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Anderson localization for the almost Mathieu operator

in the exponential regime
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Abstract. For the almost Mathieu operator

.H�;˛;�u/n D unC1 C un�1 C 2� cos 2�.� C n˛/un;

Jitomirskaya conjectures that for a.e. � , H�;˛;� satis�es Anderson localization if j�j > eˇ .

Avila and Jitomirskaya verify this for j�j > e
16
9 ˇ . In the present paper, we extend their

result to regime j�j > e
3
2 ˇ .
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1. Introduction

�e almost Mathieu operator (AMO) is the (discrete) quasi-periodic Schrödinger

operator on `2.Z/:

.H�;˛;�u/n D unC1 C un�1 C �v.� C n˛/un; with v.�/ D 2 cos 2��; (1.1)

where � is the coupling, ˛ is the frequency, and � is the phase.

H�;˛;� is a tight binding model for the Hamiltonian of an electron in a one-

dimensional lattice or in a two-dimensional lattice, subject to a perpendicular

(uniform) magnetic �eld (through a Landau gauge) [9]. For more applications

in physics, we refer the reader to [13] and the references therein.

Besides its relations to some fundamental problems in physics, the AMO it-

self is also fascinating because of its remarkable richness of the related spectral

theory. In B. Simon’s list of Schrödinger operator problems for the twenty-�rst

century [14] , there are three problems about the AMO. �e spectral theory of

1 Supported by NNSFC 11271076 and NNSFC 11121101.
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AMO has attracted many authors, for example, Avila and Jitomirskaya[1] and [2],

Avila and Krikorian [3], Bourgain [5] and [6], Jitomirskaya and Simon [12], and

so on.

Anderson localization (i.e., only pure point spectrum with exponentially de-

caying eigenfunctions) is not only meaningful in physics, but also relates to some

problems of the quasi-periodic Schrödinger operator, such as the reducibility of

cocycles via Aubry duality [8] and the ten Martini problem (Cantor spectrum con-

jecture) [1].

For ˛ 2 Q, it is easy to verify that H�;˛;� has no eigenvalues, let alone Ander-

son localization. �us, in the present paper, we always assume ˛ 2 RnQ.

For simplicity, we say H�;˛;� satis�es AL if for a.e. phase � , H�;˛;� satis�es

Anderson localization.

Jitomirskaya [10] conjectures1 that H�;˛;� satis�es AL for j�j > eˇ , where

ˇ D ˇ.˛/ D lim sup
n!1

ln qnC1

qn

; (1.2)

and pn

qn
is the continued fraction approximants to ˛. One usually calls set

¹˛ 2 RnQ W ˇ.˛/ > 0º

exponential regime and set

¹˛ 2 RnQ W ˇ.˛/ D 0º

sub-exponential regime.

�is conjecture is optimal in some way. On the one hand, for every ˛ there

is a generic set of � for which there is no eigenvalues [12]. On the other hand, if

j�j � eˇ , for every � , H�;˛;� is expected to have no localized eigenfunctions (i.e.,

exponentially decaying eigenfunctions), see footnote 3 in [1].

In [11], Jitomirskaya proves that H�;˛;� satis�es AL if ˛ 2 DC and j�j > 1.

In fact Jitomirskaya’s arguments also hold for ˇ.˛/ D 0 and j�j > 1. In order

to prove the ten Martini problem, Avila and Jitomirskaya [1] show that H�;˛;�

satis�es AL if j�j > e
16
9

ˇ . You and Zhou [15] prove that for almost every phase � ,

the eigenvalues of operator H�;˛;� with exponentially decaying eigenfunctions are

dense in the spectrum if j�j > Ceˇ , where C is a large absolute constant. We also

should point out that they did not show the Anderson Localization. In the present

paper, we verify the conjecture in regime j�j > e
3
2

ˇ , i.e., the following theorem.

1 After submitting the present paper, we learned of that Avila, You, and Zhou claimed they

completed the conjecture. (�eir preprint is not available yet.)
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�eorem 1.1 (main theorem). Let ˛ 2 RnQ be such that ˇ D ˇ.˛/ < 1, then for

almost every phase � , H�;˛;� satis�es Anderson localization if j�j > e
3
2

ˇ .

We investigate AL following the general scheme of Avila and Jitomirskaya,

but some estimates are more subtle.

�e present paper is organized as follows. In §2, we give some preliminary

notions and facts which are taken from other authors, such as Avila and Jito-

mirskaya [1], Bourgain [6], and so on. In §3, we set up the regularity of reso-

nant y if j�j > e
3
2

ˇ . In §4, we give the proof of main theorem by block resolvent

expansion.

2. Preliminaries and some known results

It is well known that Anderson localization for a self-adjoint operator H on `2 is

equivalent to the following statements [4].

