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Abstract. We study in this paper an abstract class of Klein–Gordon equations

@2
t �.t/ � 2ik@t�.t/C h�.t/ D 0;

where � W R ! H, H is a (complex) Hilbert space, and h, k are self-adjoint, resp. sym-

metric operators on H.

We consider their generatorsH (resp. K) in the two natural spaces of Cauchy data, the

energy (resp. charge) spaces. We do not assume that the dynamics generated byH orK has

any positive conserved quantity, in particular these operators may have complex spectrum.

Assuming conditions on h and k which allow to use the theory of selfadjoint operators on

Krein spaces, we prove weighted estimates on the boundary values of the resolvents ofH ,

K on the real axis. From these resolvent estimates we obtain corresponding propagation

estimates on the behavior of the dynamics for large times.

Examples include wave or Klein–Gordon equations on asymptotically euclidean or

asymptotically hyperbolic manifolds, minimally coupled with an external electro-magnetic

�eld decaying at in�nity.
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1. Introduction

�is paper is devoted to the proof of resolvent and propagation estimates for the

generators of a class of abstract Klein–Gordon equations

@2
t �.t/� 2ik@t�.t/C h�.t/ D 0; (1.1)

where � W R ! H, H is a (complex) Hilbert space, and h, k are self-adjoint, resp.

symmetric operators on H.

�ere are many natural examples of such abstract class of equations: one class

is obtained by considering Klein–Gordon equations

�rara� Cm2� D 0;

on a Lorentzian manifold having a global Killing vector �eld, corresponding in (1.1)

to @t . A related class is obtained by perturbing a static Klein–Gordon equation

@2
t � � rj rj� Cm2� D 0
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on Rt �N (N is a Riemannian manifold) by minimal coupling this equation to an

external electro-magnetic �eld Aa independent on t . We obtain then the equation

.@t � iv.x//2� � .rj � iAj .x//.rj � iAj .x//� Cm2� D 0;

which can be put in the form (1.1).

An example to keep in mind is the Klein–Gordon equation on Minkowski space

minimally coupled with an external electric �eld

.@t � iv.x//2�.t; x/ ��x�.t; x/Cm2�.t; x/ D 0; (1.2)

for which H D L2.Rd ; dx/, h D ��x Cm2 � v2.x/, k D v.x/ is a (real) electric

potential and m � 0 is the mass of the Klein–Gordon �eld. We will use this

example to describe the results and methods of the present work.

1.1. Description of the main results. �e equation (1.2) has two natural con-

served quantities, the charge

ˆ

Rd

.i@t
N�.t; x/�.t; x/� i N�.t; x/@t�.t; x/� 2v.x/j�.t; x/j2/dx;

and the energy

ˆ

Rd

.j@t�.t; x/j2 C jrx�.t; x/j2 C .m2 � v2.x//j�.t; x/j2/dx;

both related to the symplectic nature of (1.2). In order to associate a generator

to (1.2), one has to consider a Cauchy problem. �ere are two natural ways to

de�ne Cauchy data at time t . On can set

f .t/ D
�

�.t/

i�1@t�.t/� v�.t/

�

; (1.3)

so that

f .t/ D eitKf .0/; K D
�

v 1

��x Cm2 v

�

:

�is choice is natural when one emphasizes the conservation of the charge, which

takes the simple form

q.f; f / D
ˆ

Rd

Sf1.x/f0.x/C Sf0.x/f1.x/dx; f D
�

f0

f1

�

:
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Another choice, more common in the PDE literature is

f .t/ D
�

�.t/

i�1@t�.t/

�

; (1.4)

so that

f .t/ D eitHf .0/; H D
�

0 1

��x Cm2 � v2 2v

�

:

With this choice the energy takes the simple form

E.f; f / D
ˆ

Rd

jf1j2.x/C jrf0j2.x/C .m2 � v2.x//jf0j2.x/dx; f D
�

f0

f1

�

:

Note that the two operators K and H are obviously related by similarity, see e.g.

Subsection 4.4.

�e main problem one faces when studying Klein–Gordon equations (1.2) is

the lack of a positive conserved quantity. For example q is clearly never positive

de�nite, while E is not positive de�nite if the electric potential v becomes too

large, so that ��x Cm2 �v2.x/ acquires some negative spectrum. In other words

it is generally not possible to equip the space of Cauchy data with a Hilbert space

structure such that K or H are self-adjoint.

�ere are two manifestations of this problem with some physical signi�cance.

�e �rst one, discovered long ago by physicists [30], is the fact that if v is too large,

K and H acquire complex eigenvalues, appearing in complex conjugate pairs.

�is phenomenon is sometimes called the Klein paradox. It implies the existence

of exponentially growing solutions, and causes di�culties with the quantization

of (1.2).

�e second manifestation is known as superradiance. It appears for example

for the Klein–Gordon equation (1.2) in 1 dimension, when the electric potential v

has two limits v˙ at ˙1 with jvC �v�j > m, see [2] for a mathematical analysis.

It also appears in more complicated models, like the Klein–Gordon equation on

the Kerr space-time, which can be reduced to the abstract form (1.1) after some

separation of variables.

Superradiance appears when there exist in�nite dimensional subspaces,

asymptotic invariant under H , on which the energy is positive (resp. negative).

If this happens a wave coming from C1 may, after scattering by the potential,

return to C1 with more energy than it initially had.
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Another more mathematical issue with (1.2) is that there are many possible

topologies to put on the space of Cauchy data. If we use (1.3) it is natural to

require that the charge should be bounded for the chosen topology. �is of course

does not �x the topology, but by considering the simple case v.x/ � 0 it is easy to

see (see Subsection 4.5) that the natural space of Cauchy data is the charge space

F D H
1
2 .Rd /˚H� 1

2 .Rd /;

where H s.Rd / denotes the usual Sobolev space of order s.

If we use (1.4), then we should require that the energy be bounded, which leads

to the essentially unique choice of the energy space

E D H 1.Rd /˚ L2.Rd /:

Note that if m D 0 the homogeneous energy space

PE D .��x � v2/�
1
2L2.Rd /˚ L2.Rd /

(see Subsection 2.1 for this notation) could also be considered, and will actually

play an important role in our work.

Let us now illustrate the results of our paper on the example (1.2), assuming

for simplicity that v 2 C1
0 .Rd /. Using general results on self-adjoint operators

on Krein spaces, one can �rst show that

�.H/ D �.K/;

�ess.H/ D �ess.K/ D�� 1;�m�[ Œm;C1Œ;

�.H/nR D �.K/nR D [1�j �n¹�j ; �j º;

where �j , �j are eigenvalues of �nite Riesz index.

�e main result of this work are weighted resolvent estimates, valid near the

essential spectrum of K;H ,

sup
Rez2I;0<Imzj�ı

khxi�ı
diag.H � z/�1hxi�ı

diagkB.E/ < 1; for all
1

2
< ı; (1.5)

where the brackets hxidiag denote the diagonal operator on the space of Cauchy

dataH 1.Rd /˚ L2.Rd /with entries hxi (see Subsection 2.1), I � R is a compact

interval disjoint from ˙m, containing no real eigenvalues of H , nor so called

critical points of H (see Section 3 for the de�nition of critical points).
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Similar results hold for K, replacing E by F. By the usual argument based

on Fourier transformation, we deduce from (1.5) propagation estimates on the

C0-groups eitH and eitK

ˆ

R

khxi�ı
diageitH�.H/hxi�ıf k2

E
dt � Ckf k2

E
; (1.6a)

and
ˆ

R

khxi�ı
diageitK�.K/hxi�ıf k2

F
dt � Ckf k2

F
; (1.6b)

where � 2 C1
0 .R/ is a cuto� function supported away from real eigenvalues and

critical points of H and K.

From (1.6) it is easy to construct the short-range scattering theory for the dy-

namics eitH , eitK . With a little more e�ort, the long-range scattering theory can

also be constructed. In this way the results of [11], dealing with the scattering

theory of massive Klein–Gordon equations in energy spaces, can certainly be ex-

tended to the massless case (ie to wave equations), both in the energy and charge

spaces.

1.2. Methods. In the usual Hilbert space setting, where H is self-adjoint for

some Hilbert space scalar product, the most powerful way to prove estimates (1.5)

and (1.6) relies on the Mourre method, i.e. on the construction of another self-

adjoint operator A such that

1I .H/ŒH; iA�1I .H/ � c1I .H/CR; (1.7)

where R is compact and c > 0. �is method can be directly applied to (1.2)

if the energy E.f; f / is positive de�nite, so that it de�nes a compatible scalar

product on E. Numerous papers rely on this observation, see among many others

the papers [6, 25, 27, 29, 34], and for more recent results based on the Mourre

method [13, 14].

If the energy is not positive, one can consider the energy space E equipped with

E as a Krein space, i.e. a Hilbertizable vector space equipped with a bounded, non-

degenerate hermitian form. Orthogonal and adjoints on a Krein space are de�ned

w.r.t. the Krein scalar product, and conservation of energy is formally equivalent

to the fact that the generatorH is self-adjoint in the Krein sense.

�ere exists a class of self-adjoint operators on Krein spaces, the so-called

de�nitizable operators, (see Subsection 3.2) which admit a continuous and Borel

functional calculus quite similar to the one of usual self-adjoint operators. A �-

nite set of their real spectrum, called the critical points, plays the role of spectral

singularities for the functional calculus. Spectral projections on intervals whose
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endpoints are not critical points can be de�ned, and they have the important prop-

erty that if they do not contain critical points, then the Krein scalar product is

de�nite (positive or negative) on their range.

In [9], we exploited these properties of de�nitizable operators on Krein spaces

to extend the Mourre method to this setting, obtaining weighted resolvent esti-

mates in an abstract setting.

In this work we apply the general results of [9] to one of the main examples

of self-adjoint operators on Krein spaces, namely the generators of one of the

C0-groups associated to the abstract Klein–Gordon equation (1.1).

Note that several papers were devoted to Klein–Gordon or wave equations from

the Krein space point of view, see e.g. [18, 23, 24]. However resolvent estimates

near the real spectrum were never considered in the above papers.

We obtain resolvent and propagation estimates which are generalizations of

equations (1.5) and (1.6). Examples of our abstract framework are minimally cou-

pled Klein–Gordon or wave equations on scattering or asymptotically hyperbolic

manifolds.

Note that the typical assumption of the electric potential v is that it should

decay to 0 at 1. �is assumption is necessary to ensure that H is de�nitizable.

�erefore the models considered in this paper, while possibly exhibiting the Klein

paradox, do not give rise to superradiance. In a subsequent paper [10] we will

prove similar results for a model exhibiting superradiance, namely the Klein–

Gordon equation on Kerr–de Sitter space-times. Using the results of this paper,

it is possible to prove resolvent estimates and to study scattering theory also for

such superradiant Klein–Gordon equations.

1.3. Plan of the paper. Section 2 contains some preparatory material, the most

important dealing with quadratic operator pencils.

In Section 3 we recall the theory of de�nitizable operators on Krein spaces.

In particular we devote some e�ort to present a self-contained exposition of their

functional calculus, which is a rather delicate but interesting topic. Among pre-

vious contributions to this question, we mention the works of Langer [22] and

Jonas [19].

In [9] we constructed the natural version of the continuous functional calculus

for a de�nitizable operator H , associated to an algebra of continuous functions

having asymptotic expansions of a speci�c order at each critical point of H . Al-

though we will not need its full generality in the rest of the paper, we found it

worthwhile to develop the corresponding Borel functional calculus. An interest-

ing feature of this calculus is that the natural algebra is not an algebra of functions
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on R anymore, but has to be augmented by adding a copy of C at each critical

point.

In Section 4 we discuss in some detail the various setups for abstract Klein–

Gordon equations and the possible choices of topologies on the space of initial

data.

Sections 5 and 6 are devoted to basic facts on the generators of Klein–Gordon

equations in energy and charge spaces respectively. In particular quadratic pencils

play an important role here.

Related results were obtained before by Langer, Najman and Tretter in [23]

and [24] for the energy resp. charge Klein–Gordon operators. We will comment

on the relationship between our framework and the one in [23, 24] in Remarks 5.5

and 6.6.

In Section 7 we introduce a class of de�nitizable Klein–Gordon operators. We

also construct an approximate diagonalization of these operators which will be

needed later.

Section 8 is devoted to the proof of a positive (in the Krein sense) commutator

estimate for the operators considered in Section 7. It relies on abstract conditions

on the scalar operators h, k appearing in (1.1).

In Section 9 resolvent estimates are proved for the generators H on energy

spaces. From them we deduce similar estimates for the quadratic pencils consid-

ered in Section 5, which in turn imply resolvent estimates for the generatorsK on

charge spaces.

Section 11 is devoted to the proof of propagation estimates for the groups eitH

and eitK . �ey follow from resolvent estimates by the standard arguments, usually

applied in the Hilbert space setting.

In Section 12 we give various examples of our abstract class of Klein–Gordon

equations. �e �rst examples are Klein–Gordon equations on scattering man-

ifolds, minimally coupled to external electro-magnetic �elds. �e massive and

massless cases are discussed separately, a Hardy inequality playing an important

role in the massless case. �e second examples are Klein–Gordon equations on

asymptotically hyperbolic manifolds, again with minimal coupling.

Various technical proofs are collected in Appendices A and B.
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2. Some preparations

In this section we collect some notation and preparatory material which will be

used in later sections.

2.1. Notations

Sets

– If X; Y are sets and f W X ! Y we write

f W X ��! Y

if f is bijective. IfX; Y are equipped with topologies, we use the same notation

if f W X ! Y is a homeomorphism.

– If I � R and f is a real valued function de�ned on I then f .I / denotes the

image of I under f .

Examples of this notation used in Subsection 8.3 are
p
I , I 2 and jI j.

– We set

h�i WD .�2 C 1/
1
2 ; � 2 R:

Linear operators

– If E � F are Banach spaces, we denote by ŒE; F �� , 0 � � � 1 the complex

interpolation space of order � .

– If A is a closed, densely de�ned operator, we denote by �.A/ � C its resolvent

set and by DomA its domain.

– LetX; Y;Z be Banach spaces such thatX � Y � Z with continuous and dense

embeddings. �en to each continuous operator yS W X �! Z one may associate

a densely de�ned operator S acting in Y de�ned as the restriction of yS to the

domain DomS D . yS/�1.Y /.

– If H1 and H2 are Hilbert spaces, we denote by

B1.H1;H2/

the ideal of compact operators from H1 to H2 and set B1.H/ D B1.H;H/.
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– If a; b are linear operators, then we set

ada.b/ WD Œa; b�:

Usually in this paper commutators are de�ned in the operator sense, i.e. Œa; b�

has domain Dom.ab/ \ Dom.ba/.

– If A;B are two positive self-adjoint operators on a Hilbert space H, we write

A � B

if

DomA
1
2 DW DomB

1
2 and c�1A � B � cA on DomA

1
2 ; c > 0:

Dual pairs

Let G and H be re�exive Banach spaces and E D G ˚ H. �e usual realization

.G ˚ H/� D G� ˚ H� of the adjoint space will not be convenient in the sequel,

we shall rather set

E� WD H� ˚ G�

so that

hw j f i D hw0 j f1i C hw1jf0i; for f D .f0; f1/ 2 E; w D .w0; w1/ 2 E�:

For example, if H D G�, so H� D G, the adjoint space of E D G ˚ G� is

identi�ed with itself E� D E.

Scale of Sobolev spaces

Let H be a Hilbert space with norm k � k and scalar product .� j �/. We identify H

with its adjoint space H� D H via the Riesz isomorphism. Let h be a self-adjoint

operator on H.

We can associate to it the non-homogeneous Sobolev spaces

hhi�sH WD Dom jhjs ; hhisH WD .hhi�sH/�; s � 0:

�e spaces hhi�sH are equipped with the graph norm khhisuk.

If moreover Kerh D ¹0º, then we can also de�ne the homogeneous Sobolev

spaces jhjsH equal to the completion of Dom jhj�s for the norm kjhj�suk.

�e notation hhisH or jhjsH is very convenient but somewhat ambiguous be-

cause usually aH denotes the image of H under the linear operator a. Let us

explain how to reconcile these two meanings.
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Let Hc be the space of u 2 H such that u D 1I .h/u, for some compact

I � Rn¹0º. We equip Hc with its natural topology by saying that un ! u in Hc

if there exists I � Rn¹0º compact such that un D 1I .h/un for all n and un ! u

in H. We set

Hloc WD .Hc/
�:

�en jhjs and hhis preserve Hc and Hloc, and hhisH, resp. jhjsH are the images

in Hloc of H under hhis , resp. jhjs. It follows that these spaces are subspaces

(equipped with �ner topologies) of Hloc, in particular they are pairwise compati-

ble. Let us mention some properties of these spaces:

hhi�sH � hhi�tH if t � s;

hhi�sH � jhj�sH and jhjsH � hhisH if s � 0;

hhi0H D jhj0H D H; hhisH D .hhi�sH/�; jhjsH D .jhj�sH/�;

0 2 �.h/ () hhisH D jhjsH for some s ¤ 0 () hhisH D jhjsH for all s:

Moreover the operator jhjs is unitary from jhj�tH to jhjs�tH for all s; t 2 R.

�e following fact is a rephrasing of the Kato–Heinz theorem:

if a � b then asH D bsH for all jsj � 1

2
.

Smoothness of operators

Let H1, H2 be two Banach spaces such that H1 � H2 continuously and densely.

Let ¹Ttºt2R be a C0-group on H2, preserving H1. It follows by [1, Proposi-

tion 3.2.5] that Tt de�nes a C0-group on H1. If a is the generator of Tt on H2,

so that Tt D eita on H2, then the generator of Tt on H1 is ajH1
with domain

¹u 2 H1 \ Doma W au 2 H1º.
We denote by C k.aIH1;H2/ (resp. C k

u .aIH1;H2/) for k 2 N the space of

operators b 2 B.H1;H2/ such that

R 3 t 7�! eitabe�ita

is C k for the strong (resp. operator) topology of B.H1;H2/.

