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On fluctuations and localization length
for the Anderson model on a strip
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Abstract. We consider the Anderson model on a strip. Assuming that potentials have
bounded density with considerable tails we get a lower bound for the fluctuations of the
logarithm of the Green’s function in a finite box. This implies an effective estimate by
exp(C W?) for the localization length of the Anderson model on the strip of width W. The
results are obtained, actually, for a more general model with a non-local operator in the
vertical direction.
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1. Introduction
We consider random operators on the strip Zw = Z x {1, ..., W} defined by

(Hw)n = ~Yn—-1—Yn+1 + Sn¥n.

where
v el?>(Z,CV) = 12Zw),

and
S, =S+ diag(V(,,,l), R V(n,W)),

with S a Hermitian matrix and V;, i € Zw, i.i.d. random variables. We assume
that ; have bounded density function v and we let

Ag :=supv(x) < 4o0. (1.1)

Furthermore we assume that
P(Vi|>T) < A1/ T, (1.2)

forT > 1.

The problem of estimating the localization length for this model and for the
random band matrix model is well-known. In the latter case a polynomial bound
was established by Schenker [7]. Very recently, Bourgain [2] established a bound
by exp(C W(log W)#*) for the Anderson model, provided that the potentials V; have
bounded density. We will obtain an explicit estimate for the localization length
by a method different from [2]. Our approach is via explicit lower bounds for
the fluctuations of the Green’s function. This idea has been previously used by
Schenker [7], but our implementation is different.

We introduce some notation needed to state our results. Let A C Zy . For
Ao C A welet Ay = A\ Ap and we use dp Ay to denote the boundary of Ay
relative to A, which is the set of pairs (i,i") such that i € Ay, i’ € Ay, and
li —i’| = 1, where |j| = max(|ji1],]/2]). If A = Zw we will just write dA¢. If
(i,i") € dA Ao we may also write i € dpAg and i’ € 95 Ag. By Po we denote the
orthogonal projection onto the subspace of all vectors in C* vanishing off A. The
restriction of H to A with Dirichlet boundary conditions is the operator

Hp: CA — A,

defined by
HA = PAHPA.
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For E C Z we use Ew do denote E x {1,..., W}. We will use Ay (a) to denote
[a — L,a + L]w. Finally, let

E . E/: N2
Xy = E |Gx G, DI,
i,j€0A,i1<ji

where
GE = (HyA - E).

Note that for A = [a, b]w the above sumis overi € {a}w and j € {b}w.
Our estimate on the fluctuations of the resolvent, which will be proved in Sec-
tion 3, is as follows.

Theorem 1.1. There exist constants Cy, C1 = C1(Ao, |E|, |S||) such that for any
A = [a, blw we have

Var(log =) > (b — a — 1)(inf; v)",

where I = [£ exp(CK), exp((C + Cp)K)], with C > C;.

The above estimate would work with Gf (i,j),i € {a}w,j € {b}w, instead
of Ef, but we need the result as is to be able to deduce exponential decay. In-
deed, employing standard multi-scale analysis, as in [9], we show in Theorem 4.4
that if Var(Zf) > (b —a + 1)8p, 6o = So(W), then the localization length is
roughly §;€. Thus, in principle, estimating the fluctuations of ££ can lead to
polynomial bounds on the localization length. In this paper we only manage to
obtain exponential bounds on the localization length. Concretely, Theorem 1.1 and
Theorem 4.4 imply the following estimate on the off-diagonal decay of Green’s
function.

Theorem 1.2. Fix B > 0 and > 1. There exists a constant
Co = Co(Ao, A1, B, B, |E|, |IS])
such that if infy v > exp(—BW) for some I as in Theorem 1.1 then

P(10g |Gy, (@i )| < —exp(~CoW?)L. i €{a}w.j € IAL(@)>1—L7F

for any L > exp(2CoW?) and a € 7.
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Remark. Itis well known, and otherwise straightforward to deduce, that the above
estimate implies exponential decay of the extended eigenvectors of H, and a lower
bound on the non-negative Lyapunov exponents. Namely, we have that if ylf, is
the lowest non-negative Lyapunov exponent then yvlf, > exp(—C W?), and if v is
an extended eigenvector of H then

limsup(log [y (i))])/|i| < —exp(~CW?).

|i|—>o00

Let us discuss some of the ideas behind the proof of Theorem 1.1. The strat-
egy is to take advantage of the fact that G }f (i, j) is the ratio of two polynomials
of different degrees in (V;)iea. We illustrate this idea in a simpler setting. If
P(x), Q(x) are two monic polynomials of one variable then log | P(x)/Q(x)| ~
(deg P —deg Q) log | x|, provided | x| is large enough. If deg P # deg Q and large
values of |x| are taken with non-zero probability then the previous remark should
be enough to capture some of the fluctuations of log | P(x)/Q(x)|.

The above idea is not sufficient to generate the crucial factor (b —a — 1) in the
lower bound on variance. Let { A} be a partition of A and let

he(V) = E(log|GE (i, j)(V.)]). V e R

(we keep the potentials on A fixed and we average the rest). Then we have the
following Bessel type inequality (see Lemma 2.1 (ii)):

Var(log |G (i, j)|) = Y _ Var(hg).
k

So, the problem is reduced to estimating the fluctuations of /. We obtain the
factor (b — a — 1) by just choosing a fine enough partition. Ideally we would
choose Ay = {k}, but this turns out to be incompatible with our first idea. Using
hyper-spherical coordinates we can write

GEG. HWV.V)Y=GEG. )(r.e V), VeR ™,V eRM,reR,¢te s

Let d,, d» be the degrees of the numerator and denominator of Gf (r, & V') as
polynomials in r. It is then not hard to see that the problem of finding a lower
bound for Var(/;) can be reduced to the problem of estimating the variance of a
function of the form

d1/Clogv—z|dm(¢>—dzfcglogv—ndm@),
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where (11, o are probability measures. Note that if u; (|| > R) = 0,i = 1,2,
then the above function is approximately (d; — d») logr, for r > R, which leads
us back to our first idea. Clearly, we want d; # d5. This is false for Ay = {k},
k € A, but it turns out to be true for Ay = {k}w,k € (a,b). The conditions
wi([¢| = R) =0,i = 1,2, turn out be roughly equivalent to the polynomials on
the top and bottom of G f (i, j)(V, V') not vanishing for V outside the ball of radius
R in CA% and all V! € RAk. Unfortunately we can establish such a property
only for the denominator of Gf (i, j) (see Proposition 3.2). This is because the
denominator is the determinant of a self-adjoint matrix, but the numerator is the
determinant of a non-self-adjoint matrix. We circumvent this problem at the cost
of a worse lower bound on variance. At a technical level this is a accounted for by
the difference between statements (iii) and (v) of Proposition 2.2.