Assume � is an extended state, i.e.,

H� D E� with E 2 †.H/ and j�.k/j � .1 C jkj/C ;

where †.H/ is the spectrum of self-adjoint operator H . �en there exists some

constant c > 0 such that

j�.k/j < e�cjkj for k ! 1:

We will actually prove a slightly more precise version of �eorem 1.1. Let

R1 D ¹� W j sin �.2� C k˛/j � k�2 holds for in�nitely many k; k 2 Zº;

and

R2 D ¹� W there exists s 2 Z such that 2� C s˛ 2 Zº:

Clearly,

R D R1 [ R2

has zero Lebesgue measure.

�eorem 2.1. Let ˛ 2 RnQ be such that ˇ D ˇ.˛/ < 1, then H�;˛;� satis�es

Anderson localization if � … R and j�j > e
3
2

ˇ .
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If ˛ satis�es ˇ.˛/ D 0, �eorem 2.1 has been proved by Jitomirskaya [10].

�us in the present paper, we �x ˛ 2 RnQ such that 0 < ˇ.˛/ < 1. Unless

stated otherwise, we always assume � > e
3
2

ˇ (for � < �e
3
2

ˇ , note that H�;˛;� D

H��;˛;�C 1
2
), � … R and E 2 †�;˛ (denote by †�;˛ the spectrum of operator

H�;˛;� since the spectrum does not depend on �). Since this does not change

any of the statements, sometimes the dependence of parameters E; �; ˛; � will be

ignored in the following.

Given an extended state � of H�;˛;� , without loss of generality one can assume

�.0/ D 1. Our objective is to prove that there exists some c > 0 such that

j�.k/j < e�cjkj for k ! 1:

Let us denote

Pk.�/ D det.RŒ0;k�1�.H�;˛;� � E/RŒ0;k�1�/:

It is easy to see that Pk.�/ is an even function of � C 1
2
.k �1/˛ and can be written

as a polynomial of degree k in cos 2�.� C 1
2
.k � 1/˛/:

Pk.�/ D

k
X

j D0

cj cosj 2�
�

� C
1

2
.k � 1/˛

�

, Qk

�

cos 2�.� C
1

2
.k � 1/˛/

�

:

Let

Ak;r D ¹� 2 R W jQk.cos 2��/j � e.kC1/rº

with k 2 N and r > 0.

Lemma 2.1 ([1], p. 16). �e following inequality holds

lim
k!1

sup
�2R

1

k
ln jPk.�/j � ln �:

By Cramer’s rule (see [6], p. 15, for example) for given x1 and x2 D x1 Ck �1,

with y 2 I D Œx1; x2� � Z, one has

jGI .x1; y/j D

ˇ

ˇ

ˇ

ˇ

Px2�y.� C .y C 1/˛/

Pk.� C x1˛/

ˇ

ˇ

ˇ

ˇ

; (2.1)

and

jGI .y; x2/j D

ˇ

ˇ

ˇ

ˇ

Py�x1
.� C x1˛/

Pk.� C x1˛/

ˇ

ˇ

ˇ

ˇ

: (2.2)

By Lemma 2.1, the numerators in (2.1) and (2.2) can be bounded uniformly with

respect to � . Namely, for any " > 0,

jPn.�/j � e.ln �C"/n (2.3)

for n large enough.
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De�nition 2.1. Fix t > 0, 0 < ı < 1=2. A point y 2 Zwill be called .t; k/-regular

with ı if there exists an interval Œx1; x2� containing y, where

x2 D x1 C k � 1;

such that

jGŒx1;x2�.y; xi/j < e�t jy�xi j and jy � xi j � ık; for i D 1; 2:

It is easy to check ([6], p. 61) that

�.x/ D �GŒx1;x2�.x1; x/�.x1 � 1/ � GŒx1;x2�.x; x2/�.x2 C 1/; (2.4)

where x 2 I D Œx1; x2� � Z. Our strategy is to establish the .t; k.y//-regularity

for every large y, then localized property is easy to obtain by (2.4) and the block

resolvent expansion.

De�nition 2.2. We say that the set ¹�1; : : : ; �kC1º is �-uniform if

max
x2Œ�1;1�

max
iD1;:::;kC1

kC1
Y

j D1;j ¤i

jx � cos 2��j j

j cos 2��i � cos 2��j j
< ek�: (2.5)

Lemma 2.2 ([1], Lemma 9.3). Suppose that ¹�1; : : : ; �kC1º is �1-uniform. �en

there exists some �i in set ¹�1; : : : ; �kC1º such that �i … Ak;ln ��� if � > �1 and k

is su�ciently large.

