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1. Introduction

Spectral theory of non-selfadjoint boundary value problems (BVP) on a �nite in-

terval I D .a; b/ for nth order ordinary di�erential equations (ODE)

y.n/ C q1y.n�2/ C � � � C qn�1y D �ny; x 2 .a; b/; (1.1)

with coe�cients qj 2 L1.a; b/ takes its origin in the papers by Birkho� [3, 4] and

Tamarkin [55, 56]. �ey introduced the concept of regular boundary conditions

for ODE and investigated the asymptotic behavior of eigenvalues and eigenfunc-

tions of related BVP. Moreover, they proved that the system of root functions, i.e.

eigenfunctions and associated functions, of the regular BVP is complete. �eir

results are also treated in the classical monographs (see [45, Section 2] and [14,

Chapter 19]).

�e completeness property of non-regular BVP for nth order ODE (1.1) has

been studied by M.V. Keldysh [21], A.A. Shkalikov [49], A.G. Kostyuchenko and

A.A. Shkalikov [25], G.M. Gubreev [19], A.P. Khromov [23], V.S. Rykhlov [47]

and many others (see references in [23]). On the other hand, the Riesz basis prop-

erty for regular BVP were investigated by N. Dunford [13], V.P. Mikhailov [41],

G.M. Kesel’man [22], N. Dunford and J. Schwartz [14, Chapter 19.4], A.A. Shka-

likov [50, 51], A. Minkin [42, 43]. Numerous papers are devoted to the complete-

ness and Riesz basis property for the Sturm–Liouville operator (see the recent

paper [53] by A. Shkalikov and O. Veliev and the review [33] by A.S. Makin and

the references therein). We especially mention the recent achievements for pe-

riodic (anti-periodic) Sturm–Liouville operator � d2

dx2 C q.x/ on Œ0; ��. Namely,

F. Gesztesy and V.A. Tkachenko [15, 16] for q 2 L2Œ0; �� and later on P. Djakov

and B.S. Mityagin [11] for q 2 W �1;2Œ0; �� established by di�erent methods a cri-

terion for the system of root functions to contain a Riesz basis (see Remark 5.12

for detailed discussion).

In this paper we consider �rst order system of ODE of the form

Ly WD L.Q/y WD �iB�1y0 C Q.x/y D �y; y D col.y1; : : : ; yn/; (1.2)

where B is a nonsingular diagonal n � n matrix with complex entries,

B D diag.b1; b2; : : : ; bn/ 2 C
n�n; (1.3)

and Q.�/ DW .qjk.�//n
j;kD1

2 L1.Œ0; 1�ICn�n/ is a potential matrix.

Note that, systems (1.2) form a more general object than ordinary di�erential

equations. Namely, the nth order ODE (1.1) can be reduced to the system (1.2)

with bj D exp .2�ij=n/ (see [34]). Nevertheless, in general a BVP for ODE (1.1)
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is not reduced to a BVP (1.2)–(1.4) (see below). Systems (1.2) are of signi�cant

interest in some theoretical and practical questions. For instance, if n D 2m,

B D diag.�Im; Im/ and Q D
�

0 Q12

Q21 0

�

, system (1.2) is equivalent to the Dirac

system (see [27, Section VII.1], [38, Section 1.2]). Note also that equation (1.2) is

used to integrate the N -waves problem arising in nonlinear optics [46, Sec. III.4].

With system (1.2) one associates, in a natural way, the maximal operator L D

L.Q/ acting in L2.Œ0; 1�ICn/ on the domain

dom.L/ D ¹y 2 W 1;1.Œ0; 1�ICn/ W Ly 2 L2.Œ0; 1�ICn/º:

To obtain a BVP, equation (1.2) is subject to the following boundary conditions

Cy.0/ C Dy.1/ D 0; C D .cjk/; D D .djk/ 2 C
n�n: (1.4)

Denote by

LC;D WD LC;D.Q/

the operator associated in L2.Œ0; 1�ICn/ with the BVP (1.2)–(1.4). It is de�ned as

the restriction of L D L.Q/ to the domain

dom.LC;D/ D ¹y 2 dom.L/ W Cy.0/ C Dy.1/ D 0º: (1.5)

Moreover, in what follows we always impose the maximality condition

rank
�

C D
�

D n; (1.6)

which is equivalent to ker.CC � C DD�/ D ¹0º.

To the best of our knowledge, the spectral problem (1.2)–(1.4) has �rst been

investigated by G.D. Birkho� and R.E. Langer [5]. Namely, they have extended

some previous results of Birkho� and Tamarkin on non-selfadjoint boundary value

problem for ODE (1.1) to the case of BVP (1.2)–(1.4). More precisely, they in-

troduced the concepts of regular and strictly regular boundary conditions (1.4)

and investigated the asymptotic behavior of eigenvalues and eigenfunctions of

the corresponding operator LC;D . Moreover, they proved a pointwise conver-

gence result on spectral decompositions of the operator LC;D corresponding to

the BVP (1.2)–(1.4) with regular boundary conditions.

�e problem of the completeness of the system of root functions of general

BVP (1.2)–(1.4) has �rst been investigated in the recent papers [36, 37] by one

of the authors and L.L. Oridoroga. In these papers the concept of weakly regu-

lar boundary conditions for the system (1.2) was introduced and the complete-

ness of root vectors for this class of BVP was proved. During the last decade

there appeared numerous papers devoted mainly to the Riesz basis property for
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2 � 2 Dirac system subject to the regular or strictly regular boundary conditions

(see [58, 20, 2, 6, 7, 9, 10, 11, 12, 29, 30, 48]).

Let us recall the de�nition of regular (see [5, p. 89]) and weakly regular

(see [36, 37]) boundary conditions. To this end we need the following construc-

tion. Let A D diag.a1; : : : ; an/ be a diagonal matrix with entries ak (not neces-

sarily distinct) that are not lying on the imaginary axis, Re ak ¤ 0. Starting from

arbitrary matrices C; D 2 C
n�n, we de�ne the auxiliary n � n matrix TA.C; D/ as

follows:

� if Re ak < 0, then the kth column in the matrix TA.C; D/ coincides with the

kth column of the matrix C ;

� if Re ak > 0, then the kth column in the matrix TA.C; D/ coincides with the

kth column of the matrix D.

Now consider the lines

lj WD ¹� 2 C W Re.ibj �/ D 0º; j 2 ¹1; : : : ; nº;

of the complex plane. �ey divide the complex plane into m D 2r � 2n sec-

tors. Denote these sectors by �1; �2; : : : �m. Let zj lie in the interior of �j ; j 2

¹1; : : : ; mº. �e boundary conditions (1.4) are called regular whenever

det Tizj B.C; D/ ¤ 0; j 2 ¹1; : : : ; mº: (1.7)

We call z 2 C admissible if Re.ibj z/ ¤ 0 for j 2 ¹1; : : : ; nº. Since Tizj B.C; D/

does not depend on a particular choice of the point zj 2 �j , the boundary condi-

tions (1.4) are regular if and only if det TizB.C; D/ ¤ 0 for each admissible z.

De�nition 1.1. ([37]) �e boundary conditions (1.4) are called weakly B-regular

(or, simply, weakly regular) if there exist three admissible complex numbers z1; z2,

z3 satisfying the following conditions:

(a) the origin is an interior point of the triangle 4z1z2z3
;

(b) det Tizj B.C; D/ ¤ 0 for j 2 ¹1; 2; 3º.

In the case of Dirac type system (B D B�) the weak regularity of boundary

conditions (1.4) is equivalent to their regularity (1.7) and turns into

det T˙ WD det T˙B.C; D/ ¤ 0:

�erefore, by [37, �eorem 1.2], this condition implies the completeness and min-

imality in L2.Œ0; 1�ICn/ of the root functions of BVP (1.2)–(1.4). In special cases
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this statement has earlier been obtained by V. A. Marchenko [38, §1.3] (2�2 Dirac

system) and V. P. Ginzburg [17] .B D In; Q D 0/.

Our �rst main result (�eorem 4.1) states the completeness property for the

general BVP (1.2)–(1.4) with non-weakly regular boundary conditions. It sub-

stantially generalizes the corresponding results from [37] and [1]. Emphasize that

in the case of non-weakly regular boundary conditions the completeness property

substantially depends on the values Q.0/ and Q.1/. �e latter means that �eo-

rem 4.1 cannot be treated as a perturbation theory result: the operator LC;D.Q/ sat-

isfying the conditions of this theorem is complete while the system of root vectors

of the unperturbed operator LC;D.0/ may have in�nite defect in L2.Œ0; 1�ICn�n/.

We demonstrate this fact by the corresponding examples (cf. Corollary 4.7).

Our second main achievement is the Riesz basis property for general n � n

Dirac type system with Q 2 L1.Œ0; 1�ICn�n/ subject to certain boundary condi-

tions. �ese conditions form rather broad class that covers, in particular, periodic,

antiperiodic, and regular splitting (not necessarily selfadjoint) boundary condi-

tions for 2n � 2n Dirac system .B D diag.�In; In// (see �eorem 5.6 and Propo-

sition 5.9 for the precise statements). Emphasize that to the best of our knowledge

even for 2n � 2n Dirac systems with n > 1 the results on the Riesz basis property

are obtained here for the �rst time.

In this connection we mention the series of recent papers by P. Djakov and

B.S. Mityagin [7, 9, 10, 11, 12]. In [7] the authors proved that the system of root

functions for 2 � 2 Dirac system with Q 2 L2.Œ0; 1�IC2�2/ subject to the regu-

lar boundary conditions forms a Riesz basis with parentheses while this system

forms ordinary Riesz basis provided that the boundary conditions are strictly reg-

ular. Moreover, in [9, �eorem 13], [11, �eorem 19] and [12] it is established

a criterion for the system of root functions to contain a Riesz basis for periodic

(resp., antiperiodic) 2 � 2 Dirac operator in terms of the Fourier coe�cients of Q

as well as in terms of periodic (resp., antiperiodic) and Dirichlet spectra.

Finally, we apply our main abstract results with B D B� 2 C
4�4 to the Timo-

shenko beam model investigated under the di�erent restrictions in numerous pa-

pers (see [57, 24, 54, 61, 60, 59] and the references therein). We show in Propo-

sition 6.1 that the dynamic generator of this model is similar to the special 4 � 4

Dirac type operator. It allows us to derive completeness property in both regular

and non-regular cases. Moreover, in the regular case we obtain also the Riesz

basis property with parentheses.

�e paper is organized as follows. In Section 2 we obtain the general result on

completeness that generalizes [37, �eorem 1.2]. In Section 3 we obtain re�ned

asymptotic formulas for solutions of system (1.2) and the characteristic determi-
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nant �.�/ of the problem (1.2)–(1.4), provided that the potential matrix Q.�/ is

continuous at the endpoints 0 and 1.

In Section 4 we prove our main result on completeness, �eorem 4.1. We

illustrate this result in 2 � 2 case by deriving completeness and minimality in

L2.Œ0; ��IC2/ of the system ¹col.eanx sin nx; ne.a�i/nx/ºn2Zn¹0º. We also obtain

some necessary conditions on completeness for general BVP (1.2)–(1.4) gener-

alizing [37, Proposiiton 5.12] and coinciding with it in the case of 2 � 2 Dirac

system.

In Section 5 we prove the mentioned above results on the Riesz basis prop-

erty with parentheses for BVP (1.2)–(1.4) with a bounded potential matrix. In

Section 6 we prove mentioned above results on the completeness and Riesz basis

property with parentheses for the dynamic generator of spatially non-homogenous

Timoshenko beam model with both boundary and locally distributed damping.

�e main results of the paper were published as a preprint [31] and partially

announced in [28].

Notation. h�; �i denotes the inner product in C
n; Cn�n denotes the set of n � n

matrices with complex entries. In.2 C
n�n/ denotes the identity matrix; GL.n;C/

denotes the set of nonsingular matrices from C
n�n; T is a closed operator in a

Hilbert spaceH; �.T / and �.T / D Cn�.T / denote the spectrum and resolvent set

of the operator T , respectively; W n;pŒa; b� is Sobolev space of functions f having

n � 1 absolutely continuous derivatives on Œa; b� and satisfying f .n/ 2 LpŒa; b�.

2. Preliminaries

Let ˇ1; : : : ; ˇr be all di�erent values among b1; : : : ; bn. Note that the lines

ljk WD ¹� 2 C W Re.i ǰ �/ D Re.iˇk�/º; 1 6 j < k 6 r; (2.1)

together with the lines

lj WD ¹� 2 C W Re.i ǰ �/ D 0º; j 2 ¹1; : : : ; rº; (2.2)

separate � 6 r2 C r open sectors Sp with vertexes at the origin, such that for any

p 2 ¹1; : : : ; �º the numbers ˇ1; : : : ; ˇr can be renumbered so that the following

inequalities hold:

Re.i ǰ1
�/ < � � � < Re.i ǰ�

�/ < 0 < Re.i ǰ�C1
�/ < � � � < Re.i ǰr

�/; � 2 Sp:

(2.3)
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Here � D �p is the number of negative values among Re.iˇ1�/; : : : ; Re.iˇr�/ in

the sector Sp. We call z 2 C feasible if z does not belong to any of the lines (2.1)

and (2.2), that is, z lies strictly inside some sector Sp. Note that feasible point is

more restrictive notion than admissible point.

