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Abstract. Let p1; : : : ; pn be positive real numbers. It is well known that for every r < 0

the matrix Œ.pi C pj /r � is positive de�nite. Our main theorem gives a count of the number

of positive and negative eigenvalues of this matrix when r > 0: Connections with some

other matrices that arise in Loewner’s theory of operator monotone functions and in the

theory of spline interpolation are discussed.
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1. Introduction

Let p1; p2; : : : ; pn be distinct positive real numbers. �e n�n matrix C D Œ 1
pi Cpj

�

is known as the Cauchy matrix. �e special case pi D i gives the Hilbert matrix

H D Œ 1
iCj

�: Both matrices have been studied by several authors in diverse contexts

and are much used as test matrices in numerical analysis.

�e Cauchy matrix is known to be positive de�nite. It possesses a stronger

property: for each r > 0 the entrywise power C ır D
h

1
.pi Cpj /r

i

is positive de�-

nite. (See [4] for a proof.) �e object of this paper is to study positivity properties

of the related family of matrices

Pr D Œ.pi C pj /r �; r � 0: (1)

�e inertia of a Hermitian matrix A is the triple

In.A/ D .�.A/; �.A/; �.A// ;

1 �e �rst author is a J. C. Bose National Fellow.
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in which �.A/; �.A/ and �.A/ stand for the number of positive, zero, and negative

eigenvalues of A; respectively. Our main result is the following.

�eorem 1. Let p1; : : : ; pn be distinct positive real numbers, and let Pr be the

n � n matrix de�ned in (1).

(i) Pr is singular if and only if r is a nonnegative integer smaller than n � 1:

(i) If r is an integer and 0 � r � n � 1; then

In Pr D
�lr C 1

2

m

; n � .r C 1/;
jr C 1

2

k�

:

(i) Suppose r is not an integer, and 0 < r < n � 2:

– If brc D 2k for some integer k, then

In Pr D .k C 1; 0; n � .k C 1//;

– if brc D 2k C 1 for some integer k, then

In Pr D .n � .k C 1/; 0; k C 1/:

(i) For every real number r > n � 2

In Pr D In Pn�1:

Figure 1 is a schematic representation of the eigenvalues of a 6 � 6 matrix Pr ;

when pi have been �xed and r varies. �is kind of behaviour has been observed

in other problems. �e Loewner matrix is de�ned as

Lr D

�

pr
i � pr

j

pi � pj

�

; r � 0:

It is a famous theorem of C. Loewner [2, 3] that for 0 < r < 1; the matrix Lr is

positive de�nite. R. Bhatia and J. Holbrook [5] showed that for 1 < r < 2; the

matrix Lr has only one positive eigenvalue. �is encouraged them to speculate

what might happen for other values of r: �ey made a conjecture that, in the light

of our �eorem 1, may be rephrased as

Conjecture 1. For all r > 0, In Pr D In LrC1:
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�e conjecture of Bhatia and Holbrook remains unproved, except that it was

shown by R. Bhatia and T. Sano [7] that for 2 < r < 3 the matrix Lr has only one

negative eigenvalue.

�e matrix

Br D Œjpi � pj jr �; r � 0

has been studied widely in connection with interpolation of scattered data and

spline functions. In [8], N. Dyn, T. Goodman and C. A. Micchelli establish inertia

properties of this matrix as r varies. Some of our proofs can be adapted to achieve

substantial simpli�cations of those in [8].

Closely related to Loewner matrices is the matrix

Kr D

�

pr
i C pr

j

pi C pj

�

; r � 0:

M. K. Kwong [9] showed that Kr is positive de�nite when 0 < r < 1: Bhatia and

Sano [7] showed that Kr has only one positive eigenvalue when 1 < r < 3: In our

work we have carried this analysis further, and are led to the following conjecture.

Conjecture 2. For all r > 0, In Br D In KrC1:

�e rest of the paper is devoted to the proof of �eorem 1 followed by some

remarks.
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2. �e case r � n � 1; r an integer

�e Sylvester Law of Inertia says that if A and X are n � n matrices, and A is Her-

mitian and X nonsingular, then In X�AX D In A: We need a small generalisation

of this given in the next proposition.

