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Abstract. We study for ˛ 2 R, k 2 N n ¹0º the family of self-adjoint operators

� d 2

dt2
C
� tkC1

k C 1
� ˛

�2

in L2.R/ and show that if k is even then ˛ D 0 gives the unique minimum of the lowest

eigenvalue of this family of operators. Combined with earlier results this gives that for any

k � 1, the lowest eigenvalue has a unique minimum as a function of ˛.
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1. Introduction

1.1. De�nition of Q.k/.˛/ and main result. For any k 2 N n ¹0º and ˛ 2 R we

de�ne the operator

Q
.k/.˛/ D � d 2

dt2
C
� tkC1

k C 1
� ˛

�2

;

as a self-adjoint operator in L2.R/. �is family of operators is connected with the

study of Schrödinger operators with a magnetic �eld vanishing along a curve and

with the Ginzburg–Landau theory of superconductivity. It �rst appeared in [9]

(for k D 1) and was later studied in [7, 10, 6, 5, 8, 2, 3, 4].

We denote by ¹�j;Q.k/.˛/º1
j D1 the increasing sequence of eigenvalues ofQ.k/.˛/.

In particular, �1;Q.k/.˛/ is the ground state eigenvalue, and we denote by u˛ the

associated positive, L2-normalized eigenfunction.

�e main result of the present paper is the following theorem.
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�eorem 1.1. Assume that k � 2 is an even integer. �en �1;Q.k/.˛/ attains a

unique minimum at ˛ D 0. Moreover, this minimum is non-degenerate.

Remark 1.2. �is extends the previous results and discussions in [5, 8], where

similar results were obtained for odd k. �e non-degeneracy was proved in [8].

In that paper it was also shown that �eorem 1.1 is valid for large even k. �e fact

that the minimum is attained at ˛ D 0 was suggested by numerical computations

done by V. Bonnaillie–Noël.

Combining our �eorem 1.1 with the results of [5, 8] we get the following

complete answer.

�eorem 1.3. For any k 2 N n ¹0º, the function ˛ 7! �1;Q.k/.˛/ attains a unique

minimum. Moreover, this minimum is non-degenerate.

�e paper is organized as follows. In Section 2 we give several spectral bounds

on the �rst two eigenvalues of Q.k/.˛/. �ese estimates are used to prove �eo-

rem 1.1 for 2 � k � 68 in Section 3 and for k � 70 in Section 4.

2. Auxiliary results

2.1. Introduction. In this section we collect several spectral bounds that will

help us in proving �eorem 1.1. In the following, we assume that k denotes a

positive even integer.

With the scaling s D ˛�1=.kC1/t it becomes clear that the form domain of

Q.k/.˛/ is independent of ˛. �us, we are allowed to use the machinery of analytic

perturbation theory.

First we note that Q.k/.˛/ and Q.k/.�˛/ are unitarily equivalent (map t 7! �t

along with ˛ 7! �˛). �is implies that the function ˛ 7! �1;Q.k/.˛/ is even, and

hence has a critical point at ˛ D 0. It is proved in [8] that this critical point is a

nondegenerate minimum. �is also follows from our estimates below.

Lemma 2.1. If ˛c is a critical point of �1;Q.k/.˛/, then

Z C1

�1

� tkC1

k C 1
� ˛c

�
u˛c

.t /2 dt D 0

and Z C1

�1

� tkC1

k C 1
� ˛c

�2

u˛c
.t /2 dt D

�1;Q.k/.˛c/

k C 2
:
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Sketch of proof. �e �rst identity, usually referred to as the Feynman–Hellmann

formula, follows from �rst order perturbation theory,

@

@˛
�1;Q.k/.˛/ D �2

Z C1

�1

� tkC1

k C 1
� ˛

�
u˛.t /2 dt:

�e second is a virial type identity and is proved by scaling. We refer to [8] for

the details.

2.2. Positive second derivative. A key element in our approach is the follow-

ing Lemma 2.2, which can be used to rule out local maxima under appropriate

estimates on the �rst eigenvalues.

Lemma 2.2 (Lemma 2.3 in [8]). If ˛c is a critical point of �1;Q.k/.˛/ and

k C 2

k C 6
�2;Q.k/.˛c/ > �1;Q.k/.˛c/

then
@2

@˛2
�1;Q.k/.˛/

ˇ̌
ˇ
˛D˛c

> 0:

We give a sketch of the proof for the sake of completeness.

