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Inverse eigenvalue problem for a simple star graph

William Rundell!>2 and Paul Sacks?

Abstract. A Schrédinger operator and associated spectra may be defined for a graph by
identifying edges with intervals of R, on which coefficient functions are defined, impos-
ing appropriate matching conditions at the internal vertices and boundary conditions at
the external vertices. Following earlier work of Pivovarchik [14], we consider an inverse
eigenvalue problem for a graph consisting of three equal length edges meeting at a single
point, where the spectral data is the Dirichlet eigenvalues of the graph together with the
Dirichlet spectra of the three individual edges. We derive, discuss and demonstrate a con-
structive solution method, obtain an alternative uniqueness proof, and discuss several kinds
of generalizations.
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1. Introduction

Consider the simple star graph consisting of 3 edges meeting at a common vertex,
each edge of length 1, with a real valued potential g; € L°°(0, 1) defined on the i th
edge, with edge parameterized by [0, 1] in such a way that x = 1 corresponds to
the common vertex where the edges meet. The direct eigenvalue problem consists
in finding A € C and ¥ (x) = {Y¥1(x), ¥2(x), ¥3(x)} on [0, 1], with at least one
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component non-zero, such that

U/ 4+ A —qi(x)¥i =0, 0<x<1,i=12,3,
¥1(0) = ¥2(0) = ¥3(0) = 0,
Ui(1) = ¥ (1) = ¥3(1),  yi(1) + ¥5(1) + v3(1) = 0. (1.1)

The matching conditions (1.1) at the interior node are often referred to as the
Kirchhoff conditions, by analogy with the condition for electric circuits that the
sum of currents at each node must be zero. Denote the spectrum of this problem
by {4;}72,, the natural frequencies of vibration for the graph — we will recall some
of its properties below.

We also let {u;,;}32,, i = 1,2,3 denote the Dirichlet spectrum for the i’th
edge. The following problem was studied by Pivovarchik in [14]:

Inverse spectral problem. Determine ¢, g2, g3 from the four spectra {A;},
{/\’Ll,]}’l = 1’2’3aj = 1,2,....

In particular existence and uniqueness results were proved under some restrictions,
see below. The purpose of this note is to present a numerical solution method for
Pivovarchik’s problem, which is an adaptation of the method introduced in [18].
As a consequence of this we will be able to provide an alternative short and trans-
parent proof of uniqueness.

The general topic of inverse Sturm—Liouville problems for graphs has attracted
the attention of many researchers in recent years, see for example [1],[2], [5], [20],
and references in these papers. See also [3] for a general introduction to the spec-
tral theory of quantum graphs. As is well known even for the classical case of the
inverse Sturm-Liouville problem on an interval, one spectrum is insufficient infor-
mation to reconstruct the potential, aside from results that depend on having very
specific values for the spectra such as those of Ambarzumian type (see e.g. Sec-
tion 3.4 of [6]) or when the spectra has both real and complex parts due to non-self
adjoint boundary conditions (see e.g. [4] or [17]). Thus we must expect to need to
provide additional information besides the graph spectrum in order to recover the
individual edge potentials. In these other recent works the additional information
has consisted of suitably defined norming constants for the graph ([2]), further
graph spectra obtained by changing the boundary condition at one or more of the
boundary nodes ([20]) an appropriately defined Titchmarsh—Weyl function for the
graph ([1] and [20]), or Dirichlet to Neumann map ([1] and [5]). Each of the above
is in some sense an analogue of a known kind of spectral data for the case of a
single interval.
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Pivovarchik has proposed and studied a graph inverse spectral problem of a
somewhat different character, for a star graph consisting of N edges of equal length
meeting at one common vertex, where the Kirchhoff matching conditions are im-
posed, and using as data the N + 1 sequences {4, }72 ,, the spectrum for the graph,
and {;,;}72,,i = 1.... N, the Dirichlet spectra for each of the individual edges.
See [16] for N = 2, [14] for N = 3, which is the inverse spectral problem stated
above, and [15] for the general case. Although Pivovarchik’s method is in a sense
constructive, it relies on representations of entire functions with prescribed zero
sets, and so does not seem well suited to actual computation. See also [7] for the
N = 2 case. We will focus on the N = 3 case only, but there is no difficulty in
adapting the method to any N, and also to the case of unequal edge lengths.