Clearly, each of the sectors Sp is of the form

Sp D ¹z W '1p < arg z < '2pº:

Denote by Sp;" a sector strictly embedded into the latter, i.e.,

Sp;" WD ¹z W '1p C " < arg z < '2p � "º; (2.4a)

where " > 0 is su�ciently small, and

Sp;";R WD ¹z 2 Sp;" W jzj > Rº: (2.4b)

Proposition 2.1. [37, Proposition 2.2] Let ıjk be a Kronecker symbol, let

B D diag.ˇ1In1
; : : : ; ˇrInr

/; n1 C � � � C nr D n; (2.5a)

Q D .Qjk/r
j;kD1; Qjk 2 L1.Œ0; 1�ICnj �nk /; (2.5b)

Qjj .�/ � 0; j 2 ¹1; : : : ; rº: (2.5c)

Let also p 2 ¹1; : : : ; �º and let " > 0 be su�ciently small. �en for a su�ciently

large R, equation (1.2) has a fundamental matrix solution

Y.x; �/ D
�

Y1 : : : Yn

�

; Yk.x; �/ D col.y1k; : : : ; ynk/; k 2 ¹1; : : : ; nº;

which is analytic in � 2 Sp;";R and satis�es .uniformly in x 2 Œ0; 1�/

yjk.x; �/ D .ıjk C o.1//eibk�x ; as � ! 1; � 2 Sp;";R; j; k 2 ¹1; : : : ; nº:

(2.6)

In what follows we will systematically use a concept of the similarity of un-

bounded operators.

De�nition 2.2. Let Hj be a Hilbert space, Aj a closed operator in Hj with domain

dom.Aj /, j 2 ¹1; 2º. �e operators A1 and A2 are called similar if there exists a

bounded operator T (a similarity transformation operator) from H1 onto H2 with

bounded inverse, such that A2 D TA1T �1, i.e.

dom.A2/ D T dom.A1/ and A2f D TA1T �1f; f 2 dom.A2/: (2.7)
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Note that similar operators A1 and A2 (A2 D TA1T �1) have the same spectra,

algebraic and geometric multiplicities of eigenvalues, while the systems of their

root vectors ¹e
.j /

k
º, j 2 ¹1; 2º, are related by e

.2/

k
D Te

.1/

k
. �erefore, they also

have the same geometric properties (completeness, minimality, basis property,

etc.).

Next we state the completeness result which slightly generalizes [37, �eo-

rem 1.2]. �e proof can be found in our preprint [31] and due to the lack of space

is omitted.

Let ˆ.x; �/ be a fundamental matrix solution of equation (1.2) satisfying

ˆ.0; �/ D In; � 2 C: (2.8)

�e characteristic determinant �.�/ of the problem (1.2)–(1.4) is given by

�.�/ WD det.C C Dˆ.1; �//; � 2 C: (2.9)

�eorem 2.3. Let Q.�/ 2 L1.Œ0; 1�ICn�n/. Assume that there exist C; R > 0,

s 2 ZC and three feasible numbers z1; z2; z3 satisfying the following conditions:

(i) the origin is the interior point of the triangle �z1z2z3
;

(ii) for k 2 ¹1; 2; 3º we have

j�.�/j >
CeRe.i�k�/

j�js
; �k D

n
X

j D1
Re.ibj zk/>0

bj ; j�j > R; arg � D arg zk:

(2.10)

�en the system of root functions of the BVP (1.2)–(1.4) .of the operator LC;D.Q//

is complete and minimal in L2.Œ0; 1�ICn/.

Remark 2.4. In the case s D 0 �eorem 2.3 is implicitly contained in [37, �eo-

rem 1.2].

3. Asymptotic behavior of solutions and characteristic determinant

Here we re�ne asymptotic formulas (2.6) assuming that Q.�/ is continuous at the

endpoints 0 and 1. �ese formulas will be applied to investigate asymptotic be-

havior of the characteristic determinant �.�/. We start with the following lemma.
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Lemma 3.1. Let b 2 C n ¹0º, C > 0 and S � C be a non-bounded subset of C

such that

Re.b�/ < �C j�j; � 2 S: (3.1)

(i) Let ' 2 L1Œ0; 1� and '.�/ is continuous at zero. �en

Z 1

0

eb�t '.t/dt D
'.0/ C o.1/

�b�
; as � ! 1; � 2 S: (3.2)

(ii) Let ' 2 L1Œ0; 1� and let '.�/ be bounded at a neighborhood of zero. �en

Z 1

0

ˇ

ˇ

ˇe
b�t '.t/

ˇ

ˇ

ˇdt D O.j�j�1/; � 2 S: (3.3)

Proof. Taking into account (3.1) one has

Z 1

0

jebt'.t/jdt 6

�Z ı

0

C

Z 1

ı

�

e�C j�jt j'.t/jdt

6
1

C j�j
sup

t2Œ0;ı�

j'.t/j C k'k1e�Cıj�j:

(3.4)

�is implies (3.3). Further, (3.2) is true for '.�/ � const. �erefore, it is su�cient

to prove it in the case '.0/ D 0. Estimate (3.4) proves this, taking into account

that ı can be chosen arbitrary small.

Lemma 3.1 allows us to re�ne the asymptotic formulas (2.6) from Proposi-

tion 2.1 when Q is continuous at the endpoints of the segment Œ0; 1�.

Proposition 3.2. Assume conditions (2.5a)–(2.5c) and let p 2 ¹1; : : : ; �º. As-

sume, in addition, that Q is continuous at the endpoints 0, 1. �en for a su�ciently

large R and small " > 0 equation (1.2) has a fundamental matrix solution

Y.x; �/ D
�

Y1 : : : Yn

�

; Yk.x; �/ D col.y1k; : : : ; ynk/; k 2 ¹1; : : : ; nº;

analytic with respect to � 2 Sp;";R. Moreover, yjk.x; �/, j; k 2 ¹1; : : : ; nº, satis-

�es (2.6) and has the following asymptotic behavior at the endpoints 0 and 1 as

� ! 1, � 2 Sp;";R,

yjk.0; �/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0; if Re.ibj �/ < Re.ibk�/;

ıjk; if bj D bk ;

bj qjk.0/ C o.1/

bj � bk

�
1

�
; if Re.ibj �/ > Re.ibk�/I

(3.5)
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and

yjk.1; �/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

bj qjk.1/ C o.1/

bj � bk

�
eibk�

�
; if Re.ibj �/ < Re.ibk�/;

.ıjk C o.1//eibk�; if bj D bk ;

0; if Re.ibj �/ > Re.ibk�/:

(3.6)

Proof. According to the proof of [37, Proposition 2.2] the matrix solution Y.x; �/

of system (1.2) with the asymptotic behavior (2.6) in Sp;";R was constructed as the

unique solution of the following system of integral equations

yjk.x; �/ D ıjkeibk�x � ibj

Z x

ajk

e�ibj �.t�x/

n
X

lD1

qjl .t /ylk.t; �/dt; (3.7)

where

ajk WD

´

0; if Re.ibj �/ 6 Re.ibk�/; � 2 Sp;";

1; if Re.ibj �/ > Re.ibk�/; � 2 Sp;":
(3.8)

In particular, ajk D 0 if bj D bk . Let us show that this solution satis�es (3.5), (3.6).

It is clear from (3.7) that for � 2 Sp;";R we have

yjk.0; �/ D 0; Re.ibj �/ < Re.ibk�/;

yjk.0; �/ D ıjk; bj D bk ;

yjk.1; �/ D 0; Re.ibj �/ > Re.ibk�/;

while the second relation in (3.6) follows from Proposition 3.2. �us, we need to

prove only the third relation in (3.5) and the �rst one in (3.6).

At �rst we rewrite (2.6) in the following form

yjk.x; �/ D .ıjk C �jk.x; �//eibk�; j; k 2 ¹1; : : : ; nº; (3.9)

where �jk.x; �/ D o.1/, as � ! 1, � 2 Sp;";R, uniformly in x 2 Œ0; 1�. Now

inserting expression (3.9) for yjk.x; �/ into (3.7) we obtain

yjk.x; �/

D

�

ıjk � ibj

Z x

ajk

ei.bk�bj /�.t�x/
�

qjk.t / C

n
X

lD1

qjl.t /�lk.t; �/
�

dt

�

eibk�x :

(3.10)

Let Re.ibj �/ > Re.ibk�/. Setting x D 0 in (3.10) one gets

yjk.0; �/ D ibj

Z 1

0

ei.bk�bj /�t qjk.t /dt Cibj

Z 1

0

ei.bk�bj /�t

n
X

lD1

qjl.t /�lk.t; �/dt:

(3.11)



On the completeness and Riesz basis property 27

Clearly,

Re.i.bk � bj /�/ < �C j�j; � 2 Sp;";R;

for some C > 0. Hence, applying Lemma 3.1(i) with

S D Sp;";R; b D i.bk � bj /; '.�/ D ibj qjk.�/;

and taking into account the continuity of qjk.�/ at zero, we derive from (3.2)

ibj

Z 1

0

ei.bk�bj /�t qjk.t /dt D
bj qjk.0/ C o.1/

.bj � bk/�
; as � ! 1; � 2 Sp;";R:

(3.12)

Further, since qjl.�/, l 2 ¹1; : : : ; nº, is bounded at a neighborhood of zero and

sup
t2Œ0;1�

j�lk.t; �/j D o.1/ as � ! 1; � 2 Sp;";R;

Lemma 3.1(ii) implies

Z 1

0

ei.bk�bj /�t

n
X

lD1

qjl.t /�lk.t; �/dt D

n
X

lD1

o

�Z 1

0

jei.bk�bj /�t qjl.t /jdt

�

D o.��1/;

(3.13)

as � ! 1, � 2 Sp;";R. �is together with (3.11) and (3.12) yields the �rst relation

in (3.5). Next, let Re.ibj �/ < Re.ibk�/. �en using (3.8) we obtain from (3.10)

yjk.1; �/

D �ibj eibk�

Z 1

0

ei.bj �bk/�s
�

qjk.1 � s/ C

n
X

lD1

qjl.1 � s/�lk.1 � s; �/
�

ds:

Using the inequality Re.i.bj � bk/�/ < �C j�j, � 2 Sp;";R, and continuity of

qjl .�/, l 2 ¹1; : : : ; nº, at the point 1, and follow the above reasoning we arrive at

the third relation in (3.6).

Remark 3.3. Fix j; k 2 ¹1; : : : ; nº. As it is clear from the proof of Proposition 3.2,

the individual function yj;k.x; �/ satis�es the third relation in (3.5) whenever

qjk.�/ is continuous at zero and qjl.�/ is bounded at zero for l 2 ¹1; : : : ; nº. Oth-

erwise it satis�es only the weaker relation yjk.0; �/ D o.1/ as � ! 1, � 2 Sp;".

Moreover, if qjl.�/, l 2 ¹1; : : : ; nº, is just bounded at zero then, by Lemma 3.1(ii),

yjk.0; �/ D O.��1/, � 2 Sp;";R. Similar statements are true for yjk.1; �/. �is

allows us to weaken assumptions on Q.�/ in further considerations.
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Next we investigate the asymptotic behavior of the characteristic determinant

�.�/. Emphasize that in contrast to the considerations of the previous paper [37],

in the following proposition we ignore block matrix structure (2.5a)–(2.5b), i.e.

do not assume that equal bj th are grouped into the blocks. It is motivated by

the application to the Timoshenko beam model in Section 6 where such situation

naturally occurs for matrix (6.12a) with equal eigenvalues b1 D b2.

Proposition 3.4. Let B be de�ned by (1.3), Q.�/ 2 L1.Œ0; 1�ICn�n/ and let qjk be

continuous at points 0 and 1 if bj ¤ bk . Let, as above, �.�/ be the characteristic

determinant (2.9) of the problem (1.2)–(1.4). Finally, let p 2 ¹1; : : : ; �º. �en for

su�ciently small " > 0 the characteristic determinant �.�/ admits the following

asymptotic expansion

�.�/ D p �
�

!0.zp/ � .1 C o.1// C
!1.zp/ C o.1/

�

�

ei�p�; as � ! 1; � 2 Sp;":

(3.14)

Here zp is a �xed point in Sp;",

p WD exp

�

X

Re.ibj zp/>0

ibj

Z 1

0

qjj .t /dt

�

; (3.15)

�p WD
X

Re.ibj zp/>0

bj ; (3.16)

!0.zp/ WD det TizpB.C; D/; (3.17)

!1.zp/ WD
X

Re.ibj zp/<0

Re.ibkzp/>0

det T
cj !ck

izpB bkqkj .0/ � det T
dk!dj

izpB bj qjk.1/

bk � bj

; (3.18)

and the matrix T
cj !ck

izpB .T
dj !dk

izpB / is obtained from TizpB.C; D/ by replacing its

j th column by the kth column of the matrix C .resp. D/.