Finally, the ideas discussed above are synthesized in the following theorem,
which will be proved in Section 2. If P is a polynomial of N variables and J C
{1,..., N} then deg; P denotes the cumulative degree of P with respect to the
variables indexed by J. We will use J’ to denote {I,...,N}\ J. By (x,x’),
x € R’, x' € R’', we denote the vector in R/Y/" with the components indexed
by J given by x and the components indexed by J’ given by x’.

Theorem 1.3. Let P and Q be two polynomials of N variables. Assume that the
following conditions hold:

(a) there exist Jp, C {1,....N}, k = 1,....,N', Jy N Jp = @ for k # k',
|Jx| = K such that

0 <deg;, P <deg;, O =K;

(b) for each k and each T > 1 there exists B(k,T) C R’k with P (B(k,T)) <
BoK2T™!, such that for any x' € R’k \ B(k,T) and any x € C’* with
min; |x;| > T we have Q(x,x’) # 0.

Then there exist Cy, C1 = C1(D) such that
Var(log(|P|/|Q) = N'(inf v)¥,

forany I = [+ exp(CK), £ exp((C + Co)K)], with C > C;.

Acknowledgments. The authors are grateful to the anonymous referee for his
helpful comments.
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2. Lower bound for the variance
of the logarithm of a rational function of several variables

In this section we will prove Theorem 1.3. The main idea for the proof is to reduce
the analysis of the variance to the case of a one dimensional logarithmic potential
for which we have the estimates from Proposition 2.2. But first we collect some
elementary facts concerning the variance. We leave the proofs as an exercise for
the reader.

Lemma 2.1. Let (2,F, i) be a probability space.

() If X, Y are square summable random variables then
| Var'/2(X) — Var'/?(Y)| < Var'/2(X + Y) (2.1)
and

| Var(X) — Var(Y)| < E(X - Y))'/2(EXH2+EX?H?). (22

(ii) If X is a square summable random variable and &F;,i = 1, ..., n are pairwise
independent o-subalgebras of F then

Var(X) = ) Var(E(X | 5;)). (2.3)

i=1

(iii) If X is a square summable random variable and ¢ is a probability measure
such that p > cpg, with ¢ € (0, 1), then

Var(X) > ¢ Vary,,(X). 2.4)

(iv) Ifwi, i =1,...,n areprobability measuresand X, j = 1,...,m are square
summable random variables then

> var, (Y 8X;) < (Z|,Bj|)2mjaxZVarm(Xj). (2.5)
i J J i

W) If (', F, i) is a probability space and X is a square summable random
variable on Q x Q' then

Var,x,/(X) > ess iélfVarM(X(', w')). (2.6)
w' e’
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From now on we will reserve dv for the joint probability distribution of (V;);en,
where A will be clear from the context. We use dmg for the uniform distribution
on Q C R¥ (with d clear from the context) and Varg (-), Eq () will be computed
with respect to dmg. The statement of the next result exposes the main steps of its
proof. We note that the statements relevant for the proof of Theorem 1.3 are (iii)
and (v).

Proposition 2.2. Let u be a Borel probability measure on C and set
) = [ Toglx ~£ldc).
We assume that  is such that u, is locally square summable.

@ If n{|¢| = R}) = 0 for some R > 0, then, for any M > 0,

,. _ 4min(1, M)(log(min(1, M)) — 1)2 + M log*>(M + R)
E[O,M](u/,b) < M .

(i) Forany M; > My > 0,
Var[MO,Ml](uM) = Var[MOMl_l,l](uM(Mn),
where pMV () 1= w(M;-).
(iii) If u({|¢| = R}) = 0 for some R > 0, then for, any M1 > 2My > 4R,

| Varqagy a1 () — 1] < 10*(RMTHYE + (MoM[HV?).

iv) If u({|¢| < R}) = 0 for some R > 0, then, for any 0 < 2My < M1 < R/2,

Vargao, w1 () < 8(MiR™)?,

(v) Forany My > 0,

m
> Varpg g () < m + 10°,
k=1

with M = 2k Ao, Ag > 0, A9 > My. In particular, for any m > 1, there
exists M € [2A4¢, 2™ Ag] such that Varppgy arj(uy) < 1+ 10°m~L
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Proof. Recall that, for A > 0,

A
/ logxdx = A(log A — 1),
0

and
A
/ log? x dx = A[(log A — 1)% + 1].
0
(i) We have
2 LM 2
Epo,m) (u,) < I (log|x — &N~ du(f) dx
0 I¢I<R

1
- ( / (log [x — ¢)% dx
[¢]<R x€[0,M],|x—=¢|<1

+ [ (log |x — ;|)2dx) s
x€[0,M],|x—¢|>1

1 min(1,M)
L (2 / (log )2 dy + M(log(M + R))z) du (@)
M Jiz\<r 0

IA

_ 4min(1, M)(log(min(1, M)) — 1)2 4+ M log?>(M + R)
< m :

(ii) By a change of variables we have
Varpag,m,1(Up) = Var[MOMl—l’l](uM(Ml')).
Now the conclusion follows from the fact that
u,(Mix) = MM(MI)(.X) + log M;.
(iii) First note that
|log|x — ¢ —log x|| < 2|x|7"[¢l. |x[7'¢] < 1/2, 2.7)

and consequently

i orp (x) —log x| <24/ RMY, x € [/ RM{',1].
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By what we already established,
| Variago, a1 () — Varpg, 1 (log)|
= | Varyy a1 g 0np) = Varpy ot gy (10g)]

< o —loglz  (ugorlz  +llogle )
IMoMT 1] IMoM 1] IMoM 1]

< 2||UM(M1) —10g||L[20!1] (”uM(Ml)”L[Z + [llo g”L[ZO .