This problem may be viewed as a special case of a general class of inverse spec-
tral problems for a metric graph, in which the given data consists of the natural
frequencies of vibration of the entire graph, together with the natural frequencies
for a certain number of its subgraphs. Cases of other possible matching condi-
tions at the interior vertices, and other homogeneous boundary conditions at the
boundary vertices, could also be considered.

2. Direct and inverse problem
Let us denote by ¢; (x, A) the solution of
" +A—qi(x)p =0, O0<x<1, ¢0) =0, ¢'@©0) =1. 2.1

The roots of ¢; (1, 1) are the Dirichlet eigenvalues {u;,;}72, corresponding to g;,
and satisfy!

wij = (m)? + B +0, j=12,..., (2.2)

where B; = fol qi(s) ds.
In order that A be a graph eigenvalue, we must have

W, V2, Y3} = {a191(, A), 22 (-, A), 33 (-, A) },

with o1, oa, o3 not all zero.

1 Here and below the £2 symbol has the obvious meaning that

> (i — (jm)? — B;)? < o0.

Jj=1
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From the matching conditions (1.1) we now obtain the three equations

a1p1(1,A) —az¢2(1,4) =0
arp1(1,A) —asps(1,4) =0
a1¢i(1, )k) + Olngé(l,l) + Ol3¢:/,,(1, )k) =0

and the zero determinant condition for a nontrivial solution to exist is then seen
to be equivalent to

D) 1= (@1 (x Do, s ) = 0. 2.3

We will always refer to ® as the characteristic function for the graph eigenvalue
problem.
Note that if ¢;(x) = 0 for i = 1, 2, 3 then this equation becomes

sin?(vA)cos VA
- =

0, 2.4)

so that for each integer j > 1, A = (j)? is a double root, while ((j — %)n)2 is
a simple root. Under small perturbations we expect the double root generically to
split into 2 simple roots, and this is indeed the case under some restrictions given
below.

The graph spectrum is studied in detail in [14], where in particular (Lemma 1.17)
it is shown that the sequence of graph eigenvalues may be regarded as the union
of three subsequences {A; x}72,, k = 1,2, 3 for which the following asymptotic
expressions are valid:

ik = (m)* + C + £, k=12 j=12,..., (2.5)
and

da=((i=3)m) +G+e =12 2.6)
Here the constants Cj are related to the mean values By by
C; = (B1 + B> + B3)/3,

and C1, C, are the two roots of the quadratic

2_2 1 _
3r H(Bl + By + B3)r + — (B1B2 + B1B3 + B, B3) = 0.
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The discriminant of this quadratic is

B} + B3+ B — B1By — B1B3 — B2 B3
1 2 2 2 2.7)
= 5((31 — B2)” + (B2 — B3)” + (B3 — B1)");

thus C; and C, are real and distinct provided at least one pair of edge potentials
have distinct mean values. With this assumption we would know, at least for suf-
ficiently large index, that there can be no multiple eigenvalues.

It is shown in [14], Corollary 1.24, that if we arrange the union of the three edge
eigenvalue sequences {u;,;}72,, = 1,2, 3 into a single monotone sequence {0; },
then the A;, 8; sequences interlace,

Ajf@jfkj.}.l j:1,2.... (2.8)

The possibility of equality occurring here cannot be ruled out, will certainly
happen in some cases of interest, and loss of uniqueness will result (see for ex-
ample [9] for a related example for the star graph consisting of only two edges).
The assumptions made in this paper will guarantee that the inequalities in (2.8)
are strict, see Lemma 3.1 below. In the case when equality occurs, one may then
attempt to describe the corresponding isospectral set in detail, or identify some ad-
ditional data which may serve to restore uniqueness. We believe that the construc-
tive approach given in this paper may provide some insight towards the resolution
of these questions. See also, the end of section 5 below.

In [14] the inverse spectral problem of recovering the three potentials ¢; from
the four sequences of eigenvalues p;, ;, A; is studied, and existence and uniqueness
results are obtained, see Theorem 2.1 of [14]. We will not give the complete state-
ment of this theorem here as it is somewhat lengthy and technical, but the essence
is that a unique solution exists provided that the spectral sequences satisfy a certain
asymptotic behavior which is a bit more restrictive than the necessary conditions
given in (2.2), (2.5), and (2.6), (more or less equivalent to the requirement that
gi € H'(0, 1)) and that (2.8) with strict inequalities holds.