Remark 3.5. Denote by cj .dj / the j th column of the matrix C .resp. D/. Note

that if Re.ibj �/ < 0, the j th column of TizpB.C; D/ coincides with cj . �ere-

fore, the superscript cj ! ck in the notation of the matrix T
cj !ck

izpB means just

replacement cj by ck in TizpB . �e notation T
dk!dj

izpB is justi�ed similarly.
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Proof of Proposition 3.4. By renumbering y1; : : : ; yn we can assume that the ma-

trix B satis�es (2.5a) and hence Q has representation (2.5b). Let

Q1.x/ WD diag.Q11.x/; : : : ; Qrr.x//

and let W.�/ be the solution to the Cauchy problem

iB�1W 0 D Q1.x/W; W.0/ D In: (3.19)

Due to the block structure of the matrices B and Q1 one easily derives

W.x/ D diag.W11.x/; : : : ; Wrr.x//; Wjj .x/ 2 GL.nj ;C/; x 2 Œ0; 1�: (3.20)

Denoting by W W y ! W.x/y the gauge transform and letting

zD WD DW.1/ and zQ.x/ D W �1.x/.Q.x/ � Q1.x//W.x/ DW . Qqjk.x//n
j;kD1

(3.21)

we get

LC; zD. zQ/ D W �1LC;D.Q/W;

i.e. LC;D.Q/ and LC; zD. zQ/ are similar. Clearly,

ẑ DW W �1ˆ

is a fundamental solution of equation (1.2) with zQ in place of Q and the corre-

sponding characteristic determinant z�.�/ (see (2.9)) is

z�.�/ WD det.C C zD ẑ .1; �// D det.C CDW.1/W �1.1/ˆ.1; �// D �.�/: (3.22)

Further, Q�Q1 is continuous at the endpoints 0 and 1. Since both W.�/ and W �1.�/

are continuous on Œ0; 1�, zQ is continuous at the endpoints 0 and 1 too. According

to (3.21) zQ satis�es (2.5c) and, by Proposition 3.2, there exists a fundamental ma-

trix solution zY .�; �/ of system (1.2) with zQ in place of Q, that satis�es asymptotic

relations (3.5) and (3.6) with Qqjk.�/ in place of qjk.�/. �e fundamental matrices
zY .�; �/ and ẑ .�; �/ are related by

zY .x; �/ D ẑ .x; �/P.�/; x 2 Œ0; 1�; � 2 Sp;";R; (3.23)

where P.�/ DW .pkj .�//n
k;j D1

is an analytical invertible matrix function in Sp;";R.

Hence zY .0; �/ D P.�/ and due to (2.6) and (3.22) (cf. [37, formula (3.31)]),

� zY .�/ WD det.C zY .0; �/ C zD zY .1; �// D z�.�/ det. zY .0; �// D .1 C o.1//�.�/;

(3.24)
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as � ! 1, � 2 Sp;". �us, it su�ces to prove (3.14) with � zY .�/ instead of �.�/.

Since W.0/ D In; one has zQ.0/ D Q.0/ � Q1.0/ and hence

zY .0; �/ D Y0 WD Y0.�/ WD
�

y
Œ0�

jk
.�/
�n

j;kD1
; (3.25)

where y
Œ0�

jk
.�/ is given by (3.5). Let us simplify zY .1; �/. To this end let

zQ.x/ D
�

zQjk.x/
�r

j;kD1
; zQjk.x/ 2 C

nj �nk ;

zY .x; �/ D
�

zYjk.x; �/
�r

j;kD1
; zYjk.x; �/ 2 C

nj �nk ;

be the block-representations of matrices zQ.x/ and zY .x; �/ with respect to the

orthogonal decomposition C
n D C

n1 ˚ � � � ˚ C
nr . It follows from (3.20)–(3.21)

that

zQjk.1/ D W �1
jj .1/Qjk.1/Wkk.1/; j 6D k: (3.26)

Further, note that due to (2.5a)–(2.5b) formula (3.6) for zY .1; �/ takes the form

zYjk.1; �/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

ǰ
zQjk.1/ C o.1/

ǰ � ˇk

�
eiˇk�

�
; if Re.i ǰ �/ < Re.iˇk�/;

.Ink
C o.1//eiˇk�; if j D k;

0; if Re.i ǰ �/ > Re.iˇk�/:

(3.27)

In view of (2.5a)–(2.5b) and (3.26)–(3.27) we have

zY .1; �/ D W �1.1/Y1W.1/; Y1 WD Y1.�/ D
�

y
Œ1�

jk
.�/
�n

j;kD1
; (3.28)

where y
Œ1�

jk
.�/ is given by (3.6). Combining (3.21), (3.24), (3.25) and (3.28) yields

� zY .�/ D det .C Y0.�/ C DY1.�/W.1// D det.J � V /; (3.29)

where V WD V.�/ WD
�

Y0

V1

�

, V1 WD Y1W.1/, and J WD
�

C D
�

. By the Cauchy–Binet

formula

� zY .�/ D
X

16k1<���<kn62n

J

 

1 2 : : : n

k1 k2 : : : kn

!

� V

 

k1 k2 : : : kn

1 2 : : : n

!

: (3.30)

Here A
�j1 j2 ::: jp

k1 k2 ::: kp

�

denotes the minor of n � n0 matrix A D .ajk/ composed of its

entries located in the rows with indices j1; : : : ; jp 2 ¹1; : : : ; nº and columns with

indices k1; : : : ; kp 2 ¹1; : : : ; n0º.
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Fix a set ¹k1; k2; : : : ; knº such that 1 6 k1 < � � � < kn 6 2n and denote by m

the number of entries of the set that do not exceed n, i.e., 1 6 k1 < � � � < km 6

n < kmC1 < � � � < kn. Applying Laplace theorem to expand the second factor

in (3.30) with respect to the �rst m rows, one gets

V

 

k1 k2 : : : kn

1 2 : : : n

!

D
X

16j1<:::jm6n

16jmC1<���<jn<n

¹j1;:::;jnºD¹1;:::;nº

.�1/.1C���Cm/C.j1C���Cjm/

� Y0

 

k1 : : : km

j1 : : : jm

!

� V1

 

kmC1 � n : : : kn � n

jmC1 : : : jn

!

:

(3.31)

It follows from (3.5) and (3.6) that

y
Œ0�

jk
.�/ D O.1/; y

Œ1�

jk
.�/ D O.1/ � eibk�; � 2 Sp;";R; j; k 2 ¹1; : : : ; nº:

(3.32)

Setting .vjk.�//n
j;kD1

WD V1.�/ D Y1.�/W.1/ we obtain from (3.32) and the block-

diagonal structure of the matrices B and W.1/ that

vjk.�/ D O.1/ � eibk�; � 2 Sp;";R; j; k 2 ¹1; : : : ; nº: (3.33)

It follows from (3.25), (3.28), (3.32), (3.33) that for � 2 Sp;";R

Y0

 

k1 : : : km

j1 : : : jm

!

D O.1/; (3.34)

and

V1

 

kmC1 � n : : : kn � n

jmC1 : : : jn

!

D O.1/ � e
i.bjmC1

C���Cbjn /�
: (3.35)

Let � be a number of negative values among Re.ib1�/; : : : ; Re.ibn�/; � 2 Sp;".

For de�niteness we assume that

Re.ibj �/ < 0; j 2 ¹1; : : : ; �º; (3.36a)

and

Re.ibj �/ > 0; j 2 ¹� C 1; : : : ; nº: (3.36b)
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It is clear from (3.36) that for ¹jmC1; : : : ; jnº ¤ ¹� C 1; : : : ; nº the following in-

equality holds

Re.ibjmC1
�/ C � � � C Re.ibjn

�/ < Re.ib�C1�/ C � � � C Re.ibn�/

D Re.i�p�/; � 2 Sp;";

where �p is given by (3.16). Combining this estimate with (3.34) and (3.35) yields

that for ¹jmC1; : : : ; jnº ¤ ¹� C 1; : : : ; nº and each h 2 N,

Y0

 

k1 : : : km

j1 : : : jm

!

�V1

 

kmC1 � n : : : kn � n

jmC1 : : : jn

!

D O
� 1

�h

�

�ei�p�; � 2 Sp;";R:

(3.37)

Inserting (3.37) into (3.31) we obtain for � 2 Sp;";R and each h 2 N that

V

 

k1 : : : kn

1 : : : n

!

D O
� 1

�h

�

� ei�p�; m ¤ �I (3.38)

and

V

 

k1 : : : kn

1 : : : n

!

D Y0

 

k1 : : : k�

1 : : : �

!

� V1

 

k�C1 � n : : : kn � n

� C 1 : : : n

!

C O
� 1

�h

�

� ei�p�; m D �;

(3.39)

Due to the block-diagonal structure of W.1/ one has

V1

 

k�C1 : : : kn

� C 1 : : : n

!

D Y1

 

k�C1 : : : kn

� C 1 : : : n

!

.�/; (3.40)

where

.�/ WD

r
Y

j D1
Re.i ǰ �/>0

det Wjj .1/:

Applying the Liouville theorem to system (3.19) and using the de�nition of the

sector Sp;" yields .�/ D p, � 2 Sp;", where p is given by (3.15). Now it follows

from (3.30), (3.38), (3.39) and (3.40) that for � 2 Sp;";R
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� zY .�/ D p

X

16k1<���<k� 6n

16k�C1<���<kn6n

J

 

1 : : : � � C 1 : : : n

k1 : : : k� n C k�C1 : : : n C kn

!

� Y0

 

k1 : : : k�

1 : : : �

!

� Y1

 

k�C1 : : : kn

� C 1 : : : n

!

C O
� 1

�h

�

� ei�p�; h 2 N:

(3.41)

Let .k1; : : : ; k�/ 2 N
� be a sequence satisfying 1 6 k1 < � � � < k� 6 n and let

.l1; : : : ; l�/ be its permutation. It is easily seen that

J

 

1 : : : � � C 1 : : : n

k1 : : : k� n C k�C1 : : : n C kn

!

� Y0

 

k1 : : : k�

1 : : : �

!

D J

 

1 : : : � � C 1 : : : n

l1 : : : l� n C k�C1 : : : n C kn

!

� Y0

 

l1 : : : l�

1 : : : �

!

:

(3.42)

�is identity means that for each summand in the right-hand side of (3.41) we can

choose arbitrary permutation of the corresponding sequence .k1; : : : ; k�/. Clearly,

the same is true for the corresponding sequence .k�C1; : : : ; kn/.

It follows from (3.5) that

Y0 D Y.0; �/ D

 

I� C o.1/ O.��1/

O.��1/ In�� C o.1/

!

; as � ! 1; � 2 Sp;";R: (3.43)

Hence if the intersection of the sets ¹k1; : : : ; k�º and ¹� C 1; : : : ; nº consists of

s elements, then the corresponding minor Y0

�

k1 ::: k�

1 ::: �

�

contains exactly s lines

with entries of the form O.��1/ while all entries of other lines are of the form

O.1/. Indeed, if kj > �, then j th line of the considered minor coincides with the

.kj � �/th line of the lower-left block of the block-matrix (3.43). �us, we have

Y0

 

k1 : : : k�

1 : : : �

!

D O
� 1

�s

�

; � 2 Sp;";R: (3.44)

For the cases s D 0 and s D 1 we can obtain sharper estimates. At �rst, (3.43)

directly implies

Y0

 

1 : : : �

1 : : : �

!

D 1 C o.1/; as � ! 1; � 2 Sp;";R: (3.45)
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Next, assume that s D 1, i.e. the set ¹k1; : : : ; k�º is obtained from ¹1; : : : ; �º by

replacing its one entry by an entry from ¹� C 1; : : : ; nº. Assume that j is replaced

by k, where 1 6 j 6 � < k 6 n. �en, according to (3.36), Re.ibk�/ > 0 >

Re.ibj �/ and, by (3.5),

Y0

 

1 : : : j � 1 k j C 1 : : : �

1 : : : j � 1 j j C 1 : : : �

!

D det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 C o.1/ � � � o.1/ o.1/ o.1/ � � � o.1/
:::

: : :
:::

:::
:::

: : :
:::

o.1/ � � � 1 C o.1/ o.1/ o.1/ � � � o.1/

O.��1/ � � � O.��1/
rkj .0/ C o.1/

�
O.��1/ � � � O.��1/

o.1/ � � � o.1/ o.1/ 1 C o.1/ � � � o.1/
:::

: : :
:::

:::
:::

: : :
:::

o.1/ � � � o.1/ o.1/ o.1/ � � � 1 C o.1/

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

D
rkj .0/ C o.1/

�
; as � ! 1; � 2 Sp;";R;

(3.46)

where we set for brevity

rjk.x/ WD
bj qjk.x/

bj � bk

:

Further, according to (3.6)

Y1 D Y.1; �/ D

 

I� C o.1/ O.��1/

O.��1/ In�� C o.1/

!

� E.�/; as � ! 1, � 2 Sp;";R,

(3.47)

where

E.�/ WD diag.eib1�; : : : ; eibn�/:

Let the set ¹k�C1; : : : ; knº contain exactly s entries from the set ¹1; : : : ; �º.

�en repeating the above reasoning to Y1 in place of Y0 yields

Y1

 

k�C1 : : : kn

� C 1 : : : n

!

D O
� 1

�s

�

ei�p�; � 2 Sp;";R: (3.48)
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Further, it is easily seen that

Y1

 

� C 1 : : : n

� C 1 : : : n

!

D .1 C o.1// � ei�p�; (3.49)

and

Y1

 

� C 1 : : : k � 1 j k C 1 : : : n

� C 1 : : : k � 1 k k C 1 : : : n

!

D .rjk.1/ C o.1// �
ei�p�

�
; (3.50)

as � ! 1, � 2 Sp;";R, where j 2 ¹1; : : : ; �º and k 2 ¹� C 1; : : : ; nº.

