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allows us to control the probability of havingm closely lying eigenvalues forH! – a result

known as an m-level Wegner estimate. We demonstrate its usefulness by verifying the
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model and random block operators that arise in the Bogoliubov–de Gennes theory of dirty
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1. Introduction

1.1. Small eigenvalues and the Green function. Let A be an invertible Hermit-

ian N � N matrix with inverse A�1, and let IN be the N � N identity matrix.

Let G.x; y/ denote the matrix element in the .x; y/ position of A�1, also known

as the Green function of A. Our �rst objective in this work is to relate informa-

tion about the small eigenvalues of A to the behavior of G.x; y/. Let us denote

by C�.A/ the number of eigenvalues (counting multiplicities) of A in the interval

I� WD .��; �/. As a �rst step, let us ask the most basic question: does A has at

least one eigenvalue in the interval I�? A well known result in the matrix analysis

says that

C�.A/ > 0 () kA�1k > 1

�
:

Since kBkmax � kBk � NkBkmax for any N �N matrix B with

kBkmax D max
x;y

jB.x; y/j;

we obtain the relations

C�.A/ > 0 H) there exists a pair ¹x; yº such that jG.x; y/j > 1

N�
I (1.1a)

and

jG.x; y/j > 1

�
for some pair ¹x; yº H) C�.A/ > 0: (1.1b)

It is natural to try to quantify these relations further, viz. to detect whether the

matrix A has at least m small eigenvalues from the behavior of G.x; y/. To this

end, we prove the following result.

�eorem 1.1. Let A D A� be an N � N invertible matrix. Let AŒ˛; ˇ� denote the

submatrix ofA with rows indexed by index subset ˛ and columns indexed by index

subset ˇ. Consider the following two assertions:

I. C�.A/ � m;

II. there exist index subsets

˛m D ¹i1; : : : ; imº and ˇm D ¹j1; : : : ; jmº

of ¹1; : : : ; N º; such that

A�1Œ˛m; ˇm�A
�1Œˇm; ˛m� >

K2

�2
IN Œ˛m; ˛m� for some K > 0; (1.2)

where IN is the N �N identity matrix.
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�en (I) implies (II) with

K D Cm

N
and Cm D 1

mŠ 2m�1
(1.3)

Conversely, (II) with K D 1 implies (I).

�e constant Cm in (1.3) is not sharp for m > 1. However, the dependence

on N is optimal (and we will be interested in small m, large N behavior in the

application below).

It is often convenient to work with principal submatrices A�1Œ
� of A�1. One

can tailor �eorem 1.1 somewhat di�erently to accommodate this requirement, at

the cost of increasing the cardinality of the corresponding index subsets ˛m, ˇm.

Namely, we have the following result.

Corollary 1.2. LetA D A� be anN �N invertible matrix. Consider the following

two assertions:

I. C�.A/ � m;

II. there exists an index subset 
m D ¹i1; : : : ; i2mº of ¹1; : : : ; N º such that for

any subset 
 � 
m for which the matrix A�1Œ
� is invertible

C�=K..A
�1Œ
�/�1/ � m for some K > 0: (1.4)

�en (I) implies (II) with

K D Cm

N
and Cm D 1

mŠ 2m�1
:

Conversely, (II) with K D 1 implies (I).

Remark. �e matrix .A�1Œ
�/�1 coincides with the Schur complement of AŒ
c�

in A, see (2.1) below for details. Here 
c D ¹1; 2; : : : ; N º n 
 .

1.2. Application to random Schrödinger operators. In quantum physics, the

tight-binding approximation is often used as the prototypical model for the study

of electron propagation in solids. In this model, the evolution of the wave function

 on the d -dimensional lattice Z
d is given by the Schrödinger equation

i„ P t D H t I  .0/ D  0; (1.5)

where the self-adjoint Hamiltonian H is a sum of the hopping term H0 and the

potential V , of the form

.H /.x/ D .H0 /.x/C V.x/ .x/; x 2 Z
d :

In this work we consider the random operators that have this functional form. Let

us list few of these.
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Anderson model HA. One of the best-studied models for disordered solids was

introduced by P. H. Anderson in [1]. In this model the Hilbert space is `2.Zd /,

the hopping term H0 is the discrete Laplacian �, and the potential V in H above

is of the form V.x/ D gv.x/, where the potentials v.y/ are independent random

variables. �e real parameter g is a coupling constant which describes the strength

of the disorder.

Alloy-type Anderson model Halloy. Here the Hilbert space is also `2.Zd /, the

hopping termH0 is a short range ergodic operator. �e value of the potential V.x/

at a site x 2 Z
d is generated from independent random variables ¹u.y/º via the

transformation

V.x/ D g
X

y2�

ax�yu.y/ ;

where the index y takes values in some sub-lattice � of Z
d . �e Hamiltonian

HA coincides with Halloy provided H0 D �, � D Z
d ; az D ıjzj, where ıx is

Kronecker delta function: ı0 D 1I ıx D 0 for x ¤ 0. In general, the random

potential at sites x; y is correlated for this model. As its name suggest, Halloy is

used to describe (random) alloys in the tight binding approximation.

Random block operator Hblock. �e Hilbert space is `2.Zd ICk/ Š .`2.Zd //k

(the space of square-summable functions  W Zd ! C
k). �e kernel H0.x; y/ of

the hopping term is a deterministic, translation invariant k�k matrix. �e random

potential V.x/ at each site is an independently drawn random k � k Hermitian

matrix multiplied by g.

1.2.1. Previous results. Anderson [1] argued that in the g � 1 regime, the solu-

tion of the initial value problem (1.5) for HA stays localized in space for all times

almost surely if the initial wave packet 0 is localized. Mathematical study of An-

derson localization is an active �eld; we refer readers to the recent reviews [14, 20]

on the subject for the detailed bibliography. In this work, we focus our attention on

a single aspect of Anderson localization – the so-calledm-level Wegner estimate.