<5

RM[! 1/2
< 10(4RM1_1 + / 2(uZ<M1)(x) + log? x) dx)
0

< 10@RM;" + 350\ RM;Vlog? \| RM)/2
< 100(RM;HY*log(M; R™Y)
< 2000(RM;HY/5.
Now we just have to estimate
Varpg,,my1(l0g) = Varp, 1y (log),
where we let m = MoM;':

| Varp, 17(log) — 1|

1
11 (log?) — T, Lo (log?)

1 2 m?
— (Epp.q11 log)? + ——— (E 1 -
dx
1 m ! '
+7/ log x dx /logxdx—l-/ logx dx
(1—m)>|Jo 0 m
L
(1 —m)?
2
<Sm(l—logm)
- (=-my

< 500m log® m
< 10*m'/2.
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(iv) Note that, based on (2.7),
|y (x) =, e (0)] < 2MiR™, x € [MoM[ 1],

and hence
Varpag,m,1(Up) = Var[MOMl_lgl](uli))
< o) —u,a 0)]7,
MoMT 11
_ 40 RTY?
11— MoM;!
< 8(M R 12
(v) Let
Dy ={M; <|Z| <My}, I=1,....m—1,
DO = {|§| < Ml}’
and
Dy = {ll| = Mp}.
We have
m
uM = Z/’L(DI)MMDI )
1=0
where

mp = (D) ulp
(we set up = 0if u(D) = 0). We will verify the estimate in (v) for each measure
wp,. The estimate for p will follow by (2.5). So, fix arbitrary [ € {0, ..., m}. One
has due to part (iv) that
I-1 -1 I-1

> Varpgo iy, < Y 8(MM;)? =8 45 <8,
k=1 k=1 k=1

On the other hand due to part (iii) one has

m

m
> Varp g (up,) <Y [T+ 104 (MoMT)Y? + My MHY)
k=I1+3 k=1+3

o o
< m+104( Y] 27k/2 4 3 o7k
k=1 k=1
<m+5-10%
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Now we just have to evaluate the variance for / < k <[ 4 2. For/ < m we use (i)
to get

142 142
M
ZVar[MOsMk](up,Dl) = Zvar[MOMk_l,l](u/(LDll())
k=l k=1
[+2

= 2 T iy 1
— - /
ey 1 — MM, [0.1]

1+2
<2) (4 +1log(1 + My M)
k=I

< 40.
When [ = m we just need to evaluate Var(a,,a,,1 (U, )- Let

D) = {Mp < [¢] <2Mp}
and

D}, ={[¢| = 2Mp}.
Using (2.5) (i) (for u 1y - @S above) and (iv) (for u T ), we get
Varipo, M) Ui, ) = max(Vargo, m,) W 1 ) Variato, M) (5 ))

< max(4 + log>(1 + 2My,/ M), 8(Myn / (2M1))?)
< 10.

This concludes the proof. O

Before we proceed with the proof of Theorem 1.3 we need the two following
auxiliary results.

Lemma 2.3. If P(x) = }_,,<p aaXx® is a polynomial of N variables such that
maxg<p laa| = 1, and @ C {x € RN: ||x| < Ro}, Ro > e, is such that
mes(2) > 1, then

Eg (log? |P|) < D®N?1og?*(N + 1)log* R,.
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Proof. The polynomial P has at most (N + 1) monomials, so for R > e we have

sup log|P(z)| <1log(RP(N + 1)?) < Dlog(N + 1)logR.
lzIl<R

Lemma A.2 implies that

mes{x € R : ||x|| < R,log|P(x)| < CHDlog(N + 1)log(20R)}
< CN RN exp(—H),

for H > 1. The conclusion follows from Lemma A.3. U
Lemma 2.4. Let o be the spherical measure on the (n — 1)-sphere S" 1.
o({f e S™L: Inl_in €| > e}) > n2"(1 — /ne)".
Proof. Let © be the set whose measure we want to estimate and let
Q={xeR": 1< miin|x,~|,ml_ax|xi| < 1/(/ne)}.

Then we have

QC{ré: €0, rell,1/(Vno)]},

and the conclusion follows from

2” (ﬁ — 1)” = meS(Q)
Jne
< /@/11/( )r"—ldrda(g)

< %(ﬁ)"a(@)). 0

Proof of Theorem 1.3. Set
h(x) :=log(| P (x)|/|Q (x)]).
Due to (2.3) one has

Var(h) = > " Var(E (h|3x)) = Y _ Var(h). (2.8)
k k

where Ji is the o-algebra corresponding to fixing the components with indices
in Jx, and g (x) = E (h(x,-)), x € R7*.
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To provide a lower bound for Var(s;) we will pass to a uniform distribution
and we will use hyper-spherical coordinates to pass to a one-dimensional problem.
Let

I = [Mo/(2VK), M],
with M = 21°° KMoy, My = 2«/KT, T = Byexp(CK), and C > 106. We define
1
O =1eSK ' ming; > ——
{e ingi = |

and
Q={xeRK:x =r& re[My, M), O}

The peculiar choice of ® is so that we will be able to use the assumptions on
Q. Note that for x € Q we have x; € I. Furthermore, by Lemma 2.4 we have
0(®) > K27K and consequently mes(Q) > 2K (MK — MK). By (2.4),