Assume without loss of generality that y > 0. Fix a su�cient small constant �

(that will be determined in �eorem 3.3). De�ne

bn D max ¹�qn�1; q8=9
n º;

where qn is given by (1.2), and �nd n such that

bn � y < bnC1:

We will distinguish two cases:

(i) jy � `qnj � bn for some ` � 1, called resonance;

(ii) jy � `qnj > bn for all ` � 0, called non-resonance.

For the non-resonant y, Avila and Jitomirskaya have established the regularity for

y. We give the theorem directly.
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�eorem 2.2 ([1], Lemma 9.4). Assume � … R, � > eˇ , and that y is non-

resonant. Let s 2 N be the largest number such that

sqn�1 � dist.y; ¹`qnº`�0/:

�en for all " > 0 and n large enough, the following hold:

(i) if s � 1, then y is .ln � C 9 ln.sqn�1=qn/=qn�1 � "; 2sqn�1 � 1/-regular with

ı D
1

8
;

(ii) If s D 0, then y is either .ln ��"; 2Œqn�1=2��1/�, or .ln ��"; 2Œqn=2��1/�,

or .ln � � "; 2qn�1 � 1/-regular with

ı D
�

2
:

Remark 2.1. Avila and Jitomirskaya let

bn D max
°qn�1

20
; q

8
9
n

±

(i.e., � D 1
20

)in de�ning resonance and nonresonance, and they obtain y is regular

with ı D 1
8

in case (i), and with ı D 1
40

(i.e., ı D �
2
) in case (ii). We give the

general de�nition of resonance and nonresonance, and �eorem 2.2 also holds.

�e analysis follows from Avila–Jitomirskaya’s arguments, we omit the proof.

Lemma 2.3 ([1], Lemma 9.8). Let m 2 N be such that

m <
qrC1

10qn

;

where r � n. Given a integer sequence jmk j � m � 1, k D 1; : : : ; qn, let 1 � k0 �

qn be such that

j sin �.x C .k0 C mk0
qr/˛/j D min

1�k�qn

j sin �.x C .k C mkqr/˛/j;

then

ˇ

ˇ

ˇ

qn
X

kD1
k 6Dk0

ln j sin �.x C .k C mkqr/˛/j C .qn � 1/ ln 2
ˇ

ˇ

ˇ

< C ln qn C C.�n C .m � 1/�r/qn ln qn;

where �n D jqn˛ � pnj.
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3. Regularity for resonant y

In this section, we mainly concern the regularity for resonant y. In this condition

y > qn

2
. �us by the de�nition of resonance, there exists some positive integer `

with 1 � ` � q
8=9
nC1=qn such that jy � `qnj � bn. Fix the positive integer ` and set

I1; I2 � Z as

I1 D
h

�
h2

3
qn

i

;
h2

3
qn

i

� 2
i

;

and

I2 D
h

.` � 1/qn C
h2

3
qn

i

� 1; .` C 1/qn �
h2

3
qn

i

� 1
i

;

and let

�j D � C j˛ for j 2 I1 [ I2.

�e set ¹�j ºj 2I1[I2
consists of 2qn elements.

Note that, below, we replace I D Œx1; x2� \Z with I D Œx1; x2� for simplicity,

and assume " > 0 is su�ciently small.

We will use the following three steps to establish regularity for y.

Step 1 . For any " > 0, we set up the ˇ
2

C "-uniformity of ¹�j º where �j D � C j˛

and j ranges through I1[I2. By Lemma 2.2, there exists some j0 with j0 2 I1[I2

such that �j0
… A

2qn�1;ln �� ˇ
2

�C�
.

Step 2. We show that for all j 2 I1; �j 2 A
2qn�1;ln �� ˇ

2
�C�

if � > e
3
2

ˇ . �us

there exists �j0
… A

2qn�1;ln �� ˇ
2

�C�
for some j0 2 I2.

Step 3. We establish the regularity for y.

Remark 3.1. In [1], Avila and Jitomirskaya construct

I1 D
h

�
h5

8
qn

i

;
h5

8
qn

i

� 1
i

;

I2 D
h

.` � 1/qn C
h5

8
qn

i

; .` C 1/qn �
h5

8
qn

i

� 1
i

;

and set

�j D � C j˛ for j 2 I1 [ I2.
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�ey use the above three steps to establish the regularity of y. More precisely,

�rstly, they establish the
�

ˇ
2

C "
�

-uniformity of ¹�j º and that there exists �j0
…

A
2qn�1;ln �� ˇ

2
�2"

for some j0 2 I1 [ I2. Secondly, they prove that for all j 2 I1,

�j 2 A
2qn�1;ln �� ˇ

2
�2"

, and thus there exists �j0
… A

2qn�1;ln �� ˇ
2

�2"
for some

j0 2 I2, if � > e
16
9

ˇ . �irdly, they set up the regularity of y. In the present paper,

we reconstruct I1 and I2, and show that the three steps also hold.