3. Description of computational method for the inverse problem

We now present the main outline of an algorithm for reconstructing the three
edge potentials g; from the four eigenvalue sequences {A; };‘;1, and {,ui,‘,-};";l,
i = 1,2, 3, under the assumption that there is no overlap of the spectra. Numer-

ical details will be given in section 5. As mentioned above, a uniqueness and
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existence result is proved for this inverse spectral problem in [14], under some-
what more restrictive conditions on the spectral data than have been mentioned so
far. The only explicit assumption we make on the spectral data is that there is no
overlap of the three edge spectra.

Lemma 3.1. If there is no overlap of the three edge spectra then an edge eigen-
value cannot be a graph eigenvalue. In particular (2.8) holds with strict inequal-
ities.

Proof. By (2.3) we have

D(p1,;) = (L, pr,j)P2(1, pa, ) pa(1, ).

Neither of ¢»(1, i1,;), ¢3(1, p1,;) can be zero by our assumption, and ¢7 (1, p1,;)
cannot be zero either, since otherwise we’d have ¢ (1, u1,;) = ¢7(1, p1,;) = 0.
Thus p1,; is not a graph eigenvalue, and similarly for p, ;, 3 ;. O

Next, as is well known ([6], [8], [10], and [13]) we can represent the solution
¢; of (2.1) as

@dl, (3.1

7

fori = 1,2, 3. Here K; is the usual Gelfand-Levitan kernel corresponding to ¢;,
and which is known to also be a solution of the Goursat problem

. _sin(ﬁx) t
il 1) = = +/0 Ki(x, 1)

Kitr — Kixx + qi(x)K; =0, 0<t<x<l, (3.2)
X

1
Ki(x,0) =0, Ki(x,x)= 5/ qi(s)dt, 0<x <. (3.3)
0

This is classical ([8] and [13]) if g; is continuous. For the case g¢; € L? see [10],
Theorem 4.18. It is known ([18], Theorem 1, and [10], Section 4.7) that the potential
qi € L*°(0, 1) is uniquely determined by Cauchy data for K for x = 1, that is, by
{Ki(1,1), Kix(1,¢)} for 0 < ¢ < 1. Effective computational methods are available
which will be recalled in the next section.

To determine the Cauchy data from the given spectral data, we begin by pro-
ceeding as in [18] to evaluate (3.1) at A = p; ; and x = 1 to get

1
/ Ki(l,t)sin(a/pv,-,jt)dt =—sin(4/u,-,jb. (3.4)
0

The three functions Kj; (1, ¢) are uniquely determined on [0, 1] by these inner prod-
ucts (see e.g. Lemma 1 of [18] or Theorem 4.20 of [10]), and it follows in particular
that ¢; (1, A) is uniquely determined for any A.
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We now want to obtain the Neumann data K;.(1,7) fori = 1,2, 3. Rewrite the
main equation (2.3) for the graph eigenvalues as

HLh) 60D  S0H
o1(1,A) — ¢2(1,1)  ¢3(1,4)
For A = A, no division by zero can occur here by Lemma 3.1.

A system of equations for the functions K;(1, ¢) results by substituting from
equation (3.1),

(3.5)

3 1 1
Zm/o Kix(1.1) sin(\/)T,-t)dt =Ty, (3.6)

i=1

where

> A cos /A + Ki(1, 1)sin /2,
rj=-y Y~ ;.(1 » L. (3.7)
i=1 e

Recall that ¢; (1, A), K; (1, 1) are already known, thus I'; may be evaluated directly
from the given spectral data. Discussion of the unique solvability of (3.6) is given
in the next section. Now given the three sets of Cauchy data {K;(1,7), K;x(1,¢)} it
follows, as above, that the three edge potentials ¢1, ¢, g3 are uniquely determined,
and may be obtained by known computational techniques.

4. Uniqueness of the recovery of K;.(1,1)

We now explain why there is at most one solution of the system (3.6), from which
it follows that uniqueness holds in the inverse spectral problem.
Multiply the homogeneous version of this system by A 1_[?=1 ¢i(1,1) to get

where

Z(p) = t1(p)2(p) K3(p) + {1(0)K2(p)23(p) + K1(p)E2(p)L3(p).