Var(hy) > (inf; v)X mes(Q) Varg (hx)
> (inf; v)X27 KM X — ME) Varg ().
Changing variables to hyper-spherical coordinates,
Varg (hy) = Vary(hy),

where
Krk=14r do

= X
MK MK " 0(©)

dn:

is the probability measure on R = [My, M] x ©. Using (2.4) we can pass to the
uniform distribution on R:

K(M — Mo)ME—1

Varg (hi) =
MK — MK

Varg (hk)
Finally, due to (2.6) we have
Varg (hy) > e%s glf Varqpso, 11 (hi (-, ),
€

where Ay (r, ) = hi(r§). In conclusion we have

Var(hy) > K(M — Mo)ME 127K (inf; v)KesEs glfVar[MO,M](hk(., £)). (2.9)
€
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To be able to use the assumption on Q we want to work with a truncated version
of hj obtained by averaging only on

Sk := Rk \ B(k, T),

Passing from the variance of %y to the variance of the truncated function will
depend on having an explicit bound on the second moment of /4. The bound will
follow using Lemma 2.3 after an appropriate normalization. We know P and Q
are polynomials in  and we can write

P(r.6.x) =Y ai(6.x)r',
and i
0() =D biE.xr'.
Let A(§, x') = max; |a; (&, x")|, B(§, x") = max; |b; (€, x")|, and define
P(r.£,x) = P(r,£,x)/ A X)),
O(r,6,x') = O(r £, x')/ BE X)),

and
i =1log|P/0|.

These functions are well-defined for o x v-almost all (£, x”). From now on we fix &
such that the functions are well-defined for v-almost all x’. Of course, this means
& must be outside a set of measure 0, but this doesn’t affect the essential infimum
in (2.9). Since E (| log |A(&,9)|]), E (| log |B(&, -)||) < oo we have

Varagy a1 (i (-, £)) = Varpag an (i (-, §)),

where X
hi(r,§) = hi(r,§) — E (log|A(§,-)]) + E (log [B(§,-)]) -

Using Lemma 2.3 we obtain
Ermy, M (hk( S)) /M » (/ h(r £, x")dv(x )) dmin,, (1)

< /RJ/,( (/[MO,M] h2(r, £, x") dm[MO,M](r))dv(x’)

< K?log* M.
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We now introduce the truncated version of K
d v(x)
P (Sk)

ie(r.8) = /h(s

By the same argument as for h x (-, &) we have

Eppto,m) (12 (- £)) < K2 log* M
and

Bpatom1 (e (. 6) = P (Ge) ik (. £)%) S P (B(k, 7)) K*log" M.
We now get
| Vargagg, m) (hic (- €)) = Variagy sy (P (Ge) b -, £)]
< Biato. 1 (i (. &) = P (Si) e (-, £)%)1/2
- (Brato a1 (g CoENY? + Eppgy any (7 (- 6)'72)

<P (Bk,T))"? K?log* M.

We claim that Vargag,,ar (hx (-, §)) > 2719°K. Since we chose
T = Byexp(CK), C > 108

it follows that

207

Vargage w1 (i §)) = P (Sx)? Varpg, any (e (- €)) — CP (B(k, T))/? K2 log* M

> Varqu,, ) (he (-, ))/2
> 7—10°K /2.
From this, (2.9), and (2.8) it follows that
Var(h) > N'K(M — Mo)ME 12~ K+D-10°K inf, ))K
Note that by our choice of My, M, T we have
K(M — Mo)ME 12~ (K+1=10°K — oxp(CK?) > 1,
so the desired lower bound on variance follows. The case

[ =[-My,—Mo/(2VK))

follows analogously. Note that in fact we obtained a better estimate than the one
stated in the theorem. However, it can be seen that (inf; v)X < exp(—C’K?) with

C’ > C, so the estimate won’t be substantially better than the stated one.
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Now we just have to show that Varqaz, a1 (2x (-, £)) > 2-10°K Using (2.4) we
get

- M: — M, -
Vargaso ) (hi (- €)) = =22 Vari g (i €). - 2.10)

with Mg € (Mp, M) to be chosen later.

We provide alower bound for Var(as,,a,] (hi (-, €)) by applying Proposition 2.2.
We first need to set-up hy as the difference of two logarithmic potentials. Without
loss of generality we may assume that P and Q are monic polynomials in r (we
can force them to be so, without changing the variance). Let Dy be the degree in
r of P(r,&,x'). If Dy = 0 then the term corresponding to P won’t contribute to
the variance. So, we only deal with the case D; > 1. It is well-known that there
exist measurable functions {; such that

Dy

P(r&x)y =[]0 - &)

j=1
Let u; be the push-forward of the measure (v|g, )/IP (Sx) under the map
x' i (xX).
Let
we(r) = [ Toglr = ¢l dur (@),

where pp is the probability measure defined by
pp = D' Z Hj -
J

Analogously, we define
) = [ toglr —tl o)

to be the logarithmic potential corresponding to O(r, £. x'). Note that both uy
and vy are square summable, and furthermore by the choice of G5 and ® we have
ro(l¢] = 2/KT) = 0 (this is equivalent to saying that Q(r, £,x") # 0, for
|r| > 2/KT, £ € ©, x' € G, which is true by assumption (ii) of the theorem).
We have

hie(r,§) = Dyug(r) — Kvg(r).

By part (iii) of Proposition 2.2 we get
Varyo ) (vie) > 1 — (4K) 71,

for any Mz > 45102° K> M.
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Using part (v) of Proposition 2.2 we choose

Mg € [2- 451020 K5 My, 241K 45102 K5 My] C (Mo, M),

such that

Using (2.1),

Variu,me k(- §) = (Varlye 4 ((Diug) = Varye 1 (Kvg))?

> (K(1— (4K)™HY2 — (K = 1)(1 + (4K)™1)/?)?

Variag,me) () < 1+ (4K)™"

> 1/4.