Sketch of proof. �e proof is based on perturbation theory. �e second derivative

of �1;Q.k/.˛/ is given by

@2

@˛2
�1;Q.k/.˛/ D 2 � 4

Z C1

�1

� tkC1

k C 1
� ˛

�
u˛

�
@˛u˛

�
dt:

Here

@˛u˛ D �2.Q.k/.˛/ � �1;Q.k/.˛//
�1
� tkC1

k C 1
� ˛

�
u˛;

where the inverse is the regularized resolvent. �e rest of the proof uses Lemma 2.1,

the bound

k.Q.k/.˛c/ � �1;Q.k/.˛c //
�1k � .�2;Q.k/.˛c/ � �1;Q.k/.˛c//

�1;

and the Cauchy-Schwarz inequality.

To apply Lemma 2.2 we need good upper bounds on �1;Q.k/.˛/ and lower

bounds on �2;Q.k/.˛/. �ese will be presented in the sections below.
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2.3. Upper bounds. We will at several points need upper bounds on the �rst

eigenvalue of Q.k/.˛/. �ey are given in this section.

Lemma 2.3. Assume that ˛c is a critical point of ˛ 7! �1;Q.k/.˛/. �en, for all

˛ 2 R it holds that

�1;Q.k/.˛/ � �1;Q.k/.˛c/ C .˛ � ˛c/2:

Proof. �is follows by inserting the eigenfunction u˛c
corresponding to �1;Q.k/.˛c /

ofQ.k/.˛c/ into the quadratic form corresponding toQ.k/.˛/ and using Lemma 2.1

Lemma 2.4. For all ˛ � 0 it holds that

�1;Q.k/.˛/ � ˛2 C Ak;

with

Ak D

8
ˆ̂̂
<
ˆ̂̂
:

23=2

9

�4�6 � 210�4 C 4410�2 � 26775

7

�1=4

; k D 2;

�2

4

k C 2

k C 1

�1

4
.k C 1/.2k C 3/.2k C 4/.2k C 5/

��1=.kC2/

; k � 2:

Proof. For k � 4 we refer to Lemma 3.1 in [8]. For k D 2 we use the same idea

but with a di�erent trial state. A calculation of the energy of the function

u.t/ D

8
<̂

:̂

2p
3�

cos2
��t

2�

�
; jt j < �;

0; jt j � �;

gives (kuk D 1)

�1;Q.2/.˛/ �
Z C1

�1
ju0.t /j2 C

� t3

3
� ˛

�2

ju.t/j2 dt

D ˛2 C �2

3�2
C 4�6 � 210�4 C 4410�2 � 26775

252�6
�6:

Minimizing in �, we get the bound

�1;Q.2/.˛/ � ˛2 C 23=2

9

�4�6 � 210�4 C 4410�2 � 26775

7

�1=4

� ˛2 C 0:6642;

attained for

� D 21=4�
�4�6 � 210�4 C 4410�2 � 26775

7

��1=8

� 2:57:
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�e upper bound given in Lemma 2.4 is graphed (for ˛ D 0 and 2 � k � 70)

in Figure 1 on page 244.

Lemma 2.5. �e function

k 7! �2

4

k C 2

k C 1

�1

4
.k C 1/.2k C 3/.2k C 4/.2k C 5/

��1=.kC2/

appearing in Lemma 2.4 is increasing for k � 2. In particular it is always bounded

from above by �2=4.

Proof. We will in the proof consider k to be a real variable. Taking the logarithmic

derivative of the expression, we get

a3k3 C a2k2 C a1k C a0

.k C 1/.k C 2/2.2k C 3/.2k C 5/

with (here we note that each term is increasing with k and thus estimate from

below with k D 2)

a3 D 4 log.2.k C 1/.k C 2/.2k C 3/.2k C 5// � 20 � 8 log 2

� 4 log 378 � 20 � 3:73;

a2 D 20 log.2.k C 1/.k C 2/.2k C 3/.2k C 5// � 108 � 40 log 2

� 20 log 378 � 108 � 10:69;

a1 D 31 log.2.k C 1/.k C 2/.2k C 3/.2k C 5// � 189 � 62 log 2

� 31 log 378 � 189 � �5:02;

a0 D 15 log.2.k C 1/.k C 2/.2k C 3/.2k C 5// � 107 � 30 log 2

� 15 log 378 � 107 � �17:98:

Now, the polynomial

p.k/ D 3:73k3 C 10:69k2 � 5:02k � 17:98

satis�es

p.2/ � 44:58 and p0.k/ D 11:19k2 C 21:38k � 5:02:

Since p0.k/ > 0 for k � 2 we �nd that p is positive for k � 2. �is implies that

the function in the statement is increasing. �e �nal part follows since the limit as

k ! C1 is �2=4.
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2.4. Lower bounds. To be able to use Lemma 2.2 we need lower bounds on the

second eigenvalue. �e following function will appear in the bounds.