Proposition 2. Let n � r: Let A be an r � r Hermitian matrix, and X an r � n

matrix of rank r: �en

In X�AX D In A C .0; n � r; 0/:

Proof. �e matrix X has a singular value decomposition X D U †V �; in which

U 2 Cr�r ; V 2 Cn�n; † 2 Cr�nI U and V are unitary, and † can be partitioned

as † D ŒS; O� ; where S is an r � r positive diagonal matrix, and O is the null

matrix of order r � .n � r/: �en

X�AX D V †�U �AU †V �:

By Sylvester’s Law

In X�AX D In †�U �AU †

D In

�

SU �AUS O

O O

�

:

In this last 2 � 2 block matrix, the top left block is an r � r matrix. So

In X�AX D In.SU �AUS/ C .0; n � r; 0/

D In A C .0; n � r; 0/:

Now let W be the .r C 1/ � n Vandermonde matrix

W D

2

6

6

6

4

1 1 1 � � � 1

p1 p2 p3 � � � pn

� � � � � � �

pr
1 pr

2 pr
3 � � � pr

n

3

7

7

7

5

;
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let V1 be the .r C 1/ � .r C 1/ antidiagonal matrix with entries
�

r
0

�

;
�

r
1

�

; : : : ;
�

r
r

�

on

its sinister diagonal and 0’s elsewhere; i.e.,

V1 D

2

6

6

6

6

6

4

0 0 � � � 0 0
�

r
0

�

0 0 � � � 0
�

r
1

�

0

0 0 � � �
�

r
2

�

0 0

� � � � � � � �
�

r
r

�

0 � � � 0 0 0

3

7

7

7

7

7

5

:

It can be seen that for r � n � 1

Pr D W �V1W:

So by Proposition 2

In Pr D In V1 C .0; n � .r C 1/; 0/: (2)

�e inertia of V1 can be computed as follows. When r C 1 D 2k; the entries on

the sinister diagonal of V1 are
��

r

0

�

;

�

r

1

�

; : : : ;

�

r

k � 1

�

;

�

r

k � 1

�

; : : : ;

�

r

1

�

;

�

r

0

��

:

�e eigenvalues of V1 are readily seen to be ˙
�

r
j

�

; 0 � j � k � 1: So

In V1 D .k; 0; k/ D
�r C 1

2
; 0;

r C 1

2

�

:

When r C 1 D 2k C 1; the entries on the sinister diagonal of V1 are
��

r

0

�

;

�

r

1

�

; : : : ;

�

r

k � 1

�

;

�

r

k

�

;

�

r

k � 1

�

; : : : ;

�

r

1

��

r

0

��

:

In this case the eigenvalues of V1 are ˙
�

r
j

�

; 0 � j � k �1; together with
�

r
k

�

: �us

In V1 D .k C 1; 0; k/ D
�lr C 1

2

m

; 0;
jr C 1

2

k�

:

So, part (ii) of �eorem follows from (2).

3. �e cases 0 < r < 1 and 1 < r < 2

Let H D C
n and let H1 be its subspace

H1 D
°

x W

n
X

j D1

xj D 0
±

:
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Let e D .1; 1; : : : ; 1/ and E the matrix with all its entries equal to 1: �en

H1 D e? D ¹x W Ex D 0º:

A Hermitian matrix A is said to be conditionally positive de�nite (cpd) if

hx; Axi � 0 for x 2 H1.

It is said to be conditionally negative de�nite (cnd) if �A is cpd. Basic facts about

such matrices can be found in [1]. A cpd matrix is nonsingular if hx; Axi > 0 for

all nonzero vectors x in H1:

If t is a positive number and 0 < r < 1; then

t r D
sin r�

�

Z 1

0

t

� C t
�r�1d�: (3)

See [2, p. 116]. We write this brie�y as

t r D

Z 1

0

t

� C t
d�.�/; (4)

where � is a positive measure on .0; 1/; depending on r:

�eorem 3. �e matrix Pr is cnd and nonsingular for 0 < r < 1; and it is cpd

and nonsingular for 1 < r < 2:

Proof. Let 0 < r < 1 and use (4) to write

.pi C pj /r D

Z 1

0

pi C pj

pi C pj C �
d�.�/: (5)

�en use the identity

pi C pj

pi C pj C �
D 1 �

�

pi C pj C �
;

to see that the matrix

G� D

�

pi C pj

pi C pj C �

�

; � > 0;

can be expressed as

G� D E � � C�; (6)

where

C� D

�

1

pi C pj C �

�



Inertia of the matrix Œ.pi C pj /r � 77

is a Cauchy matrix. �is matrix is positive de�nite, and Ex D 0 for all x 2 H1:

It follows from (6) that G� is cnd. So

Pr D

1
Z

0

G� d�.�/

is also cnd.