Plugging the above estimate in (2.10) yields that

Var(ao a1 (he (-, §)) =

Mo 410%°K5 — 1) _ yp0r

This concludes the proof.

3. Analysis of the determinant and of the minors
as polynomials in terms of the potentials

4Mo(210°K — 1)

209

Let £ = det(Ha — E) and let gZ (i, j) be the (i, j) minor of Hp — E. In this
section we are interested in /£ and g (i, j) as polynomials in (V;);ea. We will
prove Theorem 1.1, as a consequence of Theorem 1.3, and we will provide bounds
on the moments of Eﬁ, which will be needed in Section 4. The properties of
f 1{5 and gf (i, j) that are needed for these results are established in the next two

propositions.

In the following it is useful to keep in mind that if we order the points of Zy
lexicographically, i.e. i < j if iy < jj, ori; = j; and i, < j,, then the matrix of

Ha, A = [a,blw, is
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For the application of Theorem 1.3 we will only need the first part of the fol-
lowing result. The second part will be needed for establishing the Cartan type
estimate for log Ef in Lemma 3.3.

Proposition 3.1. Leti, j € A = [a,b]w be such that iy < j, and let n € (i, j1).
(i) The degree ofgf (i, j) as a polynomial of (Vi )kenyy, is at most W — 1.
(ii) If i» = j, then the polynomial [gf @@, )HIV) has a monomial whose coef-
ficient is +1. Furthermore, the degree of [gf @i, HIV) as a polynomial of
(Vk)ke{n}w is W —1.

Proof. It is enough to prove the result for £ = 0.
(i) g€ (i, j) is the determinant of a matrix of the form

* *x 0
* S, x|,
0 x %

where the top-right corner entry is a (p — 1) x (¢ — 1) matrix and the lower-left
corner entry is a ¢ x p matrix, with p = (n —a)W and ¢ = (b — n)W. The
coefficient of the monomial [[ie,y,, Vi is (up to sign) the determinant of the
matrix obtained by removing the rows and and the columns corresponding to Sj,.
This matrix is of the form

* x 0

0O 0 x|,

0 0 =x
where the entries on the diagonal are blocks of size (p — 1) x (p — 1), 1 x 1, and

(g — 1) x (¢ — 1) respectively. Hence the determinant is zero and the conclusion
follows.

(ii) For fixed i, j € A let HX be the operator corresponding the matrix ob-
tained from H, by making all entries on the i-th row and on the j-th column
zero, except for the (i, j)-th entry which is set to 1. Up to sign, gf (i, j) is the de-
terminant of H X We will use & to denote the entries of the matrix representation
of HX By the Leibniz formula for determinants

gh.j)=> sgn(o) [ [ h.o):
o leA

where o runs over all permutations of A. We are interested in the non-zero terms
from the above sum that are divisible by V* where « € {0, 1}* and

_ {1 if Iy ¢ (i ) or Iy € i ja) and I # o

0 otherwise
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For each [ there are at most W + 2 values for o (/) such that s 4 is not zero.
The permutations o corresponding to non-zero terms divisible by VV* must satisfy
o(l) =1 when o; = 1. It follows that, for such permutations, o ([i1, j1] X {j2}) =
[i1, j1]x{Jj2}. Note that by our definition of HX we must have o (i1, j2) = (j1, j2).
Hence we must have o ((i, j2)) = (i — 1, j2), forany i € (i1, j1]. So h; sq) = £1,
whenever ; = 0.

This shows that the monomial V* has coefficient +-1. From this it also follows
that the degree of [gf; (i, j)](V) as a polynomial of (Vi )ke{n},, is atleast W — 1.
Now the conclusion follows from part (i). O

Remark. The second part of the previous proposition doesn’t necessarily hold
when i, # j,. In particular, it can be seen that gf (i, j) is identically zero for any
i,j € A, with iy # j,, provided that S = 0.

For the next result we will need some bounds on the probability distribution
of the resolvent. From [1, Theorem II.1] we have

P(GX (. ) =T) 5 40/ T. 3.1)
foranyi, j € A. For future use we also note that in our setting the Wegner estimate

PIGEIl = T) S AolAl/T. (32)
follows, for example, from [3, (2.4)].
Proposition 3.2. Let Ao = {n}w C A = [a, b]w. For any

T = max(|E][IS])
there exists a set B =B(n,T) C RA0, with P (B) S WA/ T, such that
JEWV. V) #£0
forany V € C2, minjen, |V;| = 10WT, V' € R% \ B.
Proof. Using (B.1) and Lemma B.1 we have
f& = det(Ha/Hy, — E) det(Hyp, — E),

where

Ha/Hp, = HAO—FOGE,OF;; = diag(Vin.1), - ..,V(,,,W))+S—FOGE6F;. (3.3)
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If |GE, (k,1)| < T for any k,l € daAg then |(ToGE, T¥)(i, j)| < 4T for any
0 0

i,j € Ao, and consequently | ToGE, T'¥|| < 4WT. Furthermore, if we also have

0

that min;ea, |Vi| > 10WT and T > max(|E|, ||S|]), then HA/HA6 — E is invert-

ible since

6wWT
<

10wT

ldiag(Vin,1y. - - V) 'l - I=E + S = ToGf, Tl <
The conclusion follows by setting
B ={V' e Rho: |GE6(k,l)| > T, k,1€dpnho)
U{V' e R%0: det(H,, — E) = 0}.

The bound on P (B) follows from (3.1). O

We can now prove Theorem 1.1
Proof of Theorem 1.1. 'The result follows by applying Theorem 1.3 with

PV) =Y llgr . DN QW) =[NP, Je ={k}w. k € (a.b).

Note that P and Q are polynomials of real variables, but with possibly complex
coefficients. The assumptions on P and Q are satisfied due to Proposition 3.1 and
Proposition 3.2. O

To establish the bounds on the moments we need the following Cartan’s esti-
mate for Green’s function.

