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1. Introduction

We consider complex linear Hamilton operators in a complex Hilbert space X,

A D JB; where B� D B; J � D �J; J 2 D �1: (1.1)

In particular, the operator J W X ! X is bounded. �e selfadjoint operator B is

de�ned on a dense domain D.B/ � X. Our aim is to prove the well-posedness of

the Cauchy problem for the equation

PX.t/ D AX.t/; (1.2)

and obtain a spectral representation for solutions and the corresponding spectral

resolution for A. E.g., for J D i the solutions are given by X.t/ D eiBtX.0/.

A more general ‘commutative case’, when JB D BJ , reduces to J D i , since

JB D iB1, where B1 D �iJB is the selfadjoint operator. However, JB ¤ BJ

for linearizations of U.1/-invariant nonlinear Schrödinger equations as shown in

Appendix of [26].

We develop the theory in the case of nonnegative ‘energy operators’ B with

spectral gap and �nite ‘degeneracy of the vacuum’:

Condition I. �.B/ � ¹0º [ Œı;1/, ı > 0, (1.3)

Condition II. dim KerB < 1. (1.4)

�ese conditions hold, in particular, for all equations considered in [13]

and [21]–[23]. �e motivation for the theory was discussed in [26], in which the

simplest case �.B/ � .ı;1/ (i.e., dim KerB D 0) was studied.

We reduce the problem to a selfadjoint generator developing a special version

of M. Krein’s spectral theory of J -selfadjoint operators in Hilbert spaces with in-

de�nite metric [2], [27]. We apply this version for justi�cation of the eigenfunc-

tion expansions for the linearization of relativistic nonlinear Ginzburg–Landau

equation [22]. �e generator of the linearization reads

A D
�

0 1

�S 0

�

; (1.5)

where

S WD � d2

dx2
Cm2 C V0.x/:

Our results are concerned with the following.
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� �e existence and uniqueness and formula for generalized solutions to (1.2) un-

der conditions (1.3) and (1.4) for all initial states X with �nite energy hBX;Xi.
Here, h�; �i stands for the scalar product in X.

� �e eigenfunction expansion

�

 .t/
P .t/

�

D tˆ0 C‰0 C
X

e�i!ktCkak C
Z

j!j�m

e�i!tC.!/a! d! (1.6)

for solutions to (1.2) with generator (1.5). Here, ˆ0 2 KerA, and ak are the

eigenvectors ofA,‰0 is the associated eigenvector toˆ0, while a! are generalized

eigenfunctions of A.

Such eigenfunction expansions were used in [4, 5, 22] for the calculation of

‘Fermi Golden Rule’ (FGR) in the context of the nonlinear Schrödinger and Klein–

Gordon equations. �is is a nondegeneracy condition, which was introduced

in [42] in the framework of nonlinear wave and Schrödinger equations. �is con-

dition means a strong coupling of discrete and continuous spectral components of

solutions providing the radiation of energy to in�nity and which results in the as-

ymptotic stability of solitary waves. �e calculation of FGR, as given in [4, 5, 26],

relies on eigenfunction expansions of type (1.6). Our main �eorem 6.4 justi�es

the eigenfunction expansion [22, (5.14)], for which no detailed proof was given

before. �is justi�cation was one of our main motivation for writing the present

paper.

�e eigenfunction expansion (1.6) extends our previous result [26], where the

expansion was established only for odd solutions. In this framework we have

KerB D 0 and ˆ0 D ‰0 D 0. �is framework was su�cient for the proof of

asymptotic stability of standing solitons for the nonlinear relativistic Ginzburg–

Landau equations under odd perturbations [22]. However, to establish the as-

ymptotic stability under arbitrary perturbations we need the expansion (1.6) for

solutions without antisymmetry.

Let us comment on our approach. First, we reduce the abstract problem (1.2)

under conditions (1.3) and (1.4) to a selfadjoint generator justifying the classical

M. Krein transformation [10]. �is reduction is a special version of spectral the-

ory of J -selfadjoint operators in Hilbert spaces with inde�nite metric [2, 27],

extending our approach [26] to the case KerB ¤ 0. �is extension required new

robust ideas i) to analyze the structure of spectrum of the reduced selfadjoint op-

erator, and ii) to �nd the canonical form of the Hamilton operator. We provide a

broad range of examples satisfying all the imposed conditions (1.3), (1.4), (2.12),

and (3.1).
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Second, we apply this abstract spectral theory to operator (1.5) and construct

the eigenfunction expansion for the reduced selfadjoint operator following the

method of Section 5 from [26]. At last, we deduce (1.6) by extending our approach

from [26], which relies on the methods of PDO.

One of our novelties is a vector-valued treatment of the convergence of the

integral over the continuous spectrum in (1.6). Namely, we show that the integral

is the limit of the corresponding integrals over m � j!j � M as M ! 1 in

the Sobolev space H 1.R/. In its own turn, the integral over m � j!j � M is

absolutely converging in the weightedL2-space with the weight .1Cjxj/�s, where

s > 1.

Finally, calculation of the symplectic normalization of the generalized eigen-

functions requires extra arguments pertaining to the nondegenerate case [26].

We now give some comments on the related works. Some spectral proper-

ties of the Hamilton non-selfadjoint operators were studied by V. Buslaev and

G. Perelman [3, 4, 5], M. B. Erdogan and W. Schlag [8, 39], S. Cuccagna, D. Peli-

novsky and V. Vougalter [7]. It is worth noting that the eigenfunction expansions

of J -selfadjoint operators were not justi�ed previously.

Spectral resolution of bounded J -selfadjoint nonnegative operators in Krein

spaces was constructed by M. Krein, H. Langer and Yu. Shmul’yan [27, 28], and

extended to unbounded de�nitizable operators by M. Krein, P. Jonas, H. Langer

and others [14, 15, 17, 29, 30]. �e corresponding unitary operators were examined

by P. Jonas [16]. However, the spectral resolution alone is insu�cient for justi�ca-

tion of eigenfunction expansion. Our version of the theory under conditions (1.3),

and (1.4) allows us to justify the eigenfunction expansion (1.5).

