stability result are stated as follows.

�eorem 3.5 (Global reconstruction of �). Let� be an open bounded domain of

R
2 with smooth boundary. Suppose that the Lamé parameters .�; �/ and . Q�; Q�/ 2

P and �j@� D Q�j@�. Let u.j / and Qu.j / be the solutions of the elasticity system

with boundary data g.j / for parameters .�; �/ and . Q�; Q�/, respectively. Let H D
.u.j //1�j�J and zH D . Qu.j //1�j�J be the corresponding internal data for .�; �/

and . Q�; Q�/, respectively for some integer J � 3 .
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�en there is an open set of the boundary data .g.j //1�j�J such that ifH D zH
implies � D Q� in �.

Moreover, we have the stability estimate

k� � Q�kC.�/ � CkH � zHkC2.�/:

Note that for the uniqueness of �, we suppose that the two set of internal data

are the same, that is,H D zH . Since � is uniquely reconstructed near a �xed point

x0 2 @� under the condition �j@� D Q�j@�, from the stability of � in �, we can

obtain that � D Q� in �.

Proof. In Section 2, we constructed CGO solutions in a ballBR which contains x�.

First, we consider any point x in @�. �en we can �nd an open neighborhood

Bx � BR of x. By �eorem 3.4, we have the estimate

k� � Q�kC.Bx\�/ � CkHx � zHxkC2.�/ (30)

since �j@� D Q�j@�.

Second, for any point y 2 �, by �eorem 3.4, there exists an open neighbor-

hood By � � of y with xBy \ @� D ; such that

k� � Q�kC.By / � C.j�.yC/ � Q�.yC/j C kHy � zHykC2.�// for some yC 2 @By:
(31)

�erefore, the compact set x� is covered by
S

x2 x� Bx. �en there exists �nitely

many Bx, say, Bx1
; : : : ; BxN

, such that x� �
SN
lD1Bxl

.

Now for arbitrary point z 2 �, there is Bxj
such that z 2 Bxj

. Suppose that
xBxj

\ @� ¤ ;, this means that xj 2 @�. �en, by (30), we have

j�.z/ � Q�.z/j � CkHxj
� zHxj

kC2.�/: (32)

Otherwise, if xBxj
\ @� is empty, then, by (31), we get that

j�.z/ � Q�.z/j � C.j�.xC
j / � Q�.xC

j /j C kHxj
� zHxj

kC2.�// for xC
j 2 @Bxj

:

(33)

For the point xC
j , since x� is covered by �nitely many subdomainBxl

, after at most

N � 1 steps, we have

j�.xC
j / � Q�.xC

j /j � C

N
X

l¤j;lD1
kHxl

� zHxl
kC2.�/: (34)
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Combining (33) and (34). �en we have

j�.z/ � Q�.z/j � C

N
X

lD1
kHxl

� zHxl
kC2.�/: (35)

With (32) and (35), we have the global stability

k� � Q�kC.�/ � C

N
X

lD1
kHxl

� zHxl
kC2.�/:

3.2. Reconstruction of � in 2D. �e elasticity system can also be written in this

form

u] � F C u[ �G D �k2u�; (36)

where

u] D

0

B

B

B

@

r � u
r � u
aC b

a � b

1

C

C

C

A

; F D

0

B

B

B

@

@1.�C �/

@2.�C �/

@1�

@2�

1

C

C

C

A

;

u[ D

0

B

B

B

@

@1.r � u/
@2.r � u/
@1.aC b/

@2.a � b/

1

C

C

C

A

; G D

0

B

B

B

@

�C �

�C �

�

�

1

C

C

C

A

:

As in the reconstruction of �, we will construct there linear independent vectors

such that the �rst term of the equation (36) can be eliminated.

Suppose that u.j /, for j D 0; 1; 2; 3, are three di�erent solutions of (6) which

satisfy

u.j /] � F C u.j /[ �G D �k2u.j /�: (37)

Now for j D 1; 2; 3 and \ D ]; [; �, we let

u
.0/\ D <�.x/u.0/\;

and

u
.1/\ D <�3.x/u.1/\;

u
.2/\ D =�3.x/u.1/\;

u
.3/\ D <.�1.x/u.2/\ C �2.x/u

.3/\/;
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where �j .x/ is a nonzero function. �en we get

u
.0/] � F C u

.0/[ �G D �k2u.0/� (38)

and

u
.j /] � F C u

.j /[ �G D �k2u.j /� for j D 1; 2; 3. (39)

Assume that ¹u.1/]; u.2/]; u.3/]º are three linearly independent vectors in some sub-

domain of �, say �0. �en there exist three functions ‚1; ‚2, and ‚3 such that

u
.0/] C

P3
jD1‚ju

.j /] D 0. Multiplying (39) by ‚j and summing over j with

equation (38), we have

v �G D �k2
�

u
.0/� C

3
X

jD1
‚ju

.j /�
�

;

where v D u
.0/[ C

P3
jD1‚ju

.j /[. Let

� D .1; 1; 0; 0/T � v; � D �.1; 1; 1; 1/T � v:

�en the above equation can be rewritten as

�� D �� � k2
�

u
.0/� C

3
X

jD1
‚j u

.j /�
�

:

Suppose that �.x/ does not vanish in �0 . �en we can deduce the following

lemma.