Recall that

kk˛kR=Z � �n; for all 1 � k < qnC1; (3.1)

and
1

2qnC1

� �n �
1

qnC1

; (3.2)

where

kxkR=Z D min
j 2Z

jx � j j:

Step 1 . We establish the
�

ˇ
2

C "
�

-uniformity for ¹�j ºj 2I1[I2
.

In Lemma 2.3, let r D n and m D ` � q
8=9
nC1=qn, one has

.�n C .m � 1/�r/qn D `�nqn � C;

since �n � 1
qnC1

by (3.2). Moreover, we obtain the following lemma.

Lemma 3.1. Given a integer sequence jmk j � `�1, k D 1; : : : ; qn, let 1 � k0 � qn

be such that

j sin �.x C .k0 C mk0
qn/˛/j D min

1�k�qn

j sin �.x C .k C mkqn/˛/j:

�en

�.qn � 1/ ln 2 � C ln qn �

qn
X

kD1
k 6Dk0

ln j sin �.x C .k C mkqn/˛/j

� �.qn � 1/ ln 2 C C ln qn:

(3.3)
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�eorem 3.1. For all " > 0, the set ¹�j ºj 2I1[I2
is

�

ˇ
2

C "
�

-uniform for � … R and

su�ciently large n.

Proof. Let

I 0
1 D

h

�
h2

3
qn

i

; �
h2

3
qn

i

C qn � 1
i

and

I 0
2 D

h

�
h2

3
qn

i

C qn;
h2

3
qn

i

�2
i

[
h

.`�1/qn C
h2

3
qn

i

�1; .`C 1/qn �
h2

3
qn

i

�1
i

:

Clearly, both ¹�j ºj 2I 0
1

and ¹�j ºj 2I 0
2

consist of qn elements, and I 0
1 [ I 0

2 D I1 [ I2.

In (2.5), let x D cos 2�a, k D 2qn � 1 and take the logarithm. �us in order to

prove the theorem, it su�ces to show that for any a 2 R and i 2 I 0
1 [ I 0

2,

ln
Y

j 2I 0
1

[I 0
2

;j ¤i

j cos 2�a � cos 2��j j

j cos 2��i � cos 2��j j

D
X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2�a � cos 2��j j �
X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2��i � cos 2��j j

< .2qn � 1/
�ˇ

2
C "

�

:

Without loss of generality assume i 2 I 0
1. We estimate

X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2�a � cos 2��j j

�rst.

Clearly,
X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2�a � cos 2��j j

D
X

j 2I 0
1

[I 0
2

;j ¤i

ln j sin �.a C �j /j

C
X

j 2I 0
1

[I 0
2

;j ¤i

ln j sin �.a � �j /j C .2qn � 1/ ln 2

D †C C †� C .2qn � 1/ ln 2;

(3.4)

where

†C D
X

j 2I 0
1

[I 0
2

;j ¤i

ln j sin �.a C � C j˛/j;



98 W. Liu and X. Yuan

and

†� D
X

j 2I 0
1

[I 0
2

;j ¤i

ln j sin �.a � � � j˛/j:

Write †C as the form

†C D
X

j 2I 0
1

;j ¤i

ln j sin �.a C � C j˛/j C
X

j 2I 0
2

ln j sin �.a C � C j˛/j: (3.5)

We will estimate

X

j 2I 0
1

;j ¤i

ln j sin �.a C � C j˛/j and
X

j 2I 0
2

ln j sin �.a C � C j˛/j;

respectively.

On the one hand,

X

j 2I 0
1

;j ¤i

ln j sin �.a C � C j˛/j

D
X

j 2I 0
1

ln j sin �.a C � C j˛/j � ln j sin �.a C � C i˛/j

D

qn
X

kD1

ln j sin �.x C k˛/j � ln j sin �.a C � C i˛/j

D

qn
X

kD1;k¤k0

ln j sin �.x C k˛/j C ln j sin �.x C k0˛/j � ln j sin �.a C � C i˛/j;

where

x D a C � �
�h2

3
qn

i

C 1
�

˛

and k0 satis�es

j sin �.x C k0˛/j D min
1�k�qn

j sin �.x C k˛/j:

In Lemma 3.1, let mk D 0, k D 1; 2; : : : qn, by the second equality of (3.3), one

has
qn
X

kD1;k¤k0

ln j sin �.x C k˛/j � �.qn � 1/ ln 2 C C ln qn:
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Since

ln j sin �.x C k0˛/j � ln j sin �.a C � C i˛/j

(by the minimality of k0), we have

X

j 2I 0
1

;j ¤i

ln j sin �.a C � C j˛/j � �.qn � 1/ ln 2 C C ln qn: (3.6)