�e spectral theory of de�nitizable operators was applied to the Klein–Gordon

equations with non-positive energy by P. Jonas, H. Langer, B. Najman and C. Tret-

ter [18, 19, 31, 32, 33], where the existence and uniqueness of classical solutions

were proved, and the existence of unstable eigenvalues (imaginary frequencies)

was studied. �e instability is related to the known Klein paradox in quantum

mechanics [38].

�e scattering theory for the Klein–Gordon equations with non-positive energy

was developed by C. Gérard and T. Kako using the theory of de�nitizable operators

in Krein spaces [9, 20].

�e plan of our paper is as follows. In Section 2, we justify the M. Krein trans-

formation under conditions (1.3) and (1.4), and �nd the structure of spectrum of

the corresponding selfadjoint generator. In Section 3, we construct the spectral

representation for solutions to (1.2) and deduce the canonical form of the Hamil-

ton generator. In Section 4, we check all conditions (1.3), (1.4), (2.12), and (3.1) for
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operator (1.5). In Sections 5 and 6, we justify the eigenfunction expansion (1.6)

by applying the methods of Sections 3–4. In Section 7, we calculate symplec-

tic normalization of the generalized eigenfunctions. Finally, in the Appendix we

construct examples of Hamilton equations satisfying all the imposed conditions.

Acknowledgments. �e authors take pleasure in thanking A. Kostenko and

G. Teschl for useful discussions on spectral theory of J -selfadjoint operators.

2. Reduction to symmetric generator

In this section, we shall reduce (1.2) to an equation with selfadjoint generator.

2.1. Generalized solutions. �roughout the paper, D.B/ is a dense domain of

the selfadjoint operator B . We set

ƒ WD B1=2 � 0

and denote by V � X the Hilbert space which is the domain of ƒ endowed with

the norm

kXkV WD kƒXkX C kXkX: (2.1)

We have the continuous injections of Hilbert spaces V � X, and the operator

ƒ W V �! X (2.2)

is continuous. For example,V becomes the Sobolev spaceH 1.Rn/ if X D L2.Rn/

and A D �i�.

Since ƒ and B are selfadjoint operators, we have

X D K ˚ R; K WD Kerƒ D KerB; R WD Ranƒ D RanB D K
?: (2.3)

By de�nition (2.1),

K � V: (2.4)

Further, we assume henceforth that R is endowed with the norm of X. �en

ƒC WD ƒjR W R \ V �! R

is an invertible operator by (1.3); i.e.,

ƒ�1
C W R �! V (2.5)
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is the bounded operator. We will consider solutions

X.t/ 2 C.R;V/ (2.6)

to equation (1.2). �e equation will be understood in the sense of mild solutions [6]

X.t/ �X.0/ D A

t
Z

0

X.s/ ds; t 2 R; (2.7)

where the Riemann integral converges in V by (2.6).

2.2. Krein substitution. Let us reduce equation (2.7) by the well-known substi-

tution

Z.t/ WD ƒX.t/ 2 C.R;R/ (2.8)

used by M. Krein in the theory of parametric resonance: see formula (1.40) of [10,

Chapter VI]. Applying ƒ to both sides of equation (2.7), we obtain

Z.t/ �Z.0/ D ƒJƒ

t
Z

0

Z.s/ ds; t 2 R: (2.9)

Formally, (2.9) reads

i PZ.t/ D HZ.t/; t 2 R; (2.10)

where H stands for the ‘Schrödinger operator’

H D ƒiJƒ; (2.11)

which is ’formally symmetric’.

2.3. Equivalence of reduction. In order to prove the equivalence of (1.2)

and (2.10), we introduce the following new condition.

Condition III . JK � V. (2.12)

We denote by

…K W X �! K

the orthogonal projection, and set

P WD …KJƒ:
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Lemma 2.1. Let conditions (1.4) and (2.12) hold. �en the operator P W X ! V

is continuous.

Proof. It su�ces to note that

…KJƒ D
N

X

1

jYkihYk jJƒ D �
N

X

1

jYkihƒJ Ykj; (2.13)

where Yk 2 K � V, N D dimK, and ƒJ Yk 2 X by (2.12).

Equation (2.7) with X.t/ 2 C.R;V/ can be written as

X.t/ �X.0/ D Jƒ

t
Z

0

Z.s/ ds; t 2 R: (2.14)

By Lemma 2.1 this equation implies the system

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

XR.t / �XR.0/ D .1�…K/Jƒ

t
Z

0

Z.s/ ds;

XK.t / �XK.0/ D …KJƒ

t
Z

0

Z.s/ ds;

(2.15)

where

XK.t / D …KX.t/ and XR.t / D .1�…K/X.t/:

Lemma 2.2. i) Let X.t/ 2 C.R;V/ be a solution to (1.2) in the sense (2.7). �en

Z.t/ D ƒX.t/ 2 C.R;R/ is the solution to (2.10) in the sense (2.9).

ii) Let Z.t/ 2 C.R;R/ be a �xed solution to (2.10) in the sense (2.9). �en

there exists a unique solution X.t/ 2 C.R;V/ to (1.2) in the sense (2.7) satisfy-

ing (2.8).

