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Inertia of the matrix [(p; + p;)"]

Rajendra Bhatia! and Tanvi Jain

Abstract. Let pq, ..., p, be positive real numbers. It is well known that for every r < 0
the matrix [(p; + p;)"] is positive definite. Our main theorem gives a count of the number
of positive and negative eigenvalues of this matrix when r > 0. Connections with some
other matrices that arise in Loewner’s theory of operator monotone functions and in the
theory of spline interpolation are discussed.
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1. Introduction

Let p1, pa, ..., pn be distinct positive real numbers. The nxn matrix C = | p_i > -]
iTPDj

is known as the Cauchy matrix. The special case p; = i gives the Hilbert matrix

H = [%]. Both matrices have been studied by several authors in diverse contexts

and are much used as test matrices in numerical analysis.

The Cauchy matrix is known to be positive definite. It possesses a stronger
1
(pi+p;)"
nite. (See [4] for a proof.) The object of this paper is to study positivity properties

of the related family of matrices

property: for each r > 0 the entrywise power C°" = [ ] is positive defi-

Pr={[(pi+p))]. r=0. ey

The inertia of a Hermitian matrix A is the triple

In(4) = (7(4),2(4),v(4)),

! The first author is a J. C. Bose National Fellow.
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in which 7 (A), {(A) and v(A) stand for the number of positive, zero, and negative
eigenvalues of A, respectively. Our main result is the following.

Theorem 1. Let p1,..., p, be distinct positive real numbers, and let P, be the
n x n matrix defined in (1).

(i) Py is singular if and only if r is a nonnegative integer smaller than n — 1.
() Ifr is aninteger and 0 <r <n — 1, then

o= (-0 |52

(i) Suppose r is not an integer, and 0 <r <n — 2.

— If |r] = 2k for some integer k, then
InP=k+1,0,n—(k+1));
— if |r] =2k + 1 for some integer k, then
InP,=mn—-(k+1),0,k+1).
(i) For every real numberr > n —2

InP, =InP,_;.

Figure 1 is a schematic representation of the eigenvalues of a 6 x 6 matrix P,
when p; have been fixed and r varies. This kind of behaviour has been observed
in other problems. The Loewner matrix is defined as

pr—p'f
L,:[;], r>0.
Pi — Pj

It is a famous theorem of C. Loewner [2, 3] that for 0 < r < 1, the matrix L, is
positive definite. R. Bhatia and J. Holbrook [5] showed that for 1 < r < 2, the
matrix L, has only one positive eigenvalue. This encouraged them to speculate

what might happen for other values of r. They made a conjecture that, in the light
of our Theorem 1, may be rephrased as

Conjecture 1. Forallr >0, In P, =InL,4;.
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Figure 1.

The conjecture of Bhatia and Holbrook remains unproved, except that it was
shown by R. Bhatia and T. Sano [7] that for 2 < r < 3 the matrix L, has only one
negative eigenvalue.

The matrix
B =llpi—piI'l. r=0
has been studied widely in connection with interpolation of scattered data and
spline functions. In [8], N. Dyn, T. Goodman and C. A. Micchelli establish inertia

properties of this matrix as r varies. Some of our proofs can be adapted to achieve
substantial simplifications of those in [8].

Closely related to Loewner matrices is the matrix
'+ pt
K, = [u] ., r>0.
pi + pj
M. K. Kwong [9] showed that K, is positive definite when 0 < r < 1. Bhatia and

Sano [7] showed that K, has only one positive eigenvalue when 1 < r < 3. In our
work we have carried this analysis further, and are led to the following conjecture.

Conjecture 2. Forallr > 0,InB, = In K, 4.

The rest of the paper is devoted to the proof of Theorem 1 followed by some
remarks.
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2. The case r < n —1, r an integer

The Sylvester Law of Inertia says that if A and X are n x n matrices, and A4 is Her-
mitian and X nonsingular, then In X*AX = In A. We need a small generalisation
of this given in the next proposition.

Proposition 2. Let n > r. Let A be an r x r Hermitian matrix, and X anr X n
matrix of rank r. Then

InX*AX =InA + (0,n —r,0).