On the other hand,

X

j 2I 0
2

ln j sin �.a C � C j /j

D

qn
X

kD1

ln j sin �.x C .k C mk/˛/j

D

qn
X

kD1;k¤k0

ln j sin �.x C .k C mk/˛/j C ln j sin �.x C .k0 C mk0
/˛/j;

where

x D a C � C
�

�
h2

3
qn

i

C qn � 1
�

˛;

mk D 0; for 1 � k � 2
h2

3
qn

i

� qn � 1;

and

mk D ` � 1; for 2
h2

3
qn

i

� qn � k � qn;

and k0 satis�es

j sin �.x C .k0 C mk0
˛/j D min

1�k�qn

j sin �.x C .k C mk/˛/j:

By the second equality of (3.3) again, one has

qn
X

kD1;k¤k0

ln j sin �.x C .k C mk/˛/j � �.qn � 1/ ln 2 C C ln qn:

In addition

ln j sin �.x C .k0 C mk0
˛/j � 0;

and one has

X

j 2I 0
2

ln j sin �.a C � C j˛/j � �.qn � 1/ ln 2 C C ln qn: (3.7)
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Putting (3.5), (3.6), and (3.7) together, we have

†C � �2qn ln 2 C C ln qn: (3.8)

We are now in the position to estimate †�. In order to avoid repetition, we omit

some details. Similarly, †� consists of 2 terms of the form as (3.3), plus two terms

of the form minkD1;:::;qn
ln j sin �.x C .k C mkqn/˛/j; where mk 2 ¹0; .` � 1/º,

k D 1; : : : ; qn, minus ln j sin �.a � �i /j. Following the estimate of †C,

†� � �2qn ln 2 C C ln qn: (3.9)

Putting (3.8) and (3.9) into (3.4), we obtain

X

j 2I1[I2j 6Di

ln j cos 2�a � cos 2��j j � �2qn ln 2 C C ln qn: (3.10)

�e estimate of
X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2��i � cos 2��j j

require a bit more work.

It is easy to see that

X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2��i � cos 2��j j D †0
C C †0

� C .2qn � 1/ ln 2; (3.11)

where

†0
C D

X

j 2I1[I2;j ¤i

ln j sin �.2� C .i C j /˛/j;

and

†0
� D

X

j 2I1[I2;j ¤i

ln j sin �.i � j /˛j:

Firstly, we estimate †0
C. Similarly, †0

C consists of 2 terms of the form as (3.3),

plus two terms of the form

min
kD1;:::;qn

ln j sin �.x C .k C mkqn/˛/j;

where mk 2 ¹0; .` � 1/º, k D 1; : : : ; qn; minus ln j sin 2�.� C i˛/j.
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Following the above arguments and using the �rst inequality of (3.3), we obtain

†0
C > �2qn ln 2 � C ln qn C 2 min

j;i2I1[I2

ln j sin �.2� C .j C i/˛/j: (3.12)

�us it is enough to estimate the last term in (3.12). By the hypothesis � … R, one

has

min
j;i2Œ�2qn;2qn�1�

j sin �.2� C .j C i/˛/j >
1

16q2
n

for large n: (3.13)

If k 2 I2, let

`k D ` � 1 and k0 D k � `kqnI

if k 2 I1, let

`k D 0 and k0 D k:

�en i 0; j 0 2 Œ�2qn; 2qn � 1�. If qnC1 > q100
n , it is easy to verify that

j`k�nj <
1

q5
n

:

Combining with (3.13), we have, for any i; j 2 I1 [ I2,

j sin �.2� C .j C i/˛/j

D j sin �.2� C .j 0 C i 0/˛/ cos �.`i C j̀ /�n

˙ cos �.2� C .j 0 C i 0/˛/ sin �.`i C j̀ /�nj

>
1

100q2
n

(3.14)

(the ˙ depending on the sign of qn˛ � pn).

If qnC1 � q100
n , we also have

j sin �.2� C .j C i/˛/j >
1

100q200
n

; for any i; j 2 I1 [ I2, (3.15)

�us, by (3.12), (3.14), and (3.15), one has

†0
C > �2qn ln 2 � C ln qn: (3.16)
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Similarly, †0
� consists of 2 terms of the form as (3.3) plus the minimum term

(because minj 2I 0
1

j sin �.i �j /˛j D 0, then
P

j 2I 0
1

;j ¤i ln j sin �.i �j /˛j is exactly

of the form (3.3)). It follows that

†0
� > �2qn ln 2 � C ln qn C min

j 2I1[I2;j ¤i
ln j sin �..j � i/˛/j: (3.17)

We are now in the position to estimate the last term in (3.17). Note that for any

i 2 I1 [ I2, there is only one Q{ 2 I1 [ I2 such that ji � Q{j D qn or `qn. It is easy

to check

ln j sin �.i � Q{/˛j � min¹ln j sin �qn˛j; ln j sin �`qn˛jº

> � ln qnC1 � C;
(3.18)

since

�n �
1

2qnC1

:

If j ¤ i; Q{ and j 2 I1 [ I2, then

j � i D r C m0
j qn; with 1 � jr j < qn and jm0

j j � `:

�us by (3.1) and (3.2), one has

kr˛kR=Z � �n�1 �
1

2qn

and

min
j 2I1[I2j 6Di;Q{

ln j sin �.j � i/˛j > ln.kr˛kR=Z � `�n/ � C

> � ln qn � C;

(3.19)

since

`�n <
1

10qn

for n large enough.