1
Li(p) = sinp+/ K;(1,¢)sin pt dt,
0
and .
Iéi(p):/ Kix(1,1)sin pt dt.
0

Note also that Z is odd, and has a triple root at p = 0.
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The function Z is entire in p and satisfies
|Z(p)| = €7,
so by the Paley—Wiener theorem there exists z € L2(—3, 3) such that

Z(p) = /3 z(t)e Pl dt.

-3
With an obvious rescaling, Z(t) = z(%t), we can write instead

20 =2(50) = [z ar

3 -7
and .
Z(py) :/ Ft)e Pildt =0, j=1,2,...,
—7IT
where
pj = £2 Ajs
T

along with the triple root at p = 0.

We now want to conclude that Z, and hence Z, is identically zero, by appealing
to a theorem of Levinson about completeness of sets of exponentials {e?%’}. From
this it will then follow that K;,(1,7) =0fori = 1,2, 3.

Theorem 4.1 (Theorem 3, p. 99 of [19] or Theorem III, p. 6 of [12]). Let {px} be
a sequence of complex numbers, n(t) denote the number of py satisfying |pr| <t
and N(r) = flr @ dt for r > 1. Then it is sufficient for completeness of {e'Pk"}
in L? (—mn, ), that

lim sup (N(r) —2r + ! log r) > —00. 4.1
r—00 P

Multiple roots are allowed here, see p. 94 of [19].

First consider the case in which the actual p; values are replaced by their as-
ymptotic limits, i.e. we use (2.5),(2.6) omitting the decaying ¢? error term. Keep-
ing in mind the triple root of Z at p = 0, this amounts to the property that the
counting function n () is

o 6k +3, 3k<t<3k+1/2),
n(t) =
6k +5, 3(k+1/2) <t <3(k+1),

fork =1,2,.... It follows that for a large integer R

k+1

o 1/2) + o).

)+(6k+5)log(

R
NGR +3) = 3 (6k +3) log (k +k1/2
k=1
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Using
x2
10g(1+x)=x—7+0(x3)
we get
k+1/2 3 1
(6k + 3)log ( - ):3+E+O(k_2)
and k+1 1 1
+
1 = — —).
(6k+5)0g<k+1/2) 3+4k+0(k2)
Therefore

NBR +3) = 6R +log R + 0(1).
Combining the above for R" = 3R + 3 yields

limsup N(R') — 2R’ + ! log R' > —oo0,
R'—00 p
as is needed for completeness, for any p > 1.

If now we use the actual (rescaled) sequence p; instead of its asymptotic form,
then because of the large j behavior given by (2.5) and (2.6), it is not hard to see
that the worst case is is when p; exceeds j or ( Jj - %) by O(1/j). This in turn
amounts to an O (]lz) change in N(r), and summing on j we obtain at worst O(1)
total error, so that (4.1) is still valid.

We summarize our conclusions as

Theorem 4.2. Three potentials q1,q>,q3 € L°°(0,1) are uniquely determined
by the spectral data A;, p; j, i = 1,2,3,j = 1,2,... provided that there is no
overlap of the edge spectra [i; ;.

5. Numerical examples

We now provide details and discussion of some of the issues involved in the
numerical implementation of the procedure discussed in Section 3 and illustrate
with a numerical example. To recapitulate, the three main steps are

(1) obtain K;(1,¢) fori = 1,2, 3 using (3.4);
(2) obtain K;x(1,t) fori = 1,2, 3 using (3.6);

(3) obtain the three edge potentials ¢; using one of the methods from [18].
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We will actually replace K;(1,¢) by K;;(1,¢) in step 1 since it is more conve-
nient in step 3, and since K;(1,0) = 0, knowledge of K;(1,¢) and K;;(1,¢) are
equivalent.

We assume we have available a finite number of spectral data;, j =1,... M,
Wij.j=1,...N,i =1,2,3 where M = 3N. As a preliminary step we do the
customary estimation of the values of

Ki(11) = %/0

The simplest estimate would be to take the ‘last value’, i.e.

1
o1 .
q(s)ds = lim —(ui,; — (jm)?).
02

Ki(11) & 5 (i — (V).

where N is the index of the largest available eigenvalue. Provided ¢ is somewhat
smooth we expect that the edge eigenvalue residues will follow a well defined
pattern, thus extrapolation methods, such as the classical Aitken A? acceleration
method, could be used to advantage. As always, care must be exercised as such
extrapolation methods for worst case scenarios can lead to poorer estimates.