One de�nes similarly C s
.u/
.aIH1;H2/ �rst for 0 < s < 1, then for all non

integers s 2 R
C by requiring the Hölder continuity of the above map. Note that by

the uniform boundedness principle, the spaces C s.aIH1;H2/ and C s
u .aIH1;H2/

coincide for non integer s. It follows also from the same argument that

C k.aIH1;H2/ � C s
u .aIH1;H2/; for 0 < s < k.
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If b 2 C 1.aIH1;H2/ then b maps Dom ajH1
into Dom a and

adab WD ab � ba 2 B.H1;H2/:

If H1 D H2 D H, the above spaces are simply denoted by C s
.u/
.aIH/ or even

C s
.u/
.a/ if H is �xed from the context.

2.2. Quadratic pencils. In this subsection we prove some basic results about a

quadratic operator pencil related to the abstract Klein–Gordon operator.

Let H be a Hilbert space, h be a self-adjoint operator on H and hhi�sH the

Sobolev spaces introduced in Subsection 2.1. Let

k W hhi� 1
2H �! H

be a continuous symmetric operator and denote also k its unique extension to a

continuous map H ! hhi 1
2H. Denote

h0 D hC k2 W hhi� 1
2H �! hhi 1

2H

and

p.z/ D hC z.2k � z/ D h0 � .k � z/2 2 B.hhi� 1
2H; hhi 1

2H/; z 2 C:

De�nition 2.1. We denote by �.h; k/ the set of z 2 C such that

p.z/ W hhi� 1
2H

��! hhi 1
2H:

Observe that the domain in H of the operator

p.z/ W hhi� 1
2H �! hhi 1

2H

is equal to hhi�1H, i.e.

hhi�1H D p.z/�1H:

Indeed, for f 2 hhi� 1
2H,

p.z/f D hf C z.2k � z/f

and the last term belongs to H, hence p.z/f 2 H if and only if hf 2 H. Note

also that the relation

p.z/� D p. Nz/ in B.hhi� 1
2H; hhi 1

2H/

is obvious. It follows that the map

p.z/ W hhi� 1
2H �! hhi 1

2H

naturally induces operators in B.hhi�1H;H/ and B.H; hhiH/.
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�e following two results are proved in [9, Lemmas 8.1, 8.2].

Lemma 2.2. �e operator induced by p.z/ in H is a closed operator and its

Hilbert space adjoint is the operator induced by p. Nz/ in H. In other terms, the

relation p.z/� D p. Nz/ also holds in the sense of closed operators in H. �e

following conditions are equivalent:

p.z/ W hhi�1H
��! H;(1)

p. Nz/ W hhi�1H
��! H;(2)

p.z/ W hhi� 1
2H

��! hhi 1
2H;(3)

p. Nz/ W hhi� 1
2H

��! hhi 1
2H;(4)

p.z/ W H ��! hhiH;(5)

p. Nz/ W H ��! hhiH:(6)

In particular, the set

�.h; k/ WD ¹z 2 C j p.z/ W hhi� 1
2H

��! hhi 1
2Hº

D ¹z 2 C j p.z/ W hhi�1H
��! Hº

(2.1)

is invariant under conjugation.

Proposition 2.3. Assume that h is bounded below. �en there exists c0 > 0 such

that

¹z W jImzj > jRezj C c0º � �.h; k/:

3. Operators on Krein spaces

In this section we review some basic facts about Krein spaces and self-adjoint

operators on Krein spaces. We refer the reader for more details to the survey

paper [22], or to [11], [9]. We also describe the natural extension of the continuous

functional calculus constructed in [9] to the Borel case.

3.1. Krein spaces. If H is a topological complex vector space, we denote by H#

the space of continuous linear forms on H and by hw; ui, for u 2 H, w 2 H# the

duality bracket between H and H#.
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De�nition 3.1. A Krein space K is a hilbertizable vector space equipped with a

bounded hermitian form hu j vi non-degenerate in the sense that if w 2 K# there

exists a unique u 2 K such that

hu j vi D hw; vi; v 2 K:

If K1 is a subspace of K, we denote by K?
1 the orthogonal of K1 for h� j �i.

If we �x a scalar product .�j�/ on K endowingK with its hilbertizable topology,

then by the Riesz theorem there exists a bounded, invertible self-adjoint opera-

tor M such that

hu j vi D .u j Mv/; u; v 2 K:

Using the polar decomposition of M , M D J jM j where J D J �, J 2 D 1, one

can equip K with the equivalent scalar product

.u j v/M WD .u j jM jv/; (3.2)

so that

hu j vi D .u j Jv/M ; u; v 2 K: (3.3)

De�nition 3.2. A Krein space .K; h� j �i/ is a Pontryagin space if either 1R�.J /

or 1RC.J / has �nite rank.

Clearly this de�nition is independent on the choice of the scalar product .�j�/.
Replacing h� j �i by �h� j �i we can assume that 1R�.J / has �nite rank, which

is the usual convention for Pontryagin spaces.

LetA W DomA ! K be a densely de�ned linear operator on the Krein spaceK.

�e adjoint A� of A on .K; h� j �i/ is de�ned as

DomA� WD ¹u 2 K W there exists f DW A�u such that

hf j vi D hu j Avi; for all v 2 DomAº:

We will sometimes use the following easy fact: there is a constant C > 0 such

that

C�1kAk � kA�k � CkAk; A 2 B.K/: (3.4)

A densely de�ned operatorH is self-adjoint on K ifH D H �. �e following fact

is often useful.

Lemma 3.3. Let H be closed and densely de�ned on K. Assume that for some

z 2 �.H/ \ �.H/ one has ..H � z/�1/� D .H � Nz/�1. �en H D H �.
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3.2. De�nitizable operators on Krein spaces. Not much of interest can be

said about self-adjoint operators on a Krein space, except for the trivial fact that

�.H/ D �.H/. �ere is however a special class of self-adjoint operators, called

de�nitizable, which admit a functional calculus close to the one of usual self-

adjoint operators on a Hilbert space.

De�nition 3.4. A self-adjoint operator H is de�nitizable if

(1) �.H/ ¤ ; and

(2) there exists a real polynomial p.�/ such that

hu j p.H/ui � 0; for all u 2 DomH k ; k WD degp: (3.5)

An operatorH on a Krein spaceK which is de�nitizable with an even de�nitizing

polynomial will be called even-de�nitizable.

�e following result is well known, see e.g. [19, Lemma 1].

Proposition 3.5. Let H be de�nitizable. �en

(1) If z 2 �.H/nR then p.z/ D 0 for each de�nitizing polynomial p;

(2) there is a de�nitizing polynomial p such that �.H/ n R is exactly the set of

non-real zeroes of p;

(3) moreover, this p may be chosen such that if � 62 R is a zero of multiplicity k

of p then � is an eigenvalue of H of Riesz index k;

(4) the non-real spectrum ofH consists of a �nite number of eigenvalues of �nite

Riesz index distributed symmetrically with respect to the real axis.

�e usefulness of the notion of Pontryagin spaces comes from the following

theorem (see [22]).

�eorem 3.6. A self-adjoint operatorH on a Pontryagin space is even-de�niti-

zable.

�e following result is easy (see Langer [22]). If � is an isolated point of �.H/

the Riesz spectral projection on � is

E.�;H/ WD 1

2i�

‰

C

.z �H/�1dz

where C is a small curve in �.H/ surrounding �.
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Proposition 3.7. Let H be a de�nitizable self-adjoint operator and

1
C

pp.H/ D
X

�2�.H/; Im�>0

.E.�;H/CE. N�;H//; KC

pp WD 1
C

pp.H/K:

�en 1
C
pp.H/ is a projection, 1C

pp.H/ D .1C
pp.H//

�, hence KC
pp is a Krein space

and

K D KC

pp ˚ .KC

pp/
?:

3.3. C
˛ functional calculus. In this subsection we recall some results of [9], ex-

tending earlier results of [19, 22] on the continuous functional calculus for de�ni-

tizable operators. It turns out that a de�nitizable operator H admits a functional

calculus associated to the algebra of bounded continuous functions on R having

an asymptotic expansion of a speci�c order at each critical point of H (see De�-

nition 3.11).

Let yR D R [ ¹1º be the one point compacti�cation of R, so that C.yR/ is

identi�ed with the set of continuous functions R ! C having a �nite limit at 1.

We equip yR � N with the order relation de�ned by .�; s/ � .�; t / if and only

if � D � and s � t . If ! D .�; s/ 2 yR � N we denote by �! the rational function

equal to .x � �/s if � 2 R and x�s if � D 1. We set also �! D ��1
! .

De�nition 3.8. Let ! D .�; s/ 2 yR � N. We denote by C!.yR/ the space of

functions ' 2 C.yR/ such that there is a polynomial P with

'.x/ D

8

<

:

P.x � �/C o.jx � �js/; if � 2 R;

P.1=x/C o.jxj�s/; if � D 1:

Clearly C�.yR/ � C!.yR/ if � � !. If ' 2 C!.yR/ then the terms of degree

� s of P are uniquely determined, hence there is a unique sequence of complex

numbers ¹ı�.'/º��! such that the rational function

TC
! ' WD

X

��!

ı�.'/�� (3.6)

satis�es

'.x/ D TC
! '.x/C o.j�!.x/j/: (3.7)

Set

T!' WD
X

�<!

ı�.'/��; R!' WD �!.' � T!'/; (3.8)

so that

' D T!' C �!R!':
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Note that if ! D .�; 0/ then R!' D '. If follows that

k'k! WD
X

��!

sup jR�'j

is a norm on C!.yR/ dominating the sup norm.

An element ! 2 yR � N may be seen as a function yR ! N with support

containing at most one point. A function ˛ W yR ! N with �nite support is called

an order function. We write

! � ˛

if

! D .�; s/ 2 yR � N and s � ˛.�/:

�en

! � ˛

means

! � ˛ and s < ˛.�/:

To each de�nitizable operator one can associate a natural order function.

De�nition 3.9. LetH be a de�nitizable operator on K.

(1) To each de�nitizing polynomial p forH we associate an order function ˇ as

follows: if � 2 R then ˇ.�/ is the multiplicity of � as zero of p and ˇ.1/ D 0

if p is of even degree and ˇ.1/ D 1 if p is of odd degree.

(2) �e order function ˛H ofH is the in�mum over all de�nitizing polynomials

for H of the above functions ˇ.

If ˛ is an order function, we set

C ˛.yR/ WD
\

!�˛

C!.yR/;

which, equipped with the norm k'k˛ WD sup!�˛ k'k! , is a unital Banach �-

algebra for the usual operations.

�e following theorem is shown in [9, �eorem 4.9]

�eorem 3.10. LetH be a self-adjoint de�nitizable operator on the Krein space

H with �.H/ � R.�en there is a unique linear continuous map

C ˛H .yR/ 3 ' 7�! '.H/ 2 B.K/

such that if '.�/ D .� � z/�1 for z 2 CnR then '.H/ D .H � z/�1. �is map is

a morphism of unital �-algebras.
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�eorem 3.10 implies an optimal estimate of the resolvent of a de�nitizable

operator. We �rst introduce some terminology.

De�nition 3.11. We set

�C.H/ WD �.H/nR
and

c.H/ WD ¹! 2 yR W ˛H .�/ ¤ 0º:

�e set c.H/ is called the set of critical points of H .

LetH be a de�nitizable operator. Note that De�nition 3.9 extends naturally to

give an order function on yC D C[ ¹1º, still denoted by ˛H . �e following result

is proved in [9, Proposition 4.15].

Proposition 3.12. With the preceding notations, there exists c > 0 such that

ck.H � z/�1k

�
X

�2�C.H/

jz � �j�˛H .�/ C jImzj�1
�

1C
X

�2c.H/\R

jz � �j�˛H .�/ C jzj˛H .1/
�

(3.9)

for all z 62 �C.H/ [ R. Note that ˛H .1/ is either 0 or 1.

We will use the following corollary of Proposition 3.12, giving estimates on

.H � z/�1 in a bounded region or in a conic neighborhood of in�nity in CnR.

Corollary 3.13. Let for R; a; ı > 0,

U0.R; a/ D ¹z 2 C W 0 < jImzj < a; jRezj � Rº;
and

U1.R; ı/ D ¹z 2 C W 0 < jImzj � ıjRezj; jRezj � Rº;

whereR; a are chosen such that �C.H/ does not intersectU0.R; a/ andU1.R; ı/.

�en there exists C > 0 such that

k.H � z/�1k �

8

<

:

C jImzj�m�1 for z 2 U0.R; a/;

C hzi˛H .1/jImzj�1 for z 2 U1.R; ı/;

where m D sup�2R ˛H .�/.



Resolvent and propagation estimates for Klein–Gordon equations 131

It is sometimes convenient to have a concrete expression of '.H/ if ' 2
C1

0 .R/. Let Q' 2 C1
0 .C/ be an almost-analytic extension of ', satisfying

Q'jR D ';

ˇ

ˇ

ˇ

ˇ

@ Q'.z/
@ Nz

ˇ

ˇ

ˇ

ˇ

� CN jImzjN ; for all N 2 N:

For m 2 N we set

k'km WD
X

0�k�m

k@k
x'k1:

�en we have

'.H/ D i

2�

ˆ

C

@ Q'
@ Nz .z/.z �H/�1dz ^ d Nz; (3.10)

where due to Corollary 3.13 the integral is norm-convergent and one has

k'.H/k � Ck'km; for some m 2 N: (3.11)

3.4. Borel functional calculus. In this subsection we extend the results of Sub-

section 3.3 to cover the Borel functional calculus. Similar results were already

obtained by Jonas [19], see also [36], although we believe that our approach is

simpler and more transparent.

�e standard method to obtain a Borel functional calculus from a continuous

one relies on the Riesz and monotone class theorems (see �eorem B.1 and the

beginning of the Appendix B for details).

In our case we have to follow the same procedure, starting from the algebra

C ˛.yR/ instead of C.yR/. In turns out that the resulting algebra is not an algebra of

functions on yR, because after a bounded limit, the top order term in the asymptotic

expansion (3.7) is not uniquely determined. Instead the resulting algebra is a direct

sum of a sub-algebra of bounded Borel functions satisfying (3.12) below, and of a

�nite dimensional space.

We �rst introduce some de�nitions. Denote by B.yR/ the space of bounded

Borel functions on yR.

De�nition 3.14. Let ! D .�; s/ 2 yR � N. We denote by L!.yR/ the space of

functions ' 2 B.yR/ such that there is a polynomial P with

'.x/ D

8

<

:

P.x � �/CO.jx � �js/ if � 2 R;

P.1=x/CO.jxj�s/ if � D 1:
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Again L�.yR/ � L!.yR/ if � � !. If ' 2 L!.yR/ for ! D .�; s/, s � 1,

the terms of degree < s of P are uniquely determined, hence there is a unique

sequence ¹ı�.'/º�<! such that the rational function T!' de�ned in (3.8) satis�es

'.x/ D T!'.x/CO.j�!.x/j/: (3.12)

If ! D .�; 0/ we set ı!.'/ WD '.�/. We equip L!.yR/ with the norm k'k! as

before and if ˛ is an order function, we introduce the space

L˛.yR/ WD
\

!�˛

L!.yR/

equipped with the norm k'k˛ .

Clearly L˛.yR/ is a unital Banach �-algebra for the usual algebraic operations.

De�nition 3.15. Let

Q̨ D ¹.�; ˛.�// W � 2 supp˛º � yR � N:

We set

ƒ˛ WD L˛.yR/˚ C
Q̨ ;

and
I W C ˛.yR/ �! ƒ˛;

' 7�! .'; .ı!.'//!2 Q̨ /:

For ' D .'0; .a!/!2 Q̨/ 2 ƒ˛ and ! � ˛, we de�ne

ı!.'/ WD

8

<

:

ı!.'
0/ if ! 62 Q̨ ;

a! if ! 2 Q̨ ;

which allows to write ' as .'0; .ı!.'//!2 Q̨ /. We can then equip ƒ˛ with a �-al-

gebra structure by setting

' WD .'ı; .ı!.'//!2 Q̨/ � . ı; .ı!. //!2 Q̨/

D
�

'ı ı;
�

X

�C�D!

ı�.'/ı�. /
�

!2 Q̨

�

;

and

.'0; .ı!.'//!2 Q̨/
� WD .'0; .ı!.'//!2 Q̨ /:

It is easy to see that ƒ˛ , equipped with the norm

k'kƒ˛
D max

!�˛
max

®

k'ık!;
P

��!jı�.'/j
¯

(3.13)

is a unital Banach �-algebra with .1; 0/ as unit. �e embedding I W C ˛.yR/ ! ƒ˛

is isometric hence C ˛.yR/ is identi�ed with a closed �-subalgebra of ƒ˛.
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De�nition 3.16. A sequence .'n/n2N in ƒ˛ is b-convergent to ' if

sup
n

k'nkƒ˛ < 1 and lim
n
ı!.'n/ D ı!.'/

for each ! � ˛.

Clearly the b-convergence of .'n/ to ' implies the b-convergence of .'0
n/ to '0.

�e main result of this subsection is the following theorem which is the natural

extension of �eorem 3.10 to the Borel case.

�eorem 3.17. Let H be a self-adjoint de�nitizable operator on a Krein space

K with �.H/ � R and order function ˛H . �en there is a unique linear weakly

b-continuous map

ƒ˛H 3 ' 7�! '.H/ 2 B.K/

such that if ' D I rz , with rz.�/ D .� � z/�1 and z 2 CnR, then

'.H/ D .H � z/�1:

�is map is a norm continuous morphism of unital �-algebras.

�e proof will be given in Appendix B.

Corollary 3.18. Let H a self-adjoint de�nitizable operator as above. Let J � yR
an open set such that xJ \ supp˛H D ; and BJ .yR/ � B.yR/ be the �-ideal of

functions supported in xJ . �en the map

BJ .yR/ 3 ' 7�! '.H/ WD .'; 0/.H/ 2 B.K/

is a �-morphism, continuous for the norm topologies of BJ .yR/ and B.K/ and

weakly b-continuous.

Proof. Let us denote by CJ .yR/ � C.yR/ the �-ideal of functions supported in xJ .

ClearlyCJ .yR/ � C ˛H .yR/ isometrically. Moreover I' D .'; 0/ for all' 2 CJ .yR/,
if I W C ˛H .yR/ ! ƒ˛H is de�ned in De�nition 3.15. Finally if 'n 2 BJ .yR/ and

b� limn 'n D ' then b� limn.'n; 0/ D .'; 0/ 2 ƒ˛ . �ese facts imply the corol-

lary.
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3.5. Existence of the dynamics. Let us mention a well-known consequence of

Corollary 3.18 about the existence of the dynamics generated by an even-de�niti-

zable operator.