By (3.18) and (3.19), one has

min
j 2I1[I2j 6Di

ln j sin �.j � i/˛j > � ln qnC1 � C ln qn:
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By the de�nition of

ˇ D lim sup
n!1

ln qnC1

qn

;

equation (3.17) becomes

†0
� > �2qn ln 2 � ln qnC1 � C ln qn

> �2qn ln 2 � .ˇ C "/qn � C ln qn;
(3.20)

for large n.

By (3.11), (3.16), and (3.20),

X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2��i � cos 2��j j > �2qn ln 2 � .ˇ C "/qn � C ln qn:

Together with (3.10), we obtain

X

j 2I 0
1

[I 0
2

;j ¤i

ln j cos 2�a�cos 2��j j�ln j cos 2��i �cos 2��j j < .ˇC"/qnCC ln qn:

�is implies

max
x2Œ�1;1�

max
iD1;:::;kC1

kC1
Y

j D1;j ¤i

jx � cos 2��j j

j cos 2��i � cos 2��j j
< e.2qn�1/. ˇ

2
C"/

for large enough n.

In Lemma 2.2, let k D 2qn � 1, �1 D ˇ
2

C � and � D ˇ
2

C C �. Clearly, �1 < �.

�us there exists some j0 2 I1 [ I2 such that �j0
… A

2qn�1;ln ��
ˇ
2 �C�

for n large

enough.

Step 2. We will show that �j 2 A
2qn�1;ln �� ˇ

2
�C�

for all j 2 I1.

Lemma 3.2. Suppose k 2 Œ�2qn; 2qn� and

d D dist.k; ¹mqnºm�0/ �
qn

4
;

then, for su�ciently large n,

j�.k/j < exp.�.ln � � C �/d/:



104 W. Liu and X. Yuan

Proof. We will use block resolvent expansion to prove this lemma. By hypothesis

k 2 Œ�2qn; 2qn�, there exists some m 2 ¹�2; �1; 0; 1º such that

mqn � k < .m C 1/qn:

For any y 2 Œmqn C�qn C1; .mC1/qn ��qn �1�, apply �eorem 2.2 with " D �.

Note that in case (i), we have

ln � C 9 ln.sqn�1=qn/=qn�1 � � � ln � � C �;

for large n. �us y is regular with t D ln ��C �. Moreover, there exists an interval

I.y/ D Œx1; x2� � Œ.m � 1/qn; .m C 2/qn�

such that y 2 I.y/ and

dist.y; @I.y// �
�

2
jI.y/j �

�

2
qn�1 (3.21)

and

jGI.y/.y; xi/j < e�.ln ��C�/jy�xi j; i D 1; 2; (3.22)

where @I.y/ is the boundary of the interval I.y/, i.e.,¹x1; x2º, and recall that jI.y/j

is the number of I.y/, i.e.,

jI.y/j D x2 � x1 C 1:

For z 2 @I.y/, let z0 be the neighbor of z (i.e., jz � z0j D 1) not belonging to I.y/.

If

x2 C 1 < .m C 1/qn � �qn or x1 � 1 > mqn C �qn;

then we can expand �.x2 C 1/ or �.x1 � 1/ as (2.4). We can continue this process

until we arrive to z such that

z C 1 � .m C 1/qn � �qn or z � 1 � mqn C �qn;

or the iterating number reaches

h 2d

�qn�1

i

:
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�us, by (2.4)

�.k/ D
X

sIziC12@I.z0
i
/

GI.k/.k; z1/GI.z0
1

/.z
0
1; z2/ : : : GI.z0

s/.z
0
s; zsC1/�.z0

sC1/;

(3.23)

where in each term of the summation one has

mqn C �qn C 1 < zi < .m C 1/qn � �qn � 1; i D 1; : : : ; s;

and either

zsC1 … Œmqn C �qn C 2; .m C 1/qn � �qn � 2�; s C 1 <
h 2d

�qn�1

i

; (�)

or

s C 1 D
h 2d

�qn�1

i

: (��)