Lemma 3.6. Let u.j / for 0 � j � 3 be C 2 solutions of the elasticity system with

boundary conditions u.j / D g.j / on @�. Let u D .u1; u2/, a D @2u1 C @1u2 and

b D @1u1 � @2u2. We de�ne u] D .r � u; r � u; a C b; a � b/ and assume that

(1) ¹u.1/]; u.2/]; u.3/]º are three linearly independent vectors in �0, the neigh-

borhood of x0 in �.

(2) �.x/ does not vanish in �0.

�en the reconstruction is stable in the sense that

k� � Q�kC.�0/ � C.k�� Q�kC.�/ C kHx0
� zHx0

kC2.�0/
/; (40)

where Hx0
D .u.j //0�j�3.
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3.2.1. Global reconstruction of �. We will �nd three linearly independent vec-

tors ¹u.1/]; u.2/]; u.3/]º �rst. �en we can deduce stability of � by using Lemma 3.6

and �eorem 3.5.

Plugging the CGO solution u� D ��1=2w� C ��1rf� � f�r��1 into u], we

get

u]� D iei��x

0

B

B

B

B

B

B

B

B

@

0

B

B

B

B

B

B

B

B

@

p
�

�C 2�
� � r

p
�

�C 2�
� � r

2��1.is.�21 C �1�2/C !1 � rs/C ��1=2!1 � r
2��1.is.�1�2 � �21/C !2 � rs/C ��1=2!2 � r

1

C

C

C

C

C

C

C

C

A

CO.1/

1

C

C

C

C

C

C

C

C

A

;

where !1 D .�1 C �2; �1 � �2/ and !2 D .�2 � �1; �1 C �2/.

For the same �xed point x0 2 x�. Denote that � D �.e1 C ie2/ and Q� D i�.

We choose a constant vector g.0/ such that C0.x; �/g
.0/ D .r .0/; s.0// with

s.0/ ¤ 0; � � r .0/ ¤ 0; � � r .0/.x0/ D 1

in a neighborhood of x0, U . �en we get the CGO solution of the elasticity system

u.0/� D ��1=2w.0/� C ��1rf .0/� � f .0/� r��1

with
�

w
.0/
�

f
.0/
�

�

D ei��x
��

r .0/

s.0/

�

CO.��1/

�

:

We choose another constant vector g.1/ such that C1.x; �/g
.1/ D .r .1/; s.1//

with

s.1/ ¤ 0 in U and � � r .1/.x0/ D 0:

�en we get the CGO solution of the elasticity system

u.1/� D ��1=2w.1/� C ��1rf .1/� � f .1/� r��1

with
�

w
.1/
�

f
.1/
�

�

D ei��x
��

r .1/

s.1/

�

CO.��1/

�

:

For l D 2; 3, we choose a constant vector g.l/ such that

Cl.x; �/g
.l/ D .r .l/; s.l//
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with

� � r .l/ ¤ 0

in U . Here we can choose

r .2/ D r .3/; s.2/ D s.3/

by taking g.2/ D g.3/ and C2.x; �/ D C3.x; Q�/. �en we get the CGO solution of

the elasticity system

u.l/� D ��1=2w.l/� C ��1rf .l/� � f .l/� r��1;

with

�

w
.2/
�

f
.2/
�

�

D ei��x
��

r .2/

s.2/

�

CO.��1/

�

;

and
�

w
.3/
�

f
.3/
�

�

D ei Q��x
��

r .3/

s.3/

�

CO.��1/

�

:

We let

e�i��xi�1j�j�2u.1/]� D 2i��1s

0

B

B

B

@

0

0

1C i

i � 1

1

C

C

C

A

CO.��1/;

u
2;1
� WD e�i��xi�1j�j�1u.2/]� D 1p

2

0

B

B

B

B

B

B

B

B

B

@

p
�

�C 2�
.1; i/ � r .2/

p
�

�C 2�
.1; i/ � r .2/

2��1�.1C i/is.2/ C �.2/

2��1�.i � 1/is.2/ C i�.2/

1

C

C

C

C

C

C

C

C

C

A

CO.��1/

and

u
2;2
� WD e�i Q��xi�1j Q�j�1u.3/]� D 1p

2

0

B

B

B

B

B

B

B

B

B

@

p
�

�C 2�
.i;�1/ � r .3/

p
�

�C 2�
.i;�1/ � r .3/

2��1�.�1� i/is.3/ C �.3/

2��1�.1� i/is.3/ C i�.3/

1

C

C

C

C

C

C

C

C

C

A

CO.��1/;
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where

�.2/ D 2��1.1C i; 1� i/ � rs.2/ C ��1=2.1C i; 1� i/ � r .2/

and

�.3/ D 2��1.�1C i; i C 1/ � rs.3/ C ��1=2.�1C i; i C 1/ � r .3/:

To eliminate the higher order term of u
2;j
� , we consider the summation of two

vectors:

e�i��xi�1j�j�1u.2/]� C e�i Q��xi�1j Q�j�1u.3/]�

D 1p
2

0

B

B

B

B

B

B

B

B

B

@

p
�

�C 2�
.1C i; i � 1/ � r .3/

p
�

�C 2�
.1C i; i � 1/ � r .3/

2��1.2i; 2/ � rs.2/ C ��1=2.2i; 2/ � r .3/

2��1.�2; 2i/ � rs.3/ C ��1=2.�2; 2i/ � r .3/

1

C

C

C

C

C

C

C

C

C

A

CO.��1/:

We de�ne

u
.0/\
� D <e�i��xi�1j�j�2u.0/\� ; \ D ]; [; �;

u
.1/\
� D <e�i��xi�1j�j�2u.1/\� I u

.2/\
� D =e�i��xi�1j�j�2u.1/\� ;

and

u
.3/\
� D <.e�i��xi�1j�j�1u.2/\� C e�i Q��xi�1j Q�j�1u.3/\� /:

�us we have constructed three linear independent vectors ¹u.1/]� ; u
.2/]
� ; u

.3/]
� º in U

as � is su�ciently large. �erefore, there are three functions‚j ; j D 1; 2; 3, such

that

u
.0/]
� C

3
X

jD1
‚ju

.j /]
� D 0: (41)

�ey also satisfy the equations

u
.j /]
� � F C u

.j /[
� �G D �k2u.j /�� ; 0 � j � 3:

Summing over j and using (41), we get the equation

v �G D �k2
�

u
.0/�
� C

3
X

jD1
‚ju

.j /�
�

�

; (42)
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where

v D u
.0/[
� C

3
X

jD1
‚ju

.j /[
� :

�en we obtain that

�� D �� � k2
�

u
.0/�
� C

3
X

jD1
‚ju

.j /�
�

�

; (43)

where

� D .1; 1; 0; 0/T � v; � D �.1; 1; 1; 1/T � v:

Lemma 3.7. � does not vanish in some neighborhood of x0.

Proof. Since ‚j � �0 and � � r .1/.x0/ D 0, by using similar argument as in the

proof of Lemma 3.2,

.1; 1; 0; 0/T �‚1u.1/[� � ��1; .1; 1; 0; 0/T �‚2u.2/[� � ��1: (44)

Observe that

�4 WD .1; 1; 0; 0/T � u.3/[�

D <
��

1

1

�

�
�

e�i��x

i j�j

�

@1.r � u.2//
@2.r � u.2//

�

C e�i Q��x

i j Q�j

�

@1.r � u.3//
@2.r � u.3//

���

:

�e O.�/ term of �4 is

1

i
p
2�

�

�
p
�

�C 2�
.�
.2/
1 C �

.2/
2 /�.2/ � r .2/ �

p
�

�C 2�
.�
.3/
1 C �

.3/
2 /�.3/ � r .3/

�

D 0

since r .2/ D r .3/. �us the leading order term of �4 is O.1/, that is,

' D '.2/ C '.3/;

where

'.l/ D 1

i
p
2�

�

��1=2.i�.l/2 @1r
.l/
1 C i�

.l/
1 @2r

.l/
2 C i�

.l/
1 @2r

.l/
1 C i�

.l/
2 @1r

.l/
2

C 2i� � rr .l//
C ��1.2i� � .r.@1s.l//C r.@2s.l///C i.�1 C �2/�s

.l//

C 2i@1�
�1�.l/ � rs.l/ � @11��1i.�.l/1 C �

.l/
2 /s

.l/

C 2i@2�
�1�.l/ � rs.l/ � @22��1i.�.l/1 C �

.l/
2 /s

.l/

C @1�
�1=2.i�.l/2 r

.l/
1 C i�

.l/
2 r

.l/
2 C 2i�

.l/
1 r

.l/
1 /

C @2�
�1=2.i�.l/1 r

.l/
1 C i�

.l/
1 r

.l/
2 C 2i�

.l/
2 r

.l/
2 /

�

:
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Since

�1 WD .1; 1; 0; 0/T � u.0/[� .x0/

D <
�

1

1

�

� �ie�i��x

j�j2
�

@1.r � u/
@2.r � u/

�

.x0/ D �p
�

2.�C 2�/
CO.��1/

and (44), we get that

�.x0/ D .1; 1; 0; 0/T � v.x0/

D �1.x0/C‚3�4.x0/CO.��1/

�
�p

�

2.�C 2�/
C‚3.x0/'.x0/:

Since � 2 P, '.x0/ is some �xed number. Moreover, we can take s.0/ small such

that j‚3.x0/j to be su�ciently small (It can be done by following similar argument

in Remark 2), then we can obtain that
�p

�

2.�C2�/ C‚3.x0/'.x0/ ¤ 0: By continuity

of �, there exists a neighborhood V such that � never vanishes in V .