Proof. It su�ces to prove ii). �e uniqueness holds, because

XR.t / D ƒ�1
C Z.t/; XK.t / �XK.0/ D …KJƒ

t
Z

0

Z.s/ ds; (2.16)

where the �rst equation follows from (2.8), and the second one, from the second

equation of (2.15).
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To prove the existence we de�neXR.t / and XK.t / by (2.16). �en (2.8) holds,

and X.t/ D XR.t /C XK.t / 2 C.R;V/. Hence, the �rst equation (2.16) together

with (2.9) and (2.8) imply that

XR.t / �XR.0/ D ƒ�1
C ŒZ.t/ �Z.0/�

D ƒ�1
C ƒJƒ

t
Z

0

Z.s/ ds

D .1�…K/Jƒ
2

t
Z

0

X.s/ ds:

(2.17)

Finally, the second equation (2.16) can be written as

XK.t /� XK.0/ D …KJƒ
2

t
Z

0

X.s/ ds (2.18)

by (2.8). Summing up, we obtain (2.7).

2.4. Symmetry and spectrum. �e domain of H is equal to

D.H/ D ¹Z 2 V W JƒZ 2 Vº D ƒ�1
R
.JV \ R/C K : (2.19)

Obviously, the operator H is symmetric on D.H/, and hence, H is a closable

operator in X. However, we still do not know whether its domain is dense in X.

�is is why we need our last condition

Condition IV. H� D H . (2.21)

A broad range of examples is provided by Lemma A.2. A concrete example is

given by (4.11).

�eorem 2.3. Let conditions (1.3), (1.4), (2.12), and (2.21) hold. �en

�.H/ � .�1;�"�[ 0 [ Œ";1/ (2.22)

with some " > 0.
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Proof. �e operator

ƒC…K W V �! X

is invertible by condition (1.3), since

.ƒC…K/jK D …K and .ƒC…K/jR D ƒC:

Hence, the operator

HC WD .ƒC…K/iJ.ƒC…K/ (2.23)

is also invertible; i.e., its inverse

H�1
C WD .ƒC…K/

�1iJ.ƒC…K/
�1 (2.24)

is a bounded operator on X. On the other hand, this operator is symmetric on X,

and hence it is selfadjoint. Moreover, HC is injective operator on X. Hence,

�eorem 13.11 (b) of [37] implies that HC is a selfadjoint operator with a dense

domain D.HC/. Further,

HC D H C…KiJ.ƒC…K/C .ƒC…K/iJ…K C…KiJ…K

D H C T:
(2.25)

Here, …KiJ.ƒ C …K/ and …KiJ…K are �nite-rank operators V ! V. On the

other hand, (2.12) implies that .ƒC…K/iJ…K is also a �nite-rank operator fromV

to V. Hence, T W V ! V is the �nite-rank operator which is symmetric in X.

As the result, (2.25) implies that H is de�ned and symmetric on D.HC/.

Further, the resolvent

.HC � �/�1 W X �! X

is bounded and analytic in a small complex neighborhood O of � D 0, and

H � � D HC � � � T D Œ1 � T .HC � �/�1�.HC � �/; � 2 O: (2.26)

Here, the operator H � � is invertible for Im� ¤ 0 by (2.21), while HC � � is

invertible in a small complex neighborhood O of � D 0. Hence,

Ker Œ1 � T .HC � �/�1� D 0 for � 2 O,

with Im� ¤ 0. �erefore, 1�T .HC��/�1 is invertible for these � by Fredholm’s

theorem, inasmuch as T is a �nite-rank operator. Hence, it is also invertible in O

outside a discrete set. Now (2.26) implies (2.22).
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Remark 2.4. Let conditions (1.3), (1.4), and (2.12) hold.

(1) �e domain of H is dense in X, as is shown in the proof of �eorem 2.3.

(2) H admits selfadjoint extensions, because

NC D N�; N˙ WD dimŒRan .H � i/�?: (2.27)

Indeed, Ran .HC � �/ D X for � from a small complex neighborhood O

of � D 0. On the other hand, the dimension of .Ran Œ1 � T .HC � �/�1�/?

is constant in O outside a discrete set, because T is a �nite-rank operator.

�erefore, (2.26) implies that dimŒRan .H��/�? is also constant inO outside

a discrete set, verifying (2.27).

3. Dynamical group and canonical form

We construct spectral representation for solutions to (1.2) and deduce the canon-

ical form of the Hamilton generator.

3.1. Spectral representation of solutions. We will construct solutions to (2.10),

and afterwords, reconstruct the corresponding solutions to (1.2). �e Spectral

�eorem implies the following lemma.

Lemma 3.1. Let conditions (1.3), (1.4), (2.12), and (3.1) hold. �en, for anyZ.0/ 2
R, equation (2.10) admits a unique solution Z.t/ 2 C.R;R/ in the sense (2.9).

�e solution is given by

Z.t/ D e�iHtZ.0/ 2 C.R;R/: (3.1)

Now we can reconstruct solutions to (1.2) using formulas (2.16):

X.t/ D ƒ�1
C e�iHtƒX.0/CXK.0/C P

t
Z

0

e�iHsƒX.0/ ds; (3.2)

where the operator P W R ! V is bounded by Lemma 2.1. To evaluate the integral

in (3.2), we denote by…0 and…R, respectively, the spectral projections of X onto

KerH \ R and onto R WD RanH � R. Obviously,

e�iHs D …0 Ce�iHRs…R;

t
Z

0

e�iHs ds D t…0 C i.e�iHRt �1/H�1
R …R; (3.3)
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where

HR WD H jR\D.H/:

Now (3.2) reads

X.t/ D ƒ�1
C e�iHtƒX.0/CXK.0/

C tP…0ƒX.0/C iP.e�iHRt � 1/H�1
R …RƒX.0/:

(3.4)

Lemmas 3.1 and 2.2 imply the following proposition.

Proposition 3.2. Let conditions (1.3), (1.4), (2.12), and (3.1) hold. �en, for any

X.0/ 2 V,

i) equation (1.2) admits a unique solution X.t/ 2 C.R;V/ and

ii) the solution admits the spectral representation (3.4).