Lemma 3.3. There exist absolute constants Cy and C; such that for any R > e
and H > 1 we have

mes{V € R*: |V|| < R, log £} < —CoHMRg} < CllAlRlAlexp(—H),
where Mg = |A| max(1,log|E|,log||S|)log R.
Proof. We have
IHY (V) = Ell < 1+ [|HA(V) = E|| < 1+ |E| + R +||S|,

forany V € CA, ||V| < R,and any i, j € A (recall that Hj{ was defined in the
proof of Proposition 3.1). Consequently, there exists an absolute constant B such
that

sup log|fx (V)| < |Allog(IE| + R + [|S])

IVI<R
< B|A|max(1,log|E|,log||S|) log R
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and
Sup log|lgx (. HIV)] < |A|log(1 + |E| + R + || S]]
VI<R
< B|A|max(1,log|E|,log|S]|)log R,
for R > e. Let

M = B|A|max(l,log|E|,log|S|)logR
and Cy as in Lemma A.2. If
log =% < -3CoHM
then
tog 1§ ", /)] = 5(log % + log | £

3 1
=< _ECOHM + 510g|f1€|

< —-CoHM,
where we chose i’ € {a}w and j' € {b}w (assuming A = [a, b]w) such that
i5 = js. The conclusion follows by applying Lemma A.2 to log|[g§ (i’, j")]|.

This is possible due to Proposition 3.1 (ii). Note that the constant Cy from the
result is not the same as in Lemma A.2. O

Proposition 3.4. Given s > 1 there exists a constant
Co = Co(Ao, A1, |E|, s, |IS])

such that

E(log* £) < Co(|A[log |AD®,  |A] > 1.
Proof. From Lemma 3.3 and Lemma A.3 it follows that for any R > e we have
/ log® =& dv < (C|A|?log? R)*,
IVi<R

with C = C (4o, |E|. ||S|).



214 1. Binder, M. Goldstein, and M. Voda

Note that due to (1.2) we have

P(IVIl = R) < > P(Vil = R/IAIY?) < 41|AP?/R.
i€A

Let R, = RK|A|>/2, with Ry >> e. Using the two previous estimates we have

E(log® =£)
oo
- / log® =& dv + Z/ log* =% dv
VI<R: k=1 Re<IVI=Rg 41

oo 1/2
< (C|APlog> Ry)* + ) ( / log® B dv) PV = Re)'/?
k=1 x| <Rg 41

< (C|A]log [AD* + (C|A|log [AD> Y " (log® RET)* (A1/Rp)'/?
k=1

< C(s)(JA[log [A])*". O

4. Large Fluctuations Imply Exponential Decay

In this section we show how to pass from fluctuations of the resolvent to exponen-
tial decay. The main result is Theorem 4.4. The basic idea, developed in Proposi-
tion 4.1, is that having some fluctuations of Green’s function implies some expo-
nential decay with non-zero probability. The desired result will follow by standard
multi-scale analysis. The initial estimate is provided in Proposition 4.2 and the in-
ductive step is implemented in Proposition 4.3 (cf. [9, Lemma 4.1]). Throughout
this section we assume

Var (log %) > Lo,

with 6o < 1/ W, forany A = [a,b]lw,b—a+ 1= L.

Proposition 4.1. Given ¢ € (0, 1) there exists Co = Co(Ao, 41, ¢, |E|, || S||) such
that
L80 )1+8

Plos =R = —VIR/2) 2 (G o T

forany A = [a,blw, b—a + 1= L > Cod5" log* 8.
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Proof. We partition R by the sets

Q_ ={V: logZk < —\/L6y/2},
Qo ={V: |log=k| < VL8o/2},
Q= {V: logZ¥ > \/L8y/2}.

By our assumption on the variance we have that E(log” Ef) > L&p. At the same
time we have both

log? =% dv < L8y /4,
Qo

and

g/(1+¢)
/ log" X5 dv < (/ log? /% 2% dv) (P(V € Q)1+
Q- RA
= C|A|4 10g4 |A|(]P(V c Q_l))l/(l+8)’

as well as

1/2
log? € dv < (/ log* £ du) PV € Q))"/?
Q1 RA

< C|A[*log* |A|(P(V € Q1))'?,
with C = C(Ay, A1, ¢, |E|, ||S]), due to Proposition 3.4. We conclude that
P(log =5 < —V/L8o/2)

(3L80/4 — C|A|410g4 |A|(P(log s E > /L50/2))1/2)1+a
> .
B C|A|*1og*|A|

Now we just need to estimate the probability on the right-hand side. If log X f >

A/ Léo/2 then |Gf(i,j)| > exp(+/L8o/2)/W? for some (i, j) € 0A, i1 < ji.
Using the estimate (3.1) we have

P(log & > \/L8y/2) < AgW* exp(—+/L8o/2).
The conclusion follows because
3L8o/4 — C|A|*log* |A|(AgW* exp(—+/L8o/2))"/? = L8y /4,

for L > C’§5" log? 8y (recall that we are assuming 8o < W™1). O
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Proposition 4.2. Fix 8 > 1. There exists Co = Co(Ag, A1, B, |E|, ||S|) such that

51/2L1/1°
]P<10g|GfL(a)(i’j)| = —%, i €lalw.j € 8AL(“)) >1-L7P,
forany L > C0856W2°.
Proof. We only prove that
sz 110 LB
E .. 0 . .
P(log |G, (@i /)| = —2——.i € fa—Liw.j € la}w) = 1 - —.

The same estimate with i € {a}w and j € {a + L}w will hold by an analogous
proof.

Let [ = [LY5]. We have I° < L < 2I° (provided L is larger than some
absolute constant). Let §; be the event that log Efo < —+/18¢/2 holds for at least
one block

Ao=[nl+1,n+Dllw CA=[a—L,alw.