Now let 1 < r < 2: Using (4) we can express

t r D

Z 1

0

t2

� C t
d�.�/: (7)

So,

.pi C pj /r D

Z 1

0

.pi C pj /2

pi C pj C �
d�.�/

Use the identity

.pi C pj /2

pi C pj C �
D pi C pj �

�.pi C pj /

pi C pj C �
;

to see that the matrix

H� D
.pi C pj /2

pi C pj C �
; � > 0

can be expressed as

H� D DE C ED � �G�; (8)

where D D diag.p1; : : : ; pn/ and G� is the matrix in (6). If x 2 H1; then

hx; .DE C ED/xi D hx; DExi C hDEx; xi D 0:

So hx; H�xi � 0: In other words, the matrix H� is cpd, and hence so is Pr ;

1 < r < 2:

It remains to show that Pr is nonsingular. �e Cauchy matrix C� is positive

de�nite. �is can be seen by writing

1

pi C pj C �
D

Z 1

0

e�t.pi Cpj C�/ dt;



78 R. Bhatia and T. Jain

which shows that C� is the Gram matrix corresponding to the vectors

ui D e�t.pi C�=2/

in L2.0; 1/: Since pi are distinct, the vectors ui are linearly independent, and C�

nonsingular. �is shows that for all nonzero vectors x in H1; hx; G�xi < 0 for all

� > 0: Hence hx; Prxi < 0 for 0 < r < 1: So Pr is nonsingular. In the same way,

we see that hx; H�xi > 0 for all x 2 H1; and � > 0: So Pr is nonsingular for

1 < r < 2:

Each entry of Pr is positive. So, Pr has at least one positive eigenvalue. For

r > 0 the matrix Pr is not positive semide�nite as its top 2 � 2 subdeterminant is

negative. So Pr has at least one negative eigenvalue. �e space H1 has dimension

n � 1: So using the minmax principle [2, Chapter III] and �eorem 3, we see that

In Pr D .1; 0; n � 1/; 0 < r < 1;

and

In Pr D .n � 1; 0; 1/; 1 < r < 2:

�is establishes the statement (iii) of �eorem 1 for these values of r: (In fact,

�eorem 3 says a little more, in that Pr is cnd/cpd.)

4. Nonsingularity

In this section we show that if n � 2; and r > n � 2; then Pr is nonsingular. �is

is a consequence of the following.

�eorem 4. Let c1; : : : ; cn be real numbers not all zero, and for r > n � 2 let fr

be the function de�ned on .0; 1/ as

fr .x/ D

n
X

j D1

cj .x C pj /r : (9)

�en fr has at most n � 1 zeros.

Proof. We denote by Z.f / the number of zeros of a function f on .0; 1/; and by

V.c1; : : : ; cn/ the number of sign changes in the tuple c1; : : : ; cn: (We follow the

terminology and conventions of the classic [10, Part V].
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Let s be any positive real number and .c1; : : : ; cn/ any n-tuple with

V.c1; : : : ; cn/ < s C 1:

We will show that

Z.fs/ � V.c1; : : : ; cn/: (10)

We use induction on V.c1; : : : ; cn/:

Clearly, if V.c1; : : : ; cn/ D 0; then Z.fs/ D 0: Assume that the assertion is

true for all n-tuples .c1; : : : ; cn/ with V.c1; : : : ; cn/ D k � 1 < s: Let .c1; : : : ; cn/

be any n-tuple with V.c1; : : : ; cn/ D k; 0 < k < s C 1: Without loss of generality

assume ci ¤ 0 for i D 1; 2; : : : ; n: �ere exists an index j; 1 < j � n such that

cj �1cj < 0: We may assume that p1 < p2 < � � � < pn: Choose any number u such

that pj �1 < u < pj and let

'.x/ D

n
X

j D1

cj .pj � u/.x C pj /s�1:

Note that

V.c1.p1 � u/; : : : ; cn.pn � u// D k � 1 < s:

So, by the induction hypothesis Z.'/ � k � 1: We have

'.x/ D

n
X

j D1

cj .pj � u/.x C pj /s�1

D

n
X

j D1

cj .x C pj /s � .x C u/

n
X

j D1

cj .x C pj /s�1

D
�.x C u/sC1

s

° �s

.x C u/sC1
fs.x/ C

1

.x C u/s
f 0

s .x/
±

;

where f 0
s is the derivative of fs: Let

h.x/ D
fs.x/

.x C u/s
:

�en the last equality above says

'.x/ D
�.x C u/sC1

s
h0.x/:

So Z.'/ D Z.h0/: From the de�nition of h; it is clear that Z.fs/ D Z.h/:

By Rolle’s �eorem Z.h/ � Z.h0/ C 1: Putting these relations together we see

that Z.fs/ � Z.'/ C 1 � k: �is establishes (10).
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Now let r > n�2; and let c1; : : : ; cn be any n-tuple. �en V.c1; : : : ; cn/ � n�1:

It follows that Z.fr / � n � 1; and that proves the theorem.

Corollary 5. �e matrix Pr is nonsingular for all r > n � 2:

Proof. Pr is singular if and only if there exists a nonzero vector c D .c1; : : : ; cn/

in R
n such that Prc D 0I i.e.,

n
X

j D1

cj .pi C pj /r D 0 fori D 1; 2; : : : ; n;

which implies that the function fr.x/ has at least n zeros (the distinct points

p1; : : : ; pn/: �is is not possible by �eorem 4.

As a consequence of this the inertia of Pr remains unchanged for r > n � 2:

�is establishes part (iv) of �eorem 1.

5. Completing the proof of �eorem 1

We are left with the case 2 < r < n � 2; r not an integer. We will consider in

detail the two cases 2 < r < 3 and 3 < r < 4: �e essential features of the pattern

given in part (iii) of the theorem, and of the proof are seen in these two cases.

Let p D .p1; : : : ; pn/: In Section 3 we introduced the space

H1 D
°

x W
X

xj D 0
±

D
°

x W Ex D 0
±

D e?:

Let

H2 D
°

x W
X

xj D 0;
X

pj xj D 0
±

:

�en

H2 D
°

x W Ex D 0; EDx D 0
±

D
°

e; p
±?

;

where D D diag.p1; : : : ; pn/; and ¹e; pº
? stands for the orthogonal complement

of the span of the vectors e and p: For 1 � k � n � 1; let pk D .pk
1 ; : : : ; pk

n/ and

let

H` D
°

x W
X

pk
j xj D 0; 0 � k � ` � 1

±

:

�en

H` D ¹x W EDkx D 0; 0 � k � ` � 1º

D ¹e; p; p2; : : : ; p`�1º?:

Evidently, H1 � H2 � � � �H`; and dimH` D n � `:
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Let m be any nonnegative integer, and let m < r < m C 1: From (4) we have

.pi C pj /r D

Z 1

0

.pi C pj /mC1

� C pi C pj

d�.�/: (11)

Let

Gm;� D

�

.pi C pj /mC1

� C pi C pj

�

: (12)

Use the identity

.pi C pj /3

� C pi C pj

D .pi C pj /2 �
�.pi C pj /2

� C pi C pj

(13)

to see that

G2;� D D2E C 2DED C ED2 � �G1;�: (14)

If x 2 H2; then

hx; .D2E C 2DED C ED2/xi D 0:

In Section 3, we saw that hx; G1;�xi > 0 for all x 2 H1; x ¤ 0: (�e matrix G1;�

was called H� there.) So it follows from (14) that

hx; G2;�xi < 0 for all x 2 H2; x ¤ 0 and � > 0:

�is, in turn implies that for 2 < r < 3;

hx; Prxi < 0 for all x 2 H2; x ¤ 0:

Since dimH2 D n � 2; the minmax principle implies that for 2 < r < 3; Pr has

at least n � 2 negative eigenvalues. We show that its remaining two eigenvalues

are positive.