Lemma 2.6. It holds that

h.a/ WD max
0<�<1

.1 � �2/a=.aC2/�2=.aC2/.a=2/4=.aC2/

D 2�4=.aC2/a.aC4/=.aC2/.a C 1/1=.aC2/�1:

(2.1)

Moreover, lima!C1 h.a/ D 1.

Proof. Di�erentiating .1��2/a=.aC2/�2=.aC2/.a=2/4=.aC2/ with respect to � gives

2.a�2/=.aC2/a4=.aC2/��a=.aC2/
�
1 � �2

��2=.aC2/�
1 � .a C 1/�2

�

a C 2
;

with the unique zero (in 0 < � < 1) at � D 1=
p

a C 1. Since the function is

zero at the endpoints and positive for 0 < � < 1 this must be the maximum. �is

proves (2.1)

�e rest follows by a simple analysis of the right hand side of (2.1). �e deriv-

ative equals

h0.a/ D 2�4=.aC2/a2=.aC2/.a C 1/1=.aC2/�1 Oa
.a C 2/2

;

where

Oa WD Œa
�
4 C 4 log 2 � 2 log a � log.a C 1/

�
C 8�

Lemma 2.7. For all real ˛ and all even k � 2 it holds that

Q
.k/.˛/ � h.k/

h
� d 2

dt2
C
� tk=2

k=2

�2i
;

where h is the function from Lemma 2.6.

Proof. Let A D �i d
dt

and B D
�

tkC1

kC1
� ˛

�
. �en the commutator ŒA;B� equals

ŒA;B� D �i tk:

With the Cauchy–Schwarz inequality and the weighted arithmetic-geometric mean

inequality, we �nd that (for all 0 < � < 1)

Q
.k/.˛/ � �.1 � �2/

d 2

dt2
C � tk D �.1 � �2/

d 2

dt2
C �.k=2/2

� tk=2

k=2

�2

:

Scaling the variable and invoking Lemma 2.6 gives the result.
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Lemma 2.8. Let h be the function in Lemma 2.6. For all real ˛ and all even k � 2

it holds that

�2;Q.k/.˛/ � Bk;

with

Bk D h.k/
32k=.kC2/.k C 2/

2.2k�2/=.kC2/k.kC4/=.kC2/
D 3

2k
kC2 .k C 2/

2
2kC2
kC2 .k C 1/

kC1
kC2

:

Proof. Let T > 0. We use the estimate

� tk=2

k=2

�2

� 2

k
T k�2t2 � 2k � 4

k2
T k ;

valid for all t 2 R. Comparing with the harmonic oscillator, and using Lemma 2.7,

we get the required estimate for the second eigenvalue. �e optimal choice of T

is

T D
�3

p
2k

4

�2=.kC2/

: (2.2)

�e lower bound of �2;Q.k/.˛/ in Lemma 2.8 will tend to 9=4 as k ! C1,

which compared to the limit �2=4 for the �rst eigenvalue is not good enough. Our

next aim is to improve this lower bound on �2;Q.k/.˛/ for large k.

Lemma 2.9. Assume that k � 70 is even and ˛ 2 R. �en

�2;Q.k/.˛/ � eBk ;

with

eBk D
p

5 � 1

2

 
� � arctan

�q
.�=1:1/2

1:170�.�=1:1/2

�

1:1

!2

� 4:719:

Proof. We �rst do the commutator estimate

Q
.k/.˛/ � �.1 � �2/

d 2

dt2
C � tk D

p
5 � 1

2

�
� d 2

dt2
C tk

�
;

where � in the latter step is chosen to be
p

5�1
2

. Next we note that the second

eigenvalue of

� d 2

dt2
C tk
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in L2.R/ equals the �rst eigenvalue of the operator

� d 2

dt2
C tk

in L2.RC/ with Dirichlet condition at t D 0. Let T > 1. �en

� d 2

dt2
C tk � D

.k/ WD � d 2

dt2
C T k�¹t>T º;

where we, again, impose a Dirichlet condition at t D 0. Here �D denotes the

characteristic function of the set D. Let us estimate the �rst eigenvalue �1;D.k/ of