Inserting formulas (3.44) and (3.48) into (3.41) and using (3.42) we get

�1
p � zY .�/

D
�

J
�

1 ::: � �C1 ::: n
1 ::: � nC�C1 ::: nCn

�

� Y0

�

1 ::: �
1 ::: �

�

� Y1

�

�C1 ::: n
�C1 ::: n

�

C

�
X

j D1

n
X

kD�C1

J
�

1 ::: j �1 j j C1 ::: � �C1 ::: n
1 ::: j �1 k j C1 ::: � nC�C1 ::: nCn

�

� Y0

�

1 ::: j �1 k j C1 ::: �
1 ::: j �1 j j C1 ::: �

�

� Y1

�

�C1 ::: n
�C1 ::: n

�

C

�
X

j D1

n
X

kD�C1

J
�

1 ::: � �C1 ::: k�1 k kC1 ::: n
1 ::: � nC�C1 ::: nCk�1 nCj nCkC1 ::: nCn

�

� Y0

�

1 ::: �
1 ::: �

�

� Y1

�

�C1 ::: k�1 j kC1 ::: n
�C1 ::: k�1 k kC1 ::: n

�

�

C O
� 1

�2

�

ei�p�; � 2 Sp;";R:

(3.51)

Let zp be some �xed point in Sp;". �en it is clear from inequalities (3.36) and

de�nition of matrices TizpB.C; D/, T
cj !ck

izpB and T
dk!dj

izpB that

J
�

1 ::: � �C1 ::: n
1 ::: � nC�C1 ::: nCn

�

D det TizpB.C; D/; (3.52a)

J
�

1 ::: j �1 j j C1 ::: � �C1 ::: n
1 ::: j �1 k j C1 ::: � nC�C1 ::: nCn

�

D det T
cj !ck

izpB ; (3.52b)

J
�

1 ::: � �C1 ::: k�1 k kC1 ::: n
1 ::: � nC�C1 ::: nCk�1 nCj nCkC1 ::: nCn

�

D det T
dk!dj

izpB : (3.52c)
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Now inserting (3.45), (3.46), (3.49), (3.50) and (3.52a), (3.52b), (3.52c) into (3.51)

we get

�1
p � zY .�/

D det TizpB.C; D/ � .1 C o.1// � .1 C o.1// � ei�p�

C

�
X

j D1

n
X

kD�C1

det T
cj !ck

izpB �
rkj .0/ C o.1/

�
� .1 C o.1// � ei�p�

C

�
X

j D1

n
X

kD�C1

det T
dk!dj

izpB � .1 C o.1// �
rjk.1/ C o.1/

�
� ei�p�

C O
� 1

�2

�

ei�p�

D ei�p� �
�

!0.zp/ � .1 C o.1// C o.��1/

C

�
X

j D1

n
X

kD�C1

det T
cj !ck

izpB bkqkj .0/ � det T
dk!dj

izpB bj qjk.1/

�.bk � bj /

�

;

as � ! 1, � 2 Sp;";R. Rewriting the double sum in the last equality with account

of (3.36) we arrive at formula (3.14) with the required form of !1.zp/.

4. Explicit completeness results

4.1. Explicit su�cient conditions of completeness. Now we are ready to state

our main result on completeness of the root vectors of the boundary value prob-

lem (1.2)–(1.4) in terms of the matrices B; C; D and Q.�/.

�eorem 4.1. Assume that Q.�/ 2 L1.Œ0; 1�ICn�n/ and qjk is continuous at points

0 and 1 if bj ¤ bk . Let !0.zk/ and !1.zk/ be given by (3.17) and (3.18), respec-

tively. Assume also that there exist three admissible complex numbers z1; z2; z3

satisfying the following conditions:

(a) the origin is an interior point of the triangle 4z1z2z3
I

(a) j!0.zk/j C j!1.zk/j ¤ 0; k 2 ¹1; 2; 3º.

�en the system of root functions of the BVP (1.2)–(1.4) is complete and mini-

mal in L2.Œ0; 1�ICn/.
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Remark 4.2. Note that !j .�/, j 2 ¹0; 1º, is a constant function in each sector

�k , k 2 ¹1; : : : ; mº, introduced before formula (1.7). Hence !j .�/, j 2 ¹0; 1º,

is piecewise constant function in the plane C with cuts along the lines @�k , k 2

¹1; : : : ; mº. It is easily seen that the assumptions of �eorem 4.1 fail if and only if

both !0.�/ and !1.�/ vanish in the open half-plane ¹� 2 C W Re.c�/ > 0º for some

c ¤ 0.

Proof of �eorem 4.1. Recall that the lines

lj D ¹� 2 C W Re.ibj �/ D 0º

divide the complex plane into m sectors �1; : : : ; �m. Let k 2 ¹1; 2; 3º be �xed.

Note that the point zk can be not feasible but it is clear from de�nition of !0.�/

and !1.�/ that they are constant in each sector �j . Hence if zk is not feasible, that

is, it lies at one of the lines

ljk D ¹� 2 C W Re.ibj �/ D Re.ibk�/º;

we can replace it by any point with arbitrary close argument to make it feasible

and to conserve the condition (a) of the theorem. �us, we can assume that the

points z1; z2; z3 are feasible. �en combining condition (b) of the theorem with

Proposition 3.4 implies for k 2 ¹1; 2; 3º

j�.�/j > C

ˇ

ˇ

ˇ

ˇ

!0.zk/ C
!1.zk/

�

ˇ

ˇ

ˇ

ˇ

eRe.i�k�/

> C1

eRe.i�k�/

j�j
; j�j > R; arg � D arg zk;

(4.1)

where C; C1 > 0,

�k WD
X

Re.ibj zk/>0

bj ;

and R is su�ciently large. To complete the proof it remains to apply �eorem 2.3.

�e following result is easily derived from �eorem 4.1 (cf. [37, Corolary 3.2]).

Corollary 4.3. Let Q satisfy assumptions of �eorem 4.1, and let j!0.˙z/j C

j!1.˙z/j ¤ 0 for some admissible number z. �en the system of root functions of

the BVP (1.2)–(1.4) is complete and minimal in L2.Œ0; 1�ICn/.
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Remark 4.4. In connection with �eorem 4.1 we mention the fundamental pa-

per [51] by A.A. Shkalikov, where he studied BVP for ODE (1.1) with spectral

parameter in boundary conditions. In particular, the notion of weakly B-regular

boundary conditions might be treated as an analogue of the notion of normal BVP

of order 0 from [51], while conditions of �eorem 4.1 correlate with those of nor-

mal BVP of order 1 from [51]. Moreover, it is proved in [51] that the system of root

functions of the linearization of the normal BVP for ODE (1.1) is complete in

certain direct sums of Sobolev spaces. For certain matrices B D diag.b1; : : : ; bn/

with simple spectrum this result correlate with [37, �eorem 1.2] and �eorem 4.1.

We �rst apply �eorem 4.1 to 2 � 2 case. Let

�

C D
�

D

 

a11 a12 a13 a14

a21 a22 a23 a24

!

;

and

Jjk WD det

 

a1j a1k

a2j a2k

!

; j; k 2 ¹1; : : : ; 4º:

Proposition 4.5. Let n D 2, arg b1 ¤ arg b2, and let q12, q21 be continuous at

the endpoints 0 and 1. �en the system of root functions of the boundary value

problem (1.2)–(1.4) is complete and minimal in L2
�

Œ0; 1�IC2
�

whenever

jJ32j C jb1J13q12.0/ C b2J42q21.1/j ¤ 0; (4.2)

and

jJ14j C jb1J13q12.1/ C b2J42q21.0/j ¤ 0: (4.3)

Proof. Since arg b1 ¤ arg b2 then there exists z 2 C such that Re.ib1z/ < 0 <

Re.ib2z/. �en, in accordance with de�nition of Jjk and the numbers !0.z/; !1.z/,

!0.z/ D J14; !1.z/ D
J24b1q21.0/ � J13b1q12.1/

b1 � b2

;

and

!0.�z/ D J32; !1.�z/ D
J31b2q12.0/ � J42b2q21.1/

b2 � b1

:

Conditions (4.2), (4.3) imply j!0.˙z/j C j!1.˙z/j ¤ 0. Hence Corollary 4.3

yields the result.
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Remark 4.6. In the case of 2 � 2 Dirac-type systems .b1 < 0 < b2/ this re-

sult improves �eorem 5.1 from [37] where the completeness was proved un-

der the stronger assumption q12; q21 2 C 1Œ0; 1� while was stated for q12; q21 2

C Œ0; 1�. It happened because the precise version of Lemma 5.4 from [37] requires

a stronger assumption Q.�/ 2 C 1.Œ0; 1�ICn�n/ instead of Q.�/ 2 C.Œ0; 1�ICn�n/

(cf. [34, �eorem 1.1]). In our forthcoming paper the completeness property of

BVP (1.2)–(1.4) for 2 � 2 Dirac-type systems will be discussed in detail.

In the case b2b�1
1 62 R Proposition 4.5 improves �eorems 1.4 and 1.6 from [1]

where the completeness property was proved for analytic Q.�/.

�e next result demonstrates that �eorem 4.1 cannot be treated as a pertur-

bation result since unperturbed operator LC;D.0/ may have incomplete system of

root functions.

Corollary 4.7. Let � 2 ¹1; : : : ; n � 1º, Re bj < 0 for j 2 ¹1; : : : ; �º, Re bj > 0

for j 2 ¹� C 1; : : : ; nº, and the �rst boundary condition in (1.4) is of the form

y1.0/ D 0. �en the following holds.

(i) Assume that Q is continuous at the endpoints 0 and 1 of the segment Œ0; 1�,

det TB.C; D/ ¤ 0 and

n
X

j D�C1

det T
cj !c1

�B

b1 � bj

� q1j .0/ ¤ 0: (4.4)

�en the system of root functions of the operator LC;D.Q/ is complete and

minimal in L2.Œ0; 1�ICn/.

(ii) If q1j .x/ D 0 for x 2 Œ0; "�, j 2 ¹2; : : : ; nº, for some " > 0, then the system

of root functions of the operator LC;D.Q/ is incomplete in L2.Œ0; 1�ICn/ and

its defect is in�nite. In particular, the latter is valid for the operator LC;D.0/

with zero potential.

Proof. (i) �e condition y1.0/ D 0 means that c11 D 1, c1k D 0 for k 2 ¹2; : : : ; nº,

and d1k D 0, k 2 ¹1; : : : ; nº. �erefore, the matrix T�B.C; D/ has zero �rst line

and hence !0.i/ D 0. Moreover, due to the structure of the �rst row of
�

C D
�

,

det T
dk!dj

�B D 0, j; k 2 ¹1; : : : ; nº, and det T
cj !ck

�B D 0, for k > 1. Now the

assumption on Re bj , de�nition of !1.�/, and condition (4.4) together imply

!1.i/ D

n
X

j D�C1

det T
cj !c1

�B � b1q1j .0/

b1 � bj

¤ 0:

Due to the �rst relation in (4.4) !0.�i/ D det TB.C; D/ ¤ 0. It remains to apply

Corollary 4.3.
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(ii) Under our assumption each solution y D col.y1; : : : ; yn/ of the prob-

lem (1.2)–(1.4) satis�es

y0
1 D ib1�y1 C ib1q11.x/y1; x 2 Œ0; "�; and y1.0/ D 0:

By the uniqueness theorem, y1.x/ D 0 for x 2 Œ0; "�. Hence each

f D col.f1; 0; : : : ; 0/ 2 L2.Œ0; 1�ICn/

with f1 vanishing on Œ"; 1� is orthogonal to the system of root functions of the

operator LC;D.Q/.

Remark 4.8. Let n D 3, � D 1 and y1.0/ D 0. �en condition (4.4) takes the

form
ˇ

ˇ

ˇ

ˇ

d22 d23

d32 d33

ˇ

ˇ

ˇ

ˇ

¤ 0 and

ˇ

ˇ

ˇ

ˇ

d21 c23

d31 c33

ˇ

ˇ

ˇ

ˇ

�
q12.0/

b2 � b1

C

ˇ

ˇ

ˇ

ˇ

d21 c22

d31 c32

ˇ

ˇ

ˇ

ˇ

�
q13.0/

b1 � b3

¤ 0: (4.5)

�erefore, if jq12.0/j C jq13.0/j ¤ 0, then, in general, the system of root functions

of the operator LC;D.Q/ with the �rst boundary condition y1.0/ D 0, is complete

in L2.Œ0; 1�IC3/.

Finally, we specify Corollary 4.3 for 4�4 Dirac type equation subject to special

boundary conditions. �is statement will be applied in Section 6 for study of the

Timoshenko beam model.

Corollary 4.9. Let n D 4, B D diag.�b1; b1; �b2; b2/, where b1; b2 > 0, let Q 2

L1.Œ0; 1�IC4�4/, where Q is continuous at the endpoints 0 and 1, and matrices C

and D are of the form

C D

0

B

B

B

@

1 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0

1

C

C

C

A

; D D

0

B

B

B

@

0 0 0 0

d1 d2 0 0

0 0 0 0

0 0 d3 d4

1

C

C

C

A

: (4.6)

Assume that

jd2d4j C jd1d4q12.1/j C jd2d3q34.1/j ¤ 0; (4.7a)

and

jd1d3j C jd2d3q21.1/j C jd1d4q43.1/j ¤ 0: (4.7b)

�en the system of root functions of the BVP (1.2)–(1.4) is complete and minimal

in L2.Œ0; 1�IC4/.



On the completeness and Riesz basis property 41

Proof. By the de�nition of the matrix TB.C; D/,

TB.C; D/ D

0

B

B

B

@

1 0 0 0

0 d2 0 0

0 0 1 0

0 0 0 d4

1

C

C

C

A

; (4.8)

and hence

!0.�i/ D det TB.C; D/ D d2d4: (4.9)

In our case the double sum in (3.18) for !1.�i/ involves only values j D 1; 3 and

k D 2; 4. It follows from de�nition of matrices T
cj !ck

izB and T
dk!dj

izB that

det T
c1!c2

B D d2d4; det T
d2!d1

B D d1d4;

det T
c1!c4

B D 0; det T
d4!d1

B D 0;

det T
c3!c2

B D 0; det T
d2!d3

B D 0;

det T
c3!c4

B D d2d4; det T
d4!d3

B D d2d3:

Inserting these expressions into (3.18) we obtain

!1.�i/ D
1

2
.d2d4q21.0/ C d1d4q12.1/ C d2d4q43.0/ C d2d3q34.1//:

Note that if d2 D 0, then !1.�i/ D 1
2
d1d4q12.1/. On the other hand, if d4 D

0, then !1.�i/ D 1
2
d2d3q34.1/. �is allows us to rewrite condition j!0.�i/j C

j!1.�i/j ¤ 0 in the form of the �rst relation in (4.7).