Let H be even-de�nitizable, ft W x 7! eitx and � 2 C1
0 .R/ such all �nite

critical points of H are in the support of �. We write ft D �ft C .1 � �/ft , and

extend .1 � �/ft arbitrarily at 1. We can de�ne .�ft /.H/ by �eorem 3.10 and

..1 � �/ft /.H/ by Corollary 3.18. We set then

ft .H/ WD .�ft /.H/C ..1� �/ft /.H/ 2 B.K/;

which is independent on the choice of � with the above properties.

�e space KC
pp D 1

C
pp.H/K is �nite dimensional and invariant underH , hence

we can obviously de�ne .eitH /jKC
pp

. We then set

eitH WD ft .H/C .eitH /jKC
pp
; t 2 R:

It is easy to see that ¹eitH ºt2R is a C0-group on K, with .eitH /� D e�itH , i.e. a

unitary C0-group on .K; h� j �i/. Moreover H is the generator of ¹eitH ºt2R and

there exist C; � > 0, n 2 N such that

k.eitH /jKC
pp

k � C e�jt j; k.eitH /j.KC
pp/?k � C htin; t 2 R: (3.14)

4. Abstract Klein–Gordon equations

Let us discuss in more details the Klein–Gordon equation (1.1). �e scalar product

on H will be denoted by .ujv/ or sometimes by Nu � v.

To associate a generator to (1.1) one has to turn this equation into a �rst order

evolution equation. It turns out that there are several ways to do this, leading to

di�erent generators, and di�erent topological spaces of Cauchy data.

In order to present the results of this paper, we �rst discuss these questions in

an informal way, without worrying about the problems of existence, uniqueness

or even the meaning of solutions to (1.1).

4.1. Symplectic setup. �e most natural approach is to consider Y D H ˚ H

whose elements are denoted by .'; �/, and to equip it with the complex symplectic

form (i.e. sesquilinear, non-degenerate, anti-hermitian)

.'1; �1/!.'2; �2/ WD �1 � '2 � '1 � �2:

�e classical Hamiltonian is

E.'; �/ WD .� C ik'/ � .� C ik'/C N' � h':
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We consider!;E as maps from Y to Y�, where Y� is the space of anti-linear forms

on Y and set

A WD �i!�1E D
�

k �i

ih0 k

�

; (4.15)

for h0 D h C k2. In other words eitA is the symplectic �ow obtained from the

classical Hamiltonian E.

If we set
�

'.t/

�.t/

�

WD eitA

�

'

�

�

then

�.t/ WD '.t/

solves the Cauchy problem

8

<

:

@2
t �.t/ � 2ik@t�.t/C h�.t/ D 0;

�.0/ D '; @t�.0/ D � C ik':

4.2. Quadratic pencils and stationary solutions. If we look for a solution of

equation (1.1) of the form �.t/ D eitz� (or equivalently set i�1@t D z), we obtain

that � should solve

p.z/� D 0; for p.z/ D h0 � .k � z/2:

�e map z 7! p.z/, called a quadratic pencil, is further discussed in Subsec-

tion 2.2.

4.3. Charge setup. Since we work on a complex symplectic space, it is more

convenient to turn the symplectic form ! into a hermitian form. In fact setting

f WD
�

'

i�1�

�

D
�

f0

f1

�

the hermitian form

q WD i!;

called the charge, takes the form

Nf qf D .f1jf0/C .f0jf1/;

and the energy E becomes

E.f; f / D kf1 C kf0k2 C .f0jhf0/:
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Note that from (4.15) we obtain

E.f; f / D Nf qKf: (4.16)

If

f .t/ WD eitKf; for K WD
�

k 1

h0 k

�

;

then �.t/ D f0.t / solves the Cauchy problem

8

<

:

@2
t �.t/� 2ik@t�.t/C h�.t/ D 0;

�.0/ D f0; i�1@t�.0/ � k�.0/ D f1:

4.4. PDE setup. Finally let us describe the standard setup used in partial di�er-

ential equations. We set

f .t/ D eitHf; for H WD
�

0 1

h 2k

�

;

and �.t/ D f0.t / solves the Cauchy problem

8

<

:

@2
t �.t/ � 2ik@t�.t/C h�.t/ D 0;

�.0/ D f0; i�1@t�.0/ D f1:

�e charge and energy become

Nf qf D .f1jf0/C .f0jf1/ � 2.f0jkf0/;

E.f; f / D kf1k2 C .f0jhf0/:

Note that if

ˆ D
�

1 0

k 1

�

;

then Hˆ D ˆK.

4.5. �e choice of functional spaces. Let us now discuss the choice of the pos-

sible topologies to put on the spaces of Cauchy data. We will use the abstract

Sobolev spaces hhisH and jhjsH associated to the self-adjoint operator h, whose

de�nition and properties are given in Subsection 2.1.
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�e �rst natural choices correspond to topologies for which the symplectic

form ! is bounded. Note that our choice of Y D H ˚ H as symplectic space

in Subsection 4.1 was quite arbitrary. In fact we can choose a re�exive Banach

space G and set Y D G ˚ G� equipped with

Ng!f WD hg1 j f0i � hg0 j f1i;

where hg0 j f1i D f1.g0/ and hg1 j f0i D hf0 j g1i. Clearly ! is sesquilinear,

anti-hermitian, non degenerate and bounded on Y.

Examples of such symplectic spaces are the charge spaces

K� D hhi��H ˚ hhi�H; PK� D jhj��H ˚ jhj�H; � � 0:

In this case it is convenient to use the charge setup. An additional requirement is

of course thatK should be well de�ned as a closed operator onK� or PK� , possibly

with non-empty resolvent set, and thatK be the generator of a strongly continuous

group eitK .

Another possibility often used in partial di�erential equations is to forget about

the symplectic form and consider instead spaces on which the energyE is bounded.

It is then more convenient to use the PDE setup, and to work with the generatorH .

Reasonable choices are then the energy spaces

E D hhi� 1
2H ˚ H; PE D jhj� 1

2H ˚ H:

To select convenient spaces among all these, it su�ces to consider the ’static’

Klein–Gordon equation

@2
t �.t/C �2�.t/ D 0; (4.17)

corresponding to h D �2, k D 0 (we assume of course that � � 0 is unbounded).

In this case we have

H D K D
�

0 1

�2 0

�

DW H0:

On any space of Cauchy data, the group eitH0 will be formally given by

eitH0 D
�

cos.�t/ i��1 sin.�t/

i� sin.�t/ cos �t

�

:

We see that among these spaces the only ones on which eitH0 is bounded are PE,

E, PK 1
4

and K 1
4
. �e �rst two are the usual homogeneous and non-homogeneous

energy spaces. �e last two are called the homogeneous and non-homogeneous

charge spaces. Note that the space PK 1
4

appears naturally as the one-particle space

in the Fock quantization of (4.17).

In this paper we consider the two operatorsH acting on E andK acting onK 1
4
.
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5. Klein–Gordon operators in energy spaces

In this section we discuss the properties of the operatorH in Subsection 4.4 con-

sidered as acting on the energy spaces E or PE.

5.1. Non-homogeneous energy space. Let us �x a self-adjoint operator h on H

and a bounded, symmetric operator k W hhi� 1
2H ! H as in Subsection 2.2.

�e energy space E and its adjoint space E� are de�ned by

E WD hhi� 1
2H ˚ H and E� WD H ˚ hhi 1

2H; (5.1)

where we used the convention explained in Subsection 2.1. We have a continuous

and dense embedding E � E�.

Lemma 5.1. (1) h W hhi� 1
2H

�! hhi 1
2H if and only if 0 2 �.h/ if and only if

0 2 �.h; k/.
(2) If 0 2 �.h/ then E equipped with the hermitian sesquilinear form

hf j f iE WD .f0 j hf0/C .f1 j f1/

is a Krein space.

(3) If, in addition, Tr1��1;0�.h/ < 1, then .E; h� j �iE/ is Pontryagin.

Proof. (1) follows from Lemma 2.2. (2) and (3) are immediate.

5.2. Klein–Gordon operators on energy space. We set

yH WD
�

0 1

h 2k

�

2 B.E;E�/: (5.2)

De�nition 5.2. �e energy Klein–Gordon operator is the operatorH induced by
yH in E. Its domain is given by

DomH WD D D hhi�1H ˚ hhi� 1
2H D . yH � z/�1E; z 2 �.h; k/: (5.3)

We have

H D
�

0 1

h 2k

�

:
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Proposition 5.3. (1) One has �.H/ D �.h; k/.

(2) In particular, if �.h; k/ ¤ ;, then H is a closed densely de�ned operator

in E and its spectrum is invariant under complex conjugation.

(3) If z 2 �.h; k/ then

.H � z/�1 D p.z/�1

�

z � 2k 1

h z

�

: (5.4)

Proof. We will prove (1) and (3). Note that (2) will follow then from Lemma 2.2.

Let z 2 �.H/. If f0 2 hhi�1H with p.z/f0 D 0, then f D .f0; zf0/ 2
Ker.H�z/; hence f0 D 0. If g1 2 H, then g D .0; g1/ 2 E and if f D .H�z/�1g

then p.z/f0 D g1, hence

p.z/ W hhi�1H
��! H

and z 2 �.h; k/. �erefore �.H/ � �.h; k/.

Conversely let z 2 �.h; k/ so that p.z/ W hhi�1H
�! H. We shall show that

z 2 �.H/ and

.H � z/�1 D
�

`w `

`h z`

�

; ` D p.z/�1; w D z � 2k; (5.5)

completing the proof of (1) and (3). One must interpret carefully the operators

appearing in the matrix above because .H � z/�1 must send E into D. More

precisely, since hf0 2 hhi 1
2H if f0 2 hhi� 1

2H, the factor ` in the product `h is not

the inverse of p.z/ W hhi�1H
�! H but of its extension

p.z/ W hhi� 1
2H

��! hhi 1
2H:

We can do this thanks to Lemma 2.2. Now a mechanical computation implies

�

`w `

`h z`

��

�z 1

h 2k � z

��

f0

f1

�

D
�

`w `

`h z`

��

�zf0 C f1

hf0 � wf1

�

D
�

f0

f1

�

;

for all f D .f0; f1/ 2 D.
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Similarly for g D .g0; g1/ 2 E we compute
�

�z 1

h 2k � z

��

`w `

`h z`

��

g0

g1

�

D
�

�z 1

h �w

��

`wg0 C `g1

`hg0 C z`g1

�

D
�

g0

g1

�

;

which holds because h`w D w`h on hhi� 1
2H, where ` is the inverse of the map

p.z/ W hhi� 1
2H ! hhi 1

2H. �us z 2 �.H/ and .H � z/�1 is given by (5.5).

�eorem 5.4. Assume that 0 2 �.h/.
(1) H is a self-adjoint operator on the Krein space .E; h� j �iE/ with �.H/ ¤ ;.

(2) If in addition Tr1��1;0�.h/ < 1, then H is even-de�nitizable.

Proof. If 0 2 �.h/ then 0 2 �.h; k/ D �.H/ and from (5.5) we get

H�1 D
�

�2h�1k h�1

1 0

�

: (5.6)

By Lemma 3.3 it su�ces to show that .H�1/� D H�1, which is a simple compu-

tation. �is proves (1). Since any self-adjoint operator with non-empty resolvent

set on a Pontryagin space is even-de�nitizable, (2) follows from Lemma 5.1.

Remark 5.5. We make some comments on the relationship between our frame-

work in Section 5 and the one used by Langer, Najman, and Tretter in [23], devoted

to abstract Klein–Gordon operators on energy spaces. �e main di�erence with

respect to [23] come from the fact that our conditions are stated in terms of h in-

stead of h0. One argument in favor of using h is that h appears naturally in the

de�nition of the Krein scalar product h� j �iE. On the other hand, in many concrete

situations, like the charged Klein–Gordon equation on Minkowski space, where

h0 D ��Cm2 and k is a real potential, it is also natural to view h as a perturbation

of h0 and to use h0 as the reference operator.

In [23] it is assumed that h0 � c0 > 0 (in particular, the wave equation is not

considered) and that k is a symmetric operator whose domain contains hh0i�1=2H.

Other conditions are needed to get deeper facts, e.g. in [23] it is required that

1 � h
�1=2
0 k2h

�1=2
0 be a boundedly invertible operator on H to get a convenient

de�nition of h. In our setting, h is given (with no assumptions on its spectrum)

and we require hhi�1=2H � D.k/.
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Suppose that both h0 and h are bounded from below. �en it is easy to see

that hhi�1=2H D hh0i�1=2H and the results of this section and of Section 7 are

essentially equivalent to those in [23]. However, the operator h in [23] could be

unbounded from below and then there is no straightforward relation between their

results and ours.

5.3. Homogeneous energy space. Assume that Kerh D ¹0º. �en we can in-

troduce the homogeneous energy space

PE WD jhj� 1
2H ˚ H; (5.7)

equipped with his canonical Hilbert space structure. Note that E � PE continuously

and densely. Of course E D PE if and only if 0 2 �.h/, so the typical situation

considered in the sequel is 0 2 �.h/.
�e following analog of Lemma 5.1 is obvious.

Lemma 5.6. Assume that Kerh D ¹0º. �en PE equipped with h� j �iE is a Krein

space. If in addition Tr1��1;0�.h/ < 1, then PE is Pontryagin.

5.4. Klein–Gordon operators on homogeneous energy space.

De�nition 5.7. �e (homogeneous) energy Klein–Gordon operator is the operator
PH induced by yH in PE. Its domain is given by

PD D .jhj� 1
2H \ jhj�1H/˚ hhi� 1

2H D ¹f 2 PE W yHf 2 PEº: (5.8)

which is continuously and densely embedded in PE. We have

PH D
�

0 1

h 2k

�

: (5.9)

Since E � PE and D � PD continuously and densely,H may also be considered

as an operator acting in PE. We shall prove below that PH is its closure in PE.

Proposition 5.8. (1) �. PH/ D �.h; k/.

(2) In particular, if �.h; k/ ¤ ; then PH is a closed densely de�ned operator

in PE and its spectrum if invariant under complex conjugation.

(3) For z 2 �.h; k/, z ¤ 0 we have

. PH � z/�1 D
�

z�1p.z/�1h � z�1 p.z/�1

p.z/�1h zp.z/�1

�

: (5.10)
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Remark 5.9. It would be tempting to take the expression in (5.4) for . PH � z/�1.

�e trouble is that kf0 does not have an obvious meaning under our assumptions

on k if f0 2 jhj� 1
2H. We obtain a meaningful formula for . PH � z/�1 by noting

that .2k � z/ D z�1.p.z/� h/ for z ¤ 0.

Proof. Let us �rst prove that �. PH/ � �.h; k/. Let z 2 �. PH/. Assume �rst that

z ¤ 0. �en for g1 2 H and g D .0; g1/ 2 PE there exists a unique

f D .f0; f1/ 2 PD

such that

. PH � z/f D g

i.e.

f1 D zf0 and p.z/f0 D g1:

Since f1 D zf0 2 H and z ¤ 0 it follows that f0 2 hhi�1H hence

p.z/ W hhi�1H
��! H

and z 2 �.h; k/.
If 0 2 �. PH/, then for all .g0; g1/ 2 PE there exists a unique

.f0; f1/ 2 jhj�1H \ jhj� 1
2H ˚ hhi� 1

2H

with

f1 D g0 and hf0 C 2kf1 D g1:

�is implies that

jhj� 1
2H D hhi� 1

2H;

hence 0 2 �.h/, hence 0 2 �.h; k/.
We now prove that �.h; k/ � �. PH/ and that (5.10) holds for z 2 �.h; k/, z ¤ 0.

First, let z 2 �.h; k/ with z ¤ 0, g D .g0; g1/ 2 PE, and .f0; f1/ given by the

right hand side of (5.10) applied to g. We begin by proving that f 2 PD.

Note that

p.z/�1g1 2 hhi�1H � jhj�1H \ jhj� 1
2H;

and

hg0 2 jhj 1
2H � hhi 1

2H;

hence

p.z/�1hg0 2 hhi� 1
2H:
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It follows that

f1 D p.z/�1hg0 C zp.z/�1g1 2 hhi� 1
2H:

�e same argument shows that

f0 D z�1p.z/�1hg0 � z�1g0 C p.z/�1g1 2 jhj� 1
2H:

It remains to prove that f0 2 jhj�1H i.e. that hf0 2 H. Since p.z/�1g1 2 hhi�1H

it su�ces to prove that z�1h.p.z/�1h � 1/g0 2 H. Note that

z�1h.p.z/�1h � 1/g0 D z�1.hp.z/�1 � 1/hg0 D .z � 2k/p.z/�1hg0:

Since g0 2 jhj� 1
2H, hg0 2 Phhi

1
2H � hhi 1

2H, we obtain that p.z/�1hg0 2 hhi� 1
2H

hence .z � 2k/p.z/�1hg0 2 H. �is completes the proof of the fact that f 2 PD.

It remains to prove that . PH � z/f D g, which is a standard computation.

Finally assume that 0 2 �.h; k/. �en 0 2 �.h/ which implies that PE D E and
PH D H . �en by Proposition 5.3, 0 2 �.H/. �is completes the proof of (1), (3)

and of the �rst statement of (2).

�eorem 5.10. Assume that there exists z 2 �.h; k/ with z ¤ 0.

(1) �en PH is self-adjoint on . PE; h� j �iE/ and �.H/ ¤ ;.

(2) If in addition Tr1��1;0�.h/ < 1, then PH is even-de�nitizable.

Proof. An easy computation using (5.10) shows that .. PH � z/�1/� D . PH � Nz/�1.

�en (1) follows from Lemma 3.3. (2) follows as before from Lemma 5.6.

We now describe the relationship between the two operators H and PH .

Proposition 5.11. (1) PH is the closure of H in PE.