D.k/. Clearly

�1;D.k/ �
��

T

�2

;

which is what one gets considering .0; T / and imposing a Dirichlet condition at

t D T . �e ground state of D.k/ is given by (in the rest of this proof we write

� D �1;D.k/)

u.t/ D

8
<
:

c1 sin.
p

�t/; 0 � t � T;

c2e�!t ; t � T;

where

�!2 C T k D �

and where we have the gluing conditions at t D T :

c1 sin.
p

�T / D c2e�!T

and

c1

p
� cos.

p
�T / D �c2!e�!T :

�is gives the equation (in
p

�)

tan.
p

�T / D �
p

�

!
i.e. tan.� �

p
�T / D

p
�

!
;

which has a unique solution in the interval �
2T

<
p

� < �
T

. We think of T > 1

and k large, so that
p

�=! is small, and get

p
�

!
D
r

�

T k � �
�
s

.�=T /2

T k � .�=T /2
:
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And so by monotonicity

� �
p

�T � arctan

�s
.�=T /2

T k � .�=T /2

�
;

i.e.

� �
 

� � arctan
�q

.�=T /2

T k�.�=T /2

�

T

!2

:

Now, without optimizing, we �nd that with T D 1:1 and k � 70 it holds that

�2;Q.k/.˛/ �
p

5 � 1

2
�

�
p

5 � 1

2

 
� � arctan

�q
.�=1:1/2

1:170�.�=1:1/2

�

1:1

!2

� 4:719:

We will also need lower bounds on �1;Q.k/.˛/ for large ˛. �is is the content

of the following two Lemmas.

Lemma 2.10. For ˛ � 3=2 and even k � 2 it holds that

�1;Q.k/.˛/ � Ck ; (2.3)

with

Ck D min
��3

2
� 1

k C 1

�2

;

3
2
.k C 1/ � 1

.k C 1/
��

3
2
.k C 1/

�1=.kC1/ � 1
�‚0

�
:

In particular, if 2 � k � 68 it holds that

�1;Q.k/.˛/ > �1;Q.k/.0/

for all ˛ � 3=2.

Proof. First we note that the potential
�

tkC1

kC1
� ˛

�2
is decreasing for all t < 1 (in

fact for all t < ..k C 1/˛/1=.kC1/), and thus it is greater than .1=.k C 1/ � 3=2/2

for all t < 1 and all ˛ � 3=2.
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For t � 1 and ˛ � 3=2, we estimate

� tkC1

k C 1
� ˛

�2

D 1

.k C 1/2

� kX

j D0

tk�j .˛.k C 1//1=.kC1/
�2

.t � .˛.k C 1//1=.kC1//2

� 1

.k C 1/2

� 3
2
.k C 1/ � 1

�
3
2
.k C 1/

�1=.kC1/ � 1

�2

.t �
�
˛.k C 1/

�1=.kC1/
/2:

Here we used that the expression in the big sum is increasing both in t and in ˛,

and then applied the formula for a geometric sum.

�us, comparing with the minimum of the potential for t < 1 and with the

de Gennes operator for t � 1 we conclude (2.3).

�e last part follows by comparing the upper bound in Lemma 2.4 with the just

obtained lower bound (and using the fact that ‚0 > 0:59 which is known from [1]).

�is is done in Figure 1.

Figure 1. �e disks are the upper bounds on �1;Q.k/.0/ from Lemma 2.4 as a function of

k. �e squares are the lower bounds on �1;Q.k/.˛/, ˛ � 3=2, as a function of k, from

Lemma 2.10.
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We need a better bound for large k than the one given in Lemma 2.10. We use

instead ˛ D 2:8 as lower bound and �nd that

Lemma 2.11. For ˛ � 2:8 it holds that

�1;Q.k/.˛/ � min
��

2:8 � 1

k C 1

�2

;
2:8.k C 1/ � 1

.k C 1/
��

2:8.k C 1/
�1=.kC1/ � 1

�‚0

�
:

For k � 70 the �rst term is the smallest one, i.e.

�1;Q.k/.˛/ �
�
2:8 � 1

k C 1

�2

�
�
2:8 � 1

71

�2

� 7:76:

In particular �1;Q.k/.˛/ cannot obtain its global minimum for ˛ � 2:8.