Proof. The matrix X has a singular value decomposition X = UXV*, in which
UeC™ MV eC”" ¥ e C™,; U and V are unitary, and ¥ can be partitioned
as ¥ = [S, O], where S is an r x r positive diagonal matrix, and O is the null
matrix of order r x (n — r). Then

X*AX = VZ*UTAUZV*™.
By Sylvester’s Law

InX*AX =InZ*U AU X

_ . [SUr4Us o
- 0 ol

In this last 2 x 2 block matrix, the top left block is an r x r matrix. So

InX*AX = In(SU*AUS) + (0,n —r,0)
=InA+ (0,n—r,0). U

Now let W be the (r + 1) x n Vandermonde matrix

1 1 1 1
W = pPr p2 Pp3 Pn ’
ry Py Dp3 Pn
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let V; be the (r + 1) x (r + 1) antidiagonal matrix with entries (g). (7)..... (7) on
its sinister diagonal and 0’s elsewhere; i.e.,
0 0 - 0 0 (g
0 0 - 0 () O
Vi=| 0 0 -~ () 0 0
¢ o - 0 0 0
It can be seen that forr <n — 1
P, =W*1hW.
So by Proposition 2
InP.=InVy 4+ 0,n—(r +1),0). 2)

The inertia of V; can be computed as follows. When r + 1 = 2k, the entries on
the sinister diagonal of V; are

(©)- () () G2 (0)-G))

The eigenvalues of V; are readily seen to be £(}),0 < j <k —1. So

r+1 r—+1
2 772 )

When r + 1 = 2k + 1, the entries on the sinister diagonal of V; are

(6} () ()62~ ()6)

In this case the eigenvalues of V; are :I:(;) 0 < j <k—1, together with (;). Thus

Inm:4k+Laky:q’;1]aLr;1D.

InV; = (k.0.k) = (

So, part (ii) of Theorem follows from (2).

3. ThecasesO0 <r <land1l<r <2

Let H = C" and let H; be its subspace

¥ = {x: i Xj =O}.
i=1
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Lete = (1,1,...,1) and E the matrix with all its entries equal to 1. Then
Hy =et ={x: Ex =0).

A Hermitian matrix A is said to be conditionally positive definite (cpd) if
(x,Ax) >0 forx € H;.

It is said to be conditionally negative definite (cnd) if —A is cpd. Basic facts about
such matrices can be found in [1]. A cpd matrix is nonsingular if (x, Ax) > 0 for
all nonzero vectors x in H;.

If ¢ is a positive number and 0 < r < 1, then

sinrm [ ¢
"= AT, 3
b8 /0 A+t 3)

See [2, p.116]. We write this briefly as
*© ot
t" = ——dp(d), 4
T p(d) )
where p is a positive measure on (0, o), depending on r.

Theorem 3. The matrix P, is cnd and nonsingular for 0 < r < 1, and it is cpd
and nonsingular for 1 <r < 2.

Proof. Let0 <r < 1 and use (4) to write

o0
Di + pj
- -’=/ 2 duh). (5)
(pi+pi)" = | PR— f(A)
Then use the identity
_pitp A
pi +pj+A pitpj+A

to see that the matrix

Gl=[7p"+”f ] A>0,
pi+pi+A

can be expressed as
Gr=E—-21GC,, (6)

where

1
C=|——
* [PiJerJFJ
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is a Cauchy matrix. This matrix is positive definite, and Ex = 0 for all x € H;.
It follows from (6) that G, is cnd. So

oo

. / Gy dp(2)
0

is also cnd.

Now let 1 < r < 2. Using (4) we can express

o0 [2
"= du(d). 7
| 5 an ™
So,
oo 2
(pi + pj)
i+ pi) :/ —— —duA
(pi + pj) AR ()
Use the identity
(pit+p)> _ . Apitp)
pi+pi+r T pi+pi+ A
to see that the matrix
H) = 7(1% +pj)2 A>0
pi +pj+ A
can be expressed as
H, = DE + ED — AG,, (8)

where D = diag(p1, ..., pn) and G, is the matrix in (6). If x € 3, then
(x,(DE + ED)x) = (x, DEx) + (DEx,x) = 0.

So (x, Hyx) > 0. In other words, the matrix H, is cpd, and hence so is P,
1 <r<2.