Let jS j denote the cardinality of the set S . Let Hƒ
A be a restriction of the

operator HA to a �nite box ƒ. �en the m-level Wegner estimate is an upper

bound on the probability of n eigenvalues being in the same energy interval I� WD
.E � �; E C �/:

P.C�.H
ƒ

A �E/ � m/ � Cm.jƒj�/m;
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for random variables v.x/with a bounded density. As such, it gives some measure

of the correlation between multiple eigenvalues. We will refer to the 1-level bound

simply as the Wegner estimate (�rst established by F. J. Wegner in [22]). It plays

the instrumental role in the proof of Anderson localization.

If localization occurs in some energy interval I � R, the entire spectrum of

HA in I is pure point. It is then natural to study the distribution of the eigenvalues

forHƒ
A in this interval. Physicists expect that there is no energy level repulsion for

states in the localized regime: that is, the eigenvalues should be distributed inde-

pendently on the interval I . �e �rst rigorous result in this direction, namely that

the point process associated with the (rescaled) eigenvalues converges to a Pois-

son process, was obtained by Molchanov [19] in the setting of a one-dimensional

continuum.

Minami [18] established the analogous result forHA under the assumption that

the distribution � of every v.n/ has a bounded density. �e key component in [18]

is the 2-level Wegner estimate, which is consequently known as the Minami esti-

mate.

By now the localization phenomenon for the original Anderson model HA is

well understood. In particular, the general m-level Wegner estimate is known to

hold for essentially all distributions � of the random potential v.x/; see [2, 11].

We refer the reader to [5] for the state of the art results concerning eigenvalue

counting inequalities for HA. However, the current understanding of many (in

fact almost all) other random models of interest remains partial at best.

�e Wegner estimate for a special class of alloy-type Anderson model Halloy

was �rst established by Kirsch in [13]. By now it is known to hold in fair generality

(albeit not universally). See the recent preprint [17] for the extensive bibliography

on the subject. �e Wegner estimate for a random block operator Hblock – with

V.x/ D gv.x/A where v.x/ are independent random variables and A is a �xed

invertible Hermitian matrix – holds in perturbative regimes. �at is, it holds near

the edges of the spectrum, [4] and in the strong disorder regime 1 � g; see [8].

A weaker bound (weaker in terms of the volume dependence) near the edges of the

spectrum was established for Fröhlich model, where the matrix-valued potential

is given by V.x/ D gU.x/�AU.x/, where A is a �xed self-adjoint k � k matrix,

and the U.x/ are independently chosen according to the Haar measure on SU.k/;

see [3].

On the other hand, not much progress has been made on extensions of the

multi-level Wegner estimate, besides allowing for more general background oper-

ators H0 than the discrete Laplacian. In particular, apart from two special exam-

ples below, all previous works require a non-correlated random potential. In [16],
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this limitation was partially removed in the continuum one-dimensional setting, al-

lowing for positively correlated randomness. In [6], the authors announced the es-

tablishment of the Minami estimate and subsequently Poisson statistics for a gen-

eral class of positively correlated random potentials. Unfortunately, although [6]

contains a new elegant and e�cient proof of Minami’s estimate for HA, its ex-

tension to the generalized setting has a signi�cant gap, which so far has not been

removed. Finally, let us mention the recent result [21], which established the Mi-

nami estimate for a special class of weakly correlated randomness for which one

can transform the problem to the uncorrelated one.

�e reader may wonder about the glaring disparity between the wealth of re-

sults on the 1-level Wegner estimate and the scarcity of results for its many-level

counterparts. �e reason can be traced to the direct (and frequently exploited)

link between the former and the underlying Green function given by (1.1). �e

amenable nature of the Green function then allows one to establish a robust 1-level

Wegner estimate in many situations of interest. In the present work, we harness

the connection between the many-level Wegner estimate and the Green function

given by �eorem 1.1 to establish anm-level Wegner estimate for a certain class of

models with correlated randomness. Roughly speaking, our method works if the

randomness in the system is su�ciently rich. (We will quantify this statement in

the sequel.)

Although in most known applications (such as localization, simplicity of the

spectrum, and Poisson statistics of eigenvalues) one is interested in the 1- and

2-level Wegner estimates, it is nonetheless natural from a mathematical perspec-

tive to investigate the general many-level case. From a practical perspective, it

can yield some insight on the nonlinear Anderson model via multi-state resonance

phenomenon, [9].

�e blessing and the curse of the existing methods employed in proof of the

Minami estimate (with the single exception of [16]) is that the nature of the back-

ground operator H0 plays little if any role in the proofs. It is however clear that

in the case of the correlated random potential in HA one cannot hope to get the

Minami estimate without exploiting the structure ofH0. Indeed, consider the one

dimensional operator Halloy with H0 D 0, and the random potential at odd sites

being i.i.d. random variables, while v.2n/ D v.2n � 1/. Its spectrum consists

of (the closure of) the set of eigenvalues ¹�nº D ¹v.n/º, each one being degen-

erate. Consequently, even though Halloy in this setting is perfectly localized, the

probability of �nding two closely lying eigenvalues is equal to 1.



Eigenvalue counting inequalities, with applications to Schrödinger operators 257

1.2.2. �e m-level Wegner estimate for the random block model Hblock. We

will consider the class of random block models Hblock introduced earlier.

Let G D .V;E/ be a graph with degree at most �, such that the set of vertices

(sites) V is �nite with cardinality N . �e main example of this model is the re-

striction of the lattice Z
d to the box, but the greater generality does not require

additional e�ort here.

Let .�;P/ be a probability space. Let

¹V.x/ D gA!.x/ W x 2 V; ! 2 �º

be a collection of independent, identically distributed random k � k Hermitian

matrices.

Basic assumption. We now state the main technical condition that we will use

as an input for our application theorem below.

(A) For an integer n, let S be a given set of 2nk district integers. �en the matrix

A!.x/ � a is invertible for all a 2 S and all ! 2 �. Moreover, there exists an

˛ > 0 such that, for any integer a 2 S , any � 2 Œ0; 1� and arbitrary Hermitian

k � k matrix J the bound

P.j det..A!.x/ � a/�1 C .J C a/�1/j � �/ � K�˛ (1.6)

holds.

It guarantees that the randomness in the system is rich enough to imply the

result below (�eorem 1.3). At the �rst glance, a more natural condition should

concern the properties of the matrix A!.x/ C J as it is the correct functional

form of the corresponding Schur complement of H! (see Section 3 for details).