(2) for z 2 �.h; k/, z ¤ 0, . PH � z/�1 maps E into D and

.H � z/�1 D . PH � z/�1
jE :

(2) there exists C > 0 such that for all z 2 �.h; k/, z ¤ 0 one has

k.H � z/�1gkE � C..1C jzj�1/k. PH � z/�1gk PE C jzj�1kgkE/; g 2 E:

Proof. If f D .f0; f1/ 2 PD, we pick a sequence f n
0 2 hhi�1H with f n

0 ! f0 in

jhj�1H\jhj� 1
2H. �en f n D .f n

0 ; f1/ 2 D and f n ! f in PD,Hf n ! PHf in PE,

which proves (1). To prove (2) it su�ces to note that .2k � z/ D z�1.p.z/� h/ on

hhi� 1
2H, which proves that on E the right hand side of (5.4) and (5.10) coincide.
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To prove (3) we use that kf kE � kf k PE C kf0kH. If f D .H � z/�1g then

f0 D z�1.f1 � g0/, hence

kf0kH � jzj�1.kf1kH C kg0kH/ � jzj�1.k.H � z/�1gk PE C kgkE/;

which proves (3).

Proposition 5.11 has some direct consequences for the estimates on the qua-

dratic pencil that we collect below.

Corollary 5.12. Assume that there exists z 2 �.h; k/, z ¤ 0 and that

Tr1��1;0�.h/ < 1:

�en we have the estimates on the quadratic pencil

khhi 1
2p.z/�1kB.H/ �

8

<

:

C..1C jzj�1/jImzj�m�1 C jzj�1/; z 2 U0.R; a/;

C..1C jzj�1/hzik jImzj�1 C jzj�1/; z 2 U1.R; a/:
;

and

kp.z/�1kB.H/ �

8

ˆ

ˆ

<

ˆ

ˆ

:

C

jzj..1C jzj�1/jImzj�m�1 C jzj�1/; z 2 U0.R; a/;

C

jzj..1C jzj�1/hzik jImzj�1 C jzj�1/; z 2 U1.R; a/:

Proof. By Corollary 3.13 and Proposition 5.11 we obtain

k.H � z/�1kB.E/ �

8

<

:

C..1C jzj�1/jImzj�m�1 C jzj�1/; z 2 U0.R; a/;

C..1C jzj�1/hzik jImzj�1 C jzj�1; z 2 U1.R; a/:

Using (5.4) we see that we have

k.H � z/�1.0; f /k2
E

D khhi 1
2p.z/�1f k2

H
C jzj2kp.z/�1f k2

H
;

which gives the result.

6. Klein–Gordon operators in charge spaces

In this section we discuss in a way parallel to Section 5 the properties of the op-

erator K in Subsection 4.3 considered as acting on the non-homogeneous charge

space K 1
4

introduced in Subsection 4.5.

Note that K acting on the homogeneous charge space PK 1
4

could also be con-

sidered, at the price of some technical complications.
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6.1. Non-homogeneous charge spaces. In this subsection, we consider a pair of

operators .h; k/ satisfying the conditions in Subsection 2.2. Note that by duality

and interpolation we see that

k 2 B.hhi��H; hhi 1
2

��H/; 0 � � � 1

2
: (6.1)

We de�ne the (non-homogeneous) charge spaces of order �

K� WD hhi��H ˚ hhi�H; 0 � � � 1

2
: (6.2)

and observe that E � K� � E� continuously and densely. Note also that if

q.f; g/ WD .f0 j g1/H C .f1 j g0/H (6.3)

then .K� ; q/ are Krein spaces.

As we saw in Subsection 4.5, the middle space

F WD K 1
4
; (6.4)

which equals the complex interpolation space ŒE;E�� 1
2

is natural even in the case

of free Klein–Gordon equations. We will forget the order 1
4

and call it the non-

homogeneous charge space.

6.2. Klein–Gordon operators on non-homogeneous charge space. We set

yK WD
�

k 1

h0 k

�

2 B.E;E�/:

Note that there is a simple relation between yK and yH de�ned in (5.2): indeed, if

ˆ D ˆ.k/ D
�

1 0

k 1

�

hence ˆ

�

f0

f1

�

D
�

f0

kf0 C f1

�

(6.5)

then a straightforward computation using (6.1) gives

Lemma 6.1. �e map

ˆ D ˆ.k/ W E� �! E�

is an isomorphism with inverse

ˆ�1 D ˆ.�k/:

�e subspaces E and F are stable under ˆ and the restrictions of ˆ to these sub-

spaces are bijective. We have
yHˆ D ˆ yK:
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De�nition 6.2. �e charge Klein–Gordon operator is the operator K induced by
yK in F. Its domain is given by

Dom K WD ¹f 2 F W yKf 2 Fº: (6.6)

We have

K D
�

k 1

h0 1

�

:

Proposition 6.3. (1) One has �.K/ D �.h; k/.

(2) In particular, if �.h; k/ ¤ ; then K is a closed, densely de�ned operator

in F and its spectrum is invariant under complex conjugation.

(3) If z 2 �.h; k/ then

.K � z/�1 D
�

�p.z/�1.k � z/ p.z/�1

1 C .k � z/p.z/�1.k � z/ �.k � z/p.z/�1

�

: (6.7)

Proof. It su�ces to prove (1) and (3). We will set

l D p.z/�1 and u D k � z

to simplify the notation.

Let z 2 �.K/. If f0 2 hhi� 1
2H and f1 D �uf0 2 H then

h0f0 C uf1 D .h0 � u2/f0 D p.z/f0;

hence

.K� � z/.f0; f1/
t D .0; p.z/f0/

t :

�us if p.z/f0 D 0, then .K � z/.f0; f1/
t D 0; in particular .f0; f1/

t 2 DomK,

and so f0 D 0. Hence

p.z/ W hhi� 1
2H �! hhi 1

2H

is injective. Now let b 2 H. Since .K � z/DomK D F and .0; b/t 2 F, there are

f0 2 hhi� 1
2H and f1 2 H such that K�.f0; f1/

t D .0; b/t , hence

uf0 C f1 D 0 and h0f0 C uf1 D b;

or

p.z/f0 D b:
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But

p.z/ D h � z2 C 2zk;

hence

hf0 D b C z2f0 � 2zkf0 2 H;

so

f0 2 hhi�1H:

�is proves that

p.z/hhi�1H D H;

and so

p.z/ W hhi�1H
��! H;

and z 2 �.h; k/.
Conversely let z 2 �.h; k/, so that

p.z/ W hhi� 1
2H

��! hhi 1
2H:

Let

G D
�

�`u `

1 C u`u �u`

�

be the right hand side of (6.7). Clearly G 2 B.E;E�/ and a simple computation

gives

. yK � z/G D 1 on E�

and

G. yK � z/ D 1 on E.

So G is the inverse of

yK � z W E �! E�:

If a 2 hhi� 1
2H, b 2 hhi 1

2H, and .f0; f1/
t WD G.a; b/t then

uf0 C f1 D a and h0f0 C uf1 D b;

hence

.f0; f1/
t 2 DomK:
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�us GF � DomK. Reciprocally, if .f0; f1/
t 2 DomK then

.a; b/t WD .K � z/.f0; f1/
t

belongs to F by (6.6) and

G.a; b/t D .f0; f1/
t

by the preceding computation. �us DomK � GF. So

GF D DomK

and

K � z W DomK
��! F

with inverse given by the restriction of G to F.

We deduce from Proposition 6.3 the following analog of �eorem 5.4.

�eorem 6.4. Assume that �.h; k/ ¤ ;. �en K is a self-adjoint operator on the

Krein space .F; q/ with �.K/ ¤ ;.

Since we saw that yH D ˆ yKˆ�1 andˆ preservesF, it is instructive to describe

the operator ˆKˆ�1. Note that if we compute the image of the canonical Krein

structure q on F under ˆ we get

q0.f; g/ WD q.ˆ�1f;ˆ�1g/ D q.f; g/� 2.f0jkg0/H: (6.8)

Lemma 6.5. (1) ˆKˆ�1 is equal to the operator induced by yH on F.

(2) ˆKˆ�1 is equal to the restriction of yH to the domain

ˆDomK D hhi�3=4H ˚ hhi�1=4H D ŒDomH;E� 1
2
:

Proof. (1) is obvious, (2) is a routine computation.

Remark 6.6. As in Section 5, let us make some comments on the relationship

between our approach and the one of [24], devoted to Klein–Gordon operators on

charge spaces. �e comparison between the formulation of the abstract conditions

done in Remark 5.5 still applies. In [24], the operator yK is considered on the h0

version of the charge space K 1
4
, with equivalent results to those of Section 6 if h0

and h are both bounded below. However [24] also consider yK on K0 D H ˚ H,

which is not considered in this paper, for reasons explained in Subsection 4.5.
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Another di�erence is that in [24] the operator yK on K0 or K 1
4

is studied using

the theory of de�nitizable operators on Krein spaces. In our paper the results for
yK on K 1

4
, like existence of a Borel functional calculus or resolvent estimates are

deduced from those for yH on energy spaces, either by duality and interpolation

arguments, or by reduction to estimates for the quadratic pencil p.z/.

7. De�nitizable Klein–Gordon operators on energy spaces

In this section, we describe some basic properties of a class of de�nitizable Klein–

Gordon operators on the energy spaces E and PE. We also describe an approximate

diagonalization of PH , which will be useful later on.

We will assume

Kerh D ¹0º(E1)

Tr1��1;0�.h/ < 1;(E2)

kjhj� 1
2 2 B.H/:(E3)

Condition (E1) implies

khhi� 1
2 2 B.H/;(E30)

hence the results of Section 5 hold. Moreover (E2) implies that h is bounded

below, hence �.h; k/ ¤ ; by Proposition 2.3.

We set

m2 WD inf �.h/ \ R
C; m � 0:

�e constantm is called the mass, Klein–Gordon equations will be called massive

resp. massless if m > 0 resp. m D 0. A more common name for a massless

Klein–Gordon equation is of course a wave equation.

Note that (E1) and (E2) imply that �ess.h/ � RC. Moreover if both (E2)

and (E2) hold andm > 0 then 0 62 �.h/ hence jhj � hhi hence PE D E and PH D H .

By �eorem 5.10, we obtain that if (E1)–(E3) holds then PE equipped with h� j �iE
if a Pontryagin space and PH de�ned in De�nition 5.7 is even-de�nitizable.
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Proposition 7.1. Assume (E1)–(E3) and let U be a compact set with U � �. PH/
if m > 0 and U � �. PH/n¹0º if m D 0. �en there exists C > 0 such that

k. PH � z/�1kB. PE�; PE/ � C C Ck. PH � z/�1kB. PE/; z 2 U: (7.1)

Proof. If m D 0 and z 2 �. PH/, z ¤ 0, then . PH � z/�1 is given by the right hand

side of (5.4), using that k 2 B.jhj� 1
2H;H/. �is also implies that

p.z/�1h D 1 C zp.z/�1.z � 2k/:

�en an easy computation shows that . PH � z/�1 2 B. PE�; PE/. If m > 0 and

z 2 �. PH/ then the same result holds using that H D PH and PE D E.

Let us prove the bound (7.1). We assume m D 0, the proof for m > 0 being

simpler. We have

k. PH � z/�1kB. PE�; PE/ � C.kjhj 1
2p.z/�1.z � 2k/kB.H/ C kjhj 1

2p.z/�1�kB.H/

C kzp.z/�1.z � 2k/kB.H/ C p.z/�1jhj 1
2 kB.K//

� Ckhhi 1
2p.z/�1hhi 1

2 kB.K/; z 2 U:
(7.2)

Next from the expression (5.10) of . PH � z/�1 we obtain that

kjhj 1
2p.z/�1kB.H/ C kp.z/�1kB.H/ � Ck. PH � z/�1kB. PE/; (7.3)

hence

khhi 1
2p.z/�1kB.H/ � Ck. PH � z/�1kB. PE/:

Taking adjoints and using that p.z/� D p. Nz/, we also get

kp.z/�1hhi 1
2 kB.H/ � Ck. PH � Nz/�1kB. PE/ � C 0k. PH � z/�1kB. PE/;

using (3.4). Since p.z/�1h D 1 C p.z/�1.z � 2k/, we obtain, for z 2 U ,

kp.z/�1hkB.H/ � C C Ckp.z/�1hhi 1
2 kB.H/ � C C Ck. PH � z/�1kB. PE/:

By (7.3) we have the same bound for kp.z/�1hhikB.H/ and for khhip.z/�1kB.H/

by taking adjoints. By interpolation we obtain for z 2 U

khhi 1
2p.z/�1hhi 1

2 kB.H/ � C C Ck. PH � z/�1kB. PE/

which using (7.2) completes the proof of (7.1).
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7.1. Functional calculus. We saw that under conditions (E1), (E2), and (E30),

the operator PH is even-de�nitizable, hence admits a C˛ and a ƒ˛ functional cal-

culus, see Subsects 3.3 and 3.4.

In this subsection, we discuss the functional calculus forH , in the casem D 0,

which is not completely straightforward, since in this case .E; h� j �iE/ is not a

Krein space. We set

˛H WD ˛ PH C 1¹0º;

where ˛ PH is the order function of PH (see De�nition 3.9).

Proposition 7.2. Assume (E1), (E2), and (E30).

(1) �ere exists a unique continuous �-morphism

C ˛H .yR/ 3 ' 7�! '.H/ 2 B.E/;

such that if

'.�/ D .� � z/�1; for z 2 �.H/nR;
then '.H/ D .H � z/�1.

(2) �ere exists a unique extension of the above map to a weakly b-continuous

map

ƒ˛H .yR/ 3 ' 7�! '.H/ 2 B.E/;

which is a norm continuous �-morphism.

Proof. By Proposition 5.11,

.H � z/�1 D . PH � z/�1
jE ; for z 2 �. PH/, z ¤ 0.

�is implies (see Proposition 3.7) that 1C
pp.

PH/ maps E into itself and de�nes a

bounded projection on E, naturally denoted by 1
C
pp.H/, which commutes withH .

Let us set

E1 WD .1 � 1
C

pp.H//E;

which is a closed subspace of E, invariant under .H � z/�1 for z 2 �.H/. Re-

placing H by HjE1
, we see that without loss of generality we can assume that

E1 D E.

Let us set

˛ D ˛ PH and ˇ D ˛H D ˛ C 1¹0º:

For ' 2 C ˇ .yR/ with '.0/ D 0 we set

Q'.x/ D x�1'.x/:
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Clearly Q' 2 C ˛.yR/ and there exists C > 0 such that

k Q'k˛ � Ck'kˇ ; for all ' 2 C ˇ .yR/ with '.0/ D 0: (7.4)

We claim that '. PH/ is bounded from E into itself. In fact if g 2 E we have

k'. PH/gkE � k'. PH/gk PE C k.'. PH/g/0kH
D k'. PH/gk PE C k. PH Q'. PH/g/1kH
D k'. PH/gk PE C k. Q'. PH/g/1kH
� k'. PH/gk PE C k Q'. PH/gk PE:

Moreover from the above inequality, �eorem 3.10 applied to PH and (7.4) we ob-

tain that

k'. PH/kB.E/ � C.k'k˛ C k Q'k˛/ � Ck'kˇ :

Now for ' 2 C ˇ .yR/ arbitrary we set  .x/ D '.x/ � '.0/ and

'.H/ WD '.0/1E C  . PH/jE:

From the fact that .H � z/�1 D .H � z/�1
jE

, we see that '.H/ D .H � z/�1

if '.x/ D .x � z/�1. �is yields the existence of the �-morphism in (1). �e

uniqueness follows from the density of the space of bounded rational functions in

C ˇ .yR/, see [9, Lemma 4.7]. We deduce (2) from (1) by the argument explained

in Appendix B.

Remark 7.3. It is easy to construct a similar functional calculus for the operator

K considered in Subsection 6.2. In fact if ' belongs to one of the algebras in

Proposition 7.2, then '.H/ is bounded on E and thus on E� by duality. Recalling

that F D ŒE;E��1=2 we see by complex interpolation that '.H/ de�nes a bounded

operator on F with similar estimates. We then de�ne

'.K/ D ˆ�1'.H/ˆ;

which is well de�ned because ˆ and ˆ�1are bounded on F.

7.2. Essential spectrum of Klein–Gordon operators. We now investigate the

essential spectrum of the operators H and PH . We set

H0 D
�

0 1

h 0

�

;

de�ned as in De�nition 5.2 for k D 0, so that DomH0 D hhi�1H ˚ hhi� 1
2H.
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Similarly we set

PH0 D
�

0 1

h 0

�

;

de�ned as in De�nition 5.7, with domain

PD0 D jhj�1H \ jhj� 1
2H ˚ hhi� 1

2H:

Clearly

�ess.H0/ D �ess. PH0/ D
p

�ess.h/ [ �
p

�ess.h/:

(Recall that from (E1)–(E3) we saw that �ess.h/ � R
C).

We introduce the condition

(A4) khhi� 1
2 2 B1.H/:

Proposition 7.4. Assume (E1)–(E3) and (A4). �en

.H � z/�1 � .H0 � z/�1 2 B1.E
�;E/; z 2 �.H/ \ �.H0/;(1)

and

�ess.H/ D �ess. PH/ D
p

�ess.h/ [ �
p

�ess.h/:(2)

Proof. By (A4) we obtain that H � H0 2 B1.E;E
�/ which by the resolvent

formula implies that

.H � z/�1 � .H0 � z/�1 2 B1.E
�;E/ � B1.E/:

�is implies that

�ess.H/ D �ess.H0/:

Since by (E2) h1R�.h/ 2 B1.H/ we see by the same argument that

�ess.H0/ D �ess.H1/

for

H1 D
�

0 1

h1RC.h/ 0

�

:

Using the arguments at the beginning of Subsection 7.3, we obtain that

�ess.H1/ D
p

�ess.h/ [ �
p

�ess.h/;

which proves (2) for H .

To prove (2) for PH we use again the second resolvent formula, hypothesis (A4)

and the fact that . PH0 � z/�1 maps PE into Dom PH0. We obtain that

�ess. PH/ D �ess. PH0/:

We conclude as in the case of H .
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For completeness we state the following proposition.

Proposition 7.5. Assume (E1)–(E3). �en

�.H/ D �. PH/;(1)

and

�p.H/ D �p. PH/:(2)

Proof. By Proposition 5.3 (1) and Proposition 5.8, we see that

�.H/ D �. PH/ D �.h; k/;

which proves (1). To prove (2) note that since H � PH we have �p.H/ � �p. PH/.
Moreover we easily see that

0 2 �p.H/ () 0 2 �p.h/ () 0 2 �p. PH/:

Since by (E1) Kerh D ¹0º we obtain that 0 62 �p.H/ [ �p. PH/. Finally, in the

case f 2 Ker . PH � z/, for z ¤ 0, we see that f 2 E, hence PHf D yHf 2 E and

f 2 Ker .H � z/. Hence �p. PH/ � �p.H/, which completes the proof of (2).