It remains to show that P, is nonsingular. The Cauchy matrix C, is positive
definite. This can be seen by writing

1

o0
_ / 1PN gy
pi +pj+A 0
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which shows that C,, is the Gram matrix corresponding to the vectors

u; = et Pit+A/2)

in L,(0, 00). Since p; are distinct, the vectors u; are linearly independent, and C),
nonsingular. This shows that for all nonzero vectors x in H;, (x, Gyx) < 0 for all
A > 0. Hence (x, P,x) < 0for 0 <r < 1. So P, is nonsingular. In the same way,
we see that (x, Hyx) > 0 for all x € 3{;, and A > 0. So P, is nonsingular for
l<r<2. U

Each entry of P, is positive. So, P, has at least one positive eigenvalue. For
r > 0 the matrix P, is not positive semidefinite as its top 2 x 2 subdeterminant is
negative. So P, has at least one negative eigenvalue. The space J(; has dimension
n — 1. So using the minmax principle [2, Chapter III] and Theorem 3, we see that

InP,=(1,0,n-1), O0<r<l,

and
InP,=m-1,01), 1<r<?2.

This establishes the statement (iii) of Theorem 1 for these values of r. (In fact,
Theorem 3 says a little more, in that P, is cnd/cpd.)

4. Nonsingularity

In this section we show thatif » > 2, and r > n — 2, then P, is nonsingular. This
is a consequence of the following.

Theorem 4. Let ¢y, ..., c, be real numbers not all zero, and for r > n — 2 let f,
be the function defined on (0, 00) as

fr(x) =D ¢i(x+p) ©)
j=1

Then f, has at most n — 1 zeros.

Proof. We denote by Z( f) the number of zeros of a function f on (0, c0), and by
V(cy, ..., cn) the number of sign changes in the tuple ¢y, ..., c,. (We follow the
terminology and conventions of the classic [10, Part V].
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Let s be any positive real number and (cy, . .., ¢,) any n-tuple with
V(cr,....cn) <s+ 1.

We will show that
Z(fs) = Vler, ..., cn). (10)

We use induction on V(cy,...,cy).

Clearly, if V(c1,...,¢4) = 0, then Z(fs) = 0. Assume that the assertion is
true for all n-tuples (c1, ..., c,) wWith V(cy,...,cn) =k —1 < s. Let (¢1,...,cn)
be any n-tuple with V(cy,...,cn) = k,0 < k < s + 1. Without loss of generality
assume ¢; # O fori = 1,2,...,n. There exists an index j, 1 < j < n such that
cj—1¢j < 0. We may assume that p; < p < --- < p,. Choose any number u such
that p;_1 <u < pj and let

p(x) =Y cj(pi—w)x + p))* ",

j=1
Note that

Vici(pr —u),....cn(pn—u)) =k —1<s.
So, by the induction hypothesis Z(¢) < k — 1. We have

0(x) =Y ¢j(p; —wu)x + p))°~!

Jj=1

=Y x4 p) =+ cilx+p)!

Jj=1 Jj=1

B _(x +u)s+l _ 1 )
B s {(x+u)s+1 fs(x)-i-mfs(x)},

where f is the derivative of f;. Let

fs(x)
h(x) = ———.
x) (x +u)s
Then the last equality above says
—(x +u)st!
o) = “EEOT iy,

So Z(p) = Z(h'). From the definition of A, it is clear that Z(f;) = Z(h).
By Rolle’s Theorem Z(h) < Z(h') + 1. Putting these relations together we see
that Z( f;) < Z(¢) + 1 < k. This establishes (10).
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Now letr > n—2,andletcy, ..., c, beany n-tuple. Then V(cy,...,cn) <n—1.
It follows that Z( f,) < n — 1, and that proves the theorem. U

Corollary 5. The matrix P, is nonsingular for all r > n — 2.

Proof. P, is singular if and only if there exists a nonzero vector ¢ = (cy,...,cp)
in R” such that P,c = 0; i.e.,

n
ch(Pi +p;)) =0 fori =1,2,...,n,
j=1

which implies that the function f.(x) has at least n zeros (the distinct points
P1,-- -, Pn)- This is not possible by Theorem 4. O

As a consequence of this the inertia of P, remains unchanged for r > n — 2.
This establishes part (iv) of Theorem 1.

5. Completing the proof of Theorem 1

We are left with the case 2 < r < n — 2, r not an integer. We will consider in
detail the two cases 2 < r < 3 and 3 < r < 4. The essential features of the pattern
given in part (iii) of the theorem, and of the proof are seen in these two cases.

Let p = (p1, ..., pn)- In Section 3 we introduced the space

Fy :{x: ij :0}:{x: Ex:O}:eJ‘.