3.2. Spectral resolution. Representation (3.4) can be written as

eAt D ƒ�1
C

Z

R

e�i!t dE.!/ƒC…K

C tP…0ƒC iP

Z

j!j�"

e�i!t � 1
!

dE.!/ƒ;

(3.5)

where dE.!/ denotes the spectral family of H , and " > 0 is the number from

equation (2.22). Formally,

eAt D
Z

R

e�i!t dF.!/; (3.6)

where

dF.!/ D
h

ƒ�1
C C iP

!

i

�".!/ dE.!/ƒ

C
�

…K � iP

Z

j!j�"

dE.!/

!
ƒ

�

ı.!/ d!

Cƒ�1
C …0ƒı.!/ d! � iP…0ƒı

0.!/ d!;

(3.7)

and �" is the indicator of the set j!j � ". Setting t D 0 in both sides of (3.6) and

in their derivatives, we formally obtain

1 D
Z

R

dF.!/; A D �i
Z

R

! dF.!/: (3.8)



342 A. Komech and E. Kopylova

3.3. Canonical form. First we will identify the eigenvectors and the associated

eigenvectors of A formally relying on (3.8). Afterwords, we will prove the identi-

�cations rigorously.

�e set

W WD ¹X 2 V W ƒX 2 D.H/º
is dense in V under our conditions (1.3) and (1.4). Let us apply the both sides of

identities (3.8) to an arbitrary X 2 W. Using (3.7), we formally obtain

X D
Z

R

dF.!/X D X" CX0 CXa; (3.9a)

and

AX D �i
Z

R

! dF.!/X D AX" C AX0 C AXa; (3.9b)

where

X" WD
Z

j!j�"

h

ƒ�1
C C iP

!

i

dE.!/ƒX

AX" D �i
Z

j!j�"

Œ!ƒ�1
C C iP � dE.!/ƒX (3.10)

X0 WD
�

…K � iP
Z

j!j�"

dE.!/

!
ƒ

�

X; AX0 D 0; (3.11)

Xa WD ƒ�1
C …0ƒX; AXa D P…0ƒX: (3.12)

Here, (3.10) means the expansion over the eigenvectors with eigenvalues �i!,

while (3.11), with the zero eigenvalue. Formula (3.12) means thatXa is the associ-

ated eigenvector to the eigenvectorP…0ƒX , which corresponds to the zero eigen-

value. We justify the formal calculations (3.9)–(3.12) in the following lemma.

Lemma 3.3. Formulas (3.9)–(3.12) hold for X 2 W.

Proof. i) Formulas (3.9) and (3.11) are obvious.

ii) �e last formula of (3.12) follows from the fact that AXa D Jƒ…0ƒX D
…KJƒ…0ƒX , since ƒJƒ…0ƒX D �iH…0ƒX D 0 by de�nition of …0.

iii) Finally, let us prove (3.10). �e representation (3.4) implies that PX.�/ 2
C.R;V/ for X.0/ 2 W since

PX.t/ D �iƒ�1
C e�iHtHƒX.0/C P…0ƒX.0/C Pe�iHRt…RƒX.0/ (3.13)
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by Hille–Yosida’s theorem [37, �eorem 13.35 (c)]. On the other hand, according

to (2.7),

X.t C�t/�X.t/
�t

D A

tC�t
Z

t

X.s/ds

�t
: (3.14)

Here the left hand side converges to PX.t/ in V as �t ! 0, since PX.�/ 2 C.R;V/,
and the quotient on the right converges to X.t/ in V by (2.6). Hence, making

�t ! 0 we obtain
PX.t/ D AX.t/; (3.15)

since the operator A D JB is closed in X. Setting t D 0 in (3.13) and (3.15), and

writing X instead of X.0/, we obtain

AX D �iƒ�1
C HƒX C P…0ƒX C P…RƒX

D �i
Z

j!j�"

Œ!ƒ�1
C C iP � dE.!/ƒX C P…0ƒX; X 2 W:

(3.16)

On the other hand, AX D AX" C AX0 C AXa D AX" C P…0ƒX by (3.11)

and (3.12). Hence, (3.16) implies (3.10).

Corollary 3.4. �e nontrivial Jordan blocks occur only for � D 0; they are of

size 2 � 2 (in accordance with [29, Proposition 5.1]), and their number is

dim KerHR D dimŒKerH \ R�;

where

HR WD H jR\D.H/:

�is number is �nite by (1.4).

Further, we set …R WD 1 �…K and introduce the ‘Green operator’

G WD ƒ�1
C …R C iPH�1

R …R: (3.17)

It is continuous from X to V by our conditions (1.3) and (2.12) and by Lemma 2.1.

�erefore, formulas (3.10) can be rewritten as

X" D G

Z

j!j�"

dE.!/ƒX; AX" D �iG
Z

j!j�"

!dE.!/ƒX; X 2 W; (3.18)

since both these integrals converge in X and belong to R � R.
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Corollary 3.5. Let hk 2 X be an eigenfunction of H corresponding to an eigen-

value !k ¤ 0. �en

ak WD Ghk 2 V (3.19)

is the eigenfunction of A corresponding to the eigenvalue �i!k.

4. Application to eigenfunction expansion

We are going to apply our results to justify the eigenfunction expansion (1.6) in

the context of the system considered in [22]. We have used this expansion for the

calculation of the Fermi Golden Rule [22, (5.14)].