Let

�0 D U \ V \�: (45)

We have ¹u.1/]� ; u
.2/]
� ; u

.3/]
� º are linearly independent in�0 as � is su�ciently large

and also � does not vanish in �0. �en it follows that

� D ��

�
� k2

�

�

u
.0/�
� C

3
X

jD1
‚ju

.j /�
�

�

in �0: (46)

As in Section 3.1, we also can �nd the solutions u.j / of the elasticity system

such that

ku.j / � u.j /� kC2.�/ < C"; j D 0; 1; 2; 3: (47)

Now we let the internal data Hx0
contains the three solutions we constructed

in �eorem 3.3 and the four solutions u.j /; j D 0; 1; 2; 3 in this section. �en we

have the following result.

�eorem 3.8. Suppose that .�; �/ and . Q�; Q�/ 2 P. For any �xed x0 2 @�, let u
.j /
�

be the corresponding CGO solutions for .�; �/ andu.j / constructed in Sections 3.1

and 3.2 with internal data Hx0
and with " as in (22) su�ciently small. Let zHx0

be constructed similarly with the parameters . Q�; Q�/. Assume that �j@� D Q�j@�.

�en Hx0
D zHx0

implies that � D Q� in �0 which is de�ned in (45).
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Proof. Applying �eorem 3.3 and equation (46), we have the uniqueness of � near

the point x0.

We deduce the following result by applying Lemma 3.6 and �eorem 3.4.

�eorem 3.9. Suppose that .�; �/ and . Q�; Q�/ 2 P. For any �xed x0 2 x�, let u
.j /
�

be the corresponding CGO solutions for .�; �/ andu.j / constructed in Sections 3.1

and 3.2 with internal data Hx0
and with " as in (22) su�ciently small. Let zHx0

be constructed similarly for the parameters . Q�; Q�/ with u.j /j@� D Qu.j /j@�. �en

we have the estimates

k� � Q�kC.�0/ � C.j�.x0/ � Q�.x0/j C kH� � zH�kC2.�0/
/; (48)

for x0 2 @�, and

k� � Q�kC.�0/ � C.j�.xC
0 / � Q�.xC

0 /j C kH� � zH�kC2.�0/
/; (49)

for xC
0 2 @�0 and x0 2 �. Here �0 is de�ned in (45).

With (46) and �eorem 3.9, we follow the same proof as in �eorem 3.5, then

we can get the following global reconstruction of �.

�eorem 3.10 (Global reconstruction of �). Let � be an open bounded domain

of R2 with smooth boundary. Suppose that the Lamé parameters .�; �/ and that

. Q�; Q�/ 2 P and �j@� D Q�j@�. Let u.j / and Qu.j / be the solutions of the elasticity

system with boundary data g.j / for parameters .�; �/ and . Q�; Q�/, respectively. Let

H D .u.j //1�j�J and zH D . Qu.j //1�j�J be the corresponding internal data for

.�; �/ and . Q�; Q�/, respectively for some integer J � 7 .

�en there is an open set of the boundary data .g.j //1�j�J such that ifH D zH
implies � D Q� in �. Moreover, we have the stability estimate

k� � Q�kC.�/ � CkH � zHkC2.�/:

4. Reconstruction of Lamé parameter in three dimensional case

�e reconstruction of � and � in R3 basically follows the similar argument as

in Section 3. �e major di�erence in proving the stability of Lamé parameters

between dimensions two and three is that more CGO solutions are needed to get

linearly independent vectors locally in R
3 than in R

2.
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4.1. Global reconstruction of � in 3D. Let u D .u1; u2; u3/
T be the displace-

ment which satis�es the elasticity system

r � .�.r � u/I C 2S.ru/�/C k2u D 0: (50)

Denote

u] D

0

B

B

B

B

B

B

B

@

@1.r � u/
@2.r � u/
@3.r � u/

r � u
r � u
r � u

1

C

C

C

C

C

C

C

A

; F D

0

B

B

B

B

B

B

B

@

�C �

�C �

�C �

@1.�C �/

@2.�C �/

@3.�C �/

1

C

C

C

C

C

C

C

A

;

u[ D

0

B

B

B

B

B

B

B

@

b23

b13

b12

@1.b23/

@2.b13/

@3.b12/

1

C

C

C

C

C

C

C

A

; G D

0

B

B

B

B

B

B

B

@

@1�

@2�

@3�

�

�

�

1

C

C

C

C

C

C

C

A

;

where

bij D @lul � @iui � @juj C @iul C @lui C @jul C @luj ; l; i; j 2 ¹1; 2; 3º

are distinct numbers. From (50), we can deduce the equation

u] � F C u[ � G D �k2u�:

Here u� D .u1 C u2 C u3/.