Let
H, = {x: ij = O,ijx,- = 0}.
Then
€
H, = {x: Ex =0,EDx =0} = {e,p} ,
where D = diag(p1, ..., pn), and {e, p}J‘ stands for the orthogonal complement

of the span of the vectors e and p. For 1 <k <n — 1, let p* = (p’f, . ..,p,’f) and
let
gt ={x: Y pfx;=0.0<k <t—1}.
Then
He={x: ED*x=0,0<k<l—-1}
= {e, p, p2.. ..,pe_l}J‘.
Evidently, H; D Hy D ---Hy, and dimHy = n — £.
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Let m be any nonnegative integer, and let m < r < m + 1. From (4) we have

o0
(pi + pj)"*!
- .r=/ Pt P ). (11)
(Pi + pj) o ATpito m(d)
Let +1
(pi + )" ]
Gma = . 12
" [A+pi+pj "
Use the identity
. )3 A(p: )2
(pi +pj))° _ (pi + pj)? — Mpi + pj)” (13)
A+ pi+pj ‘ A+ pi+ pj
to see that
G, = D*E +2DED + ED?* — AG ;. (14)

If x € H,, then
(x,(D%E 4+ 2DED + ED?*)x) = 0.

In Section 3, we saw that (x, G; 3x) > 0 for all x € H;, x # 0. (The matrix G;
was called H) there.) So it follows from (14) that

(x,Ga2x) <0 forall x € Hp,x #0and A > 0.
This, in turn implies that for 2 < r < 3,
(x, Prx) <0 forall x € H,,x #0.

Since dim H, = n — 2, the minmax principle implies that for 2 < r < 3, P, has
at least n — 2 negative eigenvalues. We show that its remaining two eigenvalues
are positive.

Consider the matrix P, when n = 3. We have established in Section 3 that
when 1 < r < 2, P, has two positive and one negative eigenvalue. In Section 4
we have established that this remains unchanged for r > 2. Now consider any
n > 3. Any 3 x 3 principal submatrix of P, has two positive eigenvalues, by what
we have just said. So, by Cauchy’s interlacing principle [2, Chapter III], P, has at
least two positive eigenvalues. The conclusion, then, is P, has exactly two positive
and n — 2 negative eigenvalues, for all 2 < r < 3.

Next consider the case 3 < r < 4. Use the identity

(pi + pj)*

A(pi + p;)?
A+ pi+pj

= (pi +p;)° — ,
(pi + pj) A tpit
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to see that
G3 = D’E +3D?ED + 3DED? + ED> — 1G, ;. (15)
Again, if x € H,, then one can see that
(x,(D®E 4+ 3D?ED + 3DED? + ED?*)x) = 0.

We have proved that for x € H,, x # 0, we have (x, G, 3x) < 0 forall A > 0.
Then (15) shows that (x, G3 3x) > 0, and hence (x, P,x) > 0 for all x € 3>,
x #0,and 3 < r < 4. So, P, has at least n — 2 positive eigenvalues. We have to
show that the remaining two of its eigenvalues are negative.

The argument we gave earlier can be modified to show that when n = 4, and
r > 2, then P, has two positive and two negative eigenvalues. So forn > 4, P, has
at least two negative eigenvalues. Hence, it has exactly two negative eigenvalues.

‘We have established the assertion of the theorem for 2 < r < 3, and for 3 <
r < 4. The argument can be extended to the next interval. We leave this to the
reader. Some remarks are in order here.

1. The proof for the cases covered in Section 3 was simpler because of the avail-
able criterion for the nonsingularity of a cpd/cnd matrix. More arguments are
needed for r > 2.

2. The expressions (14) and (15) display G, 4 and G3 3 as G, » = S—AG;  and
G3, =T —AG, ;. Though S and T are quite different, the first being quadratic in
D and the second cubic, it is a happy coincidence that both (x, Sx) and (x, T x)
vanish for all x € J,. This allows us to conclude that (x, G, ;x) is negative and
(x, G3,1x) is positive on H,. The same argument carried to the next stage will give

G4y = D*E +4D*ED + 6D?ED? + 4DED? 4+ ED* — )G ;. (16)

Now (x, D?E D?x) need not vanish for x € 35, but it does for x € Hs. So, we
can conclude that P, has at least n — 3 negative eigenvalues for 4 < r < 5. The
successor of (16) Gs; = W — AG4 ) again has W satisfying (x, Wx) = 0 for
x € Hs. So, the inertia of P, just changes sign when we go from 4 < r < 5 to
5 < r < 6. This explains some features of the theorem.
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6. The matrix B,

The arguments used in our analysis of P, can be applied to other matrices, one of
them being

B, =1|pi — pjlI'l, r=0.