7.3. Approximate diagonalization. It will be convenient later to diagonalize as

much as possible the operator PH . �is can be done by extracting a convenient

positive part from h.

We assume that

h D b2 � r
with

b � 0; self-adjoint on H; b2 � jhj;(A1)

and

r symmetric on hhi� 1
2H; b�1rb�1 2 B.H/:(A2)

From (A1), (E1), and the Kato–Heinz inequality (see page 123) we see that

Kerb D ¹0º; hbisH D hhis=2H; bsH D jhjs=2H; jsj � 1: (7.5)

Set

U WD 1p
2

�

b 1

b �1

�

and U�1 D 1p
2

�

b�1 b�1

1 �1

�

:
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We see using (7.5) that

U W PE ��! H ˚ H DW K; U W PE� ��! bH ˚ bH D jL0jK; (7.6)

for

L0 WD
�

b 0

0 �b

�

D U

�

0 1

b2 0

�

U�1:

We will also use the space

hL0iK D hbiH ˚ hbiH D hhi 1
2H ˚ hhi 1

2H:

Note that hL0iK D UE� if and only if m > 0.

We have

L WDU PHU�1 D L0 C V1 C V2; (7.7a)

V1 WD k

�

1 �1

�1 1

�

; (7.7b)

V2 WD 1

2
rb�1

��1 �1

1 1

�

: (7.7c)

�e canonical Hilbertian scalar product on K D H˚H will be denoted by h� j �i0.

�en the Krein structure h� j �iE is mapped by U on

hu j ui D hu j .1 CK/ui0; K WD �1
2
b�1rb�1

�

1 1

1 1

�

: (7.8)

Clearly if both (E1)–(E3) and (A1), as well as (A2) hold then L is even-de�nitiz-

able on the Krein space .K; h� j �i/.

Lemma 7.6. Assume (E1)–(E3), (A1), and (A2). �en

(1) L � z W K �! hL0iK, for z 2 �.L/ D �. PH/.

(2) Let U be a compact set with U � �. PH/ if m > 0 and U � �. PH/n¹0º if

m D 0. �en there exists C > 0 such that

k.L� z/�1kB.hL0iK;K/ � C1C Ck.L� z/�1kB.K/; for all z 2 U:

Note that Lemma 7.6 would be immediate if DomL D DomL0.

Proof. Ifm > 0we know that hhi � jhj hence b2 � hbi2 by (A1). �is implies that

hL0iK D jL0jK and the lemma follows from Proposition 7.1 and (7.6). Assume

that m D 0. �en from (A2) we see that L� z 2 B.K; hL0iK/. We note then that

kukhbiH � k1Œ0;1�.b/ukH C k1�1;C1Œ.b/ukbH; u 2 hbiH: (7.9)
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Proposition 7.1 gives . PH �z/�1 W PE� ! PE, hence .L�z/�1 W jL0jK ! K by using

again (7.6). Since .L�z/�1 W K ! K, we get from (7.9) .L�z/�1 2 B.hL0iK;K/
and

k.L� z/�1kB.hL0iK;K/ � Ck.L� z/�1kB.jL0jK;K/ C Ck.L� z/�1kB.K/:

�en we apply Proposition 7.1.

We now introduce the condition

(A3) khbi�1; b�1rb�1 2 B1.H/:

Proposition 7.7. Assume (E1)–(E3) and (A1)–(A3). �en

.L� z/�1 � .L0 � z/�1 2 B1.hL0iK;K/; z 2 �.L/ \ �.L0/;(1)

and

�ess.L/ D
p

�ess.h/ [ �
p

�ess.h/:(2)

Remark 7.8. Note that Proposition 7.7 still holds if we replace b�1rb�1 2 B1.H/

by the weaker condition hbi�1rb�1 2 B1.H/. If b�1rb�1 2 B1.H/ then K de-

�ned in (7.8) belongs to B1.K/, which will be useful in Section 8.

Proof. To prove (1) we use that .L� z/�1; .L0 � z/�1 2 B.hL0K;K/ by Lemma

7.6, that V1, V2 de�ned in (7.7) belong to B1.K; hL0iK/ and the second resolvent

formula. Relation (2) follows from the analogous statement for PH in Proposi-

tion 7.4, noting that (A3) implies (A4).

We will need later the following lemma.

Lemma 7.9. Assume (E1)–(E3) and (A1)–(A3). Let � 2 C1
0 .R/ with 0 62 supp�

if m D 0. �en

�.L/ 2 B.hL0iK;K/;(1)

and

�.L/� �.L0/ 2 B1.K/:(2)

Proof. We use the functional calculus formula

�.L/ D i

2�

ˆ

C

@ Q�
@ Nz .z/.z � L/�1dz ^ d Nz:

�en (1) follows from Lemma 7.6 and the bound in Corollary 3.13. Statement (2)

follows from Proposition 7.7 (1) and the fact that the integrals de�ning �.L/ and

�.L0/ are norm convergent.
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We conclude this subsection by discussing the situation when h0 D hC k2 is

positive and by formulating conditions on k which imply conditions (A1)–(A4).

Lemma 7.10. Assume that h0 � 0, Kerh0 D ¹0º and

� h0 � jhj and

� k D k1 C k2 where ki are symmetric on hhi� 1
2H and kk1jh0j� 1

2 kB.H/ < 1,

k1hh0i� 1
2 , k2jh0j� 1

2 2 B1.H/.

�en conditions (A1)–(A4) are satis�ed for

b D .h0 � k2
1/

1
2 ; r D k2 � k2

1 D k2
2 C k1k2 C k2k1:

Proof. Since kk1jh0j� 1
2 k < 1we have b2 � h0 � jhj, hence (A1) holds. We know

ki 2B.b�1H;H/ hence ki 2B.H; bH/ by duality. �is implies r 2B.b�1H; bH/,

which is (A2). Similarly we obtain that khbi�1 and b�1rb�1 belong to B1.H/.

8. Mourre estimate for Klein–Gordon operators on energy spaces

�is section is devoted to the proof of a Mourre estimate for Klein–Gordon oper-

ators on energy spaces. We will use the approximate diagonalization in Subsec-

tion 7.3, and consider the operator L.

8.1. Scalar conjugate operators. We start with some preparations with scalar

operators, i.e. operators acting on H.

Let us �x as in Subsection 7.3 two operators b; r such that both (A1) and (A2)

hold. Let a be a self-adjoint operator on H such that

b2 2 C 2.a/: (M1)

�en

�.b2/ W Dom a �! Dom a for � 2 C1
0 .R/

and (see e.g. [13, Subsection 2.2.2])

a� WD �.b2/a�.b2/ (8.1)

is essentially self-adjoint on Dom a. We still denote by a� its closure. �en we

have b2 2 C 2.a�/ and ad˛
a�
.b2/ 2 B.H/, for 0 � ˛ � 2.
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Lemma 8.1. Assume (M1). �en

(1) eita� W hbisH ! hbisH and de�nes a C0-group on hbisH for jsj � 2,

(2) if m > 0 or m D 0 and 0 62 supp� then

ad˛
a�
.b/ 2 B.H/ if 0 � ˛ � 2

and b; hbi 2 C 2.a�I hbi�1H;H/\ C 2.a�IH; hbiH/:

Proof. (1) Since Œb2; a�� 2 B.H/, it follows from [8, Appendix] that eita� pre-

serves Dom b2 D hbi�2H, hence also hbisH for jsj � 2 by duality and inter-

polation. By [1, Proposition 3.2.5], eita� de�nes a C0-group on all these spaces.

(2) If m > 0 or m D 0 and 0 62 supp� we have

ada�
.b/ D ada�

.f .b2//; (8.2)

for some f 2 C1
0 .R/. Since b2 2 C 1.a/ we get ada�

.f .b2// 2 B.H/. �e same

argument shows that

ad˛
a�
.b/ D �.b2/M˛�.b

2/; M˛ 2 B.H/; 0 � ˛ � 2: (8.3)

�e same hold for hbi, which implies (2).

Lemma 8.2. Assume (M1) and let a� be de�ned by (8.1) with 0 62 supp�. �en

ha�i�ı.hbi � b/ha�iı 2 B.H/; 0 � ı � 1:

Proof. �e proof is given in Subsection A.3.

We now introduce assumptions on k and r .

(M2) khbi�1; hbi�1rb�1 2 C 2.a�IH/; b�1rb�1 2 C 1.a�IH/:

Note that if both (E1)–(E3) and (A1), as well as (A2) hold, then khbi�1, hbi�1rb�1,

and b�1rb�1 belong to B.H/, so assumption (M2) makes sense.

Lemma 8.3. Assume (E1)–(E3), (A1), (A2), (M1), and (M2). �en

k; rb�1 2 C 2.a�IH; hbiH/:

Proof. Since hbi 2 C 2.a�IH; hbiH/ it su�ces to show that hbi�1k, hbi�1rb�1

belong to C 2.a�IH/, which follows from (M2) and [1, Proposition 5.1.7].
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We now discuss conditions on k which imply (M2), if h0 WD hC k2 � 0 and

jhj � h0, similar to Lemma 7.10.

Lemma 8.4. Assume the hypotheses of Lemma 7.10 and choose b D .h0 � k2
1/

1
2

so that r D k2
2 C k1k2 C k2k1. Assume moreover that Œk1; k2� D 0, as an identity

in B.hhi� 1
2H; hhi 1

2H/. �en if

(M20) k1hbi�1; k2b
�1 2 C 2.a�IH/; b�1k1k2b

�1 2 C 1.a�IH/

condition (M2) is satis�ed.

Proof. Arguing as in the proof of (8.2) we obtain that bhbi�1 2 C 2.a�IH/. Since

k2b
�1 2 C 2.a�IH/, we obtain that k2hbi�1 2 C 2.a�IH/, by [1, Propositions

5.1.7, 5.2.3], hence khbi�1 2 C 2.a�IH/. Using that r D k2
2 C2k1k2 and the same

argument, we also obtain the remaining conditions in (M2).

8.2. Conjugate operators for Klein–Gordon operators. We introduce some

notation. If c is a closed densely de�ned operator on H, we set

cdiag WD
�

c 0

0 c

�

; acting on K D H ˚ H:

We will use the approximate diagonalization introduced in Subsection 7.3. Recall

that U PE D K and U PE� D jL0jK.

Let now

A D .a�/diag;

which is the generator of .eita�/diag on K.

Proposition 8.5. Assume (E1)–(E3), (A1), (A2), (M1), and (M2). �en

(1) eitA is a C0-group on hL0iK,

(2) the Krein structure h� j �i is of class C 1.A/,

(3) L, L0 belong to C 2.AIK; hL0iK/ hence to C 2.A/.

We refer to [9, Subsection 5.5] for the terminology in (2) above.

Proof. (1) follows from Lemma 8.1 (1) and (2) from (M2) and identity (7.8), and

(3) from (M2) and identity (7.7).

Proposition 8.6. Assume (E1)–(E3), (A1)–(A3), (M1), and (M2). Let� 2 C1
0 .R/

with 0 62 supp� if m D 0. �en

�.L/ŒL; iA��.L/� �.L0/ŒL0; iA��.L0/ 2 B1.K/:
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Proof. From (E1)–(E3) and (A1)–(A3), we see that

L� L0 2 B1.K; hL0iK/:
From Proposition 8.5 we know that

L� L0 2 C 2.AIK; hL0iK/ � C 1
u .AIK; hL0iK/:

�erefore

ŒL� L0; iA� 2 B1.K; hL0iK/: (8.4)

We write now

�.L/ŒL; iA��.L/� �.L0/ŒL0; iA��.L0/

D �.L/ŒL� L0; iA��.L/C �.L/ŒL0; iA�.�.L/� �.L0//

C .�.L/� �.L0//ŒL0; iA��.L0/:

By (8.4), the fact that ŒL0; iA� 2 B.K/, and Lemma 7.9 (2), this is compact.

8.3. Mourre estimate. We denote by �.b2; a/ the set of thresholds for .b2; a/.

If a is �xed from the context, we will often simply write �.b2/ for �.b2; a/. So if

� 62 �.b2; a/ there exists an interval I � R, with � 2 I , a constant c0 > 0 and

R 2 B1.H/ such that

1I .b
2/Œb2; ia�1I .b

2/ � c01I .b
2/CR:

We set

�.b/ WD
p

�.b2/:

In the theorem below we use the notation c.L/ for the set of critical points

of L.

Recall that h� j �i0 denotes the Hilbertian scalar product on K. If A 2 B.H/

then

A �0 0; resp. A � 0;

means that A is self-adjoint positive for h� j �i0, resp. h� j �i.

�eorem 8.7. Assume (E1)–(E3), (A1)–(A3), (M1), and (M2). Let I � R
˙ a

compact interval such that

I \ ˙�.b/ D ;;(i)

I \ c.L/ D ;;(ii)

0 62 I:(iii)
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Let � 2 C1
0 .R/ such that � � 1 on I 2 and 0 62 supp� ifm D 0, andA D .a�/diag,

where a� is de�ned in (8.1). �en

(1) for f 2 C1
0 .

ı

I / there exists c1 > 0 and R 2 B1.K/ such that

˙Re .f .L/ŒL; iA�f .L// � c1f
2.L/CR;

(2) if � 2 In�p.L/ there exists ı > 0; c2 > 0 such that

˙Re
�

1Œ��ı;�Cı�.L/ŒL; iA�1Œ��ı;�Cı�.L/
�

� c21Œ��ı;�Cı�.L/:

In (1) and (2) we choose the sign ˙ if I � R
˙.

Remark 8.8. We assume for simplicity that 0 62 I , even if m > 0. �is is not a

restriction since by Proposition 7.7 we know that 0 62 �ess.L/ if m > 0.

Proof. (1) Since, by (i), I 2 \ �.b2/ D ;, there exists c0 > 0, R 2 B1.H/ such

that

1I 2.b2/Œb2; ia�1I 2.b2/ � c01I 2.b2/C R:

By [13, �eorem 2.2.4] this implies if � 2 C1
0 .R/ is such that � � 1 on I 2, there

exists c1 > 0 R1 2 B1.H/ such that

1jI j.b/Œb; ia��1jI j.b/ � c11jI j.b/CR1: (8.5)

�is implies that if I � R
˙ one has

˙1I .L0/ŒL0; iA�1I .L0/ �0 c11I .L0/CR2; R2 2 B1.K/;

which implies that for f 2 C1
0 .

ı

I / one has

˙f .L0/ŒL0; iA�f .L0/ �0 c1f
2.L0/CR3; R3 2 B1.K/: (8.6)

Let us now set

B D f .L/ŒL; iA�f .L/; C D f 2.L/;

B0 D f .L0/ŒL0; iA�f .L0/; C0 D f 2.L0/;

and letK be de�ned in (7.8). By (A3), we know thatK 2 B1.K/. By Lemma 7.9,

Proposition 8.6 and hypothesis (A2), we know that

B � B0; C � C0; K 2 B1.K/: (8.7)
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We have, for u 2 K,

˙Rehu j Bui D ˙RehujB0ui C Rehu j Rui

D ˙Rehu j .1 CK/B0ui0 C Rehu j Rui

D ˙Rehu j B0ui0 C Rehu j Rui

� c1hu j C0ui0 C Rehu j Rui0 C Rehu j Rui

D c1hu j Cui C Rehu j Rui;

where R denotes an element of B1.K/ and we used (8.7) and (7.8).

(2) Assume now that � 2 In�p.L/. Since I does not contain critical points

of L, we know that 1I .L/ � 0 and that the restriction of h� j �i to 1I .L/K is a

Hilbertian scalar product, equivalent to h� j �i0, and the restriction of L to 1I .L/K

is self-adjoint in the usual sense for this scalar product. �en (2) follows from (1)

by the usual argument.

9. Limiting absorption principle

In this section we apply the abstract results from [9] to deduce weighted resolvent

estimates from the positive commutator estimate proved in the previous section.

�e following theorem follows directly from [9, �eorem 7.9], whose hypotheses

follow from �eorem 8.7 and Proposition 8.5.

�eorem 9.1. Assume (E1)–(E3), (A1)–(A3), (M1), and (M2).

Let I � R a compact interval such that

I \ ˙�.b/ D ;;(i)

I \ c.L/ D ;;(ii)

0 62 I;(iii)

I \ �p.L/ D ;:(iv)

Let � 2 C1
0 .R/ such that � � 1 on I 2 and 0 62 supp� ifm D 0, andA D .a�/diag,

where a� is de�ned in (8.1).

�en there exists �0 > 0 such that for ı > 1
2

one has

sup
Rez2I; 0<jImzj��0

khAi�ı.L� z/�1hAi�ıkB.K/ < 1:
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9.1. Limiting absorption principle in energy space. After conjugation by the

operator U de�ned in Subsection 7.3, we immediately deduce from �eorem 9.1

a corresponding result on . PH � z/�1 acting on the homogeneous Hilbert space PE.

Clearly we have c.L/ D c. PH/ since PH;L are unitarily equivalent. Although

H is not necessarily de�nitizable on .E; h� j �iE/ if m D 0, we will still set

c.H/ WD c. PH/:

�e weights appearing on both sides of . PH �z/�1 are not convenient for appli-

cations, at least in the massless case, because they contain the relatively singular

operators b and b�1 (see (9.1) below). In this subsection we consider the resol-

vent .H � z/�1 on E and prove more useful resolvent estimates, with non singular

weights.

It is convenient to formulate these estimates in terms of an additional operator

on H which dominates the conjugate operator a�. Let us introduce the corre-

sponding abstract hypothesis.

We �x a self-adjoint operator hxi � 1 on H, called a reference weight, such

that

(M3)

8

<

:

(i) ha�ihxi�1 2 B.H/; for all � 2 C1
0 .R/;

(ii) Œhbi; hxi�ı �hxiı 2 B.H/; 0 � ı � 1:

In concrete cases (see Section 12) it is very easy to �nd a reference weight hxi.