4.1. Linearization at the kink. In [22, 23] we studied the 1D relativistic Ginz-

burg–Landau equation

R .x; t/ D d2

dx2
 .x; t/C F. .x; t//; x 2 R (4.1)

for real solutions  .x; t/. Here, F. / D �U 0. /, where U. / is similar to the

Ginzburg–Landau potential UGL. / D . 2 � 1/2=4, which corresponds to the

cubic equation with F. / D  � 3. Namely,U. / is a real smooth even function

satisfying the following conditions:
8

ˆ

<

ˆ

:

U. / > 0;  ¤ ˙a;

U. / D m2

2
. � a/2 CO.j � aj14/; x ! ˙a;

(4.2)

where a;m > 0. �e main goal of [22, 23] was to prove the asymptotic stability

of solitons (kinks)  .x; t/ D sv.x � vt/ that move with constant velocity jvj < 1,
and

sv.x/ �! ˙a; x ! ˙1: (4.3)

Substituting .x; t/ D sv.x�vt/ into (4.1), we obtain the corresponding stationary

equation

v2s00
v .x/ D s00

v .x/C F.sv.x//; x 2 R: (4.4)

�e linearization of (4.1) at the kink sv.x� vt/ in the moving frame reads as (1.2)

with X D . ; P / 2 L2.R/ ˝ C
2 (for the corresponding complexi�cation) and

with the generator [23, (4.6)]

Av D

0

B

B

@

v
d

dx
1

d2

dx2
�m2 � Vv.x/ v

d

dx

1

C

C

A

: (4.5)
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Here, the potential

Vv.x/ D �F 0.sv.x// �m2 2 C1.R/: (4.6)

�e kink sv.x/ is an odd monotone function in a suitable coordinate x, while

F 0. / D �U 00. / is an even function of  . Hence, the potential Vv.x/ is an even

function of x. Moreover,

jVv.x/j � Ce��jxj; x 2 R; (4.7)

where � > 0. �e generator (4.5) has the form Av D JBv with

Bv D

0

B

@

Sv �v d
dx

v
d

dx
1

1

C

A
; J WD

�

0 1

�1 0

�

; (4.8)

where

Sv WD � d2

dx2
Cm2 C Vv.x/:

Obviously, JBv ¤ BvJ . Di�erentiating (4.4), we obtain

h

Sv C v2 d
2

dx2

i

s0
v.x/ D 0: (4.9)

4.2. Spectral conditions. Conditions (1.4) and (2.12) hold for operators (4.8) on

X WD L2.R/ ˝ C
2 by Lemma A.2. Condition (1.3) for all jvj < 1 follows from

Lemmas A.1 and A.2 of [26]. Here, we check (1.3) in the case v D 0 for the

completeness of the exposition. We will write A, B and S , respectively, instead

of A0, B0 and S0:

A D
�

0 1

�S 0

�

; B D
�

S 0

0 1

�

; (4.10)

where

S WD � d2

dx2
Cm2 C V0.x/:

�e operatorsB andS are essentially selfadjoint inL2.R/˝C
2 andL2.R/, respec-

tively, by (4.7) and �eorems X.7 and X.8 of [35]. We will consider the closures

of B and S , which are both selfadjoint. In this case,

ƒ WD B1=2 D
�

p
S 0

0 1

�

; H WD ƒiJƒ D i

�

0
p
S

�
p
S 0

�

D iJ
p
S: (4.11)

Hence, the operatorH is also selfadjoint on the domainD.
p
S/˚D.

p
S/. �us,

condition (2.21) holds in our case.
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Lemma 4.1. Condition (1.3) holds for the operator B on X D L2.R/˝ C
2.

Proof. Equation (4.9) with v D 0 means that � D 0 2 �pp.S/. Moreover, � D 0

is the minimal eigenvalue of S , since the corresponding eigenfunction s0
0.x/ does

not vanish [23, (1.9)]. Hence,

�.S/ � Œ0;1/; KerS D .s0
0.x//: (4.12)

Further, the continuous spectrum of S lies in Œm2;1/, and hence (4.12) implies

�.S/ D ¹�0; : : : ; �N º [ Œm2;1/; (4.13)

where 0 D �0 < � � � < �N < m2. Finally, �.B/ D �.S/[ ¹1º, by (1.3).

We will assume below the following spectral condition (imposed in [22])) at

the edge point of the continuous spectrum of S :

the point m2 is neither an eigenvalue nor a resonance of S . (4.14)

�is condition provides a regularity of the eigenvalue expansion (1.6) at the edge

points ˙m of the continuous spectrum.

5. Orthogonal eigenfunction expansion

We are going to apply Proposition 3.2 to the case of operators (4.10). First, (4.13)

implies that

�.H/ D .�1;�m�[ ¹!�N ; : : : ; !�1; !0; !1; : : : ; !N º [ Œm;1/; (5.1)

where !2
˙k

D �k for k D 0; : : : ; N . We denote by

�c D .�1;�m�[ Œm;1/

the continuous spectrum of H , and

‰0 D ƒ�1
C …0ƒX.0/; ˆ0 D P…0ƒX.0/: (5.2)

�en A‰0 D 0 and A‰0 D ˆ0 by (3.12), and hence, tˆ0 C ‰0 is the solution

to (1.2). Now formula (3.5) can be rewritten as

X.t/ D eAtX.0/

D tˆ0 C‰0 C
N

X

�N

e�i!ktCkak

C
Z

�c

h

ƒ�1
R

C iP

!

i

e�i!t dE.!/ƒX.0/:

(5.3)
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Here, a0 2 K and

ak D
h

ƒ�1
R

C iP

!k

i

hk D Ghk 2 X; k ¤ 0; (5.4)

where hk 2 R are the eigenfunctions of H corresponding to the eigenvalues

!k ¤ 0. By Corollary 3.5, ak are the eigenfunctions of A corresponding to the

eigenvalues �i!k.

Let us denote by Xc.t / the integral in (5.3):

Xc.t / D
Z

�c

h

ƒ�1
R

C iP

!

i

e�i!tdE.!/ƒX.0/: (5.5)

To prove (1.6), it remains to justify the eigenfunction expansion

Xc.t / D
Z

�c

e�i!tC.!/a! d!; (5.6)

where a! are the generalized eigenfunctions ofA corresponding to the eigenvalues

�i!, and the meaning of the convergence of the integral will be speci�ed later.

�en (1.6) will follow from (5.3).