When (�), then, by (3.22),

jGI.k/.k; z1/GI.z0
1

/.z
0
1; z2/ : : : GI.z0

s/.z
0
s; zsC1/�.z0

sC1/j

< e�.ln ��C�/.jk�z1jC
Ps

iD1 jz0
i
�ziC1j/qC

n

< e�.ln ��C�/.jk�zsC1j�.sC1//qC
n

< e
�.ln ��C�/

�

d��qn�4� 2d
�qn�1

�

qC
n ;

(3.24)

since

j�.z0
sC1/j � .1 C jz0

sC1j/C � qC
n :

When (��), then, using (3.21) and (3.22), we obtain

jGI.k/.k; z1/GI.z0
1

/.z
0
1; z2/ : : : GI.z0

s/.z
0
s; zsC1/�.z0

sC1/j

< e
�.ln ��C�/

�qn�1
2

�

2d
�qn�1

�

qC
n :

(3.25)

Finally, note that the total number of terms in (3.23) is at most 2

�

2d
�qn�1

�

and

d � qn

4
. Combining with (3.24) and (3.25), we obtain

j�.k/j < e�.ln ��C�/d

for large n.
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Remark 3.2. Under the hypothesis of Lemma 3.2, Avila and Jitomirskaya only

prove that

j�.k/j < exp
�

� .ln � � "/
d

2

�

:

We give the re�ned version.

�eorem 3.2. For any b 2 Œ�5
3
qn; �1

3
qn�, we have

� C .b C qn � 1/˛ 2 A2qn�1;2 ln �=3CC�

if n is large enough, i.e., for all j 2 I1, �j 2 A2qn�1;2 ln �=3CC� .

Proof. Let

b1 D b � 1 and b2 D b C 2qn � 1:

Applying Lemma 3.2, one obtains that for i D 1; 2,

j�.bi /j �

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

e�.ln ��C�/.2qnCb/ if �
5qn

3
� b � �

3qn

2
;

e�.ln ��C�/jqnCbj if �
3qn

2
< b < �

qn

2
and jb C qnj >

1

4
qn;

e.ln ��C�/b if �
qn

2
� b � �

qn

3
:

In (2.4), let

I D Œb; b C 2qn � 2� and x D 0I

we get, for n large enough,

max.jGI .0; b/j; jGI .0; b C 2qn � 2/j/

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

e.ln ��C�/.2qnCb/ if �
5qn

3
� b � �

3qn

2
;

e.ln ��C�/jqnCbj if �
3qn

2
< b < �

qn

2
and jb C qnj >

1

4
qnI

e�.ln ��C�/b ; if �
qn

2
� b � �

qn

3
;

e�C� ; if jb C qnj �
1

4
qn;

since �.0/ D 1 and j�.k/j � .1 C jkj/C .
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Let

" D �

in (2.3), and let

I D Œb; b C 2qn � 2�; y D 0; k D 2qn � 1

in (2.1) and (2.2). After careful computation, we obtain

jQ2qn�1.cos 2�.� C .b C qn � 1/˛/j

D jP2qn�1.� C b˛/j

� min¹jGI .0; b/j�1e.ln �C�/.bC2qn�2/; jGI .0; b C 2qn � 2/j�1e�.ln �C�/bº

� e.2qn�1/.2 ln �=3CC�/:

Since ln � > 3ˇ
2

, thus

2 ln �

3
C C � < ln � �

ˇ

2
� C �

for small enough �. By Step 1 and Step 2, we have

�j 2 A
2qn�1;ln ��

ˇ
2 �C�

for all j 2 I1.

�is implies there exists some j0 2 I2 such that �j0
… A

2qn�1;ln �� ˇ
2

�C�
.

Step 3. Establish the regularity for y.

�eorem 3.3. For some t > 0, y is .t; 2qn � 1/-regular with ı D 1=5 for large

enough n.

Proof. According to the previous two steps, there exists some

�j0
… A

2qn�1;ln ��
ˇ
2

�C�
; for j0 2 I2:

Set

I D Œj0 � qn C 1; j0 C qn � 1� D Œx1; x2�:

In (2.3), let " D �; combining with (2.1) and (2.2), it is easy to verify that

jGI .y; xi/j < e
.ln �C�/.2qn�2�jy�xi j/�2qn

�

ln �� ˇ
2

�C�
�

:

By a simple computation jy � xi j �
�

2
3

� C �
�

qn; then

jGI .y; xi/j < e
�jy�xi j

�

ln �� 3
2

ˇ�C�
�

;

for large enough n. Select � small enough such that t D ln � � 3ˇ
2

� C � > 0, then

y is
�

ln � � 3ˇ
2

� C �; 2qn � 1
�

-regular with ı D 1=5.
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4. �e proof of �eorem 2.1

Now that the regularity for y is established, we will use block resolvent expansion

again to prove �eorem 2.1.