For each fixed i, using a representation

N
Ki(1.t) = K;(1. 1)t + > aj sinknt,
k=1
we get
N
Kir(1.t) = Ki(1, 1) + Y _ g coskt,
k=1

where the coefficients b;; are obtained, taking into account (3.4), from

N
Z Mijkbik = —JMi,j sin NICH + K,’(l, 1)(COS Wi j — sinc ,U,,"j)

k=1
and?
1
i, j .
M;; :/ cos (kmt)cos ijt)dt = —————=sinc(/iti,; — k).
jk o ( ) ( //“J) kJT—I-\/lT,j ( Hi.j )

For potentials of any reasonable size the matrix M; = [M;;x] is close to one half
of the identity, hence very well conditioned.

2 Here we are using the ‘mathematics’ version of the sinc function, sinc(z) = sinz/z.
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We also obtain immediately a corresponding expression for the edge character-
istic function ¢; (1, 1) by substitution into (3.1) and some obvious manipulations,
namely

Ki(1,1)

$i (1, 1) = sincvVA + (cos VA + sinC\/X)

N 1
1
—i—;;b,-k/o coskmt cos VAt dt.

We thus may evaluate the needed constants I'; in(3.7) for j = 1,... M, using the
previously obtained values of b;y.

Finally we obtain an approximate solution of the system (3.6) by inserting a
representation

N
1
Kix(1,1) = cir sin (k — = )mt, 5.1
ix(1.1) ]; jesin (k - 2) (5.1)
and solving the resulting M x M linear system for {c; k},?’:l, i=12,3.

With approximations to {K;;(1,¢), Kix(1,¢)},0 < ¢t < 1 in hand, we may now
employ either of the methods given in [18] to obtain ¢; by solving the overdeter-
mined Cauchy problem defined by (3.2) and (3.3) and the given K;;(1, 1), K;x(1,¢).

To produce a numerical example, we have generated spectral data with high
accuracy using the program MATSLISE [11] for the individual edge eigenvalues y; ;
with the edge coefficients chosen to be3

q1(x) = 3[x — .4, (5.2a)
g2(x) = 3e* sindmx, (5.2b)
q3(x) = x[o,.41(X) + 3x[.4,.81(x), (5.2¢)

which have varying degrees of smoothness, distinct mean values, and none of
which can be considered as small.

Evaluation of ®, which of course amounts to evaluation of ¢; (1, 1), and ¢; (1, 1)
for i = 1,2, 3, is done by solving the initial value problem (2.1) by means of of
an ODE solver with a stringent error tolerance and potentials ¢; provided as ex-
plicit functions. For eigenvalues less than A = 500 we used the standard routine
RKEF, and for larger values we switched to a lower order solver adapted for stiff
equations. To locate the graph eigenvalues A, a simple linear bisection algorithm
was used to find the zeros of the characteristic function @ to a specified tolerance.
Recall by the interlacing property mentioned in section 2, that if 6y, . .. 8)s denote

3 Here x g denotes the usual indicator function of the set £
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the numbers {0, u; ; : i =1,2,3 j = 1,... N} in increasing order then we must
have A; € (0;-1,0;), j = 1,... M. We therefore use 6;_1, ; as the endpoints of
an initial bracketing interval for A;, to ensure that no eigenvalue is omitted. Due
to the asymptotic behavior (2.2), (2.5) (or the reasons mentioned after (2.4)), we
may expect that the some of the spectral data are very closely spaced, specifically
near any (kr)? we will find all three 4; x and 2 terms from the graph eigenvalue
sequence A ;. Table 1 displays the first few (square roots of) edge and graph eigen-
values for the example (5.2) to illustrate this point.

Table 1. Spectral data for example (5.2).

LT | 2 | s | VA

3.2205 1.6518
3.1451 3.1835
3.4780 | 3.3897
6.3429 4.6925
6.2490 6.2935
6.4086 | 6.3802
9.4655 7.9285
9.3899 9.4205
9.5097 | 9.4898

In Figures 1 and 2 we show the coefficient reconstructions obtained using
N = 10, and N = 5 respectively. The relative L2(0, 1) errors in recovery of the
three coeflicients, for N = 10 are approximately 3%, 6% and 15% for ¢, ¢», g3 re-
spectively, or 9% in terms of the vector (g1, g2, ¢3). For N = 5 the corresponding
numbers are 10%, 14%, 22% and 16%. One can improve the accuracy obviously
by using more pieces of spectral data, but even without this there would be a sig-
nificant improvement if we were able to use more accurate values of K; (1, 1).