By (5.3), the function Xc.t / is the solution to (1.2), and hence

Zc.t / WD ƒXc.t / D
Z

�c

e�i!tdE.!/ƒX.0/ (5.7)

is the solution to (2.10). We will deduce (5.6) from the corresponding represen-

tation

Zc.t / D
Z

�c

e�i!tC.!/h! d!; (5.8)

where h! are generalized eigenfunctions of H corresponding to the eigenvalues

! normalized by

hh!; h!0i D 2� ı.! � !0/; !; !0 2 �c : (5.9)

�e normalization means by de�nition, that

hZ1; Z2i D 2�

Z

m�j!j�M

C1.!/C2.!/d! for Zk D
Z

m�j!j�M

Ck.!/h! d! 2 X

(5.10)



348 A. Komech and E. Kopylova

For � 2 R we denote by

L2
� D L2

�.R/

the weighted Hilbert space with the norm

k k2

L2
�

WD
Z

hxi2�j .x/j2 dx; hxi WD .1C x2/1=2 : (5.11)

�eorem 5.1. Let condition (4.14) hold and s > 1. �en, for ! 2 �c , there exists

h! 2 L2
�s ˝ C

2 satisfying the following conditions.

i) h! is a continuous function of ! 2 �c with values in L2
�s ˝ C

2.

ii) �e normalization (5.9) holds.

iii) h! are the generalized eigenfunctions of H , i.e.,

HZ D
Z

�c

!C.!/h! d! if Z D
Z

�c

C.!/h! d! 2 D.H/: (5.12)

iv) �e eigenfunction expansion (5.8) holds in the following sense:












Zc.t / �
Z

m�j!j�M

e�i!tC.!/h! d!













L2˝C2

�! 0; M ! 1: (5.13)

Proof. i) We construct the generalized eigenfunctions and the eigenfunction ex-

pansion (5.8) by solving equation (2.10) forZc.t / D .Zc
1.t /; Z

c
2.t //. By (4.11), the

equation is equivalent to the system

PZc
1.t / D

p
SZc

2.t /;
PZc

2.t / D �
p
SZc

1.t /: (5.14)

Eliminating Zc
2.t /, we obtain

RZc
1.t / D �SZc

1.t /: (5.15)

Further we apply �eorem XI.41 of [36] and the arguments of [36, pp 114-115].

Namely, the rapid decay (4.7) and our spectral condition (4.14) imply the following

Limiting Absorption Principle (LAP) [1, 24, 36]:

R.�˙ i"/ �! R˙.�/; " ! C0; � 2 Œm2;1/; (5.16)

where

R.z/ WD .S � z/�1
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and the convergence holds in the strong topology of the space of continuous op-

erators L2
s ! L2

�s with s > 1. Moreover, the traces of the resolvent R˙.�/ are

continuous functions of � � m2 with values in L.L2
s ; L

2
�s/. �e continuity at

� > 0 has been established by Agmon, see [1, 24]. �e continuity at � D 0 under

condition (4.14) is proved in [25, formulas (3.12)]. �e LAP serves as the basis for

the eigenfunction expansion

Zc
1.t / D

Z

�c

dE.!2/ŒZc
1.0/ cos!t CZc

2.0/ sin!t�

D
Z

�c

e�i!tC.!/e! d!;

(5.17)

where dE.�/ is the spectral resolution of S , while e! 2 L2
�s are generalized eigen-

functions of S corresponding to the eigenvalues !2 � m2. Here the �rst iden-

tity follows by Spectral �eorem, while the second follows by �eorem XI.41 (e)

of [36]. �e eigenfunctions are de�ned by formulas of [36, pp 114-115]:

e! D W �.!/f!; W.!/ WD Œ1C VR0.!
2 C i0/��1; ! 2 �c : (5.18)

where

f!.x/ WD sin j!jx and R0.�/ WD .��Cm2 � �/�1:

�e operatorW.!/ is a continuous function of! 2 �c with values inL.L2
s ; L

2
s /

by the formula

Œ1C VR0.�/�
�1 D 1� VR.�/ (5.19)

and the decay (4.7). Respectively, the adjoint operator W �.!/ is a continuous

function of ! 2 �c with values in L.L2
�s; L

2
�s/. As the result, e! is a continuous

function of ! 2 �c with values in L2
�s. �e normalization of e! coincides with

the same of the ’free’ generalized eigenfunctions f!:

he! ; e!0i D � ı.j!j � j!0j/ ; !; !0 2 �c ; (5.20)

which follows from the last formula on page 115 of [36]. Finally, �eorem XI.41 (e)

of [36] implies that the last integral (5.17) converges in L2 D L2.R/:












Zc
1.t / �

Z

m�j!j�M

e�i!tC.!/e! d!













L2

�! 0 ; M ! 1: (5.21)

Now (5.8) for Zc
1.t / follows from (5.17). For Zc

2.t / we use the �rst equation

of (5.14), which implies

Zc
2.t / D �i

Z

�c

sgn! e�i!tC.!/e! d!: (5.22)
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Combining (5.17) and (5.22), we obtain (5.8) with

h! WD
�

1

�i sgn!

�

e! ; (5.23)

which is the continuous function of ! 2 �c with values in L2
�s ˝ C

2.

ii) Normalization (5.9) follows from (5.20).

iii) Zc.t / 2 D.H/means that Zc
1;2.t / 2 D.

p
S/. Furthermore,

HZc.t / D i
p
S

�

Zc
2.t /

�Zc
1.t /

�

: (5.24)

Now (5.12) follows from the expansions (5.17) and (5.22) for Zc
1;2.t / by [36, �e-

orem XI.41 (c)], since e! are the generalized eigenfunctions of S with the eigen-

values !2, and formally,

i
p
S

�

�i sgn!

�1

�

e! D
�

sgn!

�i

�

j!je! D !h! : (5.25)

iv) (5.13) follows from (5.21) and similar convergence for Zc
2 .