In the following we will show that how we can get four linearly independent

vectors of the form u] on some subdomain of �. �e key thing is to observe the

behavior of u]. We plug the CGO solutions u� D ��1=2w� C��1rf� � f�r��1

into u]. �en we get

u]� D ei��x

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C2��1.� � r/CO.j�j/

�
p
�

�C2��2.� � r/CO.j�j/

�
p
�

�C2��3.� � r/CO.j�j/

i
p
�

�C2�� � r

i
p
�

�C2�� � r

i
p
�

�C2�� � r

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.1/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (51)

Note that r D .r1; r2; r3/
T and � D .�1; �2; �3/

T .
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Now we �x any point x0 2 x�. Let � D �.1; i; 0/ and QQ� D �.1; 0; i/with � > 0.

Let � D �=�;
QQ� D QQ�=� . Since, in Lemma 2.1, the matrix solutions C0.x; �/ and

QzC 0.x; QQ�/ are invertible, we can choose two constant vectors g.0/ and QQg.0/ such that

C0.x; �/g
.0/ D .r .0/; s.0//T and

QzC 0.x; QQ�/ QQg.0/ D . QQr .0/; QQs.0//T with s.0/.x0/ D 1 D
QQs.0/.x0/ and s.0/; QQs.0/ ¤ 0 and � � r .0/; QQ� � QQr .0/ ¤ 0 in a neighborhood of x0, say

U0. �en we have the CGO solutions of the elasticity system, that is,

u.0/� D ��1=2w.0/� C ��1rf .0/� � f .0/� r��1;

and

QQu.0/� D ��1=2 QQw.0/� C ��1r QQf .0/� � QQf .0/� r��1

with

�

w
.0/
�

f
.0/
�

�

D ei��x
��

r .0/

s.0/

�

CO.��1/

�

;

and
� QQw.0/�

QQf .0/�

�

D ei
QQ��x

�� QQr .0/
QQs.0/

�

CO.��1/

�

:

Let Q� D �.i;�1; 0/ and Q� D Q�=� . Let C1.x; �/ and C2.x; Q�/ satisfy that

i� � @
@x
C1.x; �/ D � � V1.x/C1.x; �/; i Q� � @

@x
C2.x; Q�/ D Q� � V1.x/C2.x; Q�/;

respectively. Since Q� D i�, we can choose C2.x; Q�/ D C1.x; �/. Moreover, r .2/ D
r .1/ and s.2/ D s.1/. With suitable constant vector g, we can get that s.l/ is zero

at point x0 and r .1/.x0/ D .1;�i; 0/ D r .2/.x0/. By continuity of r .l/, we have

� � r .l/ ¤ 0 in a neighborhood U1 of x0. �en the CGO solution is

u.l/� D ��1=2w.l/� C ��1rf .l/� � f .l/� r��1

with

�

w
.1/
�

f
.1/
�

�

D ei��x
��

r .1/

s.1/

�

CO.��1/

�

;

and
�

w
.2/
�

f
.2/
�

�

D ei Q��x
��

r .2/

s.2/

�

CO.��1/

�

:
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For QQ�, with a suitable constant vector Qg, we can get that s.3/ is zero at point

x0 and r .3/.x0/ D .1; 0;�i/. By continuity of r .3/, we have QQ� � r .3/ ¤ 0 in a

neighborhood U2 of x0. �en the CGO solution is

u.3/� D ��1=2w.3/� C ��1rf .3/� � f .3/� r��1

with

�

w
.3/
�

f
.3/
�

�

D ei
QQ��x

��

r .3/

s.3/

�

CO.��1/

�

:

Let U D \2
lD0Ul . So far we have �ve CGO solutions, that is, u

.0/
� ; QQu.0/� ; u

.1/
� ,

u
.2/
� , and u

.3/
� .