However, this turns out to be an unsuitable choice because of the absence of an

a priori bound on the norm of the background operator J (which encodes the

information about the environment of the x-block inH!). On the other hand, for a

su�ciently large set of numbers ¹aiº one can ensure that regardless of the norm of

J , one of the matrices ¹.J Cai/
�1º is bounded in norm by 1 (see Proposition 3.2).

We then exploit the fact that matrices .A�a/�1C.JCa/�1, which appears in (1.6),

and AC J are related:

.ACJ /�1 D .A� a/�1 � .A� a/�1..A� a/�1 C .J C a/�1/�1.A� a/�1; (1.7)

provided that A�a and J Ca are invertible. One can readily verify (1.7), which is

in fact a particular case of Woodbury’s matrix identity, by multiplying both sides

by AC J .
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We now introduce our single-particle Hamiltonian. Namely, let H!.g/ be a

random block operatorHblock acting on `2.VICk/ (the space of square-summable

functions  W V ! C
k) as

.H!.g/ /.x/ D .H0 /.x/C gA!.x/ .x/; (1.8)

where g > 0 is a coupling constant, H0 is an arbitrary deterministic self-adjoint

operator on `2.VICk/, and A!.x/ is an independently drawn random k � k

Hermitian matrix as above. We use the notation H!.g/ instead of Hblock to stress

the random nature of this operator as well as the dependence on the parameter g.

�eorem 1.3. Assume (A). �en

I. for any E 2 R the operatorH!.g/ � E is almost surely invertible;

II. Moreover, there exist �0 > 0 and C > 0, which depend only on k;m; ˛, for

which we have

P.C�.H!.g/ �E/ � m/ � C j ln.N�=g/.N�=g/˛ jm (1.9)

for any E 2 R, for any � 2 Œ0; �0� and for all m � n. In the m D 1 case we

can improve the above bound to

P.C�.Hg �E/ � 1/ � C.N�=g/˛: (1.10)

1.2.3. Examples

� Anderson model HA . As we mentioned earlier, the nontrivial Minami esti-

mate is well understood only for the original Anderson model among all alloy-type

models. It is therefore a litmus test to verify Assumption (A) for HA.

�eorem 1.4. Suppose that the distribution � of the v.x/ variables inHA is com-

pactly supported on the interval I D Œ�b; b� for some b > 0 and is ˇ-regular, i.e.

for any Lebesgue measurable S � I we have

�.S/ � C jS jˇ :

�en Assumption (A) holds with ˛ D ˇ.

Our approach to the Minami estimate is also meaningful for the �-trimmed

Anderson model introduced in [7], near the edges of the spectrum, in the sense

that Assumption (A) can be veri�ed for it.



Eigenvalue counting inequalities, with applications to Schrödinger operators 259

� Fröhlich model and alloy type Anderson model Halloy. Assumption (A) is

either not satis�ed for a single site x or is satis�ed with a power ˛ which is too

small to make the result meaningful. However, the close inspection of the proof of

�eorem 1.3 shows that the matrix J that appears in Assumption (A) is not required

to be completely arbitrary. In fact, the relevant matrices J carry the structure of

the Schrödinger operator (with arbitrary boundary conditions). It seems plausible

(and is on our to-do list) that Assumption (A) can be veri�ed for such J and sets

of sites that include x and its neighbors.

� �e third model arises from the study of dirty superconductors via the Bogo-

liubov–de Gennes equation. After a suitable change of the coordinate basis, the

Bogoliubov–de Gennes (BdG) model above can be described in terms of the op-

erator de�ned in (1.8), with A!.x/ D �!.x/ 2 M2�2, where �!.x/ is a random

Pauli matrix of the form

�!.x/ D
�

ux vx

vx �ux

�

; where ux and vx are random variables. (1.11)

�e m-Wegner estimate for these models has only been established for m D 1

case, for a restricted class of joint distributions of u; v variables (absolutely con-

tinuous and with support in a half plane), and for a speci�c background operator

H0 in [15, 10]. We establish the robust Wegner and Minami estimates for this

model.

�eorem 1.5. Let each A!.x/ be given by (1.11). Suppose that the joint distribu-

tion � of the u; v variables is supported on a unit disc O and is ˇ-regular, i.e. for

any Lebesgue - measurable S � O we have

�.S/ � C jS jˇ :

�en Assumption (A) holds with ˛ D ˇ.

1.3. Paper’s organization. We prove our main abstract result, �eorem 1.1, along

with its corollary, in Section 2. We prove our result on eigenvalue estimates, �e-

orem 1.3, in Section 3. We consider the implication of the latter result for the

random block operators in Section 4. �ese proofs depend on a number of auxil-

iary results, which we prove in Section 5.
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2. Proof of �eorem 1.1 and Corollary 1.2

2.1. Notation. Let n be a positive integer, and let ˛ and ˇ be index sets, i.e.

subsets of ¹1; 2; : : : ; nº. We denote the cardinality of an index set by j˛j and its

complement by ˛c D ¹1; 2; : : : ; nºn˛. For an n�nmatrixA, letAŒ˛; ˇ� denote the

submatrix of A with rows indexed by ˛ and columns indexed by ˇ, both of which

are thought of as increasing, ordered sequences, so that the rows and columns of

the submatrix appear in their natural order. We will writeAŒ˛� forAŒ˛; ˛�. If j˛j D
jˇj and if AŒ˛; ˇ� is nonsingular, we denote by A=AŒ˛; ˇ� the Schur complement

of AŒ˛; ˇ� in A, [23]:

A=AŒ˛; ˇ� D AŒ˛c; ˇc�� AŒ˛c ; ˇ�.AŒ˛; ˇ�/�1AŒ˛; ˇc�: (2.1)

We will frequently use Schur’s complementation and its consequences in this

work; we refer the reader to the comprehensive book [23] on this topic.

For a Hermitian matrix A and a positive number a we will write

Ba.A/ WD j�.A/\ Œa;1/j:

Let P�.A/ denote the spectral projection of the Hermitian matrix A onto the

interval .��; �/ for � > 0.

2.2. Proof of �eorem 1.1. Suppose that (I) holds. We will use the following

assertion.