We close this section by making a few remarks about the case when two edge
spectra overlap, say the m’th Dirichlet spectra of edges 1 and 2, jt1,,n, = p2,m. The
computation of K;(1,7) for each edge goes through as before but the matrix K
involved in (3.6) will now have one row which must be deleted, since a division
by zero occurs, so there will be a one dimensional null space for the remaining
system. There are several ways to proceed to restore uniqueness by adding a free
parameter to the system and we mention only one possibility for which we make
no claim of optimality as the entire issue of degeneracy of the spectra is delicate
and certainly worthy of further study.
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2 941(x) 6 142(x) q3(x)

—
|
T
)

q3(x)

Figure 2. Numerical reconstructions of g1, g2, g3 with N = 5.

One can split the double root by replacing it by @1, + § and po,, — 8 for
some value §. The question is how to select §. We clearly have to also avoid (3 s
and our suggestion is to select the smallest § that does not increase the condition
number of the matrix formed from X by deleting the m’th row (which is now
nonsingular). An alternative is to take § such that the separation becomes equal to
the minimum separation amongst other edge spectra and one should expect these
two approaches are related.

6. More general star graphs

There are two obvious generalizations which we can make without any new diffi-
culties, at least from the computational point of view. One is to allow for unequal
edge lengths L4, L,, L3, in which case the characteristic function determining the
graph eigenvalues would have to be written as

D(A) := ¢p1(L1, M)pa(L2, A)P5(L3, A) + ¢p1 (L1, M) (L2, A)p3(L3, A)

(6.1)
+ ¢1(L1. A)p2(La, M)p3(L3, 1),
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while (3.6) and (3.7) become

3
Z¢,(L,,A )/ le(Ll,z)sln(f)dz =Ty, (6.2)

i=1

and

2:\/_cos\/_+K(L,,L)s1n\/_ 63)

i(Li, Aj)

It is important to note in th1s case that it is no longer appropriate to use the same
number of eigenvalues for each edge, rather we fix an upper bound A ,ax and use
only the edge and graph eigenvalues satisfying p; ;j,A;i < Amax. One therefore
ends up using N; ~ (L;/m)~/Amax €igenvalues from the i ’th edge. The graph and
edge eigenvalues still interlace# and in this way we may guarantee that equal total
numbers of edge and graph eigenvalues are used, with the number of edge eigen-
values being weighted by the length of the edge. Correspondingly we use N; terms
in the representation (5.1) of K;,(1,¢). Note that the edge lengths L; themselves
are easily estimated from the p; ;’s by means of the asymptotic behavior

g L;
piy = () + 4 [ awas+ e
For example, we have carried out the indicated procedure with the coefficients
defined as in (5.2) with edge lengths chosen to be L, L,, L3 = 1,1.2,.75 and
Amax = 1000, so that respectively 10,7 and 12 eigenvalues are used from each
edge sequence and 17 graph eigenvalues. The relative errors in L2(0, L;) are 9, 10
and 12% respectively, or about 10% in terms of (g1, g2, g3) This is comparable or
slightly larger than in the case of equal edge lengths, mainly due to a slightly poorer
estimate of K;(L;, L;). If instead we chose the edge lengths to be (1, .95, 1.05)
then the overall relative error is slightly smaller than in the equal edge length case.
One may also allow for a star graph consisting of n > 3 edges meeting at a
common vertex, which is the case studied in [15]. Here the graph eigenvalues are
the roots of the characteristic function defined as in (2.3) except with n terms in
the product, and we need only modify (3.6), (3.7) by replacing 3"7_, by Y7_,.

7. Factors influencing the condition number

It may be expected that the discretized version of the system (3.6) is rather ill-
conditioned due to small divisors, i.e. the fact that one of the terms ¢;(1,4;) ~ 0

4This is an empirical observation only, and not directly relevant to our discussion.
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whenever ,/A; is in close proximity to one of the values , /it; ;. This is essentially
guaranteed to hold in the equal edge length case, due to the fact that

1
VET R e Bi=@i= [ a)ds (1.1)
J7 0

and because the graph eigenvalues always lie between adjacent edge eigenvalues.
In the above example (5.2), with M = 3N = 15 we find k, ~ 6 x 102, while if
M = 3N = 30 it would be about 2 x 10*. By contrast, for the classical single
interval inverse spectral problem, the analogous condition number is around 1 and
largely independent of M. If we multiply each ¢; by 2, so the minimum difference
of the mean values g; is doubled, the condition number is reduced by about 1/2
and the same happens if the potentials are doubled again.