Similarly, one veri�es that condition j!0.i/jCj!1.i/j ¤ 0 turns into the second

relation in (4.7). One completes the proof by applying Corollary 4.3.

�e following simple lemma will be useful for us in Section 6.

Lemma 4.10. Condition (4.7) is ful�lled if and only if each of the following con-

ditions is satis�ed

jd1j C jd2j ¤ 0; jd3j C jd4j ¤ 0; (4.10)

jd1j C jd3j ¤ 0; jd2j C jd4j ¤ 0; (4.11)

jd1j C jq21.1/j ¤ 0; jd2j C jq12.1/j ¤ 0; (4.12)

jd3j C jq43.1/j ¤ 0; jd4j C jq34.1/j ¤ 0: (4.13)
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Proof. If d1d2d3d4 ¤ 0 then the statement is obvious. Further assume that

dj D 0 for some j 2 ¹1; 2; 3; 4º. Let for de�niteness, d1 D 0. �en condi-

tions (4.10)–(4.13) are satis�ed if and only if

d2d3q21.1/ ¤ 0 and jd4j C jq34.1/j ¤ 0:

�is, in turn, is equivalent to (4.7) whenever d1 D 0, and we are done.

4.2. Example. Here we illustrate Proposition 4.5 by investigation of the com-

pleteness and minimality of the system of vector functions

´ 

eanx sin nx

neanx.sin nx C i cos nx/

!µ

n2Zn¹0º

; a 2 C; (4.14)

in the space L2.Œ0; ��IC2/.

Corollary 4.11. Let

ia 62 .�1; �1� \ Œ1; 1/: (4.15)

�en system (4.14) is complete and minimal in L2.Œ0; ��IC2/.

Proof. Since a ¤ ˙i there exists � 2 C n ¹�nºn2Z such that a D ctg � . Consider

the following boundary value problem

8

<

:

y0
1 D ei��y1 C y2;

y0
2 D e�i��y2;

(4.16a)

y1.0/ D y1.1/ D 0: (4.16b)

Straightforward calculation shows that its spectrum is simple, consists of the eigen-

values
®

�n
sin �

¯

n2Zn¹0º
, and the system of the corresponding eigenfunctions is

´ 

ea�nx sin �nx

�n � e.a�i/�nx

!µ

n2Zn¹0º

: (4.17)

It is easily seen that a potential matrix of the operator LC;D.Q/ associated with the

boundary value problem (4.16a)–(4.16b) is constant: Q.�/ D
�

0 �e�i�

0 0

�

. Clearly,

B D diag.b1; b2/ WD �i diag.ei� ; e�i�/:

Moreover, due to (4.15) arg b1 ¤ arg b2.
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Clearly, boundary conditions (4.16b) imply J13 D 1, while the other deter-

minants Jjk are zero. In particular, boundary conditions (4.16b) are non-weakly

regular and even degenerate: �0.�/ � 0. However, conditions (4.2)–(4.3) take now

the form q12.0/q12.1/ ¤ 0 and clearly, are ful�lled. Hence, by Proposition 4.5,

the system of eigenvectors (4.17) is complete and minimal in L2.Œ0; 1�IC2/. �e

latter is equivalent to the completeness and minimality of the system (4.14) in

L2.Œ0; ��IC2/.

Remark 4.12. In connection with Corollary 4.11 let us consider one more system

of functions Ka D ¹eanx sin nxºn2Zn¹0º. Clearly, it is a system of the eigenfunc-

tions of the problem

y00 � 2a�y0 C .a2 C 1/�2y D 0; y.0/ D y.�/ D 0: (4.18)

It is known (see [26, Part II, Appendix A1], [32] and the references therein) that

this system is twofold complete in L2Œ0; �� in the sense of M.V. Keldysh [21]. �e

latter means completeness of the system ¹col.eanx sin nx; neanx sin nx/ºn2Zn¹0º

in L2.Œ0; ��IC2/. So, the statement of Corollary 4.11 is in a sense close to the

twofold completeness and minimality of the system Ka. Note that investigation

of the completeness and basis property of a “half” system

K
C
a WD ¹eanx sin nxº1

nD1

in L2Œ0; �� has been initiated by A.G. Kostyuchenko and constitutes his named

problem.

Note also that in the case a 2 R problem (4.18) naturally arises in the inves-

tigation of the solvability of the following elliptic boundary value problem in the

strip � D Œ0; �� � RC:

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Lu WD
@2u

@x2
� 2a

@2u

@x@t
C .a2 C 1/

@2u

@t2
D 0;

u.0; t / D u.�; t/ D 0; t > 0;

u.x; 0/ D u0.x/; u0 2 L2Œ0; ��:

(4.19)

Since equation Lu D 0 is elliptic, the Cauchy problem in the strip is incorrect.

Applying the Fourier method, i.e. seeking for a solution of (4.19) in the form

u.x; t/ D e�ty.x/, leads to problem (4.18).
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4.3. Necessary conditions of completeness. Next we present some necessary

conditions of completeness.

Proposition 4.13. Let boundary conditions (1.4) be of the form y.0/ D Ay.1/,

where det A ¤ 0,

AB C BA D 0 and Q.1 � x/ D A�1Q.x/A; x 2 Œ0; "�; for some " > 0:

(4.20)

�en the defect of the system of root functions of the operator

L WD LC;D.Q/

in L2.Œ0; 1�ICn/ is in�nite.

Proof. Let � be an eigenvalue of L and let ¹up.x/ºm
pD1 be a chain of the eigenfunc-

tion and associated functions of the operator L corresponding to �. Put u0.x/ WD

0. It is clear that up.�/, p 2 ¹0; 1; : : : ; mº, satis�es boundary conditions (1.4) and

the following identity holds

Lup.x/ D �up.x/ C up�1.x/; x 2 Œ0; 1�; p 2 ¹1; : : : ; mº: (4.21)

Denote vp.x/ WD Aup.1 � x/. Let us prove by induction that up.x/ D vp.x/,

x 2 Œ0; "�. For p D 0 it is clear. Let p > 0. It follows from (4.21) and (1.2) that

.u0
p/.1 � x/ D iB.� � Q.1 � x//up.1 � x/ C iBup�1.1 � x/

D iBŒ.� � Q.1 � x//A�1vp.x/ C A�1vp�1.x/�:
(4.22)

Further, combining relations (4.20), (4.22) with the de�nition of vp and taking

into account induction hypothesis yields

Lvp.x/ D �iB�1v0
p.x/ C Q.x/vp.x/

D iB�1A � .u0
p/.1 � x/ C Q.x/vp.x/

D �iAB�1iBŒ.� � Q.1 � x//A�1vp.x/ C A�1vp�1.x/� C Q.x/vp.x/

D �vp.x/ C vp�1.x/ C .Q.x/ � AQ.1 � x/A�1/vp.x/

D �vp.x/ C up�1.x/; x 2 Œ0; "�:

Next, due to the assumption, vp.0/ D Aup.1/ D up.0/. �us, both up and vp

satisfy the same non-homogenous linear equation (4.21) for x 2 Œ0; "� as well as

the same initial condition at zero. �erefore, by the Cauchy uniqueness theorem,

up.x/ D vp.x/ D Aup.1 � x/; x 2 Œ0; "�:
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Further, let f 2 L2.Œ0; 1�ICn/ and let

f .x/ D 0 for x 2 Œ"; 1 � "�; (4.23a)

and

f .1 � x/ D �A�f .x/; for x 2 Œ0; "�: (4.23b)

�en one has for p > 0

Z 1

0

hup.x/; f .x/idx D

Z "

0

hup.x/; f .x/idx C

Z "

0

hup.1 � x/; f .1 � x/idx

D

Z "

0

.hup.x/; f .x/i C hA�1up.x/; �A�f .x/i/dx

D 0:

�is identity shows that each vector-function f satisfying (4.23) is orthogonal to

the system of root functions of the operator LC;D.Q/. �is completes the proof.

Note that existence of a nonsingular solution of the matrix equation

AB C BA D 0

is equivalent to the similarity of the matrices B and �B:

ABA�1 D �B:

�e latter amounts to saying that the spectra �.B/ and �.�B/ coincide with their

multiplicities. Since B is diagonal, we can restate Proposition 4.13 as follows.

Corollary 4.14. Let n D 2p and B D diag. zB; � zB/, where

zB D diag.In1
b1; : : : ; Inr

br /; n1 C � � � C nr D p:

Further, let

A D

 

0 A1

A2 0

!

; Aj D diag.Aj1; : : : ; Ajr/; Ajk 2 GL.nk ;C/; j 2 ¹1; 2º;

let boundary conditions (1.4) be of the form y.0/ D Ay.1/, and let

Q.1 � x/ D A�1Q.x/A; x 2 Œ0; "�; for some " > 0: (4.24)

�en the system of root functions of the operator LC;D.Q/ is incomplete in the

space L2.Œ0; 1�ICn/ and its defect is in�nite.
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Proof. Due to the block structure of the matrices zB , A1 and A2, one has AB C

BA D 0. Since Ajk is nonsingular, det A ¤ 0. �erefore, Proposition 4.13 com-

pletes the result.

Remark 4.15. Note that in the case of 2 � 2 Dirac system (B D diag.�1; 1/,

q11 � q22 � 0) Proposition 4.13 turns into [37, Proposition 5.12]. Indeed, con-

sider 2 � 2 Dirac equation subject to the boundary conditions y1.0/ D ˛1y2.1/,

y2.0/ D ˛2y1.1/. Setting A D
�

0 ˛1

˛2 0

�

, one rewrites these conditions as y.0/ D

Ay.1/. Moreover, condition (4.24) turns into ˛1q21.1 � x/ D ˛2q12.x/, x 2

Œ0; "� \ Œ1 � "; 1�, for some " > 0, i.e. coincides with the respective condi-

tion from [37]. Similar result for Sturm–Liouville operator subject to degenerate

boundary conditions was proved earlier in [35].

5. �e Riesz basis property for root functions

Here we investigate the Riesz basis property for operator LC;D.Q/ by reduction

it to the operator L zC ; zD. zQ/ being a perturbation of a normal operator. To this end

we �nd conditions for matrices C and D guarantying that LC;D.0/ is normal.

Lemma 5.1. (i) An operator

L WD LC;D.0/

is normal if and only if

CBC � D DBD�: (5.1)

(ii) Boundary conditions (1.4) are regular, i.e. det TizB.C; D/ ¤ 0 for each

admissible z, whenever (5.1) is ful�lled.

(iii) If Q 2 L1.Œ0; 1�ICn�n/ and condition (5.1) is satis�ed, then the system of

root functions of the operator LC;D.Q/ is complete and minimal in L2.Œ0; 1�ICn/.

Proof. (i) It is easily seen that

LL�y D L�Ly D �.BB�/�1y00

for y 2 W 2;2.Œ0; 1�ICn/. �erefore, L is normal if and only if dom.L/ D dom.L�/,

which is equivalent to .Lf; g/ D .f; L�g/, f; g 2 dom.L/. In turn, integrating by

parts one gets that this identity is equivalent to

hB�1f .0/; g.0/i D hB�1f .1/; g.1/i; f; g 2 dom.L/: (5.2)
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Put
zB WD diag.B�1; �B�1/

and equip the space H D C
n ˚ C

n with the bilinear form

w.u; v/ WD h zBu; vi D hB�1u1; v1i � hB�1u2; v2i; (5.3)

where u D col.u1; u2/ and v D col.v1; v2/. Now condition (5.2) takes the form

w.u; v/ D 0; u; v 2 H1 WD ker
�

C D
�

WD ¹col.u1; u2/ W C u1 C Du2 D 0º:

(5.4)

On the other hand, the equality CBC � D DBD� can be rewritten as

hB�1BC �h; BC �ki D hB�1.�BD�h/; �BD�ki; h; k 2 C
n:

Using (5.3) one rewrites this equality in the form

w.u; v/ D 0; u; v 2 H2 WD ¹col.BC �h; �BD�h/ W h 2 C
nº: (5.5)

�us, to prove the statement it su�ces to show that (5.4) is equivalent to (5.5). To

this end we prove that H1 is the right w-orthogonal complement of H2,

H1 D H
Œ?�
2 WD ¹u 2 H W w.v; u/ D 0; v 2 H2º:

Indeed, if v D col.BC �h; �BD�h/ 2 H2 and u D col.u1; u2/ 2 H, then

w.v; u/ D hB�1.BC �/h; u1i�hB�1.�BD�/h; u2i D hh; C u1CDu2i; h 2 C
n:

It follows that w.v; u/ D 0 for each v 2 H2 if and only if C u1 C Du2 D 0, i.e.

u 2 H1. Next, maximality condition (1.6) yields dimH1 D dimH2 D n.

Now, if (5.5) is satis�ed, thenH2 � H
Œ?�
2 D H1. Since dimH1 D dimH2, one

has H1 D H2 and (5.4) is ful�lled. �e opposite implication is derived similarly.