Proposition 2.1. Let A be an N � N positive de�nite matrix, and suppose that

Ba.A/ D k for some a > 0. �en there exists an index subset ˛k D ¹i1; i2; : : : ; ikº
of ¹1; : : : ; N º such that

AŒ˛k � � a

kŠ 2k�1N
IN Œ˛k �:

By Proposition 2.1, there exists ˛m such that

P�.A/Œ˛m� � Cm

N
IN Œ˛m�:

with

Cm D 1

kŠ 2k�1
:

Combining this bound with

A�2 >
1

�2
P�.A/;
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we obtain

A�2Œ˛m� >
Cm

N�2
IN Œ˛m�:

Since �.T T �/ n ¹0º D �.T �T / n ¹0º for any operator T , we deduce from the

previous equation (with T D IN Œ˛m; ˛N �A
�1) that there exists an orthogonal pro-

jection Q of rank m such that

A�1IN Œ˛m�A
�1 >

Cm

N�2
Q:

Applying now Proposition 2.1 once again, we conclude that there exists ˇm such

that (1.2) holds with K given by (1.3).

Conversely, suppose that (1.2) holds with K D 1. Since

A�2Œ˛m� � A�1Œ˛m; ˇm�A
�1Œˇm; ˛m�;

the assertion follows from the Cauchy interlacing theorem for the Hermitian ma-

trix A�2 and its principal submatrix A�2Œ˛m�.

Proof of Proposition 2.1. �e proof will proceed by induction in k. If k D 1, the

result follows from the fact that A is positive, so tr A D
P

�2�.A/ � � a. Since

the trace is at least a, there exists a diagonal entry which is greater than or equal

to a
N

.

Suppose we have established the induction hypothesis for k D K. We want to

verify the induction step, i.e. the case k D KC 1. To this end, choose the index i1

so that Ai1i1 � Ai i for all i . Without loss of generality, let us assume that i1 D 1.

�en A is of the block form

A D
�

A11 u

u� B

�

:

Consider now the matrix D D A=A11. It is positive de�nite by the Schur com-

plement condition for positive de�niteness (as A is positive de�nite). Also, the

matrix

F D
�

A11 u

u� B �D

�

is rank one (since F=A11 D 0), so by the rank one perturbation theory,

Ba.A � F / � K:

But Ba.A�F/ D Ba.D/. Using the induction hypothesis, we conclude that there

exists an index set ˛K D ¹i2; : : : ; iKº with 1 … ˛K such that

DŒ˛K� � a

KŠ 2K�1N
IN Œ˛K�:
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�e induction step (with ˛KC1 D ˛K [ ¹1º) now follows from the following

assertion.

Lemma 2.2. Let A be an l � l positive de�nite matrix of the block form

A D
"

A11 u

u� B

#

: (2.2)

Suppose that, in addition, A11 � Ai i for all i 2 ¹1; : : : ; lº, and A=A11 � a for

some a > 0. �en A � a
2l

.

Proof of Lemma 2.2. To show that A � a
2l

� 0 it su�ces to check (by the Schur

complement condition for positive de�niteness) that

A11 � a

2l
� 0I

�

A � a

2l

�

=
�

A11 � a

2l

�

� 0: (2.3)

Since A=A11 � a, we have Ai i � a for all i � 2 as a is positive, so by assumption

of the lemma A11 � a as well (and hence we have established the �rst bound

in (2.3)). Next we write

�

A � a

2l

�

=
�

A11 � a

2l

�

D B � a

2l
� u�u

A11 � a

2l

D
�

B � u�u

A11

�

� a

2l
� au�u

2lA11.A11 � a=2l/

� a � a

2l
� a u�u

l.A11/2
:

(2.4)

Now observe that since A is positive, the contraction AŒ¹1; i C 1º� is also positive

for all i , and in particular detAŒ¹1; i C 1º� D A11Bi i � jui j2 � 0. But A11 � Bi i

for all i , hence jui j2=.A11/
2 � 1. We therefore can estimate

ku�uk D kuk2 � .l � 1/.A11/
2:

Substitution of this estimate into (2.4) yields the second bound in (2.3).

2.3. Proof of Corollary 1.2. We �rst observe that if sets of indices ˛; ˇ satisfy

˛ � ˇ, then A�1Œ˛� is a principal submatrix of A�1Œˇ�, and we have

C�..A
�1Œˇ�/�1/ � C�..A

�1Œ˛�/�1/ (2.5)

by the Cauchy interlacing theorem, provided the matrices A�1Œ˛�; A�1Œˇ� are in-

vertible. �erefore, it su�ces to establish the corollary for the smallest set 
min
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that contains 
m and for which A�1Œ
min� is invertible. Without loss of generality,

we will assume that 
min D 
m.

Suppose that (I) holds. �en Assertion (II) of �eorem 1.1 holds with K given

by (1.3). Construct now the set 
m D ˛m [ ˇm with ˛m, ˇm from Assertion (II)

of �eorem 1.1. Let us consider the matrix

B WD .A�1Œ
m�/
�1:

Since A�1Œ˛m; ˇm� is a submatrix of A�1Œ
m� we see that the condition (II) of

�eorem 1.1 is ful�lled for B . Hence we can apply �eorem 1.1 to B to conclude

that C�=K.B/ � m.

Conversely, suppose that (1.4) holds with K D 1. �en (I) holds as well, as

follows from (2.5) with ˛ D 
m, ˇ D ¹1; : : : ; N º.

3. Proof of �eorem 1.3

We �rst observe that by scaling it su�ces to prove the result for the g D 1 case.

We will use the shorthand notation H! instead of H!.1/ in the sequel.

Next, we prove the �rst assertion of the theorem, using induction in N .

To initiate the induction, we consider the case N D 1, so that H! D A!.x/CK,

where K is a deterministic Hermitian matrix. It follows from Assumption (A)

and (1.7) that H! �E is invertible almost surely.