Inertias of these matrices have been computed in [8]. We summarise the results
of that paper in a succint form parallel to our Theorem 1.

(i) By is singular if and only if r is an even integer smaller than n — 1.

(ii) Let r be an even integer r = 2k < n. Then

InB,:([r—gl],n—(r—l—l),L%J), if k is even, a7

and

B, = (|- er IJ,n —r+ 1), [#D ifkisodd.  (18)

(iii) Suppose r is not an even integer and 0 < r <n —2. If 2k <r < 2(k + 1),
then

InB, =k+1,0,n—(k+1)), ifkiseven, 19)
and

InB,=(n—(k+1),0,k+1), ifkisodd (20)

(iv) For every real numberr > n — 2,

InB, = (g 0, %) if n is even, 21
and
-1 1
InB, (”T 0, ”er ). ifnisodd 22)

We briefly indicate how the proofs in [8] can be considerably simplified using our
arguments.
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1. Letr = 2k be an even integer. Then

B, = [(pi — p))*".

Let W be the (r 4+ 1) x n Vandermonde matrix introduced in Section 2. Let V5 be
the (r + 1) x (r + 1) antidiagonal matrix obtained by multiplying V; on the left
by the diagonal matrix I' = (1,—1,1,—1,...,—1, 1). Then one can see that

B, = W*V,W.
Therefore, by Proposition 2, if r + 1 < n, then
InB, =InV, 4+ (0,n — (r 4+ 1),0).

When £k is even, the first k entries on the sinister diagonal of V, are

o))

with alternating signs +; the (k 4 1)th entry is (,Z) the next k entries are

(20 )

with alternating signs . A little argument shows that the eigenvalues of 1, are
(1) and £(7),0< j <k —1.50

s = (74102

When k is odd, the (k + 1)th entry on the sinister diagonal of V, is —(;). The
eigenvalues of V are —(;) and :I:(;) 0<j<k—-1.S0

s = (|55 0 [4)

From the three equations displayed above we get statement (ii). This includes the
assertion that B, is singular when r is an even integer smaller than .

2. Let0 < r <2.Then
1pi — pil" = ((pi — p))*)"?.

So, using (4) we can write

; ©  (pi—pj)?
p-pl = [ .
(AL Ay n
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Arguing as before, we can express B, as

&=/ To du(h),
0

where Ty, = E —ASp,;, and
Sox = [;}, A > 0.
A+ (pi — pj)?
This last matrix is positive definite. A simple proof of this goes as follows:
_ /°° oA i—p ) gy
A+ (pi — pj)? 0

o0
=/ o~ M2 =1 D= =132 g
0

and it is well-known that [¢~(?i _1’1')2] is a positive definite matrix. See [3, p.146].

Since Sy, is positive definite, for all x € 3, x # 0, wehave (x, To 1 x) < 0.
Hence, the same is true for B,. So, B, is cnd and nonsingular for 0 < r < 2.
(This is a well-known fact. We have given a proof to ease the passage to the next
argument.)

3. Let2 <r < 4.Then |p; — pj|” = ((pi — pj)*)*, where 1 < s < 2. So,
using (7) we can write

, ®  (pi—pp)*
Di— pi =/ =P o,
Pi=pil = =

We leave it to the reader to check that using this we have

o0
Br= [ Tiaduh.
0
where
Tio = D*E —2DED + ED?* —ATy,.

If x € H,, then
(x,(D?*E —2DED + ED?*)x) = 0.
So,
(x, Ty 4x) >0,

for all nonzero vectors x in H,. Thus B, has at least n — 2 positive eigenvalues.
Further arguments are needed to show it has two negative eigenvalues.
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4. Letn be an odd integer, n > 3. It is shown in [8] that B, is nonsingular for
r > n — 1. (We have no essential simplification of this part of the proof.) This is
a crucial ingredient needed for the rest of the cases.

5. Our arguments for P, (using interlacing etc.) can be adapted to show that for
2 < r < 4, B, has two negative eigenvalues.

6. We can then argue in the same way the case 2k < r < 2(k + 1), for k =
2,3,.... This gives statement (iii). Statement (i) is included in this.

7. As in the case of P,, the inertia of B, stabilises after some stage. Statement
(iv) is a consequence of Remark 4 above.

Note added in proof. Inertias of the matrices L, and K, for all r > 0 have
recently been computed, thus establishing Conjectures 1 and 2. A proof of Con-
jecture 1 can be found in [6], and that of Conjecture 2 will appear in a forthcoming
paper of the authors.
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