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On a rigidity result for the �rst conformal eigenvalue

of the Laplacian

Romain Petrides

Abstract. Given .M; g/ a smooth compact Riemannian manifold without boundary of

dimension n � 3, we consider the �rst conformal eigenvalue which is by de�nition the

supremum of the �rst eigenvalue of the Laplacian among all metrics conformal to g of

volume 1. We prove that it is always greater than n!
2
n
n , the value it takes in the conformal

class of the round sphere, except if .M; g/ is conformally di�eomorphic to the standard

sphere.

Mathematics Subject Classi�cation (2010). Primary 58; Secondary 46, 49.

Keywords. Bounds, conformal, eigenvalue, Laplacian, conformal volume, Riemannian

manifold.

Let .M; g/ be a smooth compact Riemannian manifold without boundary of di-
mension n � 3 and let us de�ne the �rst conformal eigenvalue of .M; g/ by

ƒ1.M; Œg�/ D sup
Qg2Œg�

�1.M; Qg/ Vol Qg.M/
2
n

where �1.M; g/ is the �rst nonzero eigenvalue of the Laplacian �g D � divg.r/

and Œg� is the conformal class of g. In this paper, we aim at proving a rigidity
result concerning this �rst conformal eigenvalue.

�e maximisation on conformal classes is natural because the scale invariant
quantity supremum is in�nite among all metrics [3] (except in dimension 2, [16]),
while El Sou� and Ilias [7] proved that it is always bounded among conformal
metrics. Generalizing a result by Li and Yau [13] in dimension 2, they gave an
explicit upper bound thanks to the m-conformal volume Vc.m; M; Œg�/ of .M; Œg�/

ƒ1.M; Œg�/ � nVc.m; M; Œg�/
2
n (1)
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�ese conformal invariants on the standard sphere .Sn; Œcan�/ satisfy (cf. [7])

ƒ1.Sn; Œcan�/ D n!
2
n
n D nVc.Sn; Œcan�/

2
n (2)

and this value is achieved if and only if the metric is round. Here, !n denotes the
volume of the standard n-sphere. Colbois and El Sou� [4] also proved that, for
any compact Riemannian manifold .M; g/ of dimension n � 3,

ƒ1.M; Œg�/ � ƒ1.Sn; Œcan�/:

We prove here that the case of equality characterizes the standard sphere :

�eorem 1. Let .M; g/ be a compact Riemannian manifold without boundary of

dimension n � 3. �en

ƒ1.M; Œg�/ > ƒ1.Sn; Œcan�/

if .M; Œg�/ is not conformally di�eomorphic to .Sn; Œcan�/.

�is theorem answers the question raised in [2] and [11]. Note that a similar
result was proved by the author in dimension 2 (see [14]). Note also that thanks
to (1) and (2), the theorem implies

Vc.m; M; Œg�/ > !n D Vc.Sn; Œcan�/

if .M; Œg�/ is not conformally di�eomorphic to .Sn; Œcan�/. �is gives a positive
answer to Question 2 in [13].

In the rest of this paper, we prove the theorem. Based on the idea of Ledoux [12]
and Druet [5], we start from a sharp Sobolev inequality in dimensions n � 3

(see [9, 5, 6]) which possesses extremal functions. �ese extremal functions give
natural metrics Qg 2 Œg� with

Vol Qg .M/ D 1 and �1. Qg/ � n!
2
n
n :

As in dimension 2, see [14], we deal with the degeneracy consequences of the

hypothesis �1. Qg/ D n!
2
n
n .

Let .M; g/ be a smooth compact Riemannian manifold of dimension n � 3

with Volg .M/ D 1, which is not conformally di�eomorphic to the standard sphere.
For an integer m � 1, let h 2 Cm.M/. We let Jg;h be the functional de�ned for
u 2 W 1;2.M/ n ¹0º by

Jg;h.u/ D

Z

M

jruj
2
g dvg C

Z

M

hu2dvg � K�2
n

�Z

M

juj
2�

dvg

�
2

2�

Z

M

u2dvg

(3)
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where

Kn D
2

p

n.n � 2/
!