(ii) Since L D LC;D.0/ is normal, (5.4) is satis�ed. Let ˇ�1
1 ; ˇ�1

2 ; : : : ; ˇ�1
2n

be the eigenvalues of zB and let e1; e2; : : : ; e2n be the corresponding normalized

eigenvectors. Note that ˇk D �ˇnCk D bk , k 2 ¹1; : : : ; nº. For every admissible

z, i.e. for z satisfying Re.izbk/ ¤ 0, k 2 ¹1; : : : ; nº, we put

Hz WD span¹ek W Re.izˇk/ > 0º:

Since ˇnCk D �ˇk ; k 2 ¹1; : : : ; nº, then dimHz D n for every admissible z.

Next we note that TizB.C; D/ D
�

C D
�ˇ

ˇ

Hz
. �erefore, det TizB.C; D/ ¤ 0 if

and only if ker
�

C D
�

\ Hz D ¹0º. Let u 2 Hz . �en u D
P

Re.izˇk/>0 ckek,

and

Re.izhu; zBui/ D
X

Re.izˇk/>0

jck j2Re.izˇ�1
k

/ D
X

Re.izˇk/>0

jck j2

jˇk j2
Re.izˇk/:
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Hence

Re.izhu; zBui/ > 0; u 2 Hz n ¹0º: (5.6)

On the other hand, due to (5.4), hu; zBui D h zBu; ui D 0 for u 2 ker
�

C D
�

.

Combining this fact with (5.6) one obtains ker
�

C D
�

\ Hz D ¹0º and we are

done.

(iii) It follows from (ii) that boundary conditions (1.4) are weakly B-regular.

�e completeness and minimality of the root functions of the operator LC;D.Q/

is implied by [37, �eorem 1.2].

Remark 5.2. Let Q 2 L2.Œ0; 1�ICn�n/. �en (unbounded) multiplication oper-

ator Q W f ! Q.x/f , f 2 L2.Œ0; 1�ICn/, is relatively compact with respect to

LC;D.0/. �erefore statement (iii) is implied by the classical Keldysh theorem

(cf. [39, �eorem 4.3]) if in addition the spectrum of LC;D.0/ lies on the union of

rays ¹� 2 C W arg � D 'kº, k 2 ¹1; : : : ; nº.

Recall the following de�nitions from [18] and [39].

De�nition 5.3. (i) A sequence ¹fkº1
kD1

of vectors in H is called a Riesz basis if it

admits a representation fk D Tek, k 2 N, where ¹ekº1
kD1

is an orthonormal basis

in H and T W H ! H is a bounded operator with bounded inverse.

(ii) A sequence of subspaces ¹Hkº1
kD1

is called a Riesz basis of subspaces in

H if there exists a complete sequence of mutually orthogonal subspaces ¹H0
k
º1

kD1

and a bounded operator T in H with bounded inverse such that Hk D TH0
k
, k 2 N.

(iii) A sequence ¹fkº1
kD1

of vectors in H is called a Riesz basis with paren-

theses if each its �nite subsequence is linearly independent, and there exists an

increasing sequence ¹nkº1
kD0

� N such that n0 D 1 and the sequence

Hk WD span¹fj º
nk�1
j Dnk�1

;

forms a Riesz basis of subspaces in H. Subspaces Hk are called blocks.

To state the next result we need the following de�nition.

De�nition 5.4. Let ¹'kºn
kD1

be a sequence of angles, 'k 2 .��; ��, and " > 0.

Numbers �; � 2 C are called "-close with respect to ¹'kºn
kD1

, if, for some k 2

¹1; : : : ; nº,

�; � 2 ¹z 2 C W j arg z � 'k j < "º

and

jRe.e�i'k.� � �//j < ":
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In other words, � and � are "-close if for some k they belong to a small angle with

the bisectrix

lC.'k/ WD ¹� 2 C W arg � D 'kº

and their projections on this ray are close.

Let A be an operator with compact resolvent and let � be a bounded subset

of C. We put

N.�; A/ WD
X

�2�.A/\�

ma.�; A/ D
X

�2�.A/\�

dimR�.A/:

Our investigation of the Riesz basis property of the operator LC;D is based on the

following statement that can easily be extracted from [40] and [39, §I.6].

Proposition 5.5. Let H be a separable Hilbert space and let G be a normal oper-

ator with compact resolvent in H. Assume that the spectrum of G lies on the union

of rays lC.'1/; : : : ; lC.'n/, and

sup
z2C

N.D.z/; G/ < 1; D.z/ WD ¹� 2 C W j� � zj < 1º: (5.7)

Finally, let T be a bounded operator in H and let " > 0 be arbitrarily small.

�en the system of root vectors of the operator A D G C T forms a Riesz basis

with parentheses in H, where each block is constituted by the root subspaces cor-

responding to the eigenvalues of A that are mutually "-close with respect to the

sequence ¹'kºn
kD1

.

Proof. Since T is bounded, it is relatively compact with respect to G. Hence

by [39, Corollary 3.7], all but �nitely many eigenvalues of A D G C T belong to

the union of non-overlapping sectors

�j ."/ WD ¹� 2 C W j arg � � 'j j < "º; j 2 ¹1; : : : ; nº:

Fix j 2 ¹1; : : : ; nº and set

Gj WD e�i'j G:

Condition (5.7) implies condition (6.21) of [39, Lemma 6.8],

sup
k2N

N
�

.rk � qr
p

k
; rk C qr

p

k
/; Gj

�

< 1;

with p D 0, any q > 0 and any increasing sequence ¹rkº1
kD1

. Let ¹�j;kº1
kD1

be the

sequence of eigenvalues of A belonging to �j ."/ and ordered in ascending order

of Re
�

e�i'j �j;k

�

. Put

rk WD Re
�

e�i'j �j;k

�

� "=2; k 2 N:
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Applying [39, Lemma 6.8] to the operator Gj with p D 0, q D kT k C 4" and the

above sequence ¹rkº1
kD1

, we conclude that there exists xk 2 .rk � "=2; rk C "=2/,

k 2 N, such that the sequence ¹xkº1
kD1

is strictly monotone and the sequence of

subspaces

Hj;k WD span¹R�j;s
.A/ W xk 6 Re

�

e�i'j �j;s

�

< xkC1º; k 2 N; (5.8)

forms a Riesz basis of subspaces in its closed linear span. It follows from de�nition

of rk and xk that

Re
�

e�i'j �j;k

�

� " < xk < Re
�

e�i'j �j;k

�

; k 2 N:

Hence root subspaces of A corresponding to the eigenvalues of A, that are not

"-close with respect to ¹'kºn
kD1

, belong to di�erent blocks. Let �0
1; : : : ; �0

m be the

sequence of eigenvalues of A not belonging to the union of sectors [n
j D1�j ."/.

Clearly, the family of subspaces

¹R�0
k
ºm

kD1; ¹H1;kº1
kD1; : : : ; ¹Hn;kº1

kD1; (5.9)

forms a Riesz basis of subspaces in its closed linear span. Since the latter spans the

system of root vectors of the operator A, the Keldysh theorem (cf. [39, �eorem

4.3]) yields its completeness in H. �erefore, the system of root vectors of the

operator A forms a Riesz basis with parentheses having the required properties of

the blocks.

Now we are ready to prove our main result on the Riesz basis property of

BVP (1.2)–(1.4).

�eorem 5.6. Let Q 2 L1.Œ0; 1�ICn�n/ and

B D diag.Bj /r
j D1; C D diag.Cj /r

j D1; D D diag.Dj /r
j D1; (5.10)

where

Bj D

 

bj1Inj
0

0 bj 2Inj

!

; bj1b�1
j 2 2 .�1; 0/; (5.11a)

and

Cj D

 

Cj1 Cj 2

0 0

!

; Dj D

 

0 0

Dj1 Dj 2

!

; Cj1; Cj 2; Dj1; Dj 2 2 GL.nj ;C/:

(5.11b)
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�en the system of root functions of the operator A WD LC;D.Q/ forms a Riesz

basis with parentheses in L2.Œ0; 1�ICn/, where each block is constituted by the

root subspaces corresponding to the eigenvalues of A that are mutually "-close

with respect to the sequence of angles ¹�'1; : : : ; �'r ; � � '1; : : : ; � � 'rº. Here

'j D arg.bj1 � bj 2/, j 2 ¹1; : : : ; rº, and " > 0 is su�ciently small.

Proof. First we show that the operator LC;D.Q/ is similar to the operator L zC; zD. zQ/

with the same matrix B and matrices zC ; zD satisfying (5.1). To this end we use

the gauge transform W W y ! W.x/y, with W.�/ satisfying

W.x/B D BW.x/; x 2 Œ0; 1�; (5.12a)

and

W.�/ 2 C 1.Œ0; 1�ICn�n/; W �1.�/ 2 C.Œ0; 1�ICn�n/: (5.12b)

�en the operator LC;D.Q/ is transformed into the operator

L zC; zD. zQ/ D W �1LC;D.Q/W

with the same B , and matrices zC , zD, zQ.�/ given by

zC WD C W.0/; (5.13a)

zD WD DW.1/; (5.13b)

zQ.x/ WD W �1.x/Q.x/W.x/ � iW �1.x/B�1W 0.x/: (5.13c)

Since W.�/; W 0.�/; W �1.�/; Q.�/ 2 L1.Œ0; 1�ICn�n/, then zQ 2 L1.Œ0; 1�ICn�n/.

Due to the block diagonal structure (5.10)–(5.11) of the matrices B , Cj , and Dj ,

we can choose W0; W1 2 GL.n;C/ such that

WkB D BWk ; k 2 ¹0; 1º;

and

C W0 D diag. zCj /r
j D1; zCj WD

 

Inj
bj Inj

0 0

!

; bj WD .�bj1b�1
j 2 /1=2; (5.14a)

DW1 D diag. zDj /r
j D1; zDj WD

 

0 0

Inj
bj Inj

!

; j 2 ¹1; : : : ; rº: (5.14b)

Choose any branch of logarithm and put

zW WD log.W �1
0 W1/:



52 A. A. Lunyov and M. M. Malamud

Clearly, zW is well de�ned since the matrix W �1
0 W1 is nonsingular. Hence

W.x/ WD W0ex zW

satis�es (5.12a), (5.12b), and W.0/ D W0, W.1/ D W1. De�ne a gauge transform

W W y ! W.x/y. In view of (5.13)–(5.14b) the matrices zC; zD of the new operator

L zC ; zD. zQ/ D W �1LC;D.Q/W are zC D diag. zCj /r
j D1 and zD D diag. zDj /r

j D1 where

zCj and zDj are given by (5.14a) and (5.14b), respectively.

Straightforward calculation shows that

zCj Bj
zC �
j D zDj Bj

zD�
j D 0; j 2 ¹1; : : : ; rº:

Hence
zC B zC � D zDB zD� D 0:

By Lemma 5.1, the operator

G WD L zC; zD.0/

is normal. Its spectrum coincides with the set of zeros of the characteristic deter-

minant �.�/ D det. zC C zD ẑ .1; �//. �e fundamental matrix ẑ .�; �/ of the operator

L zC ; zD.0/ is ẑ .x; �/ D eiB�x. Hence, in view of the block-diagonal structure of

the matrices B , zC , zD, we obtain

�.�/ D

r
Y

j D1

det. zCj C zDj eiBj �/ D

r
Y

j D1

det

 

Inj
bj Inj

eibj1�Inj
bj eibj 2�Inj

!

D

r
Y

j D1

.b
nj

j � .eibj 2� � eibj1�/nj /:

Hence

�.G/ D
° 2�k

bj1 � bj 2

W k 2 Z; j 2 ¹1; : : : ; rº
±

:

�us �.G/ lies on the union of rays ¹lC.�'j /ºr
1 and ¹lC.� � 'j /ºr

1, where 'j D

arg.bj1 � bj 2/, j 2 ¹1; : : : ; rº. Moreover, �.G/ is the union of a �nite number

of arithmetic progressions and multiplicities of eigenvalues are bounded, hence

condition (5.7) is satis�ed. Since zQ.�/ is bounded, then, by Proposition 5.5, the

system of root functions of the operator

zA WD L zC; zD. zQ/ D L zC; zD.0/ C zQ D G C zQ

forms a Riesz basis with parentheses in H, where each block is constituted by the

root subspaces corresponding to the mutually close eigenvalues of A in the sense

of De�nition 5.4. Since A D LC;D.Q/ is similar to zA, the same is true for the root

functions of the operator LC;D.Q/.
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As a consequence of this result we obtain the Riesz basis property of the system

of root functions for Dirac system with general splitting boundary conditions.

Corollary 5.7. Let n D 2m, B D diag.b1Im; b2Im/, b1 < 0 < b2, and Q 2

L1.Œ0; 1�ICn�n/, and let

C D

 

C1 C2

0 0

!

; D D

 

0 0

D1 D2

!

; C1; C2; D1; D2 2 GL.m;C/:

�en the system of root functions of the operator LC;D.Q/ forms a Riesz basis

with parentheses in L2.Œ0; 1�ICn�n/.

Remark 5.8. In connection with Corollary 5.7 we mention recent paper [44]

where it is proved the Bari–Markus property for spectral projections of Dirac op-

erator .�b1 D b2 D 1/ with a potential Q 2 L2.Œ0; 1�ICn/, and C1 D C2 D D1 D

D2 D Im.

Similarly to �eorem 5.6 we can obtain the following result.