�eorem 9.2. Assume (E1)–(E3), (A1)–(A3), and (M1)–(M3). Let I � R be an

interval as in �eorem 9.1. �en there exists �0 > 0 such that, for 1
2
< ı � 1,

sup
Rez2I; 0<jImzj��0

k.hxi�ı/diag.H � z/�1.hxi�ı /diagkB.E/ < 1:

Proof. Set

J D ¹z 2 C W Rez 2 I; 0 < jImzj � �0º:

Since

U�1hAi�ıU D
�

b�1ha�i�ıb 0

0 ha�i�ı

�

; (9.1)

we obtain that if g 2 PE and f D . PH � z/�1g one has

kha�i�ıbf0kH C kha�i�ıf1kH � c.kha�iıbg0kH C kha�iıg1kH/; z 2 J:
(9.2)
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If g 2 E, then by Proposition 5.11 we know that f 2 E and f D .H � z/�1g.

Moreover since f0 D z�1.f1 � g0/ and 0 62 I we also obtain that

kha�i�ıf0kH � c.kha�iıbg0kHCkha�i�ıg0kHCkha�iıg1kH/; z 2 J: (9.3)

Writing hbi D b C .hbi � b/ and using Lemma 8.2, we obtain that

kha�i�ıhbif0kH � c.kha�i�ıbf0kH C kha�i�ıf0kH/; (9.4a)

and

kha�iıbg0kH � c.kha�iıhbig0kH C kha�iıg0kH/: (9.4b)

From condition (M3) (i) we obtain by interpolation that ha�iıhxi�ı is bounded,

hence

khxi�ıhbif0kH � c.kha�i�ıbf0kH C khxi�ıf0k/;

kha�iıbg0kH � c.khxiı hbig0kH C khxiıg0kH/;

khxi�ıfikH � ckha�i�ıfikH; i D 0; 1;

kha�iıgi kH � ckhxiıgikH; i D 0; 1:

�erefore we deduce from (9.2), (9.3) that

khxi�ıhbif0kH C khxi�ıf0kH C khxi�ıf1kH
� c

�

khxiı hbig0kH C khxiıg0kH C khxiıg1kH
�

; z 2 J:
(9.5)

We use now (M3) (ii) which implies that

khbihxi�ıf0kH � khxi�ı hbif0kH C khxi�ıf0kH;

khxiıhbig0kH � khbihxiıg0kH:

�erefore (9.5) yields

kbhxi�ıf0kH C khxi�ıf1kH � c.khbihxiıg0kH C khxiıg1kH/; z 2 J: (9.6)

Since hbi2 ' h�i2, this completes the proof of the theorem.

9.2. Weighted estimates for quadratic pencils. In this subsection we consider

weighted estimates for p.z/�1. It is natural to introduce the following assumption

on k and the reference weight hxi:

(M4) hxiıkhxi�ı hhi� 1
2 2 B.H/; for jıj � 1:

Note that (M4) follows from (E2) if k and hxi commute, which will be the case in

the applications in Section 12.
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Proposition 9.3. Assume (E1)–(E3) and (M4) and let I � R a compact interval

with 0 62 I , and 0 < ı � 1. �en the following condition are equivalent:

sup
Rez2I;0<jImzj��0

k.hxi�ı/diag.H � z/�1.hxi�ı/diagkB.E/ < 1;(1)

sup
Rez2I;0<jImzj��0

khhi 1
2 hxi�ıp.z/�1hxi�ıkB.H/ < 1:(2)

Proof. �e proof is an easy computation, using formula (5.4), the identity

p.z/�1h D 1 C p.z/�1z.z � 2k/

and the fact that hxiı .z� 2k/hxi�ıhhi� 1
2 is bounded, by (M4). �e details are left

to the reader.

9.3. Limiting absorption principle in charge space. From Proposition 9.3 we

easily get from �eorem 9.2 similar resolvent estimates for .K�z/�1 on the charge

space F.

�eorem 9.4. Assume (E1)–(E3), (A1)–(A3), and (M1)–(M5). Let I � R an

interval as in �eorem 9.1. �en there exists �0 > 0 such that for 1
2
< ı � 1 one

has

sup
Rez2I; 0<jImzj��0

k.hxi�ı/diag.K � z/�1.hxi�ı /diagkB.F/ < 1:

Proof. We use formula (6.7) to express .K� z/�1. We see that the estimate in the

theorem holds if and only if

sup
Rez2I; 0<jImzj��0

kMi .z/kB.H/ < 1; i D 1; : : : ; 4;

for

M1.z/ D hhi 1
4 hxi�ıp.z/�1.k � z/hxi�ı hhi� 1

4 ;

M2.z/ D hhi 1
4 hxi�ıp.z/�1hxi�ı hhi 1

4 ;

M3.z/ D hhi� 1
4 hxi�ı .1 C .k � z/p.z/�1.k � z//hxi�ıhhi� 1

4 ;

M4.z/ D hhi� 1
4 hxi�ı .k � z/p.z/�1hxi�ı hhi� 1

4 :
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Using (M4), duality and interpolation, we see that hhi� 1
4 hxi�ı .k � z/hxiı hhi� 1

4

is bounded. �erefore the estimate for M2.z/ implies the others. By �eorem 9.2

and Proposition 9.3 we know that

sup
Rez2I; 0<jImzj��0

khhi 1
2 hxi�ıp.z/�1hxi�ı kB.H/ < 1:

Using duality, the fact that p.z/� D p. Nz/ and interpolation, this implies the esti-

mate for M2.z/. �is completes the proof of the theorem.

10. Existence of the dynamics

In this section we discuss the existence of the dynamics generated by the operators

H , K considered in Sections 5,6, and 7. Note that this not a completely trivial

point, since we do not know a priori if these operators are generators ofC0-groups.

We will assume in this section conditions (E1)–(E3).

10.1. Existence of the dynamics for H . If m > 0 then H D PH which is even-

de�nitizable, hence we can de�ne the C0-group eit PH , by Subsection 3.5.

If m D 0 we use now Proposition 7.2 instead of �eorem 3.17. Using the

bounded projection 1
C
pp.H/ (see the proof of Proposition 7.2), we split E into the

direct sum

E D EC

pp.H/˚ E1.H/;

both spaces being closed and H -invariant, the �rst one �nite-dimensional. We

argue as in Subsection 3.5 to construct eitH
jE1.H/

. �us there exist C; � > 0, n 2 N

such that

k.eitH /jECpp.H/k � C e�jt j; k.eitH /jE1.H/k � C htin; t 2 R: (10.1)

10.2. Existence of the dynamics for K . We start with a useful observation

which is further developed in [9]. Note that the sesquilinear form q de�ned in (6.3)

is de�ned on E � E� and turns .E;E�/ into a dual pair. Since ˆ de�ned in (6.5)

preserves E and E� by Lemma 6.3, the same is true of the sesquilinear form q0

de�ned in (6.8), (which is equal to q transported by ˆ).

We check immediately that eitH is unitary for q0 on E. �erefore by duality eitH

extends as a C0-group on E�, satisfying (10.1). Since F D ŒE;E�� 1
2
, we obtain by

interpolation that eitH and henceˆ�1eitHˆ extends asC0-groups onF. Using also

Lemma 6.1 we see that the generator of the later group isK, i.e.ˆ�1eitHˆ D eitK .

�erefore eitK is a C0-group on F, satisfying (10.1).
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11. Propagation estimates

In this section we will establish propagation estimates for eit PH ; eitH and eitK . We

will need the following assumption.

(M5) D.hxi/\D.b2/ is dense inD.b2/, eishxi sendsD.b2/ into itself, and Œhxi; b2�

extends to a bounded operator fromD.b2/ to H which we denote Œhxi; b2�0.

Note that (M5) implies (see [1, Proposition 3.2.5])

sup
0�s�1

kb2eishxiuk < 1 (11.2)

for all u 2 D.b2/.

We assume (E1)–(E3), (A1)–(A4), (M1)–(M3), and (M5) in the following. We

also suppose that Œki ; hxi� D 0 for i D 1; 2 which implies in particular (M4).

Lemma 11.1. If z 2 �.h; k/ and 0 � ı � 1 then p�1.z/ sendsD.hxiı/ into itself.

Proof. We �rst show p�1.z/ sends D.hxi/ into itself. Let u 2 D.hxi/. We have

to show that

sup
jt j�1













eithxi � 1

t
p�1.z/u













< 1:

We write

eithxi � 1
t

p�1.z/u D p�1.z/
eithxi � 1

t
u

C eithxip
�1.z/ � e�ithxip�1.z/eithxi

t
u:

Clearly

sup
jt j�1













p�1.z/
eithxi � 1

t
u













< 1:

Let us now consider the second term. We have

p�1.z/ � e�ithxip�1.z/eithxi

t
u

D e�ithxip�1.z/eithxi e�ithxib2eithxi � b2

t
p�1.z/u;

where we have used that eishxi sendsD.b2/ into itself. Now note that

e�ithxib2eithxi � b2

t
D 1

t

ˆ t

0

e�i�hxiŒhxi; b2�0ei�hxid�:
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It follows using (11.2) that

sup
jt j�1













e�ithxip�1.z/eithxi e�ithxib2eithxi � b2

t
p�1.z/













< 1

and thus the lemma for ı D 1. �e lemma for ı D 0 is obvious, the general case

follows by interpolation.

Corollary 11.2. For all 0 � ı � 1 and � 2 C1
0 .R/ the operators hxiı�.H/hxi�ı

and hxiı�.K/hxi�ı are bounded.

Proof. By an interpolation argument it is su�cient to consider the case ı D 1.

Using (5.4) and the fact that Œhxi; k� D 0 we see that for z 2 �.h; k/ we have

hxi.H � z/�1hxi�1 D
�

0 0

1 0

�

C hxip�1.z/hxi�1

�

z � 2k 1

�z.2k � z/ z

�

:

By the de�nition of the smooth functional calculus for H it is su�cient to show

that hxip�1.z/hxi�1, which is bounded on H by Lemma 11.1, ful�lls suitable re-

solvent estimates. Using Lemma 11.1 we can write the commutator

Œhxi; p�1.z/� D p�1.z/hhi 1
2 hhi� 1

2 Œb2; hxi�0p�1.z/:

It is now su�cient to apply Corollary 5.12 to obtain the required estimates. By

duality hxiı�.H/hxi�ı is bounded on E� and thus on F by complex interpolation.

To obtain the result for K we use that

�.K/ D ˆ�1�.H/ˆ;

that ˆ commutes with hxi and that ˆ; ˆ�1 are continuous on F.

Proposition 11.3. Let I � R an interval as in �eorem 9.1 and let � 2 C1
0 , and

supp� � I . Suppose 1
2
< ı � 1. �en there exists C > 0 such that

ˆ

R

khxi�ı eitH�.H/hxi�ıf k2
E
dt � Ckf k2

E
; (11.3)

and
ˆ

R

khxi�ıeitK�.K/hxi�ıf k2
F
dt � Ckf k2

F
(11.4)
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Proof. We �rst prove (11.3). Note that by �eorem 9.2 there exists �0 > 0 such

that one has

sup
0<jImzj��0

k.hxi�ı/diag.H � z/�1�.z/.hxi�ı/diagkB.E/ < 1:

We now have to show that we can replace �.z/ by �.H/. We choose Q� 2 C1
0 .I /

with Q�� D �. We write

khxi�ı .H � z/�1�.H/hxi�ıf k2
B.E/

� Ckhxi�ı.H � z/�1 Q�.z/�.H/hxi�ıf k2
B.E/

C Ckhxi�ı .H � z/�1.1� Q�.z//�.H/hxi�ıf k2
B.E/:

(11.5)

�e estimate for the �rst term follows from the estimate with �.z/ and Corol-

lary 11.2. Let us treat the second term. We claim

khxi�ı.H � .�C i�//�1.1� Q�.�//�.H/hxi�ıf k2
B.E/ � C h�i�2;

uniformly in �. Let

f �
� .x/ D h�i 1

x � .�C i�/
.1� Q�.�//�.x/:

It is su�cient to show that all the semi-norms kf �
�

km are uniformly bounded with

respect to �; �. Note that g�.x/ D .1� Q�.�//�.x/ vanishes to all orders at x D �.

If supp� � Œ�C; C � this is enough to assure that kf �
�

km is uniformly bounded in

� 2 Œ�2C; 2C � and � > 0. For j�j � 2C we observe that
ˇ

ˇ

ˇ

ˇ

h�i 1

x � .�C i�/

ˇ

ˇ

ˇ

ˇ

� C

with analogous estimates for the derivatives. �us the second term in (11.5) is

also uniformly bounded in 0 < jImzj � �0.

We now write

..H � .�C i�//�1 � .H � .� � i�//�1/�.H/f

D i

ˆ 1

�1

e��jt jei�t e�iHt�.H/fdt;

the integral being norm convergent by (10.1). By Plancherel’s formula this yields
ˆ 1

�1

khxi�ı ..H � .�C i�/�1 � .H � .� � i�//�1/�.H/hxi�ıf k2
E
d�

D
ˆ 1

�1

e�2�jt jkhxi�ıe�itH�.H/hxi�ıf k2
E
dt:
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�e left hand side of this equation is uniformly bounded in � with � small enough,

which implies (11.3).

Let us now prove (11.4). First note that by duality we can replace B.E/ by

B.E�/ in (11.3). �is gives (11.4) withK replaced byH by complex interpolation.

We then use that

eitK�.K/ D ˆ�1eitH�.H/ˆ;

that hxi�ı commutes with ˆ and that ˆ; ˆ�1 are bounded operators on F.

12. Examples

In this section we describe examples of Klein–Gordon equations to which the

abstract results of Sections 7, 8, and 9 can be applied.

Let us �rst discuss how to check the abstract hypotheses (E1)–(E3). In the

case inf �ess.h/ > 0, the only delicate condition is (E1). In fact in this case (E1)

implies (E2) and also that 0 62 �.h/. �erefore jhj � hhi. It follows that if � � 0 is

a self-adjoint operator such that Dom h D Dom �2 we have jhj � hhi � h�i2 and

hence in condition (E3) we can replace jhj� 1
2 by h�i�1.

Similarly if b is an operator such that (A1) holds, we have b2 � h�i2 and in

conditions (A2)–(A4) we can replace b�1 and hbi�1 by h�i�1.

If inf �ess.h/ D 0 then both (E1) and (E2) are important. Moreover it is again

important to �nd a self-adjoint operator � � 0 such that jhj � �2. An abstract

result allowing to do this is given in the following proposition.

Proposition 12.1. Let � � 0 be a self-adjoint operator on H and r1, r2 two sym-

metric operators on Dom � such that

Ker � D ¹0º; kr1��1k < 1; r2�
�1 2 B1.H/:

If h D �2 � r2
1 � r2

2 as an identity in B.h�i�1H; h�iH/ and Kerh D ¹0º, then
8

<

:

(1) Tr1��1;0�.h/ < 1;

(2) jhj � �2:
(12.1)

�e proof will be given in Subsection A.2.

12.1. Charged Klein–Gordon equations on scattering manifolds. Let N be a

smooth, d � 1 dimensional compact manifold whose elements are denoted by !.

We consider a d dimensional manifold

M ' M0 [ �1;C1Œ�N;
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where M0 b M is relatively compact. For m 2 R we denote by Sm.M/ the space

of real valued functions f 2 C1.M/ such that

j@k
s @

˛
!f .s; !/j � Ck;˛s

m�k for .s; !/ 2 Œ1;1Œ�N; for all k 2 N; ˛ 2 N
d�1:

De�nition 12.2. A Riemannian metric g0 on M is called conic if there exists

R > 0 and a Riemannian metric h on N such that

g0 D ds2 C s2hjk.!/d!
jd!k ; .s; !/ 2 ŒR;1Œ�N:

A Riemannian metric g on M is called a scattering metric if

g D g0 C Qg;

where g0 is a conic metric and Qg is of the form

Qg D m0.s; !/ds2 C sm1
j .s; !/.dsd!

j C d!jds/C s2m2
jk.s; !/d!

jd!k

with ml 2 S��l .M/ for l D 0; 1; 2, �l > 0.

We will assume in the sequel that g is a scattering metric on M in the sense

of the above de�nition. We consider a charged Klein–Gordon �eld � on M mini-

mally coupled to an external electromagnetic �eld described by the electric poten-

tial v.s; !/ and the magnetic potential Ak.s; !/dx
k . It ful�lls the Klein–Gordon

equation

.@t � iv/2� � .rk � iAk/.rk � iAk/� Cm2� D 0: (12.2)

Here r is the Levi-Civita connection associated to the metric g. �e function

m.s; !/ on M corresponds to a variable mass term. �e above equation writes in

local coordinates

.@t � iv/2� � jgj�1=2.@j � iAj /jgj1=2gjk.@k � iAk/� Cm2.s; !/� D 0;

where gjk D .gjk/
�1; jgj D det.gjk/. We denote by

dv D jgj 1
2dsd!

the Riemannian volume element on .M; g/ . Putting  D jgj1=4� we see that  

solves

.@t � iv/2 � jgj�1=4.@j � iAj /jgj1=2gjk.@k � iAk/jgj�1=4 

Cm2.s; !/ D 0;

which is the equation we will consider.
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Remark 12.3. �e equation (12.2) can be seen as a Klein–Gordon equation on

the lorentzian manifold R � M with metric dt2 � g. Our results easily generalize

to the metric c.s; !/dt2 � g where 0 < c1 � c.s; !/ � c�1
1 is a smooth function

tending to 1 at in�nity. �e generalization reduces to a simple change of unknown

function, see [12, Section 2.1] for details.

We set

h0 WD �g�1=4.@j � iAj /g
1=2gjk.@k � iAk/g

�1=4 Cm2.s; !/ (12.3)

acting on H D L2.MI dsd!/, equipped with its canonical scalar product. Let also

p D �g�1=4@jg
1=2gjk@kg

�1=4:

We assume that
8

<

:

Aj .s; !/; m.s; !/ �m1 2 S��0.M/

for some�0 > 0; m1 WD lims!1m.s; !/ � 0:
(12.4)

�e operator k is assumed to be a multiplication operator k D v.s; !/ with

8

<

:

v.s; !/ D vl.s; !/C vs.s; !/; vl.s; !/ 2 S��0.M/;

vs.s; !/hpi�1=2 2 B1.H/; hsi2vs.s; !/hpi�1=2 2 B.H/:
(12.5)

It follows that h D h0 �k2 is self-adjoint and bounded below with hhi � hh0i and

�ess.h/ D Œm2
1;C1Œ.