Proof. �e proof is exactly the same as the proof of Lemma 2.10. �e second

statement follows from noticing that the second term in the minimum is increasing

and that its value at k D 70 is

2:8.70 C 1/ � 1

.70 C 1/
��

2:8.70 C 1/
�1=.70C1/ � 1

�‚0 � 21:2;

while the �rst term in the minimum is less than 2:82 D 7:84.

�e last statement follows by using Lemma 2.5 to conclude that the upper

bound on �1;Q.k/.0/ in Lemma 2.4 is less than �2=4 for all k. Since �2=4 is less

than 7:76 we are done.

3. Proof of �eorem 1.1 for 2 � k � 68

Lemma 3.1. For each even k, 2 � k � 68, let

˛� D

s
k C 2

k C 6
Bk � Ak;

where Ak is the upper bound on �1;Q.k/.0/ from Lemma 2.4 and Bk is the lower

bound on �2;Q.k/.˛/ from Lemma 2.8. �en, ˛ 7! �1;Q.k/.˛/ has no critical point

in the interval 0 < ˛ < ˛�.
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Proof. Assume, to get a contradiction, that 0 < ˛c < ˛� is a critical point. �en,

invoking Lemma 2.4 and the de�nition of ˛� above, we �nd that

�1;Q.k/.˛c / � Ak C ˛2
c < Ak C .˛�/2 D k C 2

k C 6
Bk � k C 2

k C 6
�2;Q.k/.˛c/;

which by Lemma 2.2 implies that ˛c is a non-degenerate local minimum. Hence

all critical points in 0 < ˛ < ˛� must be non-degenerate local minimums. Now

we know that zero is a non-degenerate local minimum. Since there cannot be more

than one such in a row we get a contradiction.

Lemma 3.2. With k and ˛� as in the previous Lemma it holds that �1;Q.k/.˛/

cannot attain its global minimal value in the interval Œ˛�; 2˛�/.

Proof. Assume, to get a contradiction, that we have one ˛c in this interval where

we have have a global minimum. �en, in particular, �1;Q.k/.˛c / � �1;Q.k/.0/.

�us, combining again Lemmas 2.2 and 2.3 we �nd that any critical point in

Œ˛�; ˛c/ must be a non-degenerate minimum. However, by the previous Lemma

we know that there are no critical points in .0; ˛�/, and so again we would have

two non-degenerate minimums in a row. Since that is not possible we get a con-

tradiction.

Lemma 3.3. Assume that 2 � k � 68 is even. Denote by

˛�� D 3

2
�
p

Ck � Ak;

where, again, Ak is the upper bound on �1;Q.k/.0/ from Lemma 2.4 and Ck is the

lower bound on �1;Q.k/.˛/ from Lemma 2.10.

If ˛ > ˛�� then �1;Q.k/.˛/ cannot attain its global minimum.

Proof. First we note that if ˛ � 3=2 then �1;Q.k/.˛/ � �1;Q.k/.0/ by Lemma 2.10.

Assume, to get a contradiction, that �1;Q.k/.˛/ attains its global minimum for a

˛�� < ˛c < 3=2. �en, by Lemma 2.3 it holds that

�1;Q.k/.3=2/ � �1;Q.k/.˛c / C .˛c � 3=2/2

� �1;Q.k/.0/ C .˛�� � 3=2/2

< Ak C Ck � Ak D Ck:

But this contradicts Lemma 2.10.

�e proof of �eorem 1.1 is completed for 2 � k � 68 by ploting 2˛� and ˛��

and noting that 2˛� > ˛�� for these k. �is is done in Figure 2.
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Figure 2. �e disks are ˛�� from Lemma 3.3. �e squares are 2˛�, where ˛� is de�ned in

Lemma 3.1.

4. Proof of �eorem 1.1 for k � 70

Lemma 4.1. Assume that k � 70. �en �1;Q.k/.˛/ cannot have its global minimum

for 0 < ˛ < 2:83.

Proof. �is follows the same lines as the proofs of Lemmas 3.1 and 3.2. We let

˛� D

s
k C 2

k C 6
eBk � Ak ;

where Ak is the upper bound on �1;Q.k/.0/ from Lemma 2.4 (which is increasing

in k by Lemma 2.5) and eBk is the lower bound on �2;Q.k/.˛/ from Lemma 2.9.

For k � 70 we note that

2˛� � 2

r
72

76
� 4:719 � �2

4
� 2:83:

Combining this result with Lemma 2.11 we �nd that �1;Q.k/.˛/ cannot have its

minimum attained for ˛ > 0. �is proves �eorem 1.1.
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