Proposition 5.9. Let

B D diag.b1In1
; : : : ; brInr

/; n D n1 C � � � C nr ; (5.15a)

and

C D diag.Cj /r
j D1; D D diag.Dj /r

j D1; Cj ; Dj 2 GL.nj ;C/; j 2 ¹1; : : : ; rº;

(5.15b)

and Q 2 L1.Œ0; 1�ICn�n/. �en the system of root functions of the operator

A WD LC;D.Q/

forms a Riesz basis with parentheses in L2.Œ0; 1�ICn/, where each block is consti-

tuted by the root subspaces corresponding to the eigenvalues of A that are mutually

"-close with respect to the sequence of angles ¹�'1; : : : ; �'r ; � �'1; : : : ; � �'rº.

Here 'j D arg bj , j 2 ¹1; : : : ; rº, and " > 0 is su�ciently small.

Proof. �e proof is similar to that of �eorem 5.6. At �rst choosing an appropriate

gauge transform, we transform the operator LC;D.Q/ into L zC ; zD. zQ/ with zCj D

zDj D Inj
. It follows that the operator G WD L zC; zD.0/ is normal and its spectrum is

of the form �.G/ D
®

2�k=bj W k 2 Z; j 2 ¹1; : : : ; rº
¯

. Hence the same argument

as in the proof of �eorem 5.6 yields the result.
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A direct consequence of this result is the Riesz basis property of the periodic

.reps. antiperiodic/ BVP with general matrix B .

Corollary 5.10. Let B D diag.b1; : : : ; bn/ 2 GL.n;C/, C D ˙D D In and

Q 2 L1.Œ0; 1�ICn�n/. �en the system of root functions of the operator LC;D.Q/

forms a Riesz basis with parentheses in L2.Œ0; 1�ICn�n/.

Remark 5.11. In the case of Dirac type systems (B D B�) we can extend the

statements of �eorem 5.6 and Proposition 5.9 to the case of Q 2 L2.Œ0; 1�ICn�n/.

Indeed, it su�ces to apply �eorem 2 from the recent paper [52] instead of the

quoted results from [40] and [39, §I.6]. Note however, that in [52, �eorem 2]

only the basis property instead of the Riesz basis property was stated.

Remark 5.12. �e Riesz basis property for 2 � 2 Dirac equation subject to split-

ting boundary conditions has been investigated in numerous papers [58, 20, 6, 7].

�e most general statement covering Corollary 5.7 (for n D 1) was obtained by

Djakov and Mityagin [7] who relaxed the assumption on a potential matrix to

Q 2 L2.Œ0; 1�IC2/. Moreover, these authors proved in [7] the Riesz basis property

for 2 � 2 Dirac equation subject to general strictly regular boundary conditions.

For 2�2 Dirac system Corollary 5.10 was proved in [6] under weaker assump-

tion Q 2 L2.Œ0; 1�IC2/. Moreover, these authors found out [11] a criterion for

the system of root functions of the periodic boundary value problem for 2 � 2

Dirac equation to contain a Riesz basis (without parentheses). Similar result for

Sturm–Liouville operator � d2

dx2 C q was obtained by di�erent methods in [15, 16]

and [11]. Both criteria are formulated directly in terms of periodic and Dirichlet

eigenvalues. Moreover, in [9, �eorem 13], [11, �eorem 19] (see also [8]) it is

established criteria for eigenfunctions and associated functions to form a Riesz

basis for periodic 1D Dirac operator (resp. Sturm–Liouville operator) in terms of

the Fourier coe�cients of Q (resp. q). Equivalence of this formulation to that

in terms of periodic and Dirichlet eigenvalues is explained in [11, �eorem 24].

Let us mention in this connection the paper [53] where Riesz basis property for

periodic Sturm–Liouville operator was obtained under certain explicit su�cient

conditions in terms of Fourier coe�cients of a potential q.

In the simplest case B D In we can indicate a criterion for the system of root

functions of the operator LC;D.Q/ to form a Riesz basis with parentheses.

Corollary 5.13. Let B D In and Q 2 L1.Œ0; 1�ICn�n/. �en the system of

root functions of the operator LC;D.Q/ forms a Riesz basis with parentheses in

L2.Œ0; 1�ICn/ if and only if det.C � D/ ¤ 0.
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Proof. Applying the gauge transform y ! W.x/y with W.�/ described in the

beginning of the proof of Proposition 3.4, we see that the operator LC;D.Q/ is

similar to the operator L zC; zD
.0/ with zC D C , zD D DW.1/ and zero potential

matrix. Further, since B D In, then TB. zC; zD/ D DW.1/ and T�B. zC ; zD/ D C .

Hence, det.C �D/ ¤ 0 if and only if det TB. zC ; zD/ �det T�B. zC; zD/ ¤ 0. �erefore,

by [37, Proposition 4.6], the system of root functions of the operator L zC; zD.0/ has

in�nite defect, whenever det.C �D/ D 0. On the other hand, if det.C �D/ ¤ 0 then,

by Proposition 5.9, applied with r D 1 and Q D 0, the system of root functions

of the operator L zC; zD.0/ forms a Riesz basis with parentheses. Similarity of the

operators LC;D.Q/ and L zC; zD.0/ completes the proof.

6. Application to the Timoshenko beam model

Here we obtain some important geometric properties of the system of root func-

tions for the dynamic generator of the Timoshenko beam model. Consider the

following linear system of two coupled hyperbolic equations for t > 0

I�.x/ˆt t D K.x/.Wx � ˆ/ C .EI.x/ˆx/x � p1.x/ˆt ; x 2 Œ0; `�; (6.1a)

�.x/Wt t D .K.x/.Wx � ˆ//x � p2.x/Wt ; x 2 Œ0; `�: (6.1b)

�e vibration of the Timoshenko beam of the length ` clamped at the left end is

governed by the system (6.1a)–(6.1b) subject to the following boundary conditions

for t > 0 [57]:

W.0; t/ D ˆ.0; t/ D 0; (6.2a)

�

EI.x/ˆx.x; t / C ˛1ˆt .x; t / C ˇ1Wt .x; t /
�ˇ

ˇ

xDl
D 0; (6.2b)

�

K.x/.Wx.x; t / � ˆ.x; t// C ˛2Wt .x; t / C ˇ2ˆt .x; t /
�ˇ

ˇ

xDl
D 0: (6.2c)

Here W.x; t/ is the lateral displacement at a point x and time t , ˆ.x; t/ is the

bending angle at a point x and time t , �.x/ is a mass density, K.x/ is the shear

sti�ness of a uniform cross-section, I�.x/ is the rotary inertia, EI.x/ is the �exural

rigidity at a point x, p1.x/ and p2.x/ are locally distributed feedback functions,

j̨ ; ǰ 2 C, j 2 ¹1; 2º. Boundary conditions at the right end contain as partial

cases most of the known boundary conditions if ˛1; ˛2 are allowed to be in�nity.
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Regarding the coe�cients we assume that they satisfy the following general

conditions:

�; I�; K; EI 2 C Œ0; `�; p1; p2 2 L1Œ0; `�; (6.3a)

0 < C1 6 �.x/; I�.x/; K.x/; EI.x/ 6 C2; x 2 Œ0; `�: (6.3b)

�e energy space associated with the problem (6.1a)–(6.2c) is

H WD zH 1
0 Œ0; `� � L2Œ0; `� � zH 1

0 Œ0; `� � L2Œ0; `�; (6.4)

where zH 1
0 Œ0; `� WD ¹f 2 W 1;2Œ0; `� W f .0/ D 0º. �e norm in the energy space is

de�ned as follows:

kyk2
H D

Z `

0

.EI jy0
1j2 C I�jy2j2 C Kjy0

3 � y1j2 C �jy4j2/dx; (6.5)

with

y D col.y1; y2; y3; y4/:

�e problem (6.1a)–(6.2c) can be rewritten as

yt D iLy; y.x; t /jtD0 D y0.x/; (6.6)

where y and L are given by

y D

0

B

B

B

B

@

ˆ.x; t/

ˆt .x; t /

W.x; t/

Wt .x; t /

1

C

C

C

C

A

; (6.7a)

L

0

B

B

B

@

y1

y2

y3

y4

1

C

C

C

A

D
1

i

0

B

B

B

B

B

B

@

y2

1

I�.x/
.K.x/.y0

3 � y1/ C .EI.x/y0
1/0 � p1.x/y2/

y4

1

�.x/
..K.x/.y0

3 � y1//0 � p2.x/y4/

1

C

C

C

C

C

C

A

(6.7b)

on the domain

dom.L/ D ¹y D col.y1; y2; y3; y4/ W y1; y2; y3; y4 2 zH 1
0 Œ0; `�;

EI � y0
1 2 AC Œ0; `�; .EI � y0

1/0 � p1y2 2 L2Œ0; `�;

K � .y0
3 � y1/ 2 AC Œ0; `�; .K � .y0

3 � y1//0 � p2y4 2 L2Œ0; `�;

.EI � y0
1/.`/ C ˛1y2.`/ C ˇ1y4.`/ D 0;

.K � .y0
3 � y1//.`/ C ˛2y4.`/ C ˇ2y2.`/ D 0º:

(6.8)
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Timoshenko beam model is investigated in numerous papers (see [57, 24, 54, 61,

60, 59] and the references therein). A number of stability, controllability, and op-

timization problems were studied. Note also that the general model (6.1a)–(6.2c)

of spatially non-homogenous Timoshenko beam with both boundary and locally

distributed damping covers the cases studied by many authors. Geometric prop-

erties of the system of root functions of the operator L play important role in

investigation of di�erent properties of the problem (6.1a)–(6.2c).

Below we establish completeness and the Riesz basis property with parenthe-

ses of the operator L, without analyzing its spectrum. For convenience we impose

the following additional algebraic assumption on L:

�.x/ WD
EI.x/�.x/

K.x/I�.x/
D const; x 2 Œ0; `�; (6.9)

Clearly, (6.9) is satis�ed whenever I�.x/ D R�.x/, where R D const is a cross-

sectional area of the beam, EI and K are constant functions, while � 2 AC Œ0; `�

and is arbitrary positive (cf. condition (6.13)). Our approach to the spectral prop-

erties of the operator L is based on the similarity reduction of L to a special 4 � 4

Dirac-type operator. To state the result we need some additional preparations.

Let .�/ be given by

s

I�.x/

EI.x/
D b1.x/; where b1 > 0 and

Z `

0

.x/dx D 1: (6.10)

Conditions (6.3a) and (6.3b) imply together that  2 C Œ0; `� and is positive. Fur-

ther, in view of (6.9) we have

s

�.x/

K.x/
D b2.x/; where b2 > 0: (6.11)

Let

B WD diag.�b1; b1; �b2; b2/: (6.12a)

‚.x/ WD �2i diag.I�.x/; I�.x/; �.x/; �.x//; (6.12b)

h1.x/ WD
q

EI.x/I�.x/; h2.x/ WD
p

K.x/�.x/: (6.12c)

In the sequel we assume that

h1; h2 2 AC Œ0; `�: (6.13)
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�erefore, according to (6.3a)–(6.3b) the following matrix function is well-de-

�ned:

yQ.x/ WD ‚�1.x/

0

B

B

B

@

p1 C h0
1 p1 � h0

1 h2 �h2

p1 C h0
1 p1 � h0

1 h2 �h2

�h2 �h2 p2 C h0
2 p2 � h0

2

h2 h2 p2 C h0
2 p2 � h0

2

1

C

C

C

A

: (6.14)

Next, we set

t .x/ D

Z x

0

.s/ds; x 2 Œ0; `�: (6.15)

Since  2 C Œ0; `� and is positive, the function t .�/ strictly increases on Œ0; `�,

t .�/ 2 C 1Œ0; `�, and due to (6.10) t .`/ D 1. Hence, the inverse function

x.�/ WD t�1.�/

is well de�ned, strictly increasing on Œ0; 1�, and x.�/ 2 C 1Œ0; 1�. Next, we put

Q.t/ WD yQ.x.t// DW .qjk.t //4
j;kD1; t 2 Œ0; 1�: (6.16)

Finally, let

C D

0

B

B

B

@

1 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0

1

C

C

C

A

; (6.17a)

D D

0

B

B

B

@

0 0 0 0

˛1 � h1.`/ ˛1 C h1.`/ ˇ1 ˇ1

0 0 0 0

ˇ2 ˇ2 ˛2 � h2.`/ ˛2 C h2.`/

1

C

C

C

A

: (6.17b)

Proposition 6.1. Let functions �; I�; K; EI; p1; p2; h1; h2 satisfy (6.3a), (6.3b),

(6.9), and (6.13). �en the operator L is similar to the 4 � 4 Dirac-type operator

L WD LC;D.Q/ with the matrices B; C; D; Q.�/given by (6.12a), (6.17) and (6.16).