Consider the matrix Pr when n D 3: We have established in Section 3 that

when 1 < r � 2; Pr has two positive and one negative eigenvalue. In Section 4

we have established that this remains unchanged for r > 2: Now consider any

n > 3: Any 3 � 3 principal submatrix of Pr has two positive eigenvalues, by what

we have just said. So, by Cauchy’s interlacing principle [2, Chapter III], Pr has at

least two positive eigenvalues. �e conclusion, then, is Pr has exactly two positive

and n � 2 negative eigenvalues, for all 2 < r < 3:

Next consider the case 3 < r < 4: Use the identity

.pi C pj /4

� C pi C pj

D .pi C pj /3 �
�.pi C pj /3

� C pi C pj

;
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to see that

G3;� D D3E C 3D2ED C 3DED2 C ED3 � �G2;�: (15)

Again, if x 2 H2; then one can see that

hx; .D3E C 3D2ED C 3DED2 C ED3/xi D 0:

We have proved that for x 2 H2; x ¤ 0; we have hx; G2;�xi < 0 for all � > 0:

�en (15) shows that hx; G3;�xi > 0; and hence hx; Prxi > 0 for all x 2 H2;

x ¤ 0; and 3 < r < 4: So, Pr has at least n � 2 positive eigenvalues. We have to

show that the remaining two of its eigenvalues are negative.

�e argument we gave earlier can be modi�ed to show that when n D 4; and

r > 2; then Pr has two positive and two negative eigenvalues. So for n > 4; Pr has

at least two negative eigenvalues. Hence, it has exactly two negative eigenvalues.

We have established the assertion of the theorem for 2 < r < 3; and for 3 <

r < 4: �e argument can be extended to the next interval. We leave this to the

reader. Some remarks are in order here.

1. �e proof for the cases covered in Section 3 was simpler because of the avail-

able criterion for the nonsingularity of a cpd/cnd matrix. More arguments are

needed for r > 2:

2. �e expressions (14) and (15) display G2;� and G3;� as G2;� D S ��G1;� and

G3;� D T ��G2;�: �ough S and T are quite di�erent, the �rst being quadratic in

D and the second cubic, it is a happy coincidence that both hx; Sxi and hx; T xi

vanish for all x 2 H2: �is allows us to conclude that hx; G2;�xi is negative and

hx; G3;�xi is positive onH2: �e same argument carried to the next stage will give

G4;� D D4E C 4D3ED C 6D2ED2 C 4DED3 C ED4 � �G3;�: (16)

Now hx; D2E D2xi need not vanish for x 2 H2; but it does for x 2 H3: So, we

can conclude that Pr has at least n � 3 negative eigenvalues for 4 < r < 5: �e

successor of (16) G5;� D W � �G4;� again has W satisfying hx; W xi D 0 for

x 2 H3: So, the inertia of Pr just changes sign when we go from 4 < r < 5 to

5 < r < 6: �is explains some features of the theorem.
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6. �e matrix Br

�e arguments used in our analysis of Pr can be applied to other matrices, one of

them being

Br D Œjpi � pj jr �; r � 0:

Inertias of these matrices have been computed in [8]. We summarise the results

of that paper in a succint form parallel to our �eorem 1.

(i) Br is singular if and only if r is an even integer smaller than n � 1.

(ii) Let r be an even integer r D 2k < n. �en

In Br D
�lr C 1

2

m

; n � .r C 1/;
jr C 1

2

k�

; if k is even, (17)

and

In Br D
�jr C 1

2

k

; n � .r C 1/;
lr C 1

2

m�

; if k is odd. (18)

(iii) Suppose r is not an even integer and 0 < r < n � 2: If 2k < r < 2.k C 1/,

then

In Br D .k C 1; 0; n � .k C 1//; if k is even, (19)

and

In Br D .n � .k C 1/; 0; k C 1/; if k is odd. (20)

(iv) For every real number r > n � 2,

In Br D
�n

2
; 0;

n

2

�

; if n is even, (21)

and

In Br D
�n � 1

2
; 0;

n C 1

2

�

; if n is odd. (22)

We brie�y indicate how the proofs in [8] can be considerably simpli�ed using our

arguments.
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1. Let r D 2k be an even integer. �en