� 1
n

n (4)

is the sharp constant for the Sobolev inequality induced by the critical Sobolev
embedding W

1;2
0 � L2�

for bounded domains of Rn, with 2� D 2n
n�2

. Hebey and
Vaugon proved in [9] that

� ˛.g; h/ D inf
u2W 1;2.M /n¹0º

Jg;h.u/ (5)

is �nite. Note that Jg;h is scale invariant.
We will assume in the following that up to a conformal change, g is a metric

in Œg� with volume 1 which has a constant scalar curvature Sg . Since M is not
conformally di�eomorphic to the standard sphere, by the resolution of the Yamabe
problem by Aubin [1] and Schoen [15], it satis�es

�.M; g/ < K�2
n (6)

where �.M; g/ is the Yamabe invariant of .M; Œg�/. Let V be an open neighbour-
hood of n�2

4.n�1/
Sg in C

m.M/ such that













h �
n � 2

4.n � 1/
Sg













1

�
1

2
.K�2

n � �.M; g//; for all h 2 V: (7)

Let s � 0 be such that s C 2 > n
2

and m � s C 2. By the Sobolev embedding

W sC2;2 ,�! C
0;

the subset W
sC2;2

C of positive functions of W sC2;2 is open. We de�ne

F W W
sC2;2

C � R � V �! W s;2;

.u; ˇ; h/ 7�! �gu C .h C ˇ/u � K�2
n u2��1;

which is well de�ned because of the Sobolev algebra property of W sC2;2 and F

is a C
1 map. By a result of Druet [5], thanks to (6) and (7), for any h 2 V , the

functional Jg;h attains its in�mum. Let u 2 W 1;2.M/ be such that

Jg;h.u/ D �˛.g; h/:

Up to replace u by juj and up to normalize, we can take

u � 0 and
Z

M

u2�

dvg D 1:
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�en, u satis�es the Euler–Lagrange equation

F.u; ˛.g; h/; h/ D �gu C .h C ˛.g; h//u � K�2
n u2��1 D 0 (8)

where, by elliptic regularity theory, u 2 C
mC2 and, by the maximum principle,

u > 0.
Let v 2 C1.M/ and t 2 R such that jt j < kvk

�1
1 . Since u is a minimum

for (5),
Z

M

jr.u C tuv/j2gdvg C

Z

M

.h C ˛.g; h//.u C tuv/2dvg

� K�2
n

� Z

M

.u C tuv/2?

dvg

�
2

2?

� 0:

(9)

Since u satis�es (8), the left term in (9) vanishes until the order 2 in the Taylor
development as t ! 0. Computing the second-order coe�cient as t ! 0, one
gets

Z

M

jr.uv/j2gdvg C

Z

M

.h C ˛.g; h//.uv/2dvg

� K�2
n .2? � 1/

Z

M

v2u2?

dvg C K�2
n .2? � 2/

� Z

M

vu2?

dvg

�2

� 0:

(10)

We now use the conformal transformation of the conformal Laplacian

u2��1� Qgv D �g.uv/ � v�gu; for all v 2 C
1.M/; (11)

where
Qg D u

4
n�2 g:

We integrate (11) against uv and with (8),
Z

M

jr.uv/j2gdvg

D

Z

M

jrvj2Qgdv Qg C

Z

M

v2u�gudvg

D

Z

M

jrvj Qgdv2
Qg �

Z

M

.h C ˛.g; h//v2u2dvg C K�2
n

Z

M

v2u2?

dvg

and with (4), (10) becomes

Z

M

jrvj
2
Qg dv Qg � n!

2
n
n

Z

M

�

v �

Z

M

vdv Qg

�2

dv Qg � 0: (12)
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�is gives that �1. Qg/ � n!
2
n
n . Note that if the inequality is strict for one solution

.h; u/ of F.u; ˛.g; h/; h/ D 0, the theorem is proved.
We now assume that for any solution .h; u/ of F.u; ˛.g; h/; h/ D 0, we have

�1.u
4

n�2 g/ D n!
2
n
n . We will apply the following theorem ([10],�eorem 5.4, p. 63)

of Fredholm theory to F , with U D W
sC2;2

C .M/ � R.