Clearly A contains more than /#/2 such blocks. By the independence of the po-
tentials and by Proposition 4.1 we have that for ¢ small enough
P(R" \ G1)
< (1 _ C(801)1+8/(lW)4(1+28))l4/2
< CXp(—C (801)1+8/(Z W)4(1+28)l4)
< CXp(—CSé+8W_4(1+28)L(1_78)/5)

< L7#/a,

provided that L > C8;5W?2°. Let G, be the event that |G¥ T and

||G1]f1 | < T for any

L@l =
Ai=la—L,(n+ Dilw C A,
with 7 > 1 to be chosen later. From (3.2) it follows that

PR\ G2) < AgL>WT™!,
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For the event §; N G, it follows, by using the second resolvent identity (B.3),
that

|G£L(a)(i’j)| = Z G1€1 (i’k)GfL(a)(k/’j)
(k.k")€IA; () A1

A

TW|GE, (i.k)|

=TW| >  GfkDGK (')
(l,l/)€3A1A()

< TW exp(—V/180/4)|G§, (1,1)]
< T?W exp(—+/180/4) < exp(—83/2L1/19/8),
provided

55/2L1/10
T =exp (T

) and L > C8;5°log"® w.
The conclusion follows by noticing that with this choice of 7" we have
AgL>WT ' < LB /4,
for L > C85°log'® w. O
Proposition 4.3. Fix 8 > 1 and ¢ € (0, 1). There exists a constant
Co = Co(B, &, Ao)
such that if, for some | > Cy,
P(10g |Gy, (i, ) < —myl, i €{aw, j € 0A(a) = 1—17F,

withm; > 157 og W, for any Aj(a) C Zw, then, for L = 1% « € [2, 4], and any
Ap(a) C Zw,

P(0g |Gy, @ ) <—mpL.i €{a}w.j € dAL(a) = 1—LF,

with
m;>mp = (1 —61"Y*Ym; —log@W)/1 = L= 'log W.
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Proof. Let
I=la—L+!l,a+L-1].

We say that b € [ is good if

log|Gfl(b)(i,j)| <-myl,i e{b}w,j € A1 (D).
We partition 7 into 2/ + 1 subsets

Iy={bel:b=s(mod2/ + 1)}.
For each s the set I has at least
2L -4l +1
20 +1
elements and the blocks A;(b), b € I are disjoint. By Hoeffding’s inequality
(see [5, Theorem 1]) applied to the binomial distribution with parameters n and
p = 1 — 178 we have that there exist at least (1 — §)pn good b’s in I, with
probability greater than 1 — exp(—2(pn — (1 — 8)pn)?/n). Let B be the number
of bad u € I. By choosing § = I~'/# it follows that
B<2L-2l4+1-Q2I+1D)(1-68pn

=QL-21+D1-0=8§p]l+@ +1D)(A-58)p

<4LI7Y4,
with probability greater than

1 — 2l + 1)exp(—2np36%) > 1 — (21 + 1) exp(—cL8?/1)
> 1— (2] + 1) exp(—cl'/?)
>1-L7F)2,

provided that [ > C = C(f).

Let A, be the blocks corresponding to the connected components of the set of
bad elements in /. Clearly r < B and if /; is the length of A, then > [, = B.
Using (3.2) we know that with probability greater than 1 — CAoWL3T~! we have
||Gf | < T, where A is any of the blocks A; or Ay (a). We will choose T later.

Leti € {a}w and j € dA [ (a). We will use the resolvent identity (B.3). If ¢ is
good then

|G1€L(a)(i’j)| = Z Gll;:z(a)(i’k)GfL(a)(k/’j)
(k.k")€IA; (@) A1(a)

<2W exp(—mll)IGfL(a)(/g, DI
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for some k € 8AL(a)Al(a) If a is bad then {a}w C A; and by our choice of A;
we know that k1 is good for any ke 0a, @A¢ (provided ki € I). So if a is bad
we have

|G1€L(ﬂ)(i’j)| = Z Gll;:t(i’k)Gll;:L(a)(k/’j)
(k.k")EIA, (@)A1

<2WTI|GR, (k. )

J— /
=2WT > N A @ )(k DGR, . J)
(I,I)€0A, () Ai(ky)

< AW>T exp(—m;1)|Gy, (o (1. )|
= |GfL(a)(l,j)|,

where we chose
exp(myl)

T =
4w?
We can iterate these estimates as long as k 1, J1 € I. We conclude that
G @i ) < T@W exp(—m;1))" < 2W exp(—m;1))" 72,

with
L-1+1-B
n>———— 1.
[ +1

So we have

-2 1—5171/4
Tl —log@W) =

(mil —log(2W))

1=V m, — log(IZW)’

mp, =
>(1-6
for I > C. The conclusion follows by noting that

1 —CAWL3T ™' =1 - CAW 3L exp(—myl)
> 1—CAW?3L3exp(—I¢log W)
= I- L_ﬂ/zv

provided [ > C = C(B, ¢, Ao). O
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Theorem 4.4. Fix f > 1. If we have Var(£§) > Léo, with §o < W1, for any
A = [a,blw, withb —a + 1 = L, then there exists

Co = Co(Ao, A1, B, |EL, S
such that
P(10g |G, (i, /)] = ~C ' 8§W L, i € {ahw.j € r@) = 1 - L7F,
forany L > C08512W4° anda € 7.

Proof. Let
Lo = B8yW?20.
If B is large enough, as in Proposition 4.2, then

P(log|GY, (@i /) < —mroLo.i € {a}w.]j € IALy(a) = 1 — Lg”,

with 1/2 5 1/10 59/10
— 8o’ Lo _ B—9/1050 WS

Lo 4L, 4

Note that
mr, > L(l,/mo_1 log W,

provided B is large enough.
Given L > Lj we can find a sequence Ly such that

Liy1 = L3, op €[2,4] 4.1)
and
L =1Ly, forsomeky>1. 4.2)

Applying Proposition 4.3 inductively,

- log(2W)
1/4
mp,, = (1—L; / ymp, — Ly
Consequently we get
o0 my
mp—mpy = =Y (mp L+ log@W) LY = —=2,

k=0

provided that B is large enough (we used the fact that my, > my, and that
Mmr, > L(l)/ 100-t log W). The conclusion follows immediately. U
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A. Cartan’s Estimate

For convenience we include a statement of the Cartan estimate for analytic func-
tions (see [6, Theorem 11.4]).