Br D Œ.pi � pj /2k �:

Let W be the .r C 1/ � n Vandermonde matrix introduced in Section 2. Let V2 be

the .r C 1/ � .r C 1/ antidiagonal matrix obtained by multiplying V1 on the left

by the diagonal matrix � D .1; �1; 1; �1; : : : ; �1; 1/: �en one can see that

Br D W �V2W:

�erefore, by Proposition 2, if r C 1 � n; then

In Br D In V2 C .0; n � .r C 1/; 0/:

When k is even, the �rst k entries on the sinister diagonal of V2 are

�

r

0

�

; : : : ;

�

r

k � 1

�

;

with alternating signs ˙I the .k C 1/th entry is
�

r
k

�

I the next k entries are

�

r

k � 1

�

; : : : ;

�

r

0

�

;

with alternating signs �: A little argument shows that the eigenvalues of V2 are
�

r
k

�

and ˙
�

r
j

�

; 0 � j � k � 1: So

In V2 D
�lr C 1

2

m

; 0;
jr C 1

2

k�

:

When k is odd, the .k C 1/th entry on the sinister diagonal of V2 is �
�

r
k

�

: �e

eigenvalues of V2 are �
�

r
k

�

and ˙
�

r
j

�

; 0 � j � k � 1: So

In V2 D
�jr C 1

2

k

; 0;
lr C 1

2

m�

:

From the three equations displayed above we get statement (ii). �is includes the

assertion that Br is singular when r is an even integer smaller than n:

2. Let 0 < r < 2: �en

jpi � pj jr D ..pi � pj /2/r=2:

So, using (4) we can write

jpi � pj jr D

Z 1

0

.pi � pj /2

� C .pi � pj /2
d�.�/:
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Arguing as before, we can express Br as

Br D

Z 1

0

T0;� d�.�/;

where T0;� D E � �S0;�; and

S0;� D

�

1

� C .pi � pj /2

�

; � > 0:

�is last matrix is positive de�nite. A simple proof of this goes as follows:

1

� C .pi � pj /2
D

Z 1

0

e�t.�C.pi �pj /2/ dt

D

Z 1

0

e�t�=2e�t.pi �pj /2

e�t�=2 dt I

and it is well-known that Œe�.pi �pj /2

� is a positive de�nite matrix. See [3, p.146].

Since S0;� is positive de�nite, for all x 2 H1; x ¤ 0; we have hx; T0;� xi < 0:

Hence, the same is true for Br : So, Br is cnd and nonsingular for 0 < r < 2:

(�is is a well-known fact. We have given a proof to ease the passage to the next

argument.)

3. Let 2 < r < 4: �en jpi � pj jr D ..pi � pj /2/s ; where 1 < s < 2: So,

using (7) we can write

jpi � pj jr D

Z 1

0

.pi � pj /4

� C .pi � pj /2
d�.�/:

We leave it to the reader to check that using this we have

Br D

Z 1

0

T1;� d�.�/;

where

T1;˛ D D2E � 2DED C ED2 � �T0;�:

If x 2 H2; then

hx; .D2E � 2DED C ED2/xi D 0:

So,

hx; T1;˛xi > 0;

for all nonzero vectors x in H2: �us Br has at least n � 2 positive eigenvalues.

Further arguments are needed to show it has two negative eigenvalues.
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4. Let n be an odd integer, n � 3: It is shown in [8] that Br is nonsingular for

r � n � 1: (We have no essential simpli�cation of this part of the proof.) �is is

a crucial ingredient needed for the rest of the cases.

5. Our arguments for Pr (using interlacing etc.) can be adapted to show that for

2 < r < 4; Br has two negative eigenvalues.

6. We can then argue in the same way the case 2k < r < 2.k C 1/; for k D

2; 3; : : : : �is gives statement (iii). Statement (i) is included in this.

7. As in the case of Pr ; the inertia of Br stabilises after some stage. Statement

(iv) is a consequence of Remark 4 above.

Note added in proof. Inertias of the matrices Lr and Kr for all r > 0 have

recently been computed, thus establishing Conjectures 1 and 2. A proof of Con-

jecture 1 can be found in [6], and that of Conjecture 2 will appear in a forthcoming

paper of the authors.
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