Let r .1/ D .r
.1/
1 ; r

.1/
2 ; r

.1/
3 /. We de�ne

u
1
� WD e�i��xj�j�2u.1/]� D1

2

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

�
p
�

�C 2�
.ir

.1/
1 � r .1/2 /

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/

and

u
2;1
� WD e�i��xj�j�1u.1/]�

D 1p
2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
�.r

.1/
1 C ir

.1/
2 /CO.1/

�
p
�

�C 2�
�.ir

.1/
1 � r .1/2 /CO.1/

0

i

p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

i

p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

i

p
�

�C 2�
.r
.1/
1 C ir

.1/
2 /

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/
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and

u
2;2
� WD e�i Q��xj Q�j�1u.2/]�

D 1p
2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
�.�r .2/1 � ir .2/2 /CO.1/

�
p
�

�C 2�
�.�ir .2/1 C r

.2/
2 /CO.1/

0

i

p
�

�C 2�
.ir

.2/
1 � r .2/2 /

i

p
�

�C 2�
.ir

.2/
1 � r .2/2 /

i

p
�

�C 2�
.ir

.2/
1 � r .2/2 /

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/:

Let u2� D u
2;1
� C u

2;2
� . Since r .2/ D r .1/ and s.2/ D s.1/, we have

u
2
� D 1p

2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

O.1/

O.1/

0

i

p
�

�C 2�
..1C i/r

.1/
1 C .�1C i/r

.1/
2 /

i

p
�

�C 2�
..1C i/r

.1/
1 C .�1C i/r

.1/
2 /

i

p
�

�C 2�
..1C i/r

.1/
1 C .�1C i/r

.1/
2 /

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/:

We also de�ne

u
3
� WD e�i QQ��xj�j�2u.3/]�

D 1

2

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�
p
�

�C 2�
.r
.3/
1 C ir

.3/
3 /

0

�
p
�

�C 2�
.ir

.3/
1 � r .3/3 /

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/
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We denote

u
.0/\
1� D <e�i��xj�j�2u.0/\� ; u

.0/\
2� D =e�i��xj�j�2u.0/\� ;

u
.0/\
3� D <e�i QQ��xj�j�2 QQu.0/\� I \ D ]; [; �;

and

u
.1/\
� D <e�i��xj�j�2u.1/\� ;

u
.2/\
� D =e�i��xj�j�2u.1/\� ;

u
.3/\
� D <.e�i��xj�j�1u.1/\� C e�i Q��xj Q�j�1u.2/\� /;

u
.4/\
� D <e�i QQ��xj�j�2u.3/\� :

�en ¹u.j /]� W 1 � j � 4º are linearly independent in the neighborhood U of

x0 as � is su�ciently large. �erefore, for �xed l D 1; 2; 3 there exist functions

‚lj ; j D 1; 2; 3; 4; such that

u
.0/]

l�
C

4
X

jD1
‚lju

.j /]
� D 0:

As in Section 3.1, we summing over equations, then we have

ˇ�;l � r�C 
�;l� D �k2
�

u
.0/�
l�

C
4

X

jD1
‚lju

.j /�
�

�

l D 1; 2; 3,

where ˇ�;l and 
�;l are functions which depend on �;� and CGO solutions QQu.0/� ,

u
.j /
� for j D 0; : : : ; 3.

Lemma 4.1. Given any point x0 2 x�, there exists an open neighborhood V of x0

such that ˇ�;l is not zero in V , for l D 1; 2; 3.

Proof. Following the similar proof as in Lemma 3.2, we can prove this Lemma.

Let �0 D U \ V \�. Based on the lemma above, we may suppose that ˇ�;j

are linearly independent in �0 as � su�ciently large.
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Let g
.j /
� D u

.j /
� j@� and QQg.0/� D QQu.0/� j@� be the given boundary data for j D

0; 1; 2; 3. Let QQg.0/; g.j / 2 C 1;˛.@�/ be the boundary data close to QQg.0/� ; g
.j /
� ,

respectively, that is,

kg.j / � g.j /� kC1;˛.@�/ < "; k QQg.0/ � QQg.0/� kC1;˛.@�/ < ":

�en we can �nd solutions QQu.0/; u.j / of the elasticity system with boundary data
QQg.0/; g.j /, respectively. By regularity theorem, it follows that

ku.j / � u.j /� kC2.�/ < C"; k QQu.0/ � QQu.0/� kC2.�/ < C": (52)

From (52), we have

ku.j /] � u
.j /]
� kC.�/ � C"; 1 � j � 4:

�erefore, ¹u.j /] W 1 � j � 4º are also linearly independent when " is su�ciently

small. We construct ˇl by replacing u
.j /
� by u.j /. �en from (52), we can deduce

that

kˇl � ˇ�;lkC1.�/

is small when " is su�ciently small. �en we have the equation

ˇl � r�C 
l� D �k2
�

u
.0/�
l

C
4

X

jD1
‚lju

.j /�
�

; l D 1; 2; 3; (53)

with ¹ˇl .x/ºlD1;2;3 a basis in R
3 for every point x 2 �0. �ere exists an invertible

matrix A D .aij / such that ˇl D
P

alkek with inverse of class C.�/. �us, we

have constructed two vector-valued functions �.x/; ˆ.x/ 2 C.�/ such that (53)

can be rewritten as

r�C �.x/� D ˆ.x/ in �0: (54)

�en we have the following uniqueness and stability theorem.