�eorem 2. Let X ,Y be two separable Banach spaces, U an open set of X , V a

separable C
1 Banach manifold and F 2 C

1.U � V; Y / which satisfy:

� for all .u; v/ 2 F �1.0/, DF.u/ is surjective;

� for all .u; v/ 2 F �1.0/, DuF.u; v/ is a Fredholm operator.

�en there exists a countable intersection of open dense sets (a residual set) † � V

such that for all v 2 †, and for all u 2 F.:; v/�1.0/, DuF.u; v/ is surjective.

Using (11) and (4), one gets for .u; ˇ; h/ 2 F �1.0/,

D.u;ˇ/F.u; ˇ; h/:.�; �/ D u2��1
�

� Qg

��

u

�

� n!
2
n
n

�

u

�

C �u; (13)

where Qg D u
4

n�2 g. �en, D.u;ˇ/F.u; ˇ; h/ is a Fredholm operator. It remains to
prove that if .u; ˇ; h/ 2 F �1.0/, DF.u; ˇ; h/ is surjective. We have

DF.u; ˇ; h/:.�; �; �/ D u2��1
�

� Qg

��

u

�

� n!
2
n
n

�

u

�

C �u C �u: (14)

Im.D.u;ˇ/F.u; ˇ; h// is a closed space in W s;2 of �nite codimension. �us, since
Im.DF.u; ˇ; h// contains Im.D.u;ˇ/F.u; ˇ; h//, it is a closed space in W s;2 by the
following lemma.

Lemma. Let X a Banach space, and E � F � X some subspaces. If E is a

closed �nite codimensional subspace of X , then F is a closed subspace of X .

Proof. Let G a �nite dimensional subspace of X such that X D E ˚ G. We set
H D G \ F . �en, F D E ˚ H . Let xk 2 F such that xk ! x as k ! C1. We
denote xk D yk C zk with yk 2 E and zk 2 H .

We suppose that .zk/k�0 is not bounded. �en, up to the extraction of a subse-
quence, jzk j ! C1 as k ! C1. By Bolzano’s theorem, up to the extraction of
a subsequence, there exists z 2 H such that

zk

jzk j
�! z; as k ! C1:
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Since .xk/ converges as k ! C1,

yk

jzkj
D

xk

jzk j
�

zk

jzk j
�! �z; as k ! C1:

Since E is closed, we get z 2 E \ H D 0, which contradicts jzj D 1.

�en .zk/k�0 is bounded and by Bolzano’s theorem, up to the extraction of a
subsequence, we can suppose that zk ! z 2 H as k ! C1. �en,

yk D xk � zk �! x � z; as k ! C1:

and y D x � z 2 E since E is closed. �erefore x D y C z 2 E C H D F and
the proof of the lemma is complete.

Now, it su�ces to prove that Im.DF.u; ˇ; h//? D 0, where ? refers to the
orthogonal in W s;2. Let � 2 Im.DF.u; ˇ; h//?. �en, with (14),

h�; u�iW s;2 D 0; for all � 2 C
m:

Since u 2 C
m is positive and C

m is dense in W s;2, we get � D 0.

By �eorem 2, there exists h 2 V such that for all couple .u; ˇ/ satisfying
F.u; ˇ; h/ D 0, DF.u;ˇ/.u; ˇ; h/ is surjective. We take in particular ˇ D ˛.g; h/

and we will deduce that for a minimal function u, �1. Qg/ D n!
2
n
n is simple with

Qg D u
4

n�2 g. We claim that

Z

M

u2�dvg ¤ 0; for all � 2 E1. Qg/ n ¹0º: (15)

Indeed, if � is an eigenfunction for �1. Qg/ such that this integral vanishes, one
easily checks with (13) that u� is orthogonal to the image of D.u;ˇ/F.u; ˛.h; g/; h/

in L2.g/. It implies � D 0 and we obtain (15). Since a bounded linear form
vanishes on a one-codimensional space, we get that �1. Qg/ is simple. �us, �1. Qg/

cannot be an extremal eigenvalue in the sense of [8] and as a result, �1. Qg/ D n!
2
n
n

is not locally maximal. �e proof of �eorem 1 for n � 3 is complete.
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