As scalar conjugate operator we choose as usual the generator of dilations

a D 1

2
.�.s/sDs CDss�.s//;

where � 2 C1.R;RC/ with �.s/ D 1 for s � 2 and �.s/ D 0 for s � 1. As

reference weight we choose

hxi D .s2 C 1/
1
2 :

12.1.1. Massive case. We consider massive Klein–Gordon equations i.e. m D
inf �.h/ \ R

C > 0. �is implies that m1 > 0.

Proposition 12.4. Assume (12.4), (12.5), m1 > 0 and Kerh D ¹0º. �en

(1) conditions (E1)–(E3), (A1)–(A4), and (M1)–(M5) are satis�ed;

(2) one has �.b/ D ¹m1º.
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Proof. To check (E1)–(E3) we use Proposition 12.1 with � D h
1
2

0 , r1 D 1¹jxj�Rºv,

r2 D 1¹jxj�Rºv. Clearly r2�
�1 2 B1.H/, and since s� limR!1 1¹jxj�Rº D 0, we

deduce from (12.5) that kr1��1k < 1 for R large enough. Moreover jhj � h0 �
D2

s � 1
s2�N C 1.

To check (A1)–(A4) we use Lemma 7.10. We �x smooth cuto� functions F0,

F1 2 C1.R/ with

suppF0 � Œ�2; 2�; F0 � 1 in Œ�1; 1�; F0 C F1 D 1: (12.6)

We split k as k1 C k2 with

k1 D F1.R
�1s/vl; k2 D vs C F0.R

�1s/vl:

Since F0.R
�1jxj/vl satis�es the same conditions as vs we can assume that

k2 D vs

in the sequel. As before for R � 1 we have

kk1�
�1k < 1; k1h�i�1; k2�

�1 2 B1.H/:

By Lemma 7.10 conditions (A1)–(A4) are satis�ed for

b D .�2 � k2
1/

1
2 and r D k2

2 C 2k1k2:

Condition (M1) is clearly satis�ed. To check (M2) we apply Lemma 8.4 and

check (M20) instead. It is a standard fact that ad˛
a�
.k1hbi�1/ 2 B.H/ (one may

for example use pseudo-di�erential calculus on scattering manifolds, see e.g. [26,

Chapter 6.3] for an overview of this calculus). �erefore k1hbi�1 2 C 2.a�IH/.
Since 0 62 �.b/ we also see that k1b

�1 2 C 2.a�IH/.
�e same type of argument shows that

a�hsi�1hpi�1=2; a2
�hsi�2hpi�1=2 2 B.H/: (12.7)

�is implies that ad˛
a�
.k2b

�1/ 2 B.H/ using (12.5), by undoing the commutators

with k2, and using that 0 62 �.b/. �erefore k2b
�1 2 C 2.a�IH/. Since we saw that

k1b
�1 2 C 2.a�IH/ this also implies by [1, Proposition 5.2.3] that b�1k1k2b

�1 2
C 2.a�IH/. Hence (M20) is satis�ed.

�e fact that condition (M3) is satis�ed is also a standard result (one can either

use pseudo-di�erential calculus or express hbi via almost-analytic extensions).

Condition (M4) follows from (A2) since k and hsi commute. Condition (M5)

follows from the pseudo-di�erential calculus on scattering manifolds.

�e fact that �.b2/ D m2
1 follows from [15, �eorem 1]. �is proves (2).
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From Proposition 12.4 and Proposition 7.4 we see that

�ess.H/ D �ess. PH/ D�� 1;�m1�[ Œm1;C1Œ:

12.1.2. Massless case. We consider h0 as in (12.3) satisfying (12.4) but assume

now that inf �.h0/ D 0. �is is of course equivalent to m1 D 0.

We assume d � 3, because the Hardy inequality on .M; g/will play an impor-

tant role. Instead of (12.5) we assume for k D v that

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

v.s; !/ D vl.s; !/C vs.s; !/;

there exists R0 > 1; 0 � ı < 1 such that jvl .s; !/j � ı d�2
2

hsi�1; for s � R0;

svshpi�1=2 2 B1.H/; s
3vshpi�1=2 2 B.H/:

(12.8)

Note that compared to (12.5) we require an extra power of s in the assumptions

on v2, which is needed to control the jhj� 1
2 or b�1 term arising in (A1)–(A4)

and (M1)–(M5), thanks to the Hardy inequality. As before h D h0 � k2 is self-

adjoint with domain H 2.M/, bounded below, hhi � hh0i and �ess.h/ D Œ0;C1Œ.

�e operators a and hxi are as in the previous subsection.

We have the following analog of Proposition 12.4, whose proof however is

more involved and relies on estimates proved in Subsection A.1.

Proposition 12.5. Assume (12.3), (12.4) with m1 D 0, (12.8), Kerh D ¹0º and

d � 3. �en,

(1) conditions (E1)–(E3), (A1)–(A4), and (M1)–(M5) are satis�ed;

(2) one has �.b/ D ¹0º.

Proof. To check (E1)–(E3) we use again Proposition 12.1, with �, r1, r2 as in the

proof of Proposition 12.4. We �rst claim that vs�
�1 is compact. We use

��1 D h�i�1 C h�i�1��1.h�i � �/: (12.9)

�e term vs.� C 1/�1 is compact by (12.8), so it su�ces to prove that vsh�i�1��1

is compact. We have

vsh�i�1��1 D .vshsih�i�1/ � .h�ihsi�1h�i�1hsi/ � .hsi��1/:
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�e �rst factor is compact by (12.8). �e second is seen to be bounded by commut-

ing hsi�1 through h�i. �e third term is bounded by Proposition A.2 (1). �ere-

fore vs�
�1 is compact. Since 1s�Rvl satis�es the same estimates as vs we see

that r2�
�1 2 B1.H/. �is also implies that k1s�Rvs�

�1k ! 0 when R ! 1.

By Proposition A.2 (2) we obtain that k1jxj�Rvl�
�1k < 1 for R � 1. �erefore

kr1��1k < 1 for R � 1. Applying Proposition 12.1 we obtain (E1) and (E2). We

also get that jhj � �2 � D2
s � 1

s2�N. By what we saw above, k��1 is bounded,

hence (E3) also holds.

To check (A1)–(A4) we use again Lemma 7.10, with the same splitting of k

as in the proof of Proposition 12.4. We already checked that the hypotheses of

Lemma 7.10 hold, which proves (A1)–(A4).

Condition (A3) is immediate since k1h�i�1 2 B1.H/.

Condition (M1) and the fact that k1hbi�1 2 C 2.a�;H/ are proved as in Propo-

sition 12.4. To prove (M2) we check the hypotheses of Lemma 8.4. To prove that

k2b
�1 2 C 2.a�IH/ we have to check that ad˛

a�
.k2b

�1/ are bounded for ˛ D 1; 2.

We use that

a�hsi�1hpi�1=2; hsi�1hpi�1=2b�1a�; hsi�1b�1;

a�a�hsi�2hpi�1=2; hpi�1=2hsi�2b�1a�a�

are all in B.H/.

�e bounds with a� are as in (12.7), using that b�1a� D Q�.b2/a�.b2/ for

Q� 2 C1
0 .R/, since 0 62 supp�. �e fact that hxi�1b�1 is bounded follows from

Proposition A.2 (1), using that b2 ' �2. Undoing the commutators and using (12.8)

we obtain that ad˛
a�
.k2b

�1/ are bounded for ˛ D 1; 2. �e same argument using

that k1 2 O.hsi�1/ shows that ada�
.b�1k1k2b

�1/ is bounded. �is completes the

proof of (M20).

As in the massive case we prove that (M3) and (M4) hold and that �.b2/ D ¹0º
using [15, �eorem 1]. Condition (M5) follows from the pseudo-di�erential cal-

culus on scattering manifolds.

As in Subsection 12.1.1 one has

�ess.H/ D �ess. PH/ D R:

12.1.3. Some additional remarks in the euclidean case. If M D Rd and the

metric g is asymptotically �at, then using polar coordinates we see that .M; g/ is

a scattering manifold. In this case, using results of [21], it is possible to exclude

eigenvalues and critical points embedded in the essential spectrum.
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Proposition 12.6. Assume that M D R
d and g is asymptotically �at. Assume

moreover that v D v1 C v2 where

8

<

:

@˛
xv1 2 O.hxi���j˛j/; � > 0; j˛j � 2;

v2 has compact support, v2 2 Ld .Rd /:

�en

�p.H/ [ c.H/ � Œ�m1; m1�:

If m1 D 0 and Kerh D ¹0º, then

�p.H/ [ c.H/ D ;:

Proof. Since PE is a Pontryagin space, we know that critical points ofH are eigen-

values. From [11, Proposition 3.1] we know that �p.H/ � Œ�m1; m1�. Moreover

Ker h D ¹0º implies that KerH D ¹0º.

12.2. Models with hyperbolic ends. We �x a smooth compact manifold N,

whose elements will be denoted by ! and a smooth positive density on N de-

noted by d!. We set M WD R � N, whose elements are denoted by .s; !/ and

equip M with the density dsd!.

In this subsection we will describe some examples of Klein–Gordon equations

.@t � ik/2�.t/C h0�.t/ D 0; (12.10)

on the Hilbert space H D L2.M; dsd!/, to which the results of Sections 7 and 8

can be applied.

Remark 12.7. All the results of this subsection extend easily to the case where the

smooth manifold M is equal to M0 [ Œ1;C1Œ�N, where M0 is compact. One has

to assume that the restriction of h0 to Œ1;C1Œ�N satis�es similar assumptions

as below, and the restriction of h0 to M0 is a second order, elliptic di�erential

operator with smooth coe�cients.

We introduce the spaces of exponentially decreasing functions

T p.M/ WD ¹f 2 C1.M/ W @˛
s @

ˇ
!f 2 O.epjsj/º; p 2 R: (12.11)

Similarly to Subsection 12.1.1, we set

Sp.M/ WD ¹f 2 C1.M/ W @˛
s @

ˇ
!f 2 O.hsip�j˛j/º; p 2 R: (12.12)
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As usual a function f in T p.M/ resp. in Sp.M/ is called elliptic if f �1 2 T �p.M/

resp. f �1 2 S�p.M/.

We �x a second order di�erential operator P D P.!; @!/ on N, assumed to

be self-adjoint, positive on L2.N; d!/ with domain H 2.N/.

We consider an operator h0 acting on C1
0 .M/ as

h0 D �c0.s; !/@sg0.s; !/@sc0.s; !/ � c� 1
2
.s; !/P.!; @!/c� 1

2
.s; !/C d0.s; !/;

(12.13)

where the coe�cients c0, g0, c� 1
2

and d0 satisfy

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

c0; g0 elliptic in S0.M/; c0 � 1; g0 � 1 2 S�2.M/;

c� 1
2

elliptic in T � 1
2 .M/; hsi�2.c� 1

2
.s; !/ � Qc� 1

2
.s// 2 T �1=2.M/

for some Qc� 1
2
.s/ elliptic in T � 1

2 .M/;

d0.s; !/ 2 S0.M/; d0.s; !/ �m2
1 2 S�2.M/; m1 � 0:

(12.14)

We assume moreover that on C1
0 .R/ one has

h0 � m2.s; !/ for some m 2 S0.M/; m.s; !/ > 0; for all .s; !/ 2 M: (12.15)

It is easy to see that h0 belongs to the general class studied in [7], [13, Section 3.3].

�erefore h0 is self-adjoint, bounded below with domain

Dom h0 D ¹u 2 L2.M/ W h0u 2 L2.M/º D Dom hsep;

where

hsep D �@2
s � Qc� 1

2
.s/P.!; @!/ Qc� 1

2
.s/;

is separable. Moreover the inequality (12.15) still holds on Dom h0. One also

knows that �ess.h0/ D Œm2
1;C1Œ where m1 is de�ned in (12.14).

Concerning the operator k we assume that k D k.s; !/ is a multiplication

operator with

k.s; !/ 2 S�2.M/; k.s; !/m.s; !/�1 ! 0 when s ! 1: (12.16)

From [7] we get that h0 is self-adjoint on Dom hsep. Since equation (12.15) implies

Ker h0 D ¹0º, we see that we are dealing with a massive Klein–Gordon equation

if and only if m1 > 0.
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We now describe the conjugate operator a, following [7] and [13]. Let us �x

functions F; � 2 C1.R/, with F 0; �0 � 0, F.�/ D 0 for � � �1, F.�/ D 1 for

� � �1
2
, �.s/ D 0 for s � 1, �.s/ D 1 for s � 2. We set

FS .�/ D F.S�1�/ and �R.s/ D �.R�1s/ for S;R � 1,

and

XS;R.s; P / D�2
R.s/F

2
S .�s � ln.P C 1//.�s � ln.P C 1/C 2S/

C �2
R.�s/F 2

S .��s � ln.P C 1//.�s C ln.P C 1/ � 2S/;

aS;R WD1
2
.XS;R.s; P /Ds CDsXS;R.s; P //:

Let us summarize some properties of h; aS;R, which can be proved as in [7] and

in [13].

Proposition 12.8. Assume (12.14), (12.15) and (12.16). �en

(1) aS;R is essentially self-adjoint on Dom.hsep C hsi2/;

(2) hsi�paS;Rhsip�1 2 B.H/, for p 2 R;

(3) h0 C f 2 C 2.aS;R/, for any f 2 S�2.M/;

(4) let

�.h0 C f / WD
\

S;R�1

�.h0 C f; aS;R/

(see the beginning of Subsection 8.3 for notation). �en

�.h0 C f / D ¹m2
1º:

Remark 12.9. Note that (4) means that if � ¤ m2
1, then there exist an interval I

with � 2 I , parameters S;R � 1, a constant c0 > 0 and K 2 B1.H/ such that

1I .h0 C f /Œh0 C f; iaS;R�1I .h0 C f / � c01I .h0 C f /CK:

In the sequel we will forget the fact that the scalar conjugate operator aS;R depends

on parameters S;R, and denote it simply by a.

It remains to �x the reference weight appearing in hypothesis (M3). We choose

hxi WD .s2 C 1/
1
2 :

To prove Proposition 12.11 below, we will need the following lemma, whose proof

may be found in Subsection A.4.
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Lemma 12.10. Let f 2 S�2.M/ such that �2 � f 2 DW b2 � 0. �en

Œhbi; hsiı � 2 B.H/; for 0 � ı � 1:

Proposition 12.11. Assume (12.14)–(12.16) and Kerh D ¹0º. �en

(1) conditions (E1)–(E3), (A1)–(A4), and (M1)–(M5) are satis�ed;

(2) one has �.b/ D ¹m1º.

Proof. Set

� D h
1
2

0 :

We �rst claim that

8

<

:

(1) k1¹jsj�Rºk�
�1k ! 0 when R ! C1;

(2) 1¹jsj�Rºk�
�1 2 B1.H/:

(12.17)

In fact (1) follows from the fact that h0 � m2.s; !/ and k.s; !/m.s; !/�1 ! 0

when s ! 1, using also Kato–Heinz inequality. To complete the proof of (12.17)

it su�ces to prove that g.s/��1 2 B1.H/ for g 2 C1
0 .R/. Note that g.s/��1 is

bounded by (12.15).

As in the proof of Proposition 12.5, it su�ces, using (12.9), to check that

both g.s/h�i�1 and g.s/h�i�1��1 are compact. �e term g.s/h�i�1 is compact,

by [7, Lemma 1.2]. We write the second term as h�i�1g.s/��1 � Œh�i�1; g.s/���1.

�e �rst term is again compact since g.s/��1 is bounded. We write the second

term as

Œh�i�1; g.s/���1 D i

2�

ˆ

C

@ Qf� 1
2

@ Nz .z/.z � �2/�1Œ�2; g���1.z � �2/�1dz ^ d Nz;

where Qf� 1
2

is an almost analytic extension of

f� 1
2
.�/ D .�2 C 1/�1=4;

satisfying
8

ˆ

ˆ

<

ˆ

ˆ

:

supp Qf� 1
2

� ¹z 2 C W jImzj � C hReziº;
ˇ

ˇ

ˇ

ˇ

@ Qf� 1
2

@ Nz .z/

ˇ

ˇ

ˇ

ˇ

� CN hzi�3=2�N jImzjN ; N 2 N:

(12.18)



180 V. Georgescu, Ch. Gérard, and D. Häfner

Since �2 is a second order di�erential operator, we obtain Œ�2; g� D .�2 C1/B Qg.s/
with B is compact and Qg 2 C1

0 .R/. �erefore .�2 C 1/�1Œ�2; g���1 is compact.

We use now the bounds

k.�2 � z/�1k 2 O.jImzj�1/; k.�2 � z/�1.�2 C 1/k 2 O.hzijImzj�1/;

and (12.18) to obtain that Œh�i�1; g.s/���1 is compact. �is completes the proof

of (12.17). We apply then Proposition 12.1 with r1 D 1¹jsj�Rºk, r2 D 1¹jsj�Rºk.

�e hypotheses of Proposition 12.1 hold by (12.17), which implies (E1) and (E2).

Moreover jhj � h0 and we can replace jhj� 1
2 by ��1 in condition (E3) and con-

ditions (A1)–(A4). Since by (12.17) we know that k��1 2 B.H/, condition (E3)

holds. To check (A1)–(A4) we use Lemma 7.10 and split k as k1 C k2 with

k1 D F1.R
�1jsj/vl; k2 D vs C F0.R

�1jsj/vl

for someF0,F1 as in (12.6). By (12.17) kk1�
�1k < 1 forR � 1, k2�

�1 is compact.

�e fact that kh�i�1 is compact follows once again from [7, Lemma 1.2].

Let us now check (M1) and (M20). Note �rst that b2 D �2 � k2
1 is of the form

�2 C f for f 2 S�2.M/. Moreover if R � 1 we have

b2 � 1

2
m2.s; !/; (12.19)

by (12.15). �en (M1) follows by Proposition 12.8 (3). By Proposition 12.8 (2),

and observing that k1 2 S�2.M/, we obtain that k1 2 C 2.a�IH/ by undoing the

commutators. Since hbi�1 2 C 2.a�IH/, this proves the �rst condition of (M20).

To prove the rest of (M20) we claim that g.s/b�1 2 C 2.a�IH/ for g 2 C1
0 .R/.