Lemma A.l. Let ¢: D — C be an analytic function such that

m < log|¢(0)|, M > §uﬂ1;10g|¢(§)|-

Then there exists an absolute constant Cy such that for any H > 1 we have
log|¢(0)| > M — CoH(M —m),

for all { € Dy¢ except for a set of disks with the sum of the radii less than
exp(—H).

The next result is a Cartan type estimate for multivariate polynomials.

Lemma A.2. If P(x) = ZIIXISD aex® is a polynomial of N variables such that
maXg|<p |de| = 1 and supy, <xor, 10g|P(2)| < Mg, for some Ry > 1, then
there exist absolute constants Cy and Cy such that for any H > 1 we have

mes{x € RV : ||x|| < Ro.log|P(x)| < —CoHMpg,} < CN RY exp(—H).

Proof. 'The strategy is to apply the one dimensional Cartan’s estimate on complex
lines that will cover the set {||x|| < Ro}. For this we need to find a point xo € RY
at which | P(xo)| is bounded away from zero. Due to the Cauchy estimates for the
derivatives of analytic functions one has

lae| < max |P(z)],
lzll<1

for any «. It follows that there exists zo € C¥, ||zo|| < 1, such that |P(zo)| > 1.
We will use Cartan’s estimate “centered” at zo to show the existence of xq. Let
@(¢) = P(zo — 10{Im zp). This peculiar definition is motivated by the fact that
2o — 10¢Imzy € RN whenever Im¢ = 1/10. We have that log |¢(0)| > 0 and
supsep 10g [# ()| < MR,, so Cartan’s estimate guarantees, in particular, that there
exists |{o| < 1/6 with Im ¢y = 1/10 such that

log [¢(%o)| = —CMR.

with C > 1. We can now choose x¢y = zo — 10y Im zy.
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Let
f(z) = P(xo + 12R2).
We have both
log | f(0)| > —CMRg,,
and
sup log|f(z)| < sup log|P(z)| < Mg,
lzl<1 IzIl<20Rgo
as well as

{x € RN ||x|| < Ro,log|P(x)| < —CHMRg,}
C xo + 12Ro {x € RN : ||x|| < 1/6, log|f(x)| < —CHMRg,}.

=B

Let & € {x € RV : | x|| = 1}. By applying Cartan’s estimate to

9(¢) = log|f(¢5o)l

we get [ 15 (rxo)dr < C exp(—H). The conclusion now follows by integrating
13 in hyper-spherical coordinates. O

We also illustrate how to obtain explicit integrability estimates for functions
satisfying a Cartan type estimate.

Lemma A.3. Let [ be a measurable function on {x € RN : |x|| < Ry}, Ro > 0
such that

mes{x € RV : ||x]| < Ro. log|f(x)| < —CoHMy} < CNRY exp(—H),
for some Mo > supy,<g, 10g | f(x)|, and some absolute constants Co, C1. Given

s > 0 there exists an absolute constant C, such that if i is a probability measure
with du < Bévdmfor some By > 0, then

/ [log | f(x)]|* di(x) < (CaMoN max(1,log By, log Rp))*, s > 1.
IxlI<R
’ (A1)
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Proof. We have
/ llog | FCOII° dpu(x)
[IxlI<Ro
o0
=/0 n(log [ FOIIF = A, [1x]l < Ro)dA
Ho
- / n(llog | fI° = (CHMo)'. x|l < Ro)sC* M{H*~' dH
0
o0
+/ p(log| f(x)| < —CHMy. |x|| < Ro)sC* M H*"\ dH
Ho
< (CMyH,)*
o0
+ CSMSBY / mes{log | f(x)| < —CHMo, ||x|| < Ro}sH*~' dH
Hyp
< (CMoHp)* + CNTSMSBY RYY exp(—Ho/2)
< C*M;N*(max(1,log By, log R¢))*.

Note that we chose Hy = CN max(1, log By, log Ry). O

B. Resolvent Identities

Recall the following fundamental facts regarding Schur’s complement (see, for
example, [10, Theorem 1.1-2]).

Lemma B.1. Let

Ho T
H= :
[Fl Hl}

where Hy is a no X ng matrix and H; is an invertible n1 x n1 matrix. Let
H/H; = Hy—ToH;'T}.

Then
det H = (det H/H1)(det Hy)

and if H/H; is invertible then

gl — [ (H/Hp)™ —(H/H)"'ToH! ]
—H{'Ty(H/H)™' H{'+ H'T (H/H)'ToHTY |
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Next we set things up so that we can apply the previous lemma to our finite
volume matrices. Let A = [a, b] x [I, W] and Ag = [ao, bo] x [1, W] be so that
Ao C A,andlet Ajy = A\ Ao. By viewing C* as C20 @20 one has the following
matrix representation

(B.1)

H I
HAZ[AO 0]

Fg HA6

where
o —1 if|i1—j1|:1andi2:j2,
Lo(i, j) = (B.2)
0 otherwise
(note that, implicitly, i € Ag and j € Ap).
We recall the second resolvent identity (see, for example, [8, Lemma 6.5]) as
used in [4, (2.12)]. We have that

HA=HA()®HA6+F’

0 To
r= .
[FS‘ 0 }

The second resolvent identity gives us that

with

Gy =GE —GETGY,
where G& = Gfo ® GE, . We have that
0
—1 if (i, j) € dpAo or (f.i) € D Ao,

TG, j) = .
0 otherwise.

It follows that, for any i € Ag and j € Aj,

GrG.j)= Y, GRGKGKEK, ). (B.3)
(k,k")eda Ao
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