�eorem 4.2 (Global reconstruction of �). Let� be an open bounded domain of

R
3 with smooth boundary. Suppose that the Lamé parameters .�; �/ and . Q�; Q�/ 2

P and �j@� D Q�j@�. Let u.j / and Qu.j / be the solutions of the elasticity system

with boundary data g.j / for parameters .�; �/ and . Q�; Q�/, respectively. Let H D
.u.j //1�j�J and zH D . Qu.j //1�j�J be the corresponding internal data for .�; �/

and . Q�; Q�/, respectively for some integer J � 5 .

�en there is an open set of the boundary data .g.j //1�j�J such that ifH D zH
implies � D Q� in �. Moreover, we have the stability estimate

k� � Q�kC.�/ � CkH � zHkC2.�/:

Proof. �e proof is similar to �eorem 3.5.
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4.2. Global reconstruction of � in 3D. �e elasticity system can also be written

in this form

u] � F C u[ �G D �k2u�; (55)

where

u] D

0

B

B

B

B

B

B

B

@

r � u
r � u
r � u
b23

b13

b12

1

C

C

C

C

C

C

C

A

; F D

0

B

B

B

B

B

B

B

@

@1.�C �/

@2.�C �/

@3.�C �/

@1�

@2�

@3�

1

C

C

C

C

C

C

C

A

;

u[ D

0

B

B

B

B

B

B

B

@

@1.r � u/
@2.r � u/
@3.r � u/
@1.b23/

@2.b13/

@3.b12/

1

C

C

C

C

C

C

C

A

; G D

0

B

B

B

B

B

B

B

@

�C �

�C �

�C �

�

�

�

1

C

C

C

C

C

C

C

A

:

As in the reconstruction of �, we will construct CGO solutions such that the �rst

term of (55) can be eliminated.

Plug the CGO solution u� D ��1=2w� C��1rf� � f�r��1 into u]. �en we

get

u]� D ei��x

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

i

p
�

�C 2�
� � r

i

p
�

�C 2�
� � r

i

p
�

�C 2�
� � r

�2��1�1.�1 C �2 C �3/s CO.j�j/
�2��1�2.�1 C �2 C �3/s CO.j�j/

�2��1�3.�1 C �2 C �3/s CO.j�j/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.1/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

For the same �xed point x0 2 x�. We choose a constant vector g.0/ such that

C0.x; �/g
.0/ D .r .0/; s.0// with s.0/ ¤ 0 and � � r .0/ ¤ 0 in a neighborhood of x0,

say U0, and � �r .0/.x0/ D 1. �en we get the CGO solution of the elasticity system

u.0/� D ��1=2w.0/� C ��1rf .0/� � f .0/� r��1
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with

�

w
.0/
�

f
.0/
�

�

D ei��x
��

r .0/

s.0/

�

CO.��1/

�

:

We choose another constant vector g.1/ such that C1.x; �/g
.1/ D .r .1/; s.1//

with s.1/ ¤ 0 in a neighborhood of x0, say U1, and � � r .1/.x0/ D 0. �en we get

the CGO solution of the elasticity system

u.1/� D ��1=2w.1/� C ��1rf .1/� � f .1/� r��1

with

�

w
.1/
�

f
.1/
�

�

D ei��x
��

r .1/

s.1/

�

CO.��1/

�

:

For l D 2; 3, we choose a constant vector g.l/ such that

Cl.x; �/g
.l/ D .r .l/; s.l//

with � � r .l/ ¤ 0 in a neighborhood of x0, say U2. Here we can choose r .2/ D
r .3/; s.2/ D s.3/ by taking g.2/ D g.3/ and C2.x; �/ D C3.x; Q�/. �en we get the

CGO solution of the elasticity system

u.l/� D ��1=2w.l/� C ��1rf .l/� � f .l/� r��1

with

�

w
.2/
�

f
.2/
�

�

D ei��x
��

r .2/

s.2/

�

CO.��1/

�

;

and
�

w
.3/
�

f
.3/
�

�

D ei Q��x
��

r .3/

s.3/

�

CO.��1/

�

:

For QQ�, we choose another constant vector g.4/ such that C4.x; �/g
.4/ D .r .4/; s.4//

with s.4/ ¤ 0 in a neighborhood of x0, say U3, and QQ� � r .4/.x0/ D 0. �en we get

the CGO solution of the elasticity system

u.4/� D ��1=2w.4/� C ��1rf .4/� � f .4/� r��1

with

�

w
.4/
�

f
.4/
�

�

D ei
QQ��x

��

r .4/

s.4/

�

CO.��1/

�

:
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We de�ne

u
1
� WD e�i��xj�j�2u.1/]� D �2��1s

0

B

B

B

B

B

B

B

@

0

0

0

1C i

i � 1

0

1

C

C

C

C

C

C

C

A

CO.��1/

and

u
2;1
� WDe�i��xj�j�1u.2/]�

D 1p
2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

i

p
�

�C 2�
� � r .2/

i

p
�

�C 2�
� � r .2/

i

p
�

�C 2�
� � r .2/

�2��1�.1C i/s.2/ CO.1/

�2��1�.i � 1/s.2/ CO.1/

O.1/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/

and

u
2;2
� WDe�i Q��xj Q�j�1u.3/]�

D 1p
2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

i

p
�

�C 2�
Q� � r .3/

i

p
�

�C 2�
Q� � r .3/

i

p
�

�C 2�
Q� � r .3/

�2��1�.�1� i/s.3/ CO.1/

�2��1�.1� i/s.3/ CO.1/

O.1/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/:
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Let u2� D u
2;1
� C u