Note that this implies the last two conditions of (M20), since k2, k1k2 2 C1
0 .R/.

If m1 > 0 this is proved by the same argument as before. If m1 D 0, i.e. we

are considering the massless case, then we argue as in the proof of Lemma 12.5:

we use that

a�hsi�1; hsib�1a�; hsing.s/b�1;

a�a�hsi�2; hsi�2b�1a�a�

are in B.H/.

�e bounds with a� rely on Proposition 12.8 (2) and the fact that

b�1a� D Q�.b2/a�.b2/

for Q� 2 C1
0 .R/ since 0 62 supp�. As before we complete the proof by undoing

the commutators with g.s/b�1.
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We now prove (M3). �e �rst condition of equation (M3) follows by Proposi-

tion 12.8 (2). To prove the second it su�ces to prove that

Œhbi; hsiı � 2 B.H/; 0 � ı � 1; (12.20)

which has been shown in Lemma 12.10. Finally (M4) is true since k and hxi
commute, and the fact that �.b/ D ¹m1º follows from Proposition 12.8 (4).

Appendix A

A.1. Diamagnetic and Hardy inequalities. We start by recalling some well-

known facts related to the diamagnetic inequality. We are working on the scatter-

ing manifolds introduced in Subsection 12.1 and set

p D �
d

X

j;kD1

g�1=4@jg
1=2gjk@kg

�1=4;

and

pA WD �
d

X

j;kD1

g�1=4.@j � iAj /g
1=2gjk.@k � iAk/g

�1=4

where A.s; !/ satis�es (12.4). We use the notations of Subsection 12.1.

Lemma A.1. Let V 2 C 0.Rd ;R/ be a bounded potential. �en

p C V � 0 H) pA C V � 0;

Proof. Let us �rst recall the diamagnetic inequality

je�t.pACV /uj � e�t.pCV /juj; u 2 H; t � 0: (A.1)

�is inequality is well known on R
d and also holds on scattering manifolds. In-

deed it is equivalent to a certain estimate on the quadratic forms associated to the

operators, which clearly also holds on scattering manifolds, see [31] for details.

Now recall that

a�˛ D C˛

ˆ C1

0

t˛�1e�tadt; a > 0; ˛ > 0; (A.2)

where C˛ is a positive constant. Using (A.2) for ˛ D 1 we obtain

.ujpA C V C ı/�1u/ � .jujj.p C V C ı/�1juj/ � ı�1kuk2;

which by Kato–Heinz inequality implies that pA C V C ı � ı, which proves the

lemma.
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We now prove some estimates related to Hardy’s inequality on the scattering

manifold .M; g/ considered in Subsection 12.1.

Let g0 be a conic metric as in De�nition 12.2, restricted to M1 D�1;C1Œ�N.

�e corresponding Laplace–Beltrami operator is

��g0 D �s.1�d/@ss
d�1@s ��h;

which is self-adjoint on L2.M1; s
d�1jhj 1

2dsd!/. �e usual proof on R
d , which

relies on the identity s�2 D �1
2
s@s.s

�2/ for s D jxj, yields, for u 2 C1
0 .M1/,

.
d � 2
2

/2
ˆ

M1

s�2juj2sd�1jhj 1
2dsd! � �

ˆ

M1

Nu�g0usd�1jhj 1
2dsd!; (A.3)

where ��h is the Laplace–Beltrami operator on .N; h/. Using the unitary map

T W L2.M; jgj 1
2dsd!/ 3 u 7�! jgj1=4u 2 L2.M; dsd!/;

this immediately implies that ([33, Proposition 3.4])

s�2 � Cp; C > 0; on H D L2.M; dsd!/: (A.4)

Proposition A.2. Assume (12.4) and d � 3. �en

(1) pA � C hsi�2 and

(2) if in addition vl.x/ satis�es (12.8), then

.1C ˛/�1pA � F 2
1.R

�1jsj/v2
l .s/; for some 0 < ˛ < 1; R � 1;

and F1 as in (12.6).

Proof. Statement (1) follows from (A.4) and Lemma A.1. Let us now prove (2).

Since g is a long-range perturbation of g0, we deduce from (A.3) that

1jsj�R �
� 2

d � 2
�2

.1CO.R��//p;

hence, by Lemma A.1,

1¹s�Rº.s/hsi�2 �
� 2

d � 2
�2

.1CO.R��//pA;

which implies (2), using the estimate (12.8) on vl.s; !/.
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A.2. Proof of Proposition 12.1. Let �2
1 D �2 � r2

1 . Since kr1��1k < 1, we have

�2
1 � �2. �erefore Ker �1 D ¹0º, and r2�

�1
1 2 B1.H/. We have

h D �2 � r2 D �2
1 � r2

2 :

�erefore denoting �1 again by � we can assume that r1 D 0 and denote r2 by r ,

so that r��1 2 B1.H/, h D �2 � r2. Note that �ess.h/ D �ess.�
2/. If m > 0

then �ess.h/ � Œm2
1;C1Œ for some m1 > 0 hence Tr1��1;0�.h/ < 1. Moreover

0 62 �.h/ and 0 62 �.�2/, thus jhj � hhi � h�i2 � �2. Hence (2) in (12.1) also

holds.

Let us now assume that m D 0. We �rst prove (1) from (12.1). Noting that

rh�i�1 is bounded, we obtain by the Birman-Schwinger principle that

Tr1��1;�˛�.h/ D Tr1�1;C1Œ.K˛/;

for K˛ D r.�2 C ˛/�1r 2 B1.H/, ˛ > 0. Since r��1 2 B1.H/ we have

K˛ % K0 D r��2r 2 B1.H/, hence

Tr1��1;0Œ.h/ D Tr1�1;C1Œ.K0/ < 1:

Since Ker h D ¹0º, this implies that Tr1��1;0�.h/ < 1, which proves (1) in (12.1).

We now prove (2) from (12.1). Set

P˙ WD 1
R˙.h/:

If

hu D .�2 � r2/u D ��u; � > 0;

then we have

��1u D .��/�1.1 � ��1r2��1/�u 2 H:

�is implies that

ju/.uj � C�2; C > 0:

Since TrP� < 1 this implies that P� � C�2, for some C > 0. Now

jhj D h � 2hP� � hC 2j inf �.h/jP� � �2 C 2C j inf �.h/j�2;

which shows that jhj � C�2 for some C > 0.

To prove the lower bound, we adapt some arguments in [32]. Let

hı D h � ır2 D �2 � .1C ı/r2:

Again by the Birman-Schwinger principle, we have Tr1��1;0Œ.hı/ D Tr1��1;0Œ.h/,

for ı small enough. �erefore there exists c0; ı0 > 0 such that

1Œ�c0;0Œ.hı/ D 0; for all 0 � ı � ı0: (A.5)
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We �x cuto� functions �˙ with �� 2 C1
0 .��1;�c0=2Œ/, �C 2 C1.��c0;C1Œ/

and �2
�.h/C �2

�.h/ D 1. From (A.5) it follows that �C.hı/hı�C.hı/ � 0. �ere-

fore,

PChıPC D PC .��.hı/hı��.hı/C �C.hı/hı�C.hı// PC

� PC.��.hı/hı��.hı/PC

D PCRhıRPC;

(A.6)

for R D ��.hı/ � ��.h/, using that PC��.h/ D 0.

We claim that

RhıR � �Cı2�2; C > 0; uniformly for 0 � ı � ı0; (A.7)

which follows from

k��1Rhhıi 1
2 k � Cı; uniformly for 0 � ı � ı0: (A.8)

To prove (A.8) it su�ces to check that

k.� C ˛/�1Rhhıi 1
2 k � Cı; uniformly for 0 � ı � ı0; ˛ > 0: (A.9)

We have

.� C ˛/�1Rhhıi 1
2

D ı
i

2�

ˆ

C

@

@ Nz Q��.z/.� C ˛/�1.z � h/�1r2.z � hı/
�1hhıi 1

2 dz ^ d Nz;
(A.10)

where Q��.z/ 2 C1
0 .R/ is an almost analytic extension of ��. We write

rl.� C ˛/�1.z � h/�1r2.z � hı/
�1hhıi 1

2

D .z � h/�1.� C ˛/�1r2.z � hı/
�1hhıi 1

2

C .z � h/�1Œh; .�C ˛/�1�.z � h/�1r2.z � hı/
�1hhıi 1

2

D .z � h/�1.� C ˛/�1r2.z � hı/
�1hhıi 1

2

C .z � h/�1.� C ˛/�1r2.z � h/�1r2.z � hı/
�1hhıi 1

2

� .z � h/�1r2.� C ˛/�1.z � h/�1r2.z � hı/
�1hhıi 1

2

DW I1.z/C I2.z/ � I3.z/:
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We write

I1.z/ D .z � h/�1 � .� C ˛/�1r2hhıi� 1
2 � .z � hı/

�1hhıi

D O.jImzj�2/; uniformly in ˛; ı and z 2 supp Q��;
(A.11)

using that r��1 is bounded, and rhhıi� 1
2 is bounded uniformly in 0 � ı � ı0.

Similarly we have

I2.z/ D .z � h/�1 � .� C ˛/�1r2hhi� 1
2 � hhi.z � h/�1

� hhi� 1
2 r2hhıi� 1

2 � .z � hı/
�1hhıi

D O.jImzj�3/; uniformly in ˛; ı and z 2 supp Q��:

(A.12)

A similar argument shows that I3.z/ satis�es the same bound as I2.z/. �erefore

using (A.10) we obtain (A.9), hence (A.7).

We have now

PChPC D .1C ı/�1pChıPC C ı.1C ı/�1PC�
2PC

� .ı � Cı2/.1C ı/�1PC�
2PC;

by (A.6) and (A.7). Choosing ı small enough we obtain that

PC�
2PC � CPChPC; C > 0: (A.13)

On the other hand since RanP� is �nite dimensional and included in Dom �, we

have

P��
2P� � CP 2

� for some C > 0.

Using that

PC�
2P� C P��

2PC � PC�
2PC C P��

2P�

we �nally obtain

�2 D .PC C P�/�
2.PC C P�/

� 2PC�
2PC C 2P��

2P�

� 2CPChPC C 2CP 2
� � C 0jhj;

where in the last inequality we used (A.5) for ı D 0. �is proves (2) in (12.1).
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A.3. Proof of Lemma 8.2. Let Qf�ı be an almost analytic extension of the func-

tion h�i�ı satisfying

supp Qf�ı � ¹z 2 C W jImzj � chReziº;

and
ˇ

ˇ

ˇ

ˇ

@ Qf�ı

@ Nz .z/

ˇ

ˇ

ˇ

ˇ

� CN hzi�ı�1�N jImzjN ; N 2 N;

see [4, Appendix C.2]. We have

Œha�i�ı ; hbi � b�ha�iı

D i

2�

ˆ

C

@ Qf�ı

@ Nz .z/.z � a�/
�1Œa�; hbi � b�.z � a�/

�1ha�iıdz ^ d Nz:
(A.14)

Since 0 62 supp�, there exist g 2 C1
0 .R/ such that

Œa�; hbi � b� D �.b2/Œa; g.b2/��.b2/ 2 B.H/;

by (M1). Now we use the bound k.z � a�/
�1ha�iık 2 O.hziı jImzj�1/ and the

estimates satis�ed by Qf�ı to obtain that the integral in (A.14) is norm convergent.

�is completes the proof of the lemma.

A.4. Proof of Lemma 12.10. Note that b2 is of the form (12.13). We claim �rst

that

Œb2; hsiı �hbi�1; hbi�1Œb2; Œb2; hsiı ��hbi�1 2 B.H/; 0 � ı � 1: (A.15)

In fact this follows by an easy computation using (12.14) and the fact that

@shbi�1; c� 1
2
.s; !/@!hbi�1 2 B.H/;

see [13, Lemma 4.3.1].

We write now

hbi D .b2 C 1/hbi�1;

and

Œhbi; hsi�ı � D Œb2; hsi�ı �hbi�1 C .b2 C 1/Œhbi�1; hsi�ı �:

�e �rst term is bounded by (A.15). To estimate the second term, we introduce the

function

f� 1
2
.�/ D .�C 1/�

1
2
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and write with Qf� 1
2

as in (12.18):

.b2 C 1/Œhbi�1; hsi�ı �

D i

2�

ˆ

C

@ Qf� 1
2

@ Nz .z/.b2 C 1/.z � b2/�1Œb2; hsiı �.z � b2/�1dz ^ d Nz

D .b2 C 1/f 0

� 1
2

.b2/Œb2; hsiı �

C i

2�

ˆ

C

@ Qf� 1
2

@ Nz .z/.b2 C 1/.z � b2/�2Œb2; Œb2; hsiı �.z � b2/�1dz ^ d Nz:

�e �rst term is again bounded using (A.15) and the fact that f 0

� 1
2

.�/ 2 O.h�i�3=2/.

�e integral in the second term is norm convergent, using (A.15), the estimates on
Qf� 1

2
and the bounds hbi˛.z � b2/�1 2 O.hzi˛=2jImzj�1/ for 0 � ˛ � 2. �is

completes the proof of the fact that Œhbi; hsiı � is bounded.

Appendix B

In this appendix we prove �eorem 3.17. We �rst recall some standard results.

Let X be a locally compact space, C.X/ the space of bounded continuous

functions and B.X/ the space of bounded Borel functions. We recall that a se-

quence .'n/n2N in B.X/ is b-convergent to ', written as b� limn 'n D ' if

supn k'nk1 < 1 and 'n ! ' pointwise on X .

�e monotone class theorem implies that B.X/ is the smallest space of func-

tions on X containing C.X/ and stable under bounded convergence of sequences.

�e Riesz theorem says that any continuous linear form on C.X/ uniquely extends

to a linear form on B.X/ continuous for the b-convergence of sequences.

Recall also that a Banach space H is weakly sequentially complete, if for each

sequence .un/n2N in H such that limnhf; uni exists for each f 2 H#, there exists

u 2 H with limnhf; uni D hf; ui for each f 2 H#. Re�exive Banach spaces,

hence Hilbertizable spaces, are weakly sequentially complete.

Let H be weakly sequentially complete. If .Tn/n2N is a sequence in B.H/ such

that limnhf; Tnui exists for each u 2 H; f 2 H#, then there is a unique T 2 B.H/
such that w� limTn

D T .

From these facts, it is straightforward to prove the following result, see e.g.

[36, Corollary 9.1.10].
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�eorem B.1. Let X a locally compact space, H a weakly sequentially complete

Banach space. �en if F0 W C.X/ ! B.H/ is a continuous algebra morphism,

there is a unique algebra morphism F W B.X/ ! B.H/ such that b� limn 'n D '

implies w� limF.'n/ D F.'/.

Proof of �eorem 3.17. We will deduce �eorem 3.17 from �eorem B.1 for a con-

venient choice of the locally compact space X . We use the notations in Subsec-

tions 3.3 and 3.4.

Let � be a smooth function which has a zero of order ˛.�/ at each � 2 supp˛

and has no other zeros. �is means � D c!�! C o.�!/ if ! 2 Q̨ with c! non zero

numbers and �.x/ ¤ 0 outside supp˛.

Let 2" be the minimal distance between two points of supp˛ and let �0 be a

smooth function with �0.x/ D 1 if jxj < "=3 and �0.x/ D 0 if jxj > "=2. �en

let �1 be a smooth function equal to 1 on a neighborhood of 1 and equal to 0 at

points at distance < " from supp˛ \ R. Finally, if ! D .�; s/ 2 Q̨ and � 2 R then

we set �!.x/ D �0.x � �/, and if � D 1 we set �! D �1. �us the functions in

the family ¹�!º!2 Q̨ have disjoint supports and each of them is equal to one on a

neighborhood of a unique point from supp˛.

Recall that for ' 2 ƒ˛ we have ı!.'/ D ı!.'
ı/ if ! � ˛ and so T!' D T!'

ı

if ˛ � ˛. We associate to such a ' a function Q' 2 B.yR/ de�ned by

Q' D ��1
�

'ı �
X

!2 Q̨

�!T!'
�

outside supp˛, while at points � 2 supp˛ we set

Q'.�/ D c�1
! ı!.'/ with ! D .�; ˛.�//.

�e de�nition of Q' on the support of ˛ is such that Q' 2 C.yR/ if ' 2 C ˛.yR/ � ƒ˛.

Observe that

X

!2 Q̨

�!T!' D
X

�<!2 Q̨

�!ı�.'/��

D
X

�<!2˛

��ı�.'/��

D
X

!�˛

�!ı!.'/�!;

because for � < ! we have �� D �! . �us we have

'ı D � Q' C
X

!2 Q̨

�!T!' D � Q' C
X

!�˛

�!ı!.'/�! (B.1)
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Now let us denote

Ǫ D ¹! j ! � ˛º
and let us consider the map

A W ƒ˛ D L˛.yR/˚ C
Q̨ �! B.yR/˚ C

Ǫ

de�ned by

A' D . Q'; .ı!.'//!�˛/:

�en clearly A is linear continuous and injective and we have

AC ˛.yR/ � C.yR/˚ C
Ǫ :

On the other hand, from (B.1) it follows thatA is bijective with continuous inverse

given by

A�1. ; .a!/!�˛/ D
�

� C
X

!�˛

�!a!�!; .c! .!//!2 Q̨

�

;

where we used the notation

 .!/ D  .�/ for ! D .�; ˛.�// 2 Q̨ .

It is also easy to check that A�1 sends C.yR/˚ C
Ǫ into C ˛.yR/, hence

A W C ˛.yR/ �! C.yR/˚ C
Ǫ

is an isomorphism.

Summarizing we have

A W C ˛.yR/ � C.yR/˚ C
Ǫ ;(i)

and

A W ƒ˛ � B.yR/˚ C
Ǫ :(ii)

Let yR t Ǫ be the topological disjoint union of yR with the discrete space Ǫ . We

have obvious identi�cations

C.yR/˚ C
Ǫ � C.yR t Ǫ / and B.yR/˚ C

Ǫ � B.yR t Ǫ /;

which in particular induce the natural notion of b-convergence for sequences on

the space B.yR/ ˚ C
Ǫ . �en it is clear that A and A�1 are continuous for the b-

convergence. It su�ces now to apply �eorem B.1 to X D yR [ Ǫ , using also

�eorem 3.10.
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