Suppose now that the induction hypothesis holds, i.e. the matrix H! � E is

almost surely invertible for N � M and all E. We want to establish the induction

step (N D M C 1 case). To this end, let yV be any subset of V of cardinality M ,

and let yH! be a restriction of H! to yV. By the induction hypothesis, yH! � E

is invertible almost surely for all E. Let us consider some con�guration ! for

which yH! � E is invertible. �en H! � E is invertible if and only if the Schur

complement of yH! �E in H! �E, i.e. .H! � E/=. yH! �E/, is invertible, [23].

But .H! � E/=. yH! � E/ is a Hermitian k � k matrix of the form A!.x/ C J ,

where ¹xº D V n yV, and J is a matrix independent of the randomness in A!.x/.

It follows by the same argument as in the N D 1 case that .H! �E/=. yH! �E/ is

invertible for almost all values of the randomness in A!.x/.

We now prove the second assertion of the theorem. We will only consider

con�gurations ! in � such that H! � E is invertible (for the remaining set of

con�gurations has measure zero by the �rst assertion).
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For the random operator T! , let E�.T!/ be the event ¹! W C�.T!/ � mº. With

this notation, we wish to estimate the size of the set E�.H! �E/. If we enumerate

the vertices v 2 V, we can think of H! as a kN � kN Hermitian matrix with a

block form, i.e. the indices ¹lk � k C 1; : : : ; lkº correspond to the vertex l in V,

with l D 1; : : : ; N .

Size reduction. We �rst reduce the dimensionality of the original problem using

Corollary 1.2. �is assertion gives us the existence of the index subset 
m with

j
mj D 2m such that inclusion

E�.H! �E/ � E�=K...H! �E/�1Œ
�/�1/ (3.1)

holds for any index set 
 � 
m for which .H! � E/�1Œ
� is invertible, with K

given by (1.3). (To be precise, the matrix size N in that corollary gets replaced by

kN .)

In general, the submatrix .H! � E/�1Œ
� can be a complicated object, so it

is not immediately clear that such a reduction is helpful. However, if the set


 happens to consist of the indices that agree with the block structure of H! ,

something interesting happens. More precisely, suppose that i 2 
 H) .j 2

 for any j with bj=kc D bi=kc/, where b � c is the �oor function. In this case we

can associate 
 with a subset V0 of the original vertex set V. �en the submatrix

..H! �E/�1Œ
�/�1 retains the same block form as H! , in the following sense: if

we go back to the vertex representation for ..H! �E/�1Œ
�/�1 (which is possible

due to the special form of the set 
), then for any  2 `2.V0ICk/ and any x 2 V0

we have

...H! �E/�1Œ
�/�1 /.x/ D .T0 /.x/C A!.x/ .x/: (3.2)

�is can be seen from the fact that the matrix ..H! � E/�1Œ
�/�1 coincides with

the Schur complement of .H! �E/Œ
c � in H! �E,

..H! �E/�1Œ
�/�1 D .H! �E/=.H! �E/Œ
c �:

It is important to note that the operator T0 in (3.2) is independent of the random-

ness associated with matrices ¹A!.x/ºx2V0 (though it does depend on the other

random variables). We also note that the matrix ..H! �E/�1Œ
�/ is almost surely

invertible (as follows from the �rst part of the theorem).

Combining these observations, we conclude that it is bene�cial (and su�cient)

to consider the sets 
 in (3.1) that respect the block structure ofH! and therefore

contain up to 2km indices (i.e. up to 2m vertices in V0, as in Corollary 1.2, and

exactly k indices per vertex, to preserve blocks). �us, we have obtained the fol-

lowing intermediate result
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Lemma 3.1. Suppose that the second assertion of �eorem 1.3 holds for all N �
2m. �en it holds for any N .

Norm reduction. �e deterministic part ofH! – namely the operatorH0 – can

be arbitrarily large in norm (even if kH0k � C for the original H! , the size re-

duction process indicated above creates a new background operator T0 with un-

controllable norm). Our next step in the proof will require that the background

operator is bounded in norm by a constant, say by 1=2. We achieve this by means

of the following transformation.

Proposition 3.2. Let B1;2 be a pair of Hermitian L�L matrices with kB1k � 1.

Consider the matrices

B D B1 C B2; yB D .B1 � aIL/
�1 C .B2 C aIL/

�1

where a 2 R. �en there exists an integer a 2 Œ�L � 3;�3� [ Œ3; L C 3� (which

depends on B2 but not on B1) and �0 > 0 (which depends only on L) such that,

for any � < �0,

max.k.B1 � aIL/
�1k; k.B2 C aIL/

�1k/ � 1

2
(3.3)

and

C�=.225L4/.
yB/ � C�.B/ � C7L2�.

yB/: (3.4)

We will apply this proposition to the operator H! � E by choosing B2 D
H0 � E, B1 D H! �H0. By the hypothesis of �eorem 1.3, the assumptions of

Proposition 3.2 are satis�ed, with L D kN . Combining this observation with the

size reduction, we obtain the second intermediate result.

Lemma 3.3. Assume (A). Let yH! be an operator acting on `2.VICk/ as

. yH! /.x/ D .H0 /.x/C .A!.x/ � a/�1 .x/: (3.5)

Suppose that kH0k � 1=2. If there exist �0 > 0 and b > 0 (which depend on

k;m; ˛) so that for all integers a 2 Œ�km � 3;�3�[ Œ3; kmC 3� and all N � 2m

the bound

P.C7k2m2�.
yH!/ � m/ � bj ln �jm�˛

holds uniformly inH0 and � < �0, then the second assertion of �eorem 1.3 holds.
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Reduction to the determinant. Suppose that C7k2m2�. yH!/ � m. Since by con-

struction k yH!k � 1, the operator yH! can have no more than kN �m large eigen-

values, and each of these can have an absolute value no larger than 1. As a result,

we obtain the bound:

j det yH!j � .7k2m2�/m: (3.6)

We may now employ the following lemma to calculate the probability of the afore-

mentioned bound on the determinant. Its proof can be found in Section 5.

Lemma 3.4. Assume (A). Let yH! be as in (3.5), and let yEı be the event

yEı D ¹! 2 � W j det yH!j � ıº:

Let

ı0 WD exp.2K˛1C1=N /:

�en for any ı 2 Œ0; ı0� we have

P.yEı/ � .2K˛/N lnN .ı�1/ı˛: (3.7)

Using this result in conjunction with (3.6) we obtain that there exist �0 > 0

and b > 0 that depend on k;m; ˛ so that

P.C7k2m2�.
yH!/ � m/ � bj ln �jm�m˛; (3.8)

for N � m and for � < �0. �e combination of Lemma 3.3 and (3.8) yields (1.9).