2;2
� , then the higher order is eliminated. �us we have

u
2
� D 1p

2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

i

p
�

�C 2�
.�C Q�/ � r .3/

i

p
�

�C 2�
.�C Q�/ � r .3/

i

p
�

�C 2�
.�C Q�/ � r .3/

O.1/

O.1/

O.1/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

CO.��1/:

Also, we de�ne that

u
3
� WD e�i��xj�j�2u.4/]� D �2��1s

0

B

B

B

B

B

B

B

@

0

0

0

1C i

0

i � 1

1

C

C

C

C

C

C

C

A

CO.��1/:

We denote

u
.0/\
� D <e�i��xj�j�2u.0/\� ; \ D ]; [; �;

and

u
.1/\
� D <e�i��xj�j�2u.1/\� ;

u
.2/\
� D =e�i��xj�j�2u.1/\� ;

u
.3/\
� D <.e�i��xj�j�1u.2/\� C e�i Q��xj Q�j�1u.3/\� /;

u
.4/\
� D <e�i��xj�j�2u.4/\� :

�en ¹u.j /]� W 1 � j � 4º are linearly independent in the neighborhood U D
\3
lD0Ul of x0 as � is su�ciently large. �erefore, there exist functions ‚j , j D

1; 2; 3; 4; such that

u
.0/]
� C

4
X

jD1
‚ju

.j /]
� D 0:
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Summing over, we get the following equation as in Section 3.2:

v �G D �k2
�

u
.0/�
� C

4
X

jD1
‚ju

.j /�
�

�

; (56)

with v D u
.0/[
� C

P4
jD1‚ju

.j /[
� . We obtain that

�� D �� � k2
�

u
.0/�
� C

4
X

jD1
‚ju

.j /�
�

�

; (57)

where

� D .1; 1; 1; 0; 0; 0/T � v; � D �.1; 1; 1; 1; 1; 1/T � v:

Lemma 4.3. � does not vanish in some neighborhood of x0.

Proof. Similar argument as Lemma 3.7. Since

0

@

@1.r � u�/
@2.r � u�/
@3.r � u�/

1

A D ei��x

0

B

B

B

B

B

B

B

@

0

B

B

B

B

B

B

B

@

�
p
�

�C 2�
�1.� � r/CO.j�j/

�
p
�

�C 2�
�2.� � r/CO.j�j/

�
p
�

�C 2�
�2.� � r/CO.j�j/

1

C

C

C

C

C

C

C

A

CO.1/

1

C

C

C

C

C

C

C

A

and � � r .1/.x0/ D 0 D QQ� � r .4/.x0/, we have

.1; 1; 1; 0; 0; 0/T � .‚1u.1/[� C‚2u
.2/[
� C‚4u

.4/[
� /.x0/ � ��1:

Hence, we obtain that

�.x0/ D .1; 1; 1; 0; 0; 0/T � .u.0/[� C‚3u
.3/[
� /.x0/CO.��1/

� �
p
�

2.�C 2�/
C‚3u

.3/[
� .x0/:

We can take s.0/ small enough such that ‚3.x0/ is small. �us, �.x0/ ¤ 0. By

continuity of �, � does not vanish in some neighborhood V of x0.

Let �0 D U \ V \�. Since � does not vanish in �0, we have

� D ��

�
� k2

�

�

u
.0/�
� C

4
X

jD1
‚ju

.j /�
�

�

in �0: (58)

Applying the similar proof as in �eorem 3.5, we can deduce the following result.
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�eorem 4.4 (Global reconstruction of �). Let� be an open bounded domain of

R
3 with smooth boundary. Suppose that the Lamé parameters .�; �/ and . Q�; Q�/ 2

P and �j@� D Q�j@�. Let u.j / and Qu.j / be the solutions of the elasticity system

with boundary data g.j / for parameters .�; �/ and . Q�; Q�/, respectively. Let H D
.u.j //1�j�J and zH D . Qu.j //1�j�J be the corresponding internal data for .�; �/

and . Q�; Q�/, respectively for some integer J � 10 .

�en there is an open set of the boundary data .g.j //1�j�J such that ifH D zH
implies � D Q� in �. Moreover, we have the stability estimate

k� � Q�kC.�/ � CkH � zHkC2.�/:
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