Proof. Introduce the following operator

Uy D col.EI.x/y0
1; y2; K.x/.y0

3 � y1/; y4/; y D col.y1; y2; y3; y4/; (6.18)

that maps the Hilbert space H given by (6.4) into L2.Œ0; `�IC4/. Since d
dx

isomet-

rically maps zH 1
0 Œ0; `� D ¹f 2 W 1;2Œ0; `� W f .0/ D 0º onto L2Œ0; `�, it follows from
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conditions (6.3b) that the operator U is bounded with bounded inverse. It is easy

to check that for y D col.y1; y2; y3; y4/

LU �1y D
1

i

0

B

B

B

B

B

B

B

@

y2

1

I�

.y0
1 � p1y2 C y3/

y4

1

�
.y0

3 � p2y4/

1

C

C

C

C

C

C

C

A

; (6.19a)

zLy WD ULU �1y D
1

i

0

B

B

B

B

B

B

B

@

EI � y0
2

1

I�

.y0
1 � p1y2 C y3/

K � .y0
4 � y2/

1

�
.y0

3 � p2y4/

1

C

C

C

C

C

C

C

A

; (6.19b)

and

dom.zL/ D U dom.L/ D ¹y D col.y1; y2; y3; y4/ 2 W 1;1.Œ0; `�IC4/ W

zLy 2 L2.Œ0; `�IC4/;

y2.0/ D y4.0/ D 0;

y1.`/ C ˛1y2.`/ C ˇ1y4.`/ D 0;

y3.`/ C ˛2y4.`/ C ˇ2y2.`/ D 0:º:

(6.20)

�us, the operator L is similar to the operator zL,

zLy D �i zB.x/y0 C zQ.x/y

with the domain dom.zL/ given by (6.20), and the matrix functions zB.�/, zQ.�/,

given by

zB.x/ WD

0

B

B

B

B

B

B

B

@

0 EI.x/ 0 0

1

I�.x/
0 0 0

0 0 0 K.x/

0 0
1

�.x/
0

1

C

C

C

C

C

C

C

A

;
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and

zQ.x/ WD i

0

B

B

B

B

B

B

B

@

0 0 0 0

0
p1.x/

I�.x/
�

1

I�.x/
0

0 K.x/ 0 0

0 0 0
p2.x/

�.x/

1

C

C

C

C

C

C

C

A

:

Note, that zQ 2 L1.Œ0; `�IC4�4/ in view of conditions (6.3a)–(6.3b). Next we

diagonalize the matrix zB.�/. Namely, setting

zU .x/ WD

0

B

B

B

@

�h1.x/ h1.x/ 0 0

1 1 0 0

0 0 �h2.x/ h2.x/

0 0 1 1

1

C

C

C

A

; (6.21)

and noting that

zU �1.x/ D
1

2

0

B

B

B

B

B

B

@

�
1

h1.x/
1 0 0

1

h1.x/
1 0 0

0 0 � 1
h2.x/

1

0 0 1
h2.x/

1

1

C

C

C

C

C

C

A

;

we easily get after straightforward calculations

zU �1.x/ zB.x/ zU .x/ D diag

 

�

s

EI.x/

I�.x/
;

s

EI.x/

I�.x/
; �

s

K.x/

�.x/
;

s

K.x/

�.x/

!

D
1

.x/
B�1;

(6.22)

Here we have used de�nition (6.12c) of h1, h2, and de�nitions (6.10) and (6.11)

of b1, b2, and .x/, respectively. Further, note that zU .�/ 2 W 1;1.Œ0; `�IC4�4/ and
yQ 2 L1.Œ0; `�IC4�4/ in view of (6.3a), (6.3b) and (6.13), where yQ.�/ is given

by (6.14) and (6.12b). Hence, it is easily seen that

zU �1.x/ zQ.x/ zU .x/ � i zU �1.x/ zB.x/ zU 0.x/ D yQ.x/; x 2 Œ0; `�: (6.23)

Introducing the operator zU W y ! zU .x/y in L2.Œ0; `�IC4/ and taking into ac-

count (6.22) and (6.23) we obtain that for any y 2 W 1;1.Œ0; `�IC4/ and satisfying
zU y 2 dom.zL/

yLy WD zU �1 zL zU y D �i.x/�1B�1y0 C yQ.x/y: (6.24)
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Next, taking into account formulas (6.17) and (6.21) for matrices C , D, and zU .�/,

respectively, we derive

dom.yL/ D ¹y 2 W 1;1.Œ0; `�IC4/ W yLy 2 L2.Œ0; `�IC4/; Cy.0/ C Dy.`/ D 0º:

(6.25)

Finally, we apply similarity transformation S that realizes the change of variable

x D x.t/,

S W L2.Œ0; `�IC4/ ! L2.Œ0; 1�IC4/; .Sf /.t/ D f .x.t//; t 2 Œ0; 1�:

Since both t .�/ and x.�/ are strictly increasing and continuously di�erentiable, the

following implications hold

f .�/ 2 W 1;1.Œ0; `�IC4/ H) f .x.�// 2 W 1;1.Œ0; 1�IC4/; (6.26)

g.�/ 2 W 1;1.Œ0; 1�IC4/ H) g.t.�// 2 W 1;1.Œ0; `�IC4/: (6.27)

Hence (6.25) and (1.5) implies dom.L/ D S dom.yL/. Next, it follows from (6.15)

that t 0.x/ D .x/, x 2 Œ0; `�. Hence for f 2 dom.L/ and x 2 Œ0; `� one has

.yLS�1f /.x/ D �i.x/�1B�1 d

dx
Œf .t.x//� C yQ.x/f .t.x//

D �iB�1f 0.t .x// C yQ.x/f .t.x//;

(6.28)

which directly implies that L D S yLS�1. Combining this identity with (6.19)

and (6.24) one concludes that L is similar to L D LC;D.Q/.

Remark 6.2. Proposition 6.1 remains valid if we replace (6.3a) by the weaker as-

sumption �; I�; K; EI 2 L1Œ0; `� and assume in addition that the inverse function

x.�/ D t�1.�/ is absolutely continuous. Otherwise implication (6.26) fails, since

in general the inverse function of absolutely continuous function is not necessarily

absolutely continuous. For instance, the function

h.x/ WD x C C.x/; x 2 Œ0; 1�;

where C.�/ is the Cantor function, strictly increases and is not absolutely contin-

uous. At the same time, the inverse function is absolutely continuous.

Applying [37, Corollary 3.2] and �eorem 5.6 to the operator L we obtain the

following result.
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�eorem 6.3. Let conditions (6.3a), (6.3b), (6.9), (6.13) be satis�ed and let also

.˛1 C h1.`//.˛2 C h2.`// ¤ ˇ1ˇ2 (6.29a)

and

.˛1 � h1.`//.˛2 � h2.`// ¤ ˇ1ˇ2: (6.29b)

(i) �en the system of root functions of L is complete and minimal in H.

(ii) Assume in addition that

p1; p2 2 L1Œ0; `�; h1; h2 2 Lip1Œ0; `�; ˇ1 D ˇ2 D 0: (6.30)

�en the system of root functions of the operatorL forms a Riesz basis with paren-

theses in H.

Proof. (i) Consider the operator LC;D.Q/ de�ned in Proposition 6.1. Combin-

ing expressions (6.12a) and (6.17) for the matrices B; C , D with de�nition of

TA.C; D/ yields

det TB.C; D/ D det

0

B

B

B

@

1 0 0 0

0 ˛1 C h1.`/ 0 ˇ1

0 0 1 0

0 ˇ2 0 ˛2 C h2.`/

1

C

C

C

A

D .˛1 C h1.`//.˛2 C h2.`// � ˇ1ˇ2:

(6.31)

Similarly one gets det T�B.C; D/ D .˛1 � h1.`//.˛2 � h2.`// � ˇ1ˇ2. Condi-

tions (6.29) implies det TB.C; D/ ¤ 0 and det T�B.C; D/ ¤ 0. �erefore, by [37,

Corollary 3.2], the system of root functions of the operator LC;D.Q/ is complete

and minimal in L2.Œ0; 1�IC4/. Since, by Proposition 6.1, L is similar to the op-

erator LC;D.Q/, the system of root functions of the operator L is complete and

minimal in H.

(ii) Again consider the operator LC;D.Q/ de�ned in Proposition 6.1. Since

ˇ1 D ˇ2 D 0 and (6.29) is ful�lled, then according to (6.12a) and (6.17) the matri-

ces B , C , D have the block structure described in (5.10)–(5.11) with r D 2. More-

over, (6.30) implies Q 2 L1.Œ0; 1�IC4�4/. �erefore, combining �eorem 5.6

with Proposition 6.1 yields the statement.
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Applying Corollary 4.9 we can improve �eorem 6.3(i) assuming that yQ.�/ is

continuous at the endpoints 0, `. For simplicity we assume that ˇ1 D ˇ2 D 0.

�eorem 6.4. Let the functions �, I�, K, EI , p1, p2, h1, h2 satisfy (6.3a), (6.3b),

(6.9), and (6.13). Let also the functions p1, p2, h0
1, h0

2 be continuous at the end-

points 0 and `. Assume in addition that ˇ1 D ˇ2 D 0 and the following assump-

tions are ful�lled:

(i) j˛1 � h1.`/j C j˛2 � h2.`/j ¤ 0 and j˛1 C h1.`/j C j˛2 C h2.`/j ¤ 0;

(ii) for each j 2 ¹1; 2º one of the following conditions is satis�ed:

(a) ˛2
j ¤ h2

j .`/I

(b) j̨ D hj .`/ and h0
j .`/ ¤ �pj .`/I

(c) j̨ D �hj .`/ and h0
j .`/ ¤ pj .`/.

�en the system of root functions of L is complete and minimal in H.

Proof. Consider the operator LC;D.Q/ de�ned in Proposition 6.1. Since �; I� 2

C Œ0; `� and p1, p2, h0
1, h0

2 are continuous at the endpoints 0 and `, it follows

from (6.12b)–(6.16) that the matrix function Q.�/ is continuous at the endpoints

0 and 1. Since ˇ1 D ˇ2 D 0, the block matrix representations (6.12a) and (6.17)

of the matrices B , C , D, allow to apply Corollary 4.9 and Lemma 4.10. Let us

verify conditions (4.10)–(4.13) of Lemma 4.10. First, comparing (4.6) with (6.17)

yields

d1 D ˛1 � h1.`/; d2 D ˛1 C h1.`/;

d3 D ˛2 � h2.`/; d4 D ˛2 C h2.`/:

�erefore, condition (4.10) is always satis�ed, since hj .`/ ¤ 0, j 2 ¹1; 2º, while

condition (4.11) is equivalent to the condition (i) of the theorem. Further, it follows

from (6.14) and (6.16) that

q12.1/ D
p1.`/ � h0

1.`/

�2iI�.`/
; q21.1/ D

p1.`/ C h0
1.`/

�2iI�.`/
;

q34.1/ D
p2.`/ � h0

2.`/

�2i�.`/
; q43.1/ D

p2.`/ C h0
2.`/

�2i�.`/
:

Hence, conditions (4.12) and (4.13) are equivalent to the conditions (a)-(c) of the

theorem for j D 1 and j D 2, respectively. �erefore, by Lemma 4.10, condi-

tion (4.7) is satis�ed and, by Corollary 4.9, the system of root functions of the

operator LC;D.Q/ is complete and minimal in L2.Œ0; 1�IC4/. �erefore, Proposi-

tion 6.1 completes the proof.
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Remark 6.5. �e main results remain also valid if the function �.�/ given by (6.9)

satis�es �.x/ ¤ 1 for x 2 Œ0; `�.

Remark 6.6. (i) In connection with �eorem 6.3 we mention the paper [54] where

the operatorLwas investigated under the following assumptions on the parameters

of the model:

EI; K 2 W 3;2Œ0; `�; �; I� 2 W 4;2Œ0; `�; p1 D p2 D 0; ˇ1 D ˇ2 D 0;

(6.32)

but without the algebraic assumption (6.9). �e completeness of the root functions

was stated in [54] under the condition (6.29) and the additional assumption

I�.x/K.x/ ¤ �.x/EI.x/; x 2 Œ0; `�; (6.33)

which in our notations means that �.x/ ¤ 1, x 2 Œ0; `�. Unfortunately, the proof of

the completeness in [54] fails because of the incorrect application of the Keldysh

theorem. Namely, the representationL
�1 D L

�1
00 .IHCT / used in [54], where T is

of �nite rank bounded operator and L00 D L
�
00, fails since it leads to the inclusion

dom.L/ � dom.L00/, which holds if only if L D L00.

Moreover, under conditions (6.32), (6.33) and (6.29) the Riesz basis property

for the system of root functions of L was stated in [54]. �e proof is based on

the claim that under the above restrictions the eigenvalues of L are asymptotically

simple and separated. However, it is not the case. For instance, if K � EI � � �

1, I� � 4, ˛1 D 5=2 and ˛2 D 13=12, then according to [54, �eorem 4.2] the

sequence of the eigenvalues of L splits into two families

�.1/
n D

�n

2
C

i

2
ln 3CO.n�1/ and �.2/

n D �nC
i

2
ln 3CO.n�1/; n 2 Zn¹0º:

Clearly, in this case the sequence of the eigenvalues of L is not asymptotically

simple and separated. Note, however, that according to �eorem 6.3(ii) the system

of root functions of the operator L always forms a Riesz basis with parentheses

under the restrictions (6.3a), (6.3b), (6.9), (6.13), (6.29) and (6.30).

(ii) In connection with �eorem 6.3 we also mention the paper [61]. In this

paper the operator L was investigated under the following stronger assumptions

on the parameters of the model:

EI; K; �; I� are constant, p1 D p2 D 0; (6.34a)

˛1; ˛2; ˇ1; ˇ2 > 0; 4˛1˛2 > .ˇ1 C ˇ2/2: (6.34b)
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�e last condition in (6.34) ensures the dissipativity of the operator L. �e com-

pleteness of the system of root functions of the operatorLwas proved in [61] under

the restrictions (6.34) and (6.29). So, our �eorem 6.3(i) generalizes this result

to a broader class of boundary conditions and improves it in the dissipative case.

Note also that under additional assumptions, guarantying that the eigenvalues of

L are asymptotically simple and separated, it was proved in [61] that the root func-

tions of L contains the Riesz basis. Moreover, this fact was applied to show the

exponential stability of the problem (6.1a)–(6.2c).

Acknowledgments. We are indebted to D. Yakubovich for the reformulation of

the condition (a) of �eorem 4.1 mentioned in Remark 4.2. We are also indebted

to the anonymous referee for useful remarks helping us to improve the exposition.
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