Proof of �eorem 2.1. Give some k with k > qn and n large enough. Using �e-

orems 2.2 and 3.3, for all y 2 Œbn; 2k�, then there exists an interval

I.y/ D Œx1; x2� � Œ�4k; 4k�; with y 2 I.y/,

such that

dist.y; @I.y// >
�

2
qn�1 (4.1)

and

jGI.y/.y; xi/j < e�.ln �� 3
2

ˇ�C�/jy�xi j; i D 1; 2: (4.2)

As in the proof of Lemma 3.2, denote by @I.y/ the boundary of the interval I.y/.

For z 2 @I.y/, let z0 be the neighbor of z, (i.e., jz �z0j D 1) not belonging to I.y/.

If

x2 C 1 < 2k or x1 � 1 > bn;

then we can expand �.x2 C 1/ or �.x1 � 1/ as (2.4). We can continue this process

until we arrive to z such that

z C 1 � 2k or z � 1 � bn;

or the iterating number reaches

h 2k

�qn�1

i

:

By (2.4),

�.k/ D
X

sIziC12@I.z0
i
/

GI.k/.k; z1/GI.z0
1

/.z
0
1; z2/ : : : GI.z0

s/.z
0
s; zsC1/�.z0

sC1/; (4.3)

where in each term of the summation we have

bn C 1 < zi < 2k � 1; i D 1; : : : ; s;

and either

zsC1 … Œbn C 2; 2k � 2�; s C 1 <
h 2k

�qn�1

i

; (?)

or

s C 1 D
h 2k

�qn�1

i

: (??)
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When (?), then, by (4.2), one has

jGI.k/.k; z1/GI.z0
1

/.z
0
1; z2/ : : : GI.z0

s/.z
0
s; zsC1/�.z0

sC1/j

� e
�
�

ln �� 3
2

ˇ�C�
�

.jk�z1jC
Ps

iD1 jz0
i
�ziC1j/

kC

� e�.ln �� 3
2

ˇ�C�/.jk�zsC1j�.sC1//kC

� max¹e
�
�

ln �� 3
2

ˇ�C�
��

k�bn�4� 2k
�qn�1

�

kC ;

e
�
�

ln �� 3
2

ˇ�C�
��

2k�k�4� 2k
�qn�1

�

kC º:

(4.4)

When (??), then, using (4.1) and (4.2), we obtain

jGI.k/.k; z1/GI.z0
1

/.z
0
1; z2/ : : : GI.z0

s/.z
0
s; zsC1/�.z0

sC1/j

� e
�
�

ln �� 3
2

ˇ�C�
�

�qn�1
2

�

2k
�qn�1

�

kC :

(4.5)

Finally, note that the total number of terms in ( 4.3) is at most 2

�

2k
�qn�1

�

. Com-

bining with (4.4) and (4.5), we obtain

j�.k/j � e�
�

ln �� 3
2

ˇ�C�
�

k (4.6)

for large enough n (or equivalently large enough k).

For k < 0, the proof is similar. �us

j�.k/j � e
�
�

ln �� 3
2

ˇ�C�
�

jkj if jkj is large enough: (4.7)

�is ends the proof of �eorem 2.1.

Corollary 4.1. Suppose � > e
3
2

ˇ and � … R. If a solution ‰E .k/ satis�es

H�;˛;�‰E D E‰E ; with ‰E .k/ � .1 C jkj/C and E 2 †�;˛ ,

then

lim sup
jkj!1

ln.‰2
E .k/ C ‰2

E .k C 1//

2jkj
� �

�

ln � �
3

2
ˇ

�

: (4.8)

In particular, for ˇ.˛/ D 0

lim
jkj!1

ln.‰2
E .k/ C ‰2

E .k C 1//

2jkj
D � ln �: (4.9)
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Proof. If ˇ.˛/ > 0, in fact (4.7) holds for any � > 0, this implies

lim sup
jkj!1

ln.‰2
E .k/ C ‰2

E .k C 1//

2jkj
� �

�

ln � �
3

2
ˇ

�

if ˇ > 0: (4.10)

If ˇ.˛/ D 0, following [1] or [2], k is .t; `.k//-regular for large jkj, with

t D ln � � ":

By the method of block resolvent expansion as above, we can obtain

j‰E .k/j < e�.ln ��"/jkj if k is large enough;

thus

lim sup
jkj!1

ln.‰2
E .k/ C ‰2

E .k C 1//

2jkj
� � ln �: (4.11)

By (4.10) and (4.11), we obtain (4.8).

By Furman’s uniquely ergodic theorem (Corollary 2 in [7]),

lim inf
jkj!1

ln.‰2
E .k/ C ‰2

E .k C 1//

2jkj
� � ln �:

�e last two inequalities imply ( 4.9).
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