6. Nonorthogonal eigenfunction expansion

Let us denote by Zc
M .t; x/ the integral in (5.13). �is integral is de�ned for almost

all x; i.e.,

Zc
M .t; x/ WD

Z

m�j!j�M

e�i!tC.!/h!.x/ d!; a.a. x 2 R: (6.1)

To justify (5.6) we should adjust the meaning of this integral relying on the fol-

lowing lemma, which is proved in [26].

Lemma 6.1 ([26, Lemma 5.1]). Let condition (4.14) hold. �en

i) �e integral (6.1) converges absolutely in L2
�s ˝ C

2 for every s > 1:
Z

m�j!j�M

kC.!/h!kL2
�s˝C2 d! < 1; M > m; (6.2)

ii) the integral of theseL2
�s ˝C

2-valued functions overm � j!j � M coincides

with (6.1) almost everywhere.

Further, we expressXc.t / in terms ofZc.t / and the Green operator (3.17), and

prove the appropriate continuity ofG, which allows us to deduce (5.6) from (5.13).
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6.1. Reconstruction via the Green operator. Similarly to (3.18), we use (5.7)

to rewrite integral (5.5) as

Xc.t / D G

Z

�c

e�i!t dE.!/ƒX.0/ D GZc.t /; (6.3)

taking into account that Zc.t / 2 R � R and that the Green operator G W X ! V

is continuous. Now (5.8) implies that

Xc.t / D G

Z

�c

e�i!tC.!/h! d!: (6.4)

Similarly to (3.18),

AXc.t / D �iG
Z

�c

e�i!t! dE.!/ƒX.0/

D �iGH
Z

�c

e�i!t dE.!/ƒX.0/ D �iGHZc.t /; X.0/ 2 W:

(6.5)

�erefore, (5.12) gives

AXc.t / D �iG
Z

�c

e�i!t!C.!/h! d!: (6.6)

6.2. Continuity of the Green operator. Now we are going to establish the con-

tinuity of the Green operatorG in the weighted norms (5.11). We will simplify the

form of G in the concrete case (4.11) by proving that

PH�1
R D …KJƒH

�1
R D 0: (6.7)

First we note that

KerH D KerS ˚ KerS; R D RanH D RanS ˚ RanS

by (4.11). Further, we set

SC WD S jRan S W RanS \D.S/ ! RanS;

and let P0 denote the orthogonal projection of L2.R/ onto KerS . �en

PC WD 1� P0
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is the orthogonal projection of L2.R/ onto RanS , and now (4.11) implies

…K D
�

P0 0

0 0

�

; …R D
�

PC 0

0 1

�

;

…0 D
�

P0 0

0 P0

�

; …R D
�

PC 0

0 PC

�

:

Hence, �nally,

H�1
R D i

�

0 S
�1=2
C

�S�1=2
C 0

�

(6.8)

by (4.11), and therefore,

JƒH�1
R D i

�

0 1

�1 0

��

S
1=2
C 0

0 1

��

0 S
�1=2
C

�S�1=2
C 0

�

D �i
�

S
�1=2
C 0

0 PC

�

: (6.9)

Applying …K, we get (6.7).

Now de�nition (3.17) implies that

G D ƒ�1
C …R: (6.10)

�e following lemma is a generalization of [26, Lemma 5.2].

Lemma 6.2. �e operator

G W L2
� ˝ C

2 �! L2
� ˝ C

2

is continuous for every � 2 R.

Proof. Using the �rst formula of (4.11) and the formula for …R, we get

ƒ�1
R
…R D

�

S
�1=2
C PC 0

0 1

�

D
�

QPC 0

0 1

�

; (6.11)

where

Q WD .SPC C P0/
�1=2:
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Hence, it su�ces to prove the continuity of the operator QCPC in L2
�, which

means the continuity of operator

hxi�QPChxi�� W L2.R/ �! L2.R/: (6.12)

To prove this continuity, we note thatQ is a PDO of the classHG�1;�1
1 , see Def-

inition 25.2 in [40]. �is fact follows from [12, �eorem 29.1.9] and also by an

extension of [40, �eorem 11.2] to PDOs with nonempty continuous spectrum. It

is important that operator Q is a PDO with the main symbol �2, and

�2 62 .�1; 0�; � ¤ 0I �.SC/ \ .�1; 0� D ;

by (4.12). Hence, conditions (10.1) and (10.2) of [40] hold.

Now the continuity (6.12) follows by the �eorem of Composition of the PDO.

Lemma 6.2 with � D �s and Lemma 5.1 imply (cf. (5.4)) that

a! WD Gh! 2 L2
�s ˝ C

2; s > 1: (6.13)

Now we can prove the following lemma.

Lemma 6.3. a! are the generalized eigenfunctions of A corresponding to the

eigenvalues �i!.

Proof. Formulas (6.4) and (6.6) imply that

Xc.t / D
Z

�c

e�i!tC.!/a!d!; AXc.t / D
Z

�c

e�i!t!C.!/a!d!; (6.14)

for Xc.0/ 2 W by de�nition (6.13), Lemma 6.1 and the last corollary with � D
�s < �1. �ese identities mean that a! are the generalized eigenfunctions in the

sense of [36, (80b)].

Finally, the main result of our paper is the following.

�eorem 6.4. Let condition (4.14) hold, X.0/ 2 V and s > 1. �en the eigen-

function expansion (5.6) holds in the following sense (cf. (5.13)):












Xc.t / �
Z

m�j!j�M

e�i!tC.!/a! d!













V

�! 0; M ! 1; (6.15)

where the integral converges in L2
�s ˝ C

2, and hence a.e. as in (6.1).
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Proof. Formulas (6.3) and (6.13) imply that

Xc.t /�
Z

m�j!j�M

e�i!tC.!/a! d!

D G

�

Zc.t /�
Z

m�j!j�M

e�i!tC.!/h! d!