For the same reasons, the situation would be much worse if two of, or all three,
edge potentials had the same mean value, since then the edge eigenvalues are
much more closely clustered together, forcing the same to be true of the graph
eigenvalues as well. Thus we are likely to see even smaller divisors in (3.6). If, for
example, in (5.2) we replace ¢; (x) by 5.12|x — 1/3], so that ¢, g3 have the same
mean value, then the condition numbers rise dramatically, 3 x 10* for M = 15
and 6 x 10° for M = 30.

By the same reasoning, we expect a smaller condition number when the edge
lengths are unequal, since then there will be much less tendency for edge and graph
eigenvalues to be close to each other. In the case of (5.2), for example, with with
edge lengths chosen to be Ly, Ly, L3 = 1, 1.05, .95, the corresponding condition
number is merely 18 for M = 30.

A natural question is how the condition number of the matrix occurring in (3.6)
changes with M and also with the spacing between the values of B; in (2.2). Our
system (3.6) and (3.7) is based on equation (3.5) which was obtained from the def-
inition of @ in (2.3) by dividing through by the product ¢ (1, 1)¢>(1, 1)¢3(1, A).
While (3.6) provides a simple representation, this may not be optimal for numeri-
cal computations as both the matrix entry 1/¢; (1, A;) and the corresponding right
hand side term I'; has now a division by a quantity that can become arbitrary
small for large enough spectral index. Indeed, we know that two in every group of
three graph spectra must accumulate at nr for integral » and since there is an edge
spectra in between, at least one of the terms in each row of the equation as well as
the right hand side must in fact grow approximately at least linearly with n as the
differences of the edge spectra is O(1/n) from the asymptotic formula (2.2).

This suggest that we rescale the equations by dividing each row by its largest
term in magnitude — or for each j by multiplying by the value ¢; (1, A ;) for some i.
In a sense this is just partially reversing the transformation of (2.3) into (3.5) and
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is a preconditioning of the system (3.6), (3.7) by means of an initial pivoting strat-
egy. This also has the advantage of ensuring our new right hand side f,- remains
uniformly bounded for all indices j — just as in the case of a single interval — and
allows us to make comparisons between condition numbers for various values of
M and the spacing of the values B;.

To test the conditioning of the problem we chose ¢; = 2/(x + a;)?, functions
where the form of the eigenfunctions are known explicitly,> in order to reduce
computational error in the entries of the matrix.

We then computed the condition number as a function of N from N =5, ... 30.
To test the dependence on the separation of the values B; = fol qi(s) ds we chose
a = 0.5 and adjusted a; and a, to make the By — B, = B, — B3 = § for some
given §. The results are shown in Figure 3 for B; differences of 0.25, 0.1 and 0.05.
Here «(N) is computed for the rescaled equations with a uniformly bounded right
hand side rather than (3.7) itself. For a fixed value of §, the linear dependence
of the condition number in terms of N is clearly shown. We should remark that
for other potentials a similar linear relationship appears to hold, although not al-
ways to the same precision as shown here. The most important feature though is
the strong dependence on § which plays at least as large a role as the number of
spectral values.

(N e
1200 | (V) -

. q difference = 0.25 -
1000 4 - - - g difference = 0.1 e
4 —---q difference =0.05 .~
800 e

- -7

600 - T
400 //—/‘// /,/”//
200 :/’j: - /
0 1 T 1T 1T 1T 1T 17T 17 17T 1T 17 17T 1T T 17 T T T T T T T T1 ]I\7
5 10 15 20 25 30

Figure 3. Behavior of condition number for the recovery of K;x(1,¢).

Finally, we must also expect the degree of ill-conditioning to increase when
the number of edges increases, but the rate of increase seems to be modest. For
example if we try a case with n = 5, using edge potentials for which the relative
spacing of the mean values is comparable to the case (5.2) with g1, g2, g3 only,
then the condition number for the analogue of (3.6) is typically within a factor of
2 of the corresponding condition number for n = 3.

sin(k x) + sin(k x)—kx cos(k x)
k

o irayy s Where k2 is an eigenvalue.

5 Any eigenfunction has the form
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