Improvement on the Wegner bound. We want to improve on this bound for

the special case that m D 1. In this case we need to verify the (improved) input

for Lemma 3.1 for N D 1 and N D 2. In the former case, the bound (1.10)

follows from Assumption (A) and Proposition 3.2 (where we chooseB2 D H0�E,

B1 D H! �H0). So for the rest of the argument we will assume that N D 2.

Let E�; S� be the events

E� D ¹! W C�.H! �E/ � 1º
and

S� D ¹! W C�2=3.H! � E/ � 2º:

We �rst observe that it follows from (1.9) (which we already established earlier)

that

P.E� \ S�/ � P.S�/ � C j ln.�2˛=3/�2˛=3j2 � C�˛
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for � su�ciently small. �erefore, to get (1.10) it su�ces to show thatP.E�XS�/ �
C�˛ . To this end, suppose that ! 2 E� X S� . �en

.H! �E C �/�1 C 2��2=3 > 0I k.H! �E C �/�1 C 2��2=3k � 1

2�
: (3.9)

If V D ¹x; yº, let us denote by Px (Py) the rank k projection onto the site x

(accordingly y). �e positivity of the left-hand side can be exploited by means of

Lemma 3.5 below with choices P1 D Px, P2 D Py .

Lemma 3.5. Let A > 0, and let P1;2 be orthogonal projections that satisfy

P1P2 D 0. Let P D P1 C P2. �en we have

kPAP k � 2max.kP1AP1k; kP2AP2k/: (3.10)

Using (3.9) and (3.10), we infer that ! 2 R� (and thus E� X S� � R�), where

R� D
°

! W max
iDx;y

.kPi .H! �E C �/�1Pik C 2��2=3/ � 1

4�

±

:

But

Px.H! �E C �/�1Px D ..H! �E C �/=Px.H! �E C �/Px/
�1

D .A!.x/C J /�1

by the block inversion formula. Here the operator J depends on A!.y/ but not on

A!.x/. Hence we can deduce from Assumption (A) and Proposition 3.2 that

P

�

kPx.H! � E C �/�1Pxk � 1

5�

�

� zC�;

with zC that depends on k; ˛ but not on �. �e same bound holds with Px replaced

by Py . Hence we infer that for � small enough

P.R�/ � C�˛;

and the result follows.

Proof of Lemma 3.5. Let A1 D P1AP1, A2 D P2AP2, and A12 D P1AP2. �en

by Schur complement condition for positive de�niteness

A2 > 0 and A1 � A12A
�1
2 A21:

Since A2 is positive, A�1
2 � 1=kA2k, hence

A1 � A12A21=kA2k;
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and so

kA1kkA2k � kA12k2;

where in the last step we have used A12 D A�
12. Since

kPAP k � max.kA1k C kA12k; kA2k C kA21k/;

the result follows.

4. Proof of �eorems 1.4 and 1.5

4.1. Proof of �eorem 1.4. Let a be an integer that satis�es a � b � 2, and let

j be arbitrary �xed real number. �en if � 2 Œ0; 1=.2a/�, the inequality

ˇ

ˇ

ˇ

ˇ

1

vx � a C 1

j C a

ˇ

ˇ

ˇ

ˇ

< � (4.1)

for vx has solutions in I only if 0 < j C a < 1. Since equation

ˇ

ˇ

ˇ

ˇ

1

vx � a C 1

j C a

ˇ

ˇ

ˇ

ˇ

D �

de�nes the pair of points

vx D aC 1

.j C a/�1 ˙ �
;

the set of vx for which (4.1) holds is the interval yI of length

j yI j D 1

.j C a/�1 � � � 1

.j C a/�1 C �
D 2�

.j C a/�2 � �2
< 4�;

where in the last step we used 0 < a C j < 1, � < 1=.2a/ < 1=4. Hence

P

�
ˇ

ˇ

ˇ

ˇ

1

vx � a C 1

j C a

ˇ

ˇ

ˇ

ˇ

< �

�

� C�ˇ

by the hypothesis of the theorem.

4.2. Proof of �eorem 1.5. We �rst establish the bounds

P.j det.�!.x/C J /j � �/ � C�ˇ (4.2)

and

P.C�.�!.x/C J / ¤ 0/ � C�ˇ (4.3)
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for � 2 Œ0; 1�. Indeed, note that det.�!.x/CJ / D c2 � .ux � a/2 � .vx � b/2 with

some constants a; b; c originating from J . �erefore the set j det.�!.x/CJ /j � �

is an intersection I of the disc O with the annulus centered at a; b and with radii

R� D
p

max.c2 � �; 0/, RC D
p
c2 C �. �e area of this set therefore cannot

exceed �.R2
C �R2

�/ � 2�� and (4.2) follows. To establish (4.3), we note that

P.C�.�!.x/C J / ¤ 0/ D P.k.�!.x/C J /�1k � 1=�/:

�e value of k.�!.x/CJ /�1k however can be evaluated explicitly and is given by

k.�!.x/C J /�1k D
ˇ

ˇjcj �
p

.ux � a/2 C .vx � b/2
ˇ

ˇ

�1
;

with the same constants a; b; c as before. Hence the set of the points in O that

satisfy k.�!.x/CJ /�1k � 1=� is an intersection yI of the discO with the annulus

centered at a; b and with radii R� D jjcj � �j, RC D jcj C �. �e area of yI cannot

exceed the circumference of the unit circle times the maximal thickness 2� of the

annulus, so j yI j � 4��, and (4.3) follows.

�e assertion of the theorem follows now from Lemma 4.1 below (whose proof

can be found in Section 5) and bounds (4.2) and (4.3).

Lemma 4.1. Let A and J be Hermitian k � k matrices, and let a be some real

number that satis�es jaj � 2. If kAk � 1 and

j det..A � a/�1 C .J C a/�1/j � 1

16jaj
° jaj � 1

2.jaj C 1/2

±k�1

then we have

.2.jaj C 1/2/�kj det.AC J /j � j det..A � a/�1 C .J C a/�1/j

or

1

16jaj ¹2.jaj C 1/2k.AC J /�1kº1�k � j det..A� a/�1 C .J C a/�1/j:

5. Proofs

Proof of Proposition 3.2. If jaj � 3, then since jjB1jj � 1, we have

� WD k.B1 � a/�1k; .LC 4/�1 � � � 1=2: (5.1)



270 A. Elgart and D. Schmidt

Since B2 is L � L, it has at most L distinct eigenvalues. On the other hand, for

every set S of real numbers with jS j D L there exists an integer a 2 Œ�L�3;�3�[
Œ3; LC 3� so that dist.S;�a/ � 2, hence we can choose a that satis�es (3.3).

With this choice of a, consider the block matrix W of the form

W D
�

.B2 C aIn/
�1 .B1 � aIn/

�1

.B1 � aIn/
�1 �.B1 � aIn/

�1

�

:

Note that the Schur complements to the upper and lower diagonal blocks are

�W=W11 D .B1 � a/�1 C .B1 � a/�1.B2 C a/.B1 � a/�1I
and

W=W22 D .B2 C a/�1 C .B1 � a/�1:

Let

T D .B1 � a/�1=�; (5.2)

where � is given by (5.1).

In what follows, we will need two lemmas.

Lemma 5.1.

(1) LetD D D�; zD D zD� 2 Mn;n. �en

C�.D/ � C2�. zD/;

provided kD � zDk � �.

(2) C�.A/ � C�.BAB/ whenever

A D A�; B D B�; kBk � 1: (5.3)

Lemma 5.2. SupposeD D D� 2 Mn;n is of the form

D D
�

A V

V � B

�

;

with A 2 Mk;k ; B 2 Mm;m, kV k � 1=2, and

C2�.B/ D 0: (5.4)

�en

C�.D=B/ � C�.D/I (5.5)

and

C�.D/ � Cˇ�.D=B/; (5.6)

with ˇ D 2.kB�1k C 1/2.
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Armed with these results, we can infer that

C�.B/ D C�2�.�
2B/

� C�2�.�
2TBT /

D C�2�.W=W11/

� C�2�.W /

� Cˇ�2�.W=W22/

D Cˇ�2�. yB/;

(5.7)

where in the second step we have used Lemma 5.1 and in the remaining steps we

have used Lemma 5.2. Here

ˇ D 2.k.W22/
�1k C 1/2 � 2.LC 5/2 � 25L2

for L � 2. (It is straightforward to check that the relation C�.B/ � Cˇ�2�. yB/ holds

for L D 1.) Plugging in the upper bounds for �; ˇ we get the second inequality

in (3.4):

C�.B/ � C7L2�. yB/:

On the other hand, let

U D �

�

B2 C aIn B1 � aIn

B1 � aIn �B1 C aIn

�

I � D 1

2kB1 � ak :

�en

U=U22 D �BI
and

�U=U11 D �.B1 � a C .B1 � a/.B2 C a/�1.B1 � a//:

Similarly to (5.7), we obtain

C�2�=.25L2/. yB/ D C�=.25L2/.�
�1T .U=U11/T /

� C��=.25L2/.U=U11/

� C��=.25L2/.U /

� C�ˇ�=.25L2/.U=U22/

� C�.B/;
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with T given by (5.2) and

ˇ D 2.k.U22/
�1k C 1/2 � 2.kB1 � ak C 1/2 � 25L2:

Since
�2�

25L2
� �

25L2.LC 4/2
� �

225L4
;

the �rst inequality in (3.4) follows.

Proof of Lemma 5.1. For part (1), we use the Weyl’s theorem, cf. �eorem 4.3.1 in

[12], which states that if

�.A/ D ¹�i .A/ºn
iD1;

�.B/ D ¹�i .B/ºn
iD1;

�.AC B/ D ¹�i .AC B/ºn
iD1;

for Hermitian A; B , with the eigenvalues arranged in increasing order, then

�k.A/C �1.B/ � �k.AC B/ � �k.A/C �n.B/; k D 1; :::; n:

�erefore, every number �k.A C B/ which lies in the interval Œ��; �� can be

matched with �k.A/ 2 Œ�2�; 2��, provided that kBk � �.

For part (2), observe that there exists a Hermitian matrix yA such that

(1) k yA � Ak � �,

(2) nul. yA/ D C�.A/, and

(3) yA has no non-zero eigenvalues in the interval .��; �/.

�en Sylvester’s law of inertia implies that nul. yA/ � nul.B yAB/ (with equality in

the case of nonsingularB). Since kBAB�B yABk � � we can use Weyl’s theorem

again to conclude that

C�.BAB/ � nul.B yAB/ � nul. yA/ D C�.A/:

Proof of Lemma 5.2. �e relation (5.5) follows from the interlacing theorem for

inverses of Hermitian matrices – see Lemma 2.3 in [23], which is itself a simple

consequence of the the Schur complement formula and Cauchy interlacing theo-

rem for Hermitian matrices.
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To prove (5.6) note that there exists a matrix

yD WD
� yA yV

yV � yB

�

such that

(1) k yD �Dk � �,

(2) nul yD D C�.D/, and

(3) yD has no non-zero eigenvalues in the interval Œ��; ��,

where nul yD is the multiplicity of the zero eigenvalue of yD, and equals zero if this

eigenvalue is absent. One can readily prove the existence of yD by diagonalizing

D and replacing all eigenvalues less than or equal to � with zeros. Using the

Haynsworth inertia additivity formula, we get

nul yD D nul yB C nul. yD= yB/:

Observe that the condition (1) above implies k yB �Bk � �. We can therefore infer

from (5.4) and Lemma 5.1 that

C�. yB/ D 0: (5.8)

As a result we obtain the equality

C�.D/ D nul yD D nul. yD= yB/: (5.9)

Note now that

k yV yB�1 yV � � VB�1V �k
� k. yV � V /k � k yB�1 yV �k C kV k � k yB�1 � B�1k � k yV �k

C kV yB�1k � k. yV � � V �/k

� �k yB�1k
�1

2
C �

�

C 1

2
k yB�1 � B�1k

�1

2
C �

�

C 1

2
k yB�1k�

D .� C �2/k yB�1k C
�1

2
� C 1

4

�

k yB�1 � B�1k

� 3

2
�k yB�1k C 1

2
k yB�1 � B�1k:

(We have assumed that � � 1
2
.) Using the �rst resolvent identity, we get the bound

k yB�1 � B�1k D k yB�1. yB � B/B�1k � �kB�1k � k yB�1k; (5.10)
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which in turn implies the estimate

k yB�1k � kB�1k C �kB�1k � k yB�1k � 2kB�1k;

where we have used (5.8) in the last step. Inserting the last inequality into the

right-hand side of (5.10), we �nally obtain

k yB�1 � B�1k � 2�kB�1k2:

As a result, we arrive at

k yV yB�1 yV � � VB�1V �k � 3

2
�kB�1k C �kB�1k2;

hence

k yD= yB �D=Bk � �
�

1C 3

2
kB�1k C kB�1k2

�

< �.kB�1k C 1/2 DW �ˇ
2
:

Consequently, we get

C�.D/ D nul. yD= yB/ � Cˇ�
2

. yD= yB/ � Cˇ�.D=B/;

where we have used (5.9) in the �rst step and Lemma 5.1 in the last one.

Proof of Lemma 3.4. We use induction in N . For N D 1 the result follows from

Assumption (A). Suppose that (3.7) holds for jVj D N . We wish to establish the

induction step, i.e. (3.7) for jVj D N C1. We can evaluate det yH! using the Schur

determinant formula. Namely, for x 2 V let us denote by yH .x/
! the restriction of

yH! to the site x. �en

det yH! D det yH .x/
! det. yH!= yH .x/

! /

by Schur’s determinant formula. Both determinants on the right-hand side are

random, but the �rst one depends only on randomness associated with A!.x/, a

fact which we will exploit momentarily. We note now that the Schur complement
yH!= yH .x/

! is by itself also of the form (3.5) (with V replaced by Vn ¹xº). Note that

the H0 term in yH!= yH .x/
! might depend on A!.x/, but not on the other random

variables ¹A!.y/º. By the induction hypothesis, we have

P.j det. yH!= yH .x/
! /j � r/ � .2K˛/N lnN .r�1/r˛; r 2 Œ0; 1�: (5.11)

Let S WD ¹! W j det yH!j � �º, and let

F! D j det yH .x/
! j; G! D j det. yH!= yH .x/

! /j:
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We set Q WD ¹! W min.F! ; G!/ � �º, then by Assumption (A) and the induction

hypothesis

P.Q/ � .K C .2K˛/N lnN .��1//�˛: (5.12)

On the other hand, we have

�.S XQ/ D
Z 1

�

�.sG! � �/ı.F! � s/ds:

Taking expectations on both sides and using (5.11), we obtain

E�.S XQ/ � E

Z 1

�

ds ı.F! � s/E.�.sG! � �/ j A!.x//

� .2K˛/N �˛
E

Z 1

�

lnN
� s

�

�

ı.F! � s/
s˛

ds

D .2K˛/N �˛
E

lnN .��1F!/�.1 > F! > �/

.F!/˛

� .2K˛/N �˛ lnN .��1/E
�.1 > F! > �/

.F!/˛
:

(5.13)

Using now Assumption (A) and the layer cake representation, we get

E
�.1 > F! > �/

.F!/˛
D

Z ��˛

1

P..F!/
�˛ � t /dt

� K

Z ��˛

1

1

t
dt

D K˛ ln.��1/:

(5.14)

Combination of (5.12), (5.13), and (5.14) yields the induction step.

Proof of Lemma 4.1. We have

j det.AC J /�1j

D j det.A � a/�1j j det.J C a/�1j j det..A � a/�1 C .J C a/�1/�1j:

Suppose �rst that C16jaj...A � a/�1 C .J C a/�1/�1/ D 0. According to (5.3)

C16=jaj..A � a/�1..A� a/�1 C .J C a/�1/�1.A � a/�1/

� C16=jaj..jaj=2/�2..A � a/�1 C .J C a/�1/�1/

D C4jaj...A� a/�1 C .J C a/�1/�1/

D 0;
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where we have used kA � ak � jaj=2. Since

k.A � a/�1k � .jaj � 1/�1;

we can use (1.7) to decompose

det.AC J /�1

D det..A� a/�1..A � a/�1 C .J C a/�1/�1.A � a/�1/ det.H � I /;

with

H D ..A � a/�1 C .J C a/�1/.A � a/:
It follows that kHk � 1=2, and consequently j det.H � I /j � 2k . On the other

hand, jdet.A � a/j � .jaj C 1/k, and we can conclude that

j det.AC J /�1j � .2.jaj C 1/2/�kj det..A � a/�1 C .J C a/�1/�1j; (5.15)

whenever C16jaj...A � a/�1 C .J C a/�1/�1/ D 0.

On the other hand, if C16jaj...A� a/�1 C .J C a/�1/�1/ ¤ 0, then

k..A � a/�1 C .J C a/�1/�1kk�1 � 1

16jaj j det..A � a/�1 C .J C a/�1/�1j:

Hence

k.A � a/�1..A � a/�1 C .J C a/�1/�1.A � a/�1k

� .jaj C 1/�2k..A� a/�1 C .J C a/�1/�1k

� .jaj C 1/�2
° 1

16jaj j det..A � a/�1 C .J C a/�1/�1j
±1=.k�1/

:

Using (1.7), we conclude that

k.AC J /�1k

� .jaj C 1/�2
° 1

16jaj j det..A � a/�1 C .J C a/�1/�1j
±1=.k�1/

� .jaj � 1/�1

� 1

2
.jaj C 1/�2

° 1

16jaj
ˇ

ˇdet..A � a/�1 C .J C a/�1/�1
ˇ

ˇ

±1=.k�1/

;

(5.16)

if C16jaj...A � a/�1 C .J C a/�1/�1/ ¤ 0, whenever (2.2) holds.

Combining (5.15) and (5.16) we establish the assertion.
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