�

:

(6.16)

�erefore, (6.15) follows from (5.13), because the Green operator G W X ! V is

continuous.

7. Symplectic normalization

Now let us renormalize h! as follows:

hh! ; h!0i D j!j ı.! � !0/; !; !0 2 �c : (7.1)

�is means that

hZ1; Z2i D
Z

m�j!j�M

j!jC1.!/C2.!/ d! (7.2a)

for

Zk D
Z

m�j!j�M

Ck.!/h! d! 2 X; (7.2b)

similarly to (5.10). We will express these formulas in terms of

Xk WD GZk 2 V

and the eigenfunctions

a! WD Gh! :

First,

Xk D
Z

m�j!j�M

Ck.!/a!d! (7.3)

by Lemma 6.2. Further, Zk 2 R, and so (5.12), (7.2) imply that

hH�1
R Z1; Z2i D

Z

m�j!j�M

sgn! C1.!/C2.!/d!: (7.4)

On the other hand, this scalar product can be expressed in Xk .
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Lemma 7.1. Let Z1; Z2 be de�ned as in (7.2). �en

hH�1
R Z1; Z2i D �ihX1; JX2i: (7.5)

Proof. First, Z1; Z2 2 R � R, and hence,

…RZk D Zk :

Now (6.10) implies (7.5)

hX1; JX2i D hGZ1; JGZ2i

D hƒ�1
R
…RZ1; Jƒ

�1
R
…RZ2i

D �hƒ�1
R
…RJƒ

�1
R
Z1; Z2i

D ihH�1
R Z1; Z2i;

since

ƒ�1
R
…RJƒ

�1
R

D
�

S
�1=2
C PC 0

0 1

��

0 1

�1 0

��

S
�1=2
C 0

0 1

�

D
�

0 S
�1=2
C

�S�1=2
C 0

�

D �iH�1
R

by the �rst formula of (4.11) and by (6.11) and (6.8).

Using this lemma and (7.4), we get

� ihX1; JX2i D
Z

m�j!j�M

sgn! C1.!/C2.!/d!: (7.6)

By de�nition, (7.3) and (7.6) mean that

ha! ; Ja!0i D i sgn! ı.! � !0/; !; !0 2 �c : (7.7)

Now expansion (5.6) coincides with [5, (2.1.13)], thereby justifying our calculation

of the Fermi Golden Rule for all solutions without the antisymmetry condition

imposed in [22].
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A. Examples

Let us show that conditions (1.4), (2.12), and (3.1) hold for elliptic pseudo-di�er-

ential operators

P .x/ D
Z

e�ix�P.x; �/ O .�/d�; (A.1)

which are the main objects of the theory. We will use the classes Sm of PDO

similar to the ones introduced in [11].

De�nition A.1. i) P 2 Sm if, for any multiindices ˛; ˇ,

sup
x2Rn

j.1C jxj/N @˛
� @

ˇ
xP.x; �/j � C˛ˇN .1C j�j/m�j˛j; � 2 R

n (A.2)

with N D 0 for ˇ D 0 and any N > 0 for ˇ ¤ 0.

ii) P 2 S
m
0 if (A.2) holds for any multiindices ˛; ˇ and all N > 0.

iii) P 2 Sm is elliptic of order m if P D Pm CR, where Pm 2 Sm and

jPm.x; �/j � C.1C j�j/m; x; � 2 R
n; (A.3)

while R 2 S
�
0 with � < m.

Let Hs D Hs.Rn/ denote the Sobolev spaces, and X D L2.Rn/. Any operator

P 2 Sm is continuousH s ! H s�m for s 2 R, see �eorem 3.1 of [11].

Lemma A.2. Let B 2 Sm be an elliptic PDO of order m which is symmetric on

C1
0 .Rn/, and let J 2 S0 be an elliptic PDO of order 0 which is antisymmetric on

C1
0 .Rn/. �en

i) B (respectively, J ) is selfadjoint (respectively, skew selfadjoint) operator

with domain

D.B/ D H
m; D.J / D X; (A.4)

ii) condition (1.4) holds;

iii) condition (2.12) holds;

iv) condition (3.1) holds.

Proof. i) �e Fredholm theory of elliptic PDO on R
n [40, Section 25.4] implies

thatB 2 X if and only if 2 Hm, and the same is true forB�. Hence,D.B�/ D
D.B/, and therefore, B� D B . Similarly, J � D �J .
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ii) �e Fredholm theory of elliptic PDOs on R
n implies that the space

K WD KerB

is �nite dimensional and K � Hs for any s 2 R. Hence, (1.4) holds.

iii) �e operator

BC WD B C…K

and its main symbol Bm
C .x; �/ satisfy

Bm
C .x; �/ 62 .�1; 0�; � ¤ 0I �.BC/ \ .�1; 0� D ;

by (1.3). �erefore, conditions (10.1) and (10.2) of [40] hold for BC, and hence,

ƒC WD
p

BC � 0

is also an elliptic PDO of class Sm=2. �is follows similarly to �eorem 29.1.9

of [12] and also by an extension of �eorem 11.2 of [40] to PDO with nonempty

continuous spectrum. Finally,

ƒC D ƒC…K:

�erefore, V D Hm=2, and hence (2.12) holds, inasmuch as J 2 S0.

iv) �e operatorH is elliptic PDO of class Sm by the theorem of composition.

It is obviously symmetric on C1
0 .Rn/, and hence H is selfadjoint on the domain

Hm by the argument above. �us (3.1) is established.

Remark A.3. i) An example of elliptic operators B 2 S2 and J 2 S0 satisfying

all conditions (1.1), (1.3), (1.4), (2.12), and (3.1) is provided in Lemma 4.1.

ii) In the framework of Lemma A.2 we should take m � 0 to keep condi-

tion (1.3).

iii) �e last condition of (1.1) implies that the